Zachmann M. Defects in steroidogenic enzymes. Discrepancies between clinical steroid research and molecular biology results.
J Steroid Biochem Mol Biol 1995;
53:159-64. [PMID:
7626448 DOI:
10.1016/0960-0760(95)00030-4]
[Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Molecular biology has clarified the understanding of steroidogenic enzyme genetics. Nevertheless, there are discrepancies between fundamental and clinical experience. (1) Why do patients with "pure" 17 alpha-hydroxylase or 17,20-desmolase deficiency exist, when one cytochrome regulates both steps? A case of interest is discussed, who had "pure" 17,20-desmolase deficiency until adolescence, but additional 17 alpha-hydroxylase deficiency thereafter. (2) In 11 beta-hydroxylase deficiency, it was puzzling to find 18-hydroxylated compounds, and, in isolated hypoaldosteronism, normal cortisol, since 11 beta- and 18-hydroxylation were thought to be regulated together. This has now been explained by differences in the fasciculata and glomerulosa. The occurrence of 11 beta-hydroxylase deficiency of 17-hydroxylated steroids only, however, remains enigmatic. (3) 3 beta-Hydroxysteroid dehydrogenase deficiency does not only seem to exist in classic (mutations of type II gene), but also in late-onset cases. In them, no molecular basis could be found. (4) Also, in cholesterol side-chain cleavage, there is an inequity: while evidently one cytochrome regulates 20- and 22-hydroxylation, pregnenolone is formed when 20 alpha OH-cholesterol, but not when cholesterol, is added to adrenal tissue of deficient patients. Other factors (promoters, fusion proteins, adrenodoxin, cAMP-dependent expression of genes, and/or proteases), or hormonal replacement in patients may be responsible for these discrepancies.
Collapse