101
|
Komáromy AM, Bras D, Esson DW, Fellman RL, Grozdanic SD, Kagemann L, Miller PE, Moroi SE, Plummer CE, Sapienza JS, Storey ES, Teixeira LB, Toris CB, Webb TR. The future of canine glaucoma therapy. Vet Ophthalmol 2019; 22:726-740. [PMID: 31106969 PMCID: PMC6744300 DOI: 10.1111/vop.12678] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
Abstract
Canine glaucoma is a group of disorders that are generally associated with increased intraocular pressure (IOP) resulting in a characteristic optic neuropathy. Glaucoma is a leading cause of irreversible vision loss in dogs and may be either primary or secondary. Despite the growing spectrum of medical and surgical therapies, there is no cure, and many affected dogs go blind. Often eyes are enucleated because of painfully high, uncontrollable IOP. While progressive vision loss due to primary glaucoma is considered preventable in some humans, this is mostly not true for dogs. There is an urgent need for more effective, affordable treatment options. Because newly developed glaucoma medications are emerging at a very slow rate and may not be effective in dogs, work toward improving surgical options may be the most rewarding approach in the near term. This Viewpoint Article summarizes the discussions and recommended research strategies of both a Think Tank and a Consortium focused on the development of more effective therapies for canine glaucoma; both were organized and funded by the American College of Veterinary Ophthalmologists Vision for Animals Foundation (ACVO-VAF). The recommendations consist of (a) better understanding of disease mechanisms, (b) early glaucoma diagnosis and disease staging, (c) optimization of IOP-lowering medical treatment, (d) new surgical therapies to control IOP, and (e) novel treatment strategies, such as gene and stem cell therapies, neuroprotection, and neuroregeneration. In order to address these needs, increases in research funding specifically focused on canine glaucoma are necessary.
Collapse
Affiliation(s)
- András M Komáromy
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Dineli Bras
- Centro de Especialistas Veterinarios de Puerto Rico, San Juan, Puerto Rico
| | | | | | | | - Larry Kagemann
- U.S. Food and Drug Administration, Silver Spring, Maryland.,New York University School of Medicine, New York, New York.,Department of Ophthalmology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Paul E Miller
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sayoko E Moroi
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Caryn E Plummer
- College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | | | - Eric S Storey
- South Atlanta Veterinary Emergency & Specialty, Fayetteville, Georgia
| | - Leandro B Teixeira
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Carol B Toris
- Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Terah R Webb
- MedVet Medical & Cancer Centers for Pets, Worthington, Ohio
| |
Collapse
|
102
|
Wong CW, Wong TT. Posterior segment drug delivery for the treatment of exudative age-related macular degeneration and diabetic macular oedema. Br J Ophthalmol 2019; 103:1356-1360. [PMID: 31040133 DOI: 10.1136/bjophthalmol-2018-313462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
Abstract
Inhibitors of vascular endothelial growth factors are used to treat a myriad of retinal conditions, including exudative age-related macular degeneration (AMD), diabetic macular oedema (DME) and diabetic retinopathy. Although effective, long-term efficacy is limited by the need for frequent and invasive intravitreal injections. The quest for sustained action therapeutics that can be delivered to target tissue in the least invasive manner is an arduous endeavour that has ended in premature failure for several technologies in Phase II or III trials. Nevertheless, there have been promising preclinical studies, and more are on the horizon: port delivery systems for the treatment of exudative AMD have entered Phase III trials and a wide array of preclinical studies have demonstrated the potential for nanoparticles, such as liposomes, dendrimers and cell penetrating peptides to deliver therapeutics into the posterior segment via minimally invasive routes. In this review, we discuss the challenges posed by ocular barriers for drug penetration and present the recent advancements of the most pertinent drug delivery platforms with a focus on the treatment of exudative AMD and DME.
Collapse
Affiliation(s)
- Chee Wai Wong
- Surgical Retina, Singapore National Eye Centre, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Tina T Wong
- Duke-NUS Graduate Medical School, Singapore, Singapore .,Glaucoma, Singapore National Eye Centre, Singapore, Singapore
| |
Collapse
|
103
|
Huang L, Xia B, Shi X, Gao J, Yang Y, Xu F, Qi F, Liang C, Huang J, Luo Z. Time-restricted release of multiple neurotrophic factors promotes axonal regeneration and functional recovery after peripheral nerve injury. FASEB J 2019; 33:8600-8613. [PMID: 30995417 DOI: 10.1096/fj.201802065rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Delivery of multiple neurotrophic factors (NTFs), especially with time-restricted release kinetics, holds great potential for nerve repair. In this study, we utilized the tetracycline-regulatable Tet-On 3G system to control the expression of c-Jun, which is a common regulator of multiple NTFs in Schwann cells (SCs). In vitro, Tet-On/c-Jun-modified SCs showed a tightly controllable secretion of multiple NTFs, including glial cell line-derived NTF, nerve growth factor, brain-derived NTF, and artemin, by the addition or removal of doxycycline (Dox). When Tet-On/c-Jun-transduced SCs were grafted in vivo, the expression of NTFs could also be regulated by oral administration or removal of Dox. Fluoro-Gold retrograde tracing results indicated that a biphasic NTF expression scheme (Dox+3/-9, NTFs were up-regulated for 3 wk and declined to physiologic levels for another 9 wk) achieved more axonal regeneration than continuous up-regulation of NTFs (Dox+12) or no NTF induction (Dox-12). More importantly, the Dox+3/-9-group animals showed much better functional recovery than the animals in the Dox+12 and Dox-12 groups. Our findings, for the first time, demonstrated drug-controllable expression of multiple NTFs in nerve repair cells both in vitro and in vivo. These findings provide new hope for developing an optimal therapeutic alternative for nerve repair through the time-restricted release of multiple NTFs using Tet-On/c-Jun-modified SCs.-Huang, L., Xia, B., Shi, X., Gao, J., Yang, Y., Xu, F., Qi, F., Liang, C., Huang, J., Luo, Z. Time-restricted release of multiple neurotrophic factors promotes axonal regeneration and functional recovery after peripheral nerve injury.
Collapse
Affiliation(s)
- Liangliang Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Orthopaedics, General Hospital of Central Theater Command of People's Liberation Army, Wuhan, China
| | - Bing Xia
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaowei Shi
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianbo Gao
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yujie Yang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Feng Xu
- Department of Orthopaedics, General Hospital of Central Theater Command of People's Liberation Army, Wuhan, China
| | - Fengyu Qi
- Department of Orthopaedics, General Hospital of Central Theater Command of People's Liberation Army, Wuhan, China
| | - Chao Liang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
104
|
Palfi S, Gurruchaga JM, Lepetit H, Howard K, Ralph GS, Mason S, Gouello G, Domenech P, Buttery PC, Hantraye P, Tuckwell NJ, Barker RA, Mitrophanous KA. Long-Term Follow-Up of a Phase I/II Study of ProSavin, a Lentiviral Vector Gene Therapy for Parkinson's Disease. HUM GENE THER CL DEV 2019; 29:148-155. [PMID: 30156440 PMCID: PMC6157351 DOI: 10.1089/humc.2018.081] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Parkinson's disease is typically treated with oral dopamine replacement therapies. However, long-term use is complicated by motor fluctuations from intermittent stimulation of dopamine receptors and off-target effects. ProSavin, a lentiviral vector based gene therapy that delivers local and continuous dopamine, was previously shown to be well tolerated in a Phase I/II first-in-human study, with significant improvements in motor behavior from baseline at 1 year. Here, patients with Parkinson's disease from the open-label trial were followed up in the long term to assess the safety and efficacy of ProSavin after bilateral injection into the putamen. Fifteen patients who were previously treated with ProSavin have been followed for up to 5 years, with some having been seen for 8 years. Eight patients received deep brain stimulation at different time points, and their subsequent assessments continued to assess safety. Ninety-six drug-related adverse events were reported (87 mild, 6 moderate, 3 severe) of which more than half occurred in the first year. The most common drug-related events were dyskinesias (33 events, 11 patients) and on-off phenomena (22 events, 11 patients). A significant improvement in the defined "off" Unified Parkinson's Disease Rating Scale part III motor scores, compared to baseline, was seen at 2 years (mean score 29 · 2 vs. 38 · 4, n = 14, p < 0.05) and at 4 years in 8/15 patients. ProSavin continued to be safe and well tolerated in patients with Parkinson's disease. Moderate improvements in motor behavior over baseline continued to be reported in the majority of patients who could still be evaluated up to 5 years of follow-up.
Collapse
Affiliation(s)
- Stéphane Palfi
- 1 AP-HP, Groupe Hospitalier Henri-Mondor , DHU PePsy, Neurochirurgie, Psychiatrie Créteil, France .,2 Université Paris 12 , Faculté de Médecine, IMRB INSERM U 955 Team 14 Créteil, France
| | - Jean Marc Gurruchaga
- 1 AP-HP, Groupe Hospitalier Henri-Mondor , DHU PePsy, Neurochirurgie, Psychiatrie Créteil, France .,2 Université Paris 12 , Faculté de Médecine, IMRB INSERM U 955 Team 14 Créteil, France
| | - Hélène Lepetit
- 1 AP-HP, Groupe Hospitalier Henri-Mondor , DHU PePsy, Neurochirurgie, Psychiatrie Créteil, France .,2 Université Paris 12 , Faculté de Médecine, IMRB INSERM U 955 Team 14 Créteil, France
| | - Katy Howard
- 3 Oxford BioMedica Ltd. , Oxford, United Kingdom
| | | | - Sarah Mason
- 4 John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, Addenbrooke's Hospital , Cambridge, United Kingdom
| | - Gaëtane Gouello
- 1 AP-HP, Groupe Hospitalier Henri-Mondor , DHU PePsy, Neurochirurgie, Psychiatrie Créteil, France .,2 Université Paris 12 , Faculté de Médecine, IMRB INSERM U 955 Team 14 Créteil, France
| | - Philippe Domenech
- 1 AP-HP, Groupe Hospitalier Henri-Mondor , DHU PePsy, Neurochirurgie, Psychiatrie Créteil, France .,2 Université Paris 12 , Faculté de Médecine, IMRB INSERM U 955 Team 14 Créteil, France
| | - Philip C Buttery
- 4 John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, Addenbrooke's Hospital , Cambridge, United Kingdom
| | - Philippe Hantraye
- 5 CEA, DSV FBM, MIRCen and CNRS URA2210, Fontenay-aux-Roses , France
| | | | - Roger A Barker
- 4 John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, Addenbrooke's Hospital , Cambridge, United Kingdom
| | | |
Collapse
|
105
|
Ludwig PE, Freeman SC, Janot AC. Novel stem cell and gene therapy in diabetic retinopathy, age related macular degeneration, and retinitis pigmentosa. Int J Retina Vitreous 2019; 5:7. [PMID: 30805203 PMCID: PMC6373096 DOI: 10.1186/s40942-019-0158-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Degenerative retinal disease leads to significant visual morbidity worldwide. Diabetic retinopathy and macular degeneration are leading causes of blindness in the developed world. While current therapies for these diseases slow disease progression, stem cell and gene therapy may also reverse the effects of these, and other, degenerative retinal conditions. Novel therapies being investigated include the use of various types of stem cells in the regeneration of atrophic or damaged retinal tissue, the prolonged administration of neurotrophic factors and/or drug delivery, immunomodulation, as well as the replacement of mutant genes, and immunomodulation through viral vector delivery. This review will update the reader on aspects of stem cell and gene therapy in diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa and other less common inherited retinal dystrophies. These therapies include the use of adeno-associated viral vector-based therapies for treatment of various types of retinitis pigmentosa and dry age-related macular degeneration. Other potential therapies reviewed include the use of mesenchymal stem cells in local immunomodulation, and the use of stem cells in generating structures like three-dimensional retinal sheets for transplantation into degenerative retinas. Finally, aspects of stem cell and gene therapy in diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, and other less common inherited retinal dystrophies will be reviewed.
Collapse
Affiliation(s)
- Parker E Ludwig
- 1Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178 USA
| | - S Caleb Freeman
- 1Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178 USA
| | - Adam C Janot
- Vitreoretinal Institute, 7698 Goodwood Blvd, Baton Rouge, LA 70806 USA.,3Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA USA
| |
Collapse
|
106
|
Ong T, Pennesi ME, Birch DG, Lam BL, Tsang SH. Adeno-Associated Viral Gene Therapy for Inherited Retinal Disease. Pharm Res 2019; 36:34. [PMID: 30617669 PMCID: PMC6534121 DOI: 10.1007/s11095-018-2564-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/13/2018] [Indexed: 01/17/2023]
Abstract
Inherited retinal diseases (IRDs) are a group of rare, heterogenous eye disorders caused by gene mutations that result in degeneration of the retina. There are currently limited treatment options for IRDs; however, retinal gene therapy holds great promise for the treatment of different forms of inherited blindness. One such IRD for which gene therapy has shown positive initial results is choroideremia, a rare, X-linked degenerative disorder of the retina and choroid. Mutation of the CHM gene leads to an absence of functional Rab escort protein 1 (REP1), which causes retinal pigment epithelium cell death and photoreceptor degeneration. The condition presents in childhood as night blindness, followed by progressive constriction of visual fields, generally leading to vision loss in early adulthood and total blindness thereafter. A recently developed adeno-associated virus-2 (AAV2) vector construct encoding REP1 (AAV2-REP1) has been shown to deliver a functional version of the CHM gene into the retinal pigment epithelium and photoreceptor cells. Phase 1 and 2 studies of AAV2-REP1 in patients with choroideremia have produced encouraging results, suggesting that it is possible not only to slow or stop the decline in vision following treatment with AAV2-REP1, but also to improve visual acuity in some patients.
Collapse
Affiliation(s)
- Tuyen Ong
- Nightstar Therapeutics, 203 Crescent Street, Suite 303, Waltham, Massachusetts, 02453, USA.
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - David G Birch
- Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephen H Tsang
- Department of Ophthalmology and of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
107
|
Lee JH, Wang JH, Chen J, Li F, Edwards TL, Hewitt AW, Liu GS. Gene therapy for visual loss: Opportunities and concerns. Prog Retin Eye Res 2019; 68:31-53. [DOI: 10.1016/j.preteyeres.2018.08.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 12/17/2022]
|
108
|
Takahashi K, Morizane Y, Hisatomi T, Tachibana T, Kimura S, Hosokawa MM, Shiode Y, Hirano M, Doi S, Toshima S, Araki R, Matsumae H, Kanzaki Y, Hosogi M, Yoshida A, Sonoda KH, Shiraga F. The influence of subretinal injection pressure on the microstructure of the monkey retina. PLoS One 2018; 13:e0209996. [PMID: 30596769 PMCID: PMC6312337 DOI: 10.1371/journal.pone.0209996] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/15/2018] [Indexed: 12/31/2022] Open
Abstract
Purpose To investigate the influence of subretinal injection pressure on the microstructure of the retina in a monkey model. Methods After vitrectomy, balanced salt solution was injected subretinally into one eye each of four cynomolgus monkeys while controlling the injection pressure. Initially, a pressure of 2 psi was used, and this was gradually increased to determine the minimum required pressure. Subsequent injections were performed at two pressures: minimum (n = 13) and high (n = 6). To compare the influence of these injection pressures on retinal structure, optical coherence tomography (OCT) was performed before surgery and every week afterwards. The monkeys were euthanized and their eyes were enucleated at 1 or 6 weeks after the injections. The eyes were processed for light microscopy and transmission electron microscopy (TEM) as well as for TdT-mediated dUTP nick end labeling. Results The minimum pressure required to perform subretinal injection was 6 psi. After injection at this pressure, both OCT and microscopy showed that the retinal structure was well-preserved throughout the experimental period at all injection sites. Conversely, after injection at high pressure (20 psi) OCT images at all injection sites showed disruption of the ellipsoid zone (EZ) after 1 week. Microscopy indicated damage to the photoreceptor outer segment (OS) and stratification of the retinal pigment epithelium (RPE). After 6 weeks, OCT demonstrated that the EZ had become continuous and TEM confirmed that the OS and RPE had recovered. Photoreceptor apoptosis was absent after subretinal injection at both pressures. Conclusions The retinal damage caused by subretinal injection increases depending on pressure, indicating that clinicians should perform subretinal injection at pressures as low as possible to ensure safety.
Collapse
Affiliation(s)
- Kosuke Takahashi
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Morizane
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Toshio Hisatomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Tachibana
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shuhei Kimura
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Mio Morizane Hosokawa
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Shiode
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masayuki Hirano
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichiro Doi
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Toshima
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ryoichi Araki
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Matsumae
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Kanzaki
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Mika Hosogi
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Atsushi Yoshida
- Research and Development Division, Santen Pharmaceutical Co., Ltd., Nara, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Shiraga
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
109
|
Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomed Pharmacother 2018; 110:775-785. [PMID: 30554116 DOI: 10.1016/j.biopha.2018.12.022] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is a critical step in the progression of almost all human malignancies and some other life-threatening diseases. Anti-angiogenic therapy is a novel and effective approach for treatment of angiogenesis-dependent diseases such as cancer, diabetic retinopathy, and age-related macular degeneration. In this article, we will review the main strategies developed for anti-angiogenic therapies beside their clinical applications, the major challenges, and the latest advances in the development of anti-angiogenesis-based targeted therapies.
Collapse
|
110
|
Jiang DJ, Xu CL, Tsang SH. Revolution in Gene Medicine Therapy and Genome Surgery. Genes (Basel) 2018; 9:E575. [PMID: 30486314 PMCID: PMC6315778 DOI: 10.3390/genes9120575] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
Recently, there have been revolutions in the development of both gene medicine therapy and genome surgical treatments for inherited disorders. Much of this progress has been centered on hereditary retinal dystrophies, because the eye is an immune-privileged and anatomically ideal target. Gene therapy treatments, already demonstrated to be safe and efficacious in numerous clinical trials, are benefitting from the development of new viral vectors, such as dual and triple adeno-associated virus (AAV) vectors. CRISPR/Cas9, which revolutionized the field of gene editing, is being adapted into more precise "high fidelity" and catalytically dead variants. Newer CRISPR endonucleases, such as CjCas9 and Cas12a, are generating excitement in the field as well. Stem cell therapy has emerged as a promising alternative, allowing human embryo-derived stem cells and induced pluripotent stem cells to be edited precisely in vitro and then reintroduced into the body. This article highlights recent progress made in gene therapy and genome surgery for retinal disorders, and it provides an update on precision medicine Food and Drug Administration (FDA) treatment trials.
Collapse
Affiliation(s)
- David J Jiang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA.
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA.
| | - Christine L Xu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA.
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA.
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA.
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA.
- Department of Pathology & Cell Biology, Stem Cell Initiative (CSCI), Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
111
|
Abstract
Recently, there have been revolutions in the development of both gene medicine therapy and genome surgical treatments for inherited disorders. Much of this progress has been centered on hereditary retinal dystrophies, because the eye is an immune-privileged and anatomically ideal target. Gene therapy treatments, already demonstrated to be safe and efficacious in numerous clinical trials, are benefitting from the development of new viral vectors, such as dual and triple adeno-associated virus (AAV) vectors. CRISPR/Cas9, which revolutionized the field of gene editing, is being adapted into more precise "high fidelity" and catalytically dead variants. Newer CRISPR endonucleases, such as CjCas9 and Cas12a, are generating excitement in the field as well. Stem cell therapy has emerged as a promising alternative, allowing human embryo-derived stem cells and induced pluripotent stem cells to be edited precisely in vitro and then reintroduced into the body. This article highlights recent progress made in gene therapy and genome surgery for retinal disorders, and it provides an update on precision medicine Food and Drug Administration (FDA) treatment trials.
Collapse
Affiliation(s)
- David J Jiang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA. .,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA.
| | - Christine L Xu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA. .,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA.
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA. .,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA. .,Department of Pathology & Cell Biology, Stem Cell Initiative (CSCI), Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
112
|
Alfranca A, Campanero MR, Redondo JM. New Methods for Disease Modeling Using Lentiviral Vectors. Trends Mol Med 2018; 24:825-837. [PMID: 30213701 DOI: 10.1016/j.molmed.2018.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022]
Abstract
Lentiviral vectors (LVs) transduce quiescent cells and provide stable integration to maintain transgene expression. Several approaches have been adopted to optimize LV safety profiles. Similarly, LV targeting has been tailored through strategies including the modification of envelope components, the use of specific regulatory elements, and the selection of appropriate administration routes. Models of aortic disease based on a single injection of pleiotropic LVs have been developed that efficiently transduce the three aorta layers in wild type mice. This approach allows the dissection of pathways involved in aortic aneurysm formation and the identification of targets for gene therapy in aortic diseases. LVs provide a fast, efficient, and affordable alternative to genetically modified mice to study disease mechanisms and develop therapeutic tools.
Collapse
Affiliation(s)
- Arantzazu Alfranca
- Department of Immunology, Hospital Universitario de La Princesa, Madrid, Spain; CIBERCV, Madrid, Spain.
| | - Miguel R Campanero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain; CIBERCV, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBERCV, Madrid, Spain.
| |
Collapse
|
113
|
Cell-specific gene therapy driven by an optimized hypoxia-regulated vector reduces choroidal neovascularization. J Mol Med (Berl) 2018; 96:1107-1118. [PMID: 30105447 DOI: 10.1007/s00109-018-1683-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022]
Abstract
Aberrant growth of blood vessels in the choroid layer of the eye, termed choroidal neovascularization (CNV), is the pathological hallmark of exudative age-related macular degeneration (AMD), causing irreversible blindness among the elderly. Co-localization of proangiogenic factors and hypoxia inducible factors (HIF) in neovascular membranes from AMD eyes suggests the role of hypoxia in pathogenesis of CNV. In order to utilize hypoxic conditions in RPE for therapeutic purposes, we developed an optimized hypoxia regulated, RPE cell-specific gene therapy to inhibit choroidal neovascularization. An adeno-associated virus (AAV2) vector comprising a RPE-specific promoter and HIF-1 response elements (HRE) was designed to regulate production of human endostatin (a powerful angiostatic protein) in RPE. The vector was tested in a mouse model of laser-induced CNV using subretinal delivery. Spectral domain optical coherence tomography (SD-OCT) images from live mice and confocal images from lectin stained RPE flat mount sections demonstrated reduction in CNV areas by 80% compared to untreated eyes. Quantitative real-time polymerase chain reaction (qPCR) confirmed exogenous endostatin mRNA expression from the regulated vector that was significantly elevated 3, 7, and 14 days following laser treatment, but its expression was completely shut off after 45 days. Thus, RPE-specific, hypoxia-regulated delivery of anti-angiogenic proteins could be a valuable therapeutic approach to treat neovascular AMD at the time and in the ocular space where it arises. KEY POINTS An optimized gene therapy vector targeting hypoxia and tissue-specific expression has been designed. The inhibitory role of gene therapy vector was tested in a mouse model of laser-induced CNV. An 80% reduction in choroidal neovascularization was achieved by the optimized vector. The expression of endostatin was limited to retinal pigment epithelium and regulated by hypoxia.
Collapse
|
114
|
Cavalieri V, Baiamonte E, Lo Iacono M. Non-Primate Lentiviral Vectors and Their Applications in Gene Therapy for Ocular Disorders. Viruses 2018; 10:E316. [PMID: 29890733 PMCID: PMC6024700 DOI: 10.3390/v10060316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022] Open
Abstract
Lentiviruses have a number of molecular features in common, starting with the ability to integrate their genetic material into the genome of non-dividing infected cells. A peculiar property of non-primate lentiviruses consists in their incapability to infect and induce diseases in humans, thus providing the main rationale for deriving biologically safe lentiviral vectors for gene therapy applications. In this review, we first give an overview of non-primate lentiviruses, highlighting their common and distinctive molecular characteristics together with key concepts in the molecular biology of lentiviruses. We next examine the bioengineering strategies leading to the conversion of lentiviruses into recombinant lentiviral vectors, discussing their potential clinical applications in ophthalmological research. Finally, we highlight the invaluable role of animal organisms, including the emerging zebrafish model, in ocular gene therapy based on non-primate lentiviral vectors and in ophthalmology research and vision science in general.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Edificio 16, 90128 Palermo, Italy.
- Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze Edificio 18, 90128 Palermo, Italy.
| | - Elena Baiamonte
- Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, 90146 Palermo, Italy.
| | - Melania Lo Iacono
- Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, 90146 Palermo, Italy.
| |
Collapse
|
115
|
Luan XR, Chen XL, Tang YX, Zhang JY, Gao X, Ke HP, Lin ZY, Zhang XN. CRISPR/Cas9-Mediated Treatment Ameliorates the Phenotype of the Epidermolytic Palmoplantar Keratoderma-like Mouse. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:220-228. [PMID: 30195761 PMCID: PMC6023945 DOI: 10.1016/j.omtn.2018.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022]
Abstract
CRISPR/Cas9 has been confirmed as a distinctly efficient, simple-to-configure, highly specific genome-editing tool that has been used to treat monogenetic disorders. Epidermolytic palmoplantar keratoderma (EPPK) is a common autosomal dominant keratin disease resulting from dominant-negative mutation of the KRT9 gene, and it has no effective therapy. We performed CRISPR/Cas9-mediated treatment on a knockin (KI) transgenic mouse model that carried a small indel heterozygous mutation of Krt9, c.434delAinsGGCT (p.Tyr144delinsTrpLeu), which caused a humanized EPPK-like phenotype. The mutation within exon 1 of Krt9 generated a novel protospacer adjacent motif site, TGG, for Cas9 recognition and cutting. By delivering lentivirus vectors (LVs) encoding single-guide RNAs (sgRNAs) and Cas9 that targeted Krt9 sequence into HeLa cells engineered to constitutively express wild-type and mutant keratin 9 (K9), we found the sgRNA was highly effective in reducing expression of the mutant K9 protein in vitro. We injected the LV into the fore-paws of adult KI-Krt9 mice three times every 8 days and found that the expression of K9 decreased ∼14.6%. The phenotypic mitigation was revealed by restoration of the abnormal differentiation and aberrant proliferation of the epidermis. Our data are the first to show that CRISPR/Cas9 is a potentially powerful therapeutic option for EPPK and other PPK subtypes.
Collapse
Affiliation(s)
- Xiao-Rui Luan
- Department of Genetics, Research Center for Molecular Medicine, Institute of Cell Biology, Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiao-Ling Chen
- Department of Biological Chemistry, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yue-Xiao Tang
- Department of Genetics, Research Center for Molecular Medicine, Institute of Cell Biology, Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jin-Yan Zhang
- Department of Genetics, Research Center for Molecular Medicine, Institute of Cell Biology, Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiang Gao
- Key Laboratory of Model Animals for Disease Study of The Ministry of Education, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu 210061, China
| | - Hai-Ping Ke
- Department of Biology, Ningbo College of Health Sciences, Ningbo, Zhejiang 315100, China
| | - Zhao-Yu Lin
- Key Laboratory of Model Animals for Disease Study of The Ministry of Education, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu 210061, China
| | - Xian-Ning Zhang
- Department of Genetics, Research Center for Molecular Medicine, Institute of Cell Biology, Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
116
|
Fu X, Huu VAN, Duan Y, Kermany DS, Valentim CCS, Zhang R, Zhu J, Zhang CL, Sun X, Zhang K. Clinical applications of retinal gene therapies. PRECISION CLINICAL MEDICINE 2018; 1:5-20. [PMID: 35694125 PMCID: PMC8982485 DOI: 10.1093/pcmedi/pby004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 02/05/2023] Open
Abstract
Retinal degenerative diseases are a major cause of blindness. Retinal gene therapy is a
trail-blazer in the human gene therapy field, leading to the first FDA approved gene
therapy product for a human genetic disease. The application of Clustered Regularly
Interspaced Short Palindromic Repeat/Cas9 (CRISPR/Cas9)-mediated gene editing technology
is transforming the delivery of gene therapy. We review the history, present, and future
prospects of retinal gene therapy.
Collapse
Affiliation(s)
- Xin Fu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Viet Anh Nguyen Huu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Yaou Duan
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Daniel S Kermany
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Carolina C S Valentim
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Runze Zhang
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jie Zhu
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Charlotte L Zhang
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Xiaodong Sun
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital, Shanghai Jiaodong University, Shanghai, China
| | - Kang Zhang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
117
|
Kumaran N, Michaelides M, Smith AJ, Ali RR, Bainbridge JWB. Retinal gene therapy. Br Med Bull 2018; 126:13-25. [PMID: 29506236 DOI: 10.1093/bmb/ldy005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/12/2018] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Inherited retinal diseases are the leading cause of sight impairment in people of working age in England and Wales, and the second commonest in childhood. Gene therapy offers the potential for benefit. SOURCES OF DATA Pubmed and clinicaltrials.gov. AREAS OF AGREEMENT Gene therapy can improve vision in RPE65-associated Leber Congenital Amaurosis (RPE65-LCA). Potential benefit depends on efficient gene transfer and is limited by the extent of retinal degeneration. AREAS OF CONTROVERSY The magnitude of vision improvement from RPE65-LCA gene therapy is suboptimal, and its durability may be limited by progressive retinal degeneration. GROWING POINTS The safety and potential benefit of gene therapy for inherited and acquired retinal diseases is being explored in a rapidly expanding number of trials. AREAS TIMELY FOR DEVELOPING RESEARCH Developments in vector design and delivery will enable greater efficiency and safety of gene transfer. Optimization of trial design will accelerate reliable assessment of outcomes.
Collapse
Affiliation(s)
- Neruban Kumaran
- NIHR Biomedical Research Centre for Ophthalmology at Moofields Eye Hospital and UCL, 162 City Road, London, UK
| | - Michel Michaelides
- NIHR Biomedical Research Centre for Ophthalmology at Moofields Eye Hospital and UCL, 162 City Road, London, UK
| | - Alexander J Smith
- NIHR Biomedical Research Centre for Ophthalmology at Moofields Eye Hospital and UCL, 162 City Road, London, UK
| | - Robin R Ali
- NIHR Biomedical Research Centre for Ophthalmology at Moofields Eye Hospital and UCL, 162 City Road, London, UK
| | - James W B Bainbridge
- NIHR Biomedical Research Centre for Ophthalmology at Moofields Eye Hospital and UCL, 162 City Road, London, UK
| |
Collapse
|
118
|
DiCarlo JE, Mahajan VB, Tsang SH. Gene therapy and genome surgery in the retina. J Clin Invest 2018; 128:2177-2188. [PMID: 29856367 DOI: 10.1172/jci120429] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Precision medicine seeks to treat disease with molecular specificity. Advances in genome sequence analysis, gene delivery, and genome surgery have allowed clinician-scientists to treat genetic conditions at the level of their pathology. As a result, progress in treating retinal disease using genetic tools has advanced tremendously over the past several decades. Breakthroughs in gene delivery vectors, both viral and nonviral, have allowed the delivery of genetic payloads in preclinical models of retinal disorders and have paved the way for numerous successful clinical trials. Moreover, the adaptation of CRISPR-Cas systems for genome engineering have enabled the correction of both recessive and dominant pathogenic alleles, expanding the disease-modifying power of gene therapies. Here, we highlight the translational progress of gene therapy and genome editing of several retinal disorders, including RPE65-, CEP290-, and GUY2D-associated Leber congenital amaurosis, as well as choroideremia, achromatopsia, Mer tyrosine kinase- (MERTK-) and RPGR X-linked retinitis pigmentosa, Usher syndrome, neovascular age-related macular degeneration, X-linked retinoschisis, Stargardt disease, and Leber hereditary optic neuropathy.
Collapse
Affiliation(s)
- James E DiCarlo
- Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
| | - Vinit B Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
119
|
Lorés-Motta L, de Jong EK, den Hollander AI. Exploring the Use of Molecular Biomarkers for Precision Medicine in Age-Related Macular Degeneration. Mol Diagn Ther 2018; 22:315-343. [PMID: 29700787 PMCID: PMC5954014 DOI: 10.1007/s40291-018-0332-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Precision medicine aims to improve patient care by adjusting medication to each patient's individual needs. Age-related macular degeneration (AMD) is a heterogeneous eye disease in which several pathways are involved, and the risk factors driving the disease differ per patient. As a consequence, precision medicine holds promise for improved management of this disease, which is nowadays a main cause of vision loss in the elderly. In this review, we provide an overview of the studies that have evaluated the use of molecular biomarkers to predict response to treatment in AMD. We predominantly focus on genetic biomarkers, but also include studies that examined circulating or eye fluid biomarkers in treatment response. This involves studies on treatment response to dietary supplements, response to anti-vascular endothelial growth factor, and response to complement inhibitors. In addition, we highlight promising new therapies that have been or are currently being tested in clinical trials and discuss the molecular studies that can help identify the most suitable patients for these upcoming therapeutic approaches.
Collapse
Affiliation(s)
- Laura Lorés-Motta
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Philips van Leydenlaan 15, 6525 EX, Nijmegen, The Netherlands
| | - Eiko K de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Philips van Leydenlaan 15, 6525 EX, Nijmegen, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Philips van Leydenlaan 15, 6525 EX, Nijmegen, The Netherlands.
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
120
|
Mousetap, a Novel Technique to Collect Uncontaminated Vitreous or Aqueous and Expand Usefulness of Mouse Models. Sci Rep 2018; 8:6371. [PMID: 29686307 PMCID: PMC5913258 DOI: 10.1038/s41598-018-24197-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Vitreous or aqueous humour taps are widely used in patients or large animals with retinal diseases to monitor disease biomarkers, search for novel biomarkers, assess the integrity of the blood-retinal barrier, or perform pharmacokinetic or pharmacodynamics studies. Although there are many useful mouse models of retinal diseases, the small size of mouse eyes has precluded vitreous or aqueous taps. Herein we describe a novel technique, mousetap, which allows collection of vitreous or aqueous humour uncontaminated by blood or tissue surrounding the vitreous cavity. Mousetap was used to obtain vitreous samples from several mouse models of retinal vascular diseases and vitreous albumin measured by ELISA was highly reproducible among mice of the same model. The mean vitreous albumin concentration differed widely among control mice and mice of different models and correlated with fluorescein angiographic assessment of vascular leakage severity. Protein arrays showed increases in levels of several vasoactive proteins in the vitreous from mice with oxygen-induced ischemic retinopathy compared with age-matched controls; almost all of these proteins are increased in the vitreous of patients with the most common human ischemic retinopathy, proliferative diabetic retinopathy. Thus, mousetap facilitates the use of mice for studies previously reserved for large animal models and patients.
Collapse
|
121
|
Abstract
Viral vectors provide an efficient means for modification of eukaryotic cells, and their use is now commonplace in academic laboratories and industry for both research and clinical gene therapy applications. Lentiviral vectors, derived from the human immunodeficiency virus, have been extensively investigated and optimized over the past two decades. Third-generation, self-inactivating lentiviral vectors have recently been used in multiple clinical trials to introduce genes into hematopoietic stem cells to correct primary immunodeficiencies and hemoglobinopathies. These vectors have also been used to introduce genes into mature T cells to generate immunity to cancer through the delivery of chimeric antigen receptors (CARs) or cloned T-cell receptors. CAR T-cell therapies engineered using lentiviral vectors have demonstrated noteworthy clinical success in patients with B-cell malignancies leading to regulatory approval of the first genetically engineered cellular therapy using lentiviral vectors. In this review, we discuss several aspects of lentiviral vectors that will be of interest to clinicians, including an overview of lentiviral vector development, the current uses of viral vectors as therapy for primary immunodeficiencies and cancers, large-scale manufacturing of lentiviral vectors, and long-term follow-up of patients treated with gene therapy products.
Collapse
|
122
|
Fouladi N, Parker M, Kennedy V, Binley K, McCloskey L, Loader J, Kelleher M, Mitrophanous KA, Stout JT, Ellis S. Safety and Efficacy of OXB-202, a Genetically Engineered Tissue Therapy for the Prevention of Rejection in High-Risk Corneal Transplant Patients. Hum Gene Ther 2018; 29:687-698. [PMID: 29361840 DOI: 10.1089/hum.2017.184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Due to both the avascularity of the cornea and the relatively immune-privileged status of the eye, corneal transplantation is one of the most successful clinical transplant procedures. However, in high-risk patients, which account for >20% of the 180,000 transplants carried out worldwide each year, the rejection rate is high due to vascularization of the recipient cornea. The main reason for graft failure is irreversible immunological rejection, and it is therefore unsurprising that neovascularization (NV; both pre and post grafting) is a significant risk factor for subsequent graft failure. NV is thus an attractive target to prevent corneal graft rejection. OXB-202 (previously known as EncorStat®) is a donor cornea modified prior to transplant by ex vivo genetic modification with genes encoding secretable forms of the angiostatic human proteins, endostatin and angiostatin. This is achieved using a lentiviral vector derived from the equine infectious anemia virus called pONYK1EiA, which subsequently prevents rejection by suppressing NV. Previously, it has been shown that rabbit donor corneas treated with pONYK1EiA substantially suppress corneal NV, opacity, and subsequent rejection in an aggressive rabbit model of cornea graft rejection. Here, efficacy data are presented in a second rabbit model, which more closely mirrors the clinical setting for high-risk corneal transplant patients, and safety data from a 3-month good laboratory practice toxicology and biodistribution study of pONYK1EiA-modified rabbit corneas in a rabbit corneal transplant model. It is shown that pONYK1EiA-modified rabbit corneas (OXB-202) significantly reduce corneal NV and the rate of corneal rejection in a dose-dependent fashion, and are tolerated with no adverse toxicological findings or significant biodistribution up to 13 weeks post surgery in these rabbit studies. In conclusion, angiogenesis is a valid target to prevent corneal graft rejection in a high-risk setting, and transplanted genetically modified corneas are safe and well-tolerated in an animal model. These data support the evaluation of OXB-202 in a first-in-human trial.
Collapse
Affiliation(s)
| | - Maria Parker
- 2 Casey Eye Institute, Oregon Health and Sciences University , Portland, Oregon
| | - Vicky Kennedy
- 1 Oxford BioMedica (UK) Ltd. , Oxford, United Kingdom
| | - Katie Binley
- 1 Oxford BioMedica (UK) Ltd. , Oxford, United Kingdom
| | | | - Julie Loader
- 1 Oxford BioMedica (UK) Ltd. , Oxford, United Kingdom
| | | | | | - J Timothy Stout
- 3 Cullen Eye Institute, Baylor College of Medicine , Houston, Texas
| | - Scott Ellis
- 1 Oxford BioMedica (UK) Ltd. , Oxford, United Kingdom
| |
Collapse
|
123
|
Askou AL, Benckendorff JNE, Holmgaard A, Storm T, Aagaard L, Bek T, Mikkelsen JG, Corydon TJ. Suppression of Choroidal Neovascularization in Mice by Subretinal Delivery of Multigenic Lentiviral Vectors Encoding Anti-Angiogenic MicroRNAs. Hum Gene Ther Methods 2018; 28:222-233. [PMID: 28817343 DOI: 10.1089/hgtb.2017.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lentivirus-based vectors have been used for the development of potent gene therapies. Here, application of a multigenic lentiviral vector (LV) producing multiple anti-angiogenic microRNAs following subretinal delivery in a laser-induced choroidal neovascularization (CNV) mouse model is presented. This versatile LV, carrying back-to-back RNApolII-driven expression cassettes, enables combined expression of microRNAs targeting vascular endothelial growth factor A (Vegfa) mRNA and fluorescent reporters. In addition, by including a vitelliform macular dystrophy 2 (VMD2) promoter, expression of microRNAs is restricted to the retinal pigment epithelial (RPE) cells. Six days post injection (PI), robust and widespread fluorescent signals of eGFP are already observed in the retina by funduscopy. The eGFP expression peaks at day 21 PI and persists with stable expression for at least 9 months. In parallel, prominent AsRED co-expression, encoded from the VMD2-driven microRNA expression cassette, is evident in retinal sections and flat-mounts, revealing RPE-specific expression of microRNAs. Furthermore, LV-delivered microRNAs targeting the Vegfa gene in RPE cells reduced the size of laser-induced CNV in mice 28 days PI, as a consequence of diminished VEGF levels, suggesting that LVs delivered locally are powerful tools in the development of gene therapy-based strategies for treatment of age-related macular degeneration.
Collapse
Affiliation(s)
| | | | | | - Tina Storm
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lars Aagaard
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Toke Bek
- 2 Department of Ophthalmology, Aarhus University Hospital , Aarhus, Denmark
| | | | - Thomas Juhl Corydon
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark .,2 Department of Ophthalmology, Aarhus University Hospital , Aarhus, Denmark
| |
Collapse
|
124
|
Reid CA, Ertel KJ, Lipinski DM. Improvement of Photoreceptor Targeting via Intravitreal Delivery in Mouse and Human Retina Using Combinatory rAAV2 Capsid Mutant Vectors. Invest Ophthalmol Vis Sci 2017; 58:6429-6439. [PMID: 29260200 PMCID: PMC5736327 DOI: 10.1167/iovs.17-22281] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Effective intravitreal gene delivery to cells of the central retina (i.e., photoreceptors) would be of substantial benefit for treating patients with retinal diseases, such as achromatopsia, where retinal detachment from a subretinal may be harmful. Previous studies demonstrated that mutation of the recombinant adeno-associated virus (rAAV) capsid through introduction of peptide insertions or amino acid substitutions dramatically alters vector tropism. Herein, we evaluate the photoreceptor transduction efficiency of three rAAV2/2-based capsid mutant vectors: rAAV2/2[7m8], rAAV2/2[QuadYF+TV], and a chimeric vector incorporating both mutations (termed rAAV2/2[MAX]) following intravitreal delivery in mice. Furthermore, we evaluate the transduction efficiency of rAAV2/2[MAX] using explanted human central retinal samples to address clinical translatability. Methods Vectors containing a GFP or mCherry reporter gene were intravitreally injected into C57BL/6J or Nrl-EGFP mice, respectively. Transduction was assessed in vivo utilizing a custom multiline confocal scanning laser ophthalmoscope. Injected Nrl-EGFP mouse retinas were used to quantify transduced photoreceptors using flow cytometry. Postmortem human retinal tissue was cultured following administration of rAAV2/2[MAX]. C57BL/6J retinas and human explants were cryosectioned to determine vector tropism. Results The chimeric vector rAAV2/2[MAX] transduced significantly higher proportions of the retina than did either single mutant serotypes following intravitreal delivery in murine retina, including inner retinal cells and photoreceptors. Vector rAAV2[MAX] demonstrated transduction of human photoreceptors and ganglion cells. Conclusions Transduction observed via rAAV2/2[MAX] indicates that combining mutations with complementary mechanisms of action in a single vector results in enhanced transduction. rAAV2/2[MAX] also presented the ability to transduce human photoreceptors and ganglion cells, indicating potential for efficient intravitreal vector delivery.
Collapse
Affiliation(s)
- Christopher A Reid
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Kristina J Ertel
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Daniel M Lipinski
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States.,Nuffield Laboratory of Ophthalmology, Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
125
|
Chan L, Mahajan VB, Tsang SH. Genome Surgery and Gene Therapy in Retinal Disorders. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:523-532. [PMID: 29259518 PMCID: PMC5733860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The emergence of genome surgery techniques like the clustered regularly interspaced short palindromic repeats (CRISPR) editing technology has given researchers a powerful tool for precisely introducing targeted changes within the genome. New modifications to the CRISPR-Cas system have been made since its recent discovery, such as high-fidelity Cas9 variants to reduce off-target effects and transcriptional activation/silencing with CRISPRa/CRISPRi. The applications of CRISPR-Cas and gene therapy in ophthalmic diseases have been necessary and fruitful, especially given the impact of blinding diseases on society and the large number of monogenic disorders of the eye. This review discusses the impact that CRISPR-Cas has had on furthering our understanding of disease mechanisms and potential therapies for inherited eye diseases. Furthermore, we explore a brief overview of recent and ongoing gene therapy clinical trials in retinal diseases, and conclude with the implications of genome surgery on the outlook of future therapeutic interventions.
Collapse
Affiliation(s)
- Lawrence Chan
- Yale School of Medicine, New Haven, CT,To whom all correspondence should be addressed: Lawrence Chan, Yale School of Medicine, New Haven, CT, .
| | - Vinit B. Mahajan
- Byers Eye Institute, Omics Laboratory, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA,Palo Alto Veterans Administration, Palo Alto, CA
| | - Stephen H. Tsang
- Jonas Children’s Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY,Department of Pathology & Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
126
|
Ratay ML, Bellotti E, Gottardi R, Little SR. Modern Therapeutic Approaches for Noninfectious Ocular Diseases Involving Inflammation. Adv Healthc Mater 2017; 6:10.1002/adhm.201700733. [PMID: 29034584 PMCID: PMC5915344 DOI: 10.1002/adhm.201700733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/25/2017] [Indexed: 12/12/2022]
Abstract
Dry eye disease, age-related macular degeneration, and uveitis are ocular diseases that significantly affect the quality of life of millions of people each year. In these diseases, the action of chemokines, proinflammatory cytokines, and immune cells drives a local inflammatory response that results in ocular tissue damage. Multiple therapeutic strategies are developed to either address the symptoms or abate the underlying cause of these diseases. Herein, the challenges to deliver drugs to the relevant location in the eye for each of these diseases are reviewed along with current and innovative therapeutic approaches that attempt to restore homeostasis within the ocular microenvironment.
Collapse
Affiliation(s)
- Michelle L. Ratay
- Department of Bioengineering, University of Pittsburgh, 427 Benedum Hall 3700 O’Hara Street Pittsburgh, Pa 15261
| | - Elena Bellotti
- Department of Chemical Engineering, University of Pittsburgh, 427 Benedum Hall 3700 O’Hara Street Pittsburgh, Pa 15261
| | - Riccardo Gottardi
- Department of Chemical Engineering, Department of Orthopedic Surgery, Ri.MED Foundation, 427 Benedum Hall 3700 O’Hara Street Pittsburgh, Pa 15261
| | - Steven R. Little
- Department of Chemical Engineering, Department of Bioengineering, Department of Ophthalmology, Department of Immunology, Department of Pharmaceutical Sciences, The McGowan Institute for Regenerative Medicine, 940 Benedum Hall 3700 O’Hara Street Pittsburgh Pa 15261
| |
Collapse
|
127
|
Gupta PR, Huckfeldt RM. Gene therapy for inherited retinal degenerations: initial successes and future challenges. J Neural Eng 2017; 14:051002. [DOI: 10.1088/1741-2552/aa7a27] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
128
|
Auricchio A, Smith AJ, Ali RR. The Future Looks Brighter After 25 Years of Retinal Gene Therapy. Hum Gene Ther 2017; 28:982-987. [PMID: 28825330 DOI: 10.1089/hum.2017.164] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The first report of in vivo gene delivery to the retina dates back to 1987 when a retroviral vector was injected intraocularly in newborn mice. Later came the observation that retinal cells could be successfully transduced using adenoviral and then adeno-associated and lentiviral vectors. By 2000, it had become clear that the eye, compared to other organs and tissues, provides a number of advantages for in vivo gene therapy with regard to safety, efficacy, and route to clinical application. This has prompted the development of many successful proof-of-concept studies in animal models. The demonstration that sight could be restored in a large-animal model with a congenital form of blindness was a major landmark that opened the door to the first-in-human trials for recessively inherited blinding conditions. With these first human studies demonstrating safety as well as some efficacy, retinal gene therapy has now come of age. Rapid clinical development has highlighted various new challenges, including the treatment of patients with advanced photoreceptor degeneration or dominantly inherited retinal dystrophies and those with defects in large genes. Yet, given the progress over the last 25 years, a bright future is expected for retinal gene therapy.
Collapse
Affiliation(s)
- Alberto Auricchio
- 1 Telethon Institute of Genetics and Medicine , Pozzuoli, Italy.,2 Department of Advanced Biomedicine, "Federico II" University , Naples, Italy
| | - Alexander J Smith
- 3 Department of Genetics, UCL Institute of Ophthalmology , London, United Kingdom
| | - Robin R Ali
- 3 Department of Genetics, UCL Institute of Ophthalmology , London, United Kingdom.,4 Kellogg Eye Center, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
129
|
Garcia-Garcia L, Recalde S, Hernandez M, Bezunartea J, Rodriguez-Madoz JR, Johnen S, Diarra S, Marie C, Izsvák Z, Ivics Z, Scherman D, Kropp M, Thumann G, Prosper F, Fernandez-Robredo P, Garcia-Layana A. Long-Term PEDF Release in Rat Iris and Retinal Epithelial Cells after Sleeping Beauty Transposon-Mediated Gene Delivery. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:1-11. [PMID: 29246287 PMCID: PMC5583395 DOI: 10.1016/j.omtn.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 12/29/2022]
Abstract
Pigment epithelium derived factor (PEDF) is a potent antiangiogenic, neurotrophic, and neuroprotective molecule that is the endogenous inhibitor of vascular endothelial growth factor (VEGF) in the retina. An ex vivo gene therapy approach based on transgenic overexpression of PEDF in the eye is assumed to rebalance the angiogenic-antiangiogenic milieu of the retina, resulting in growth regression of choroidal blood vessels, the hallmark of neovascular age-related macular degeneration. Here, we show that rat pigment epithelial cells can be efficiently transfected with the PEDF-expressing non-viral hyperactive Sleeping Beauty transposon system delivered in a form free of antibiotic resistance marker miniplasmids. The engineered retinal and iris pigment epithelium cells secrete high (141 ± 13 and 222 ± 14 ng) PEDF levels in 72 hr in vitro. In vivo studies showed cell survival and insert expression during at least 4 months. Transplantation of the engineered cells to the subretinal space of a rat model of choroidal neovascularization reduces almost 50% of the development of new vessels.
Collapse
Affiliation(s)
- Laura Garcia-Garcia
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Sergio Recalde
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Maria Hernandez
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Jaione Bezunartea
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Juan Roberto Rodriguez-Madoz
- Cell Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sabine Diarra
- Department of Ophthalmology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Corinne Marie
- CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS) UMR 8258, 75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité, UTCBS, 75006 Paris, France; Chimie ParisTech, PSL Research University, UTCBS, 75005 Paris, France; INSERM, UTCBS U 1022, 75006 Paris, France
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, 13125 Berlin, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Daniel Scherman
- CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS) UMR 8258, 75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité, UTCBS, 75006 Paris, France; Chimie ParisTech, PSL Research University, UTCBS, 75005 Paris, France; INSERM, UTCBS U 1022, 75006 Paris, France
| | - Martina Kropp
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland; Department of Ophthalmology, University Hospitals and School of Medicine, 22 Rue Alcide-Jentzer, Geneva 1205, Switzerland
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland; Department of Ophthalmology, University Hospitals and School of Medicine, 22 Rue Alcide-Jentzer, Geneva 1205, Switzerland
| | - Felipe Prosper
- Cell Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; Area of Cell Therapy, Clínica Universidad de Navarra, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Patricia Fernandez-Robredo
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain.
| | - Alfredo Garcia-Layana
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; Ophthalmology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
130
|
Hussain RM, Ciulla TA. Emerging vascular endothelial growth factor antagonists to treat neovascular age-related macular degeneration. Expert Opin Emerg Drugs 2017; 22:235-246. [DOI: 10.1080/14728214.2017.1362390] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rehan M Hussain
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas A. Ciulla
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Retina Service, Midwest Eye Institute, Indianapolis, IN, USA
| |
Collapse
|
131
|
Moore NA, Bracha P, Hussain RM, Morral N, Ciulla TA. Gene therapy for age-related macular degeneration. Expert Opin Biol Ther 2017; 17:1235-1244. [PMID: 28726562 DOI: 10.1080/14712598.2017.1356817] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION In neovascular age related macular degeneration (nAMD), gene therapy to chronically express anti-vascular endothelial growth factor (VEGF) proteins could ameliorate the treatment burden of chronic intravitreal therapy and improve limited visual outcomes associated with 'real world' undertreatment. Areas covered: In this review, the authors assess the evolution of gene therapy for AMD. Adeno-associated virus (AAV) vectors can transduce retinal pigment epithelium; one such early application was a phase I trial of AAV2-delivered pigment epithelium derived factor gene in advanced nAMD. Subsequently, gene therapy for AMD shifted to the investigation of soluble fms-like tyrosine kinase-1 (sFLT-1), an endogenously expressed VEGF inhibitor, binding and neutralizing VEGF-A. After some disappointing results, research has centered on novel vectors, including optimized AAV2, AAV8 and lentivirus, as well as genes encoding other anti-angiogenic proteins, including ranibizumab, aflibercept, angiostatin and endostatin. Also, gene therapy targeting the complement system is being investigated for geographic atrophy due to non-neovascular AMD. Expert opinion: The success of gene therapy for AMD will depend on the selection of the most appropriate therapeutic protein and its level of chronic expression. Future investigations will center on optimizing vector, promoter and delivery methods, and evaluating the risks of the chronic expression of anti-angiogenic or anti-complement proteins.
Collapse
Affiliation(s)
- Nicholas A Moore
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Peter Bracha
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Rehan M Hussain
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Nuria Morral
- c Department of Medical and Molecular Genetics , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Thomas A Ciulla
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA.,b Retina Service , Midwest Eye Institute , Indianapolis , IN , USA
| |
Collapse
|
132
|
Taking Stock of Retinal Gene Therapy: Looking Back and Moving Forward. Mol Ther 2017; 25:1076-1094. [PMID: 28391961 DOI: 10.1016/j.ymthe.2017.03.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/04/2017] [Accepted: 03/04/2017] [Indexed: 11/23/2022] Open
Abstract
Over the past 20 years, there has been tremendous progress in retinal gene therapy. The safety and efficacy results in one early-onset severe blinding disease may lead to the first gene therapy drug approval in the United States. Here, we review how far the field has come over the past two decades and speculate on the directions that the field will take in the future.
Collapse
|
133
|
Ochakovski GA, Bartz-Schmidt KU, Fischer MD. Retinal Gene Therapy: Surgical Vector Delivery in the Translation to Clinical Trials. Front Neurosci 2017; 11:174. [PMID: 28420956 PMCID: PMC5376580 DOI: 10.3389/fnins.2017.00174] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/16/2017] [Indexed: 01/07/2023] Open
Abstract
An exceptionally high number of monogenic disorders lead to incurable blindness, making them targets for the development of gene-therapy. In order to successfully apply therapeutic vector systems in vivo, the heterogeneity of the disease phenotype needs to be considered. This necessitates tailored approaches such as subretinal or intravitreal injections with the aim to maximize transduction of target cell populations, while minimizing off-target effects and surgical complications. Strategic decisions on parameters of the application are crucial to obtain the best treatment outcomes and patient safety. While most of the current retinal gene therapy trials utilize a subretinal approach, a deeper understanding of the numerous factors and considerations in choosing one delivery approach over the other for various ocular pathologies could lead to an improved safety and treatment efficacy. In this review we survey different vector injection techniques and parameters applied in recent retinal (pre-)clinical trials. We explore the advantages and shortcomings of each delivery strategy in the setting of different underlying ocular pathologies and other relevant factors. We highlight the potential benefits for patient safety and efficacy in applying those considerations in the decision making process.
Collapse
Affiliation(s)
- G Alex Ochakovski
- Centre for Ophthalmology, University Eye Hospital, University Hospital TuebingenTuebingen, Germany
| | - K Ulrich Bartz-Schmidt
- Centre for Ophthalmology, University Eye Hospital, University Hospital TuebingenTuebingen, Germany
| | - M Dominik Fischer
- Centre for Ophthalmology, University Eye Hospital, University Hospital TuebingenTuebingen, Germany.,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of OxfordOxford, UK
| |
Collapse
|
134
|
Correction of Monogenic and Common Retinal Disorders with Gene Therapy. Genes (Basel) 2017; 8:genes8020053. [PMID: 28134823 PMCID: PMC5333042 DOI: 10.3390/genes8020053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/19/2017] [Indexed: 11/16/2022] Open
Abstract
The past decade has seen major advances in gene-based therapies, many of which show promise for translation to human disease. At the forefront of research in this field is ocular disease, as the eye lends itself to gene-based interventions due to its accessibility, relatively immune-privileged status, and ability to be non-invasively monitored. A landmark study in 2001 demonstrating successful gene therapy in a large-animal model for Leber congenital amaurosis set the stage for translation of these strategies from the bench to the bedside. Multiple clinical trials have since initiated for various retinal diseases, and further improvements in gene therapy techniques have engendered optimism for alleviating inherited blinding disorders. This article provides an overview of gene-based strategies for retinal disease, current clinical trials that engage these strategies, and the latest techniques in genome engineering, which could serve as the next frontline of therapeutic interventions.
Collapse
|
135
|
Turunen TA, Ylä-Herttuala S, Turunen MP. Enhancing Angiogenesis in Mice by VEGF-Targeting Small Activating RNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28639201 DOI: 10.1007/978-981-10-4310-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The prevalence of cardiovascular diseases is steadily increasing, and it is the leading cause of death worldwide. Therefore, new treatments, such as gene therapy are needed. During the last decade, the role of small noncoding RNAs (ncRNAs) in the regulation of gene expression at the transcriptional level has been shown. Promoter-targeted small RNAs recruit histone-modifying enzymes and can either repress or induce target gene expression. As an example, we have targeted mouse VEGF-A promoter with small hairpin RNAs (shRNAs) and identified two shRNAs which either repressed or induced VEGF-A expression on messenger RNA and protein level in vitro, depending on the targeted location. The changes in expression levels correlate with changes in the levels of epigenetic markers, such as histone modifications associated with repressed or active state of chromatin. In ischemic mouse hindlimbs, upregulation of VEGF-A expression increased vascularity and blood flow. When VEGF-A was upregulated in mouse myocardial infarction model, the blood vessel formation in the risk zone was observed and infarct size was significantly decreased already 2 weeks after treatment. We suggest that epigenetic upregulation of VEGF-A by ncRNAs can be transferred to clinical use for the treatment of ischemic diseases in the near future.
Collapse
Affiliation(s)
- Tiia A Turunen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko P Turunen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|