101
|
Abbasi Pashaki P, Rahim F, Habibi Roudkenar M, Razavi-Toosi S, Ebrahimi A. MicroRNA Tough Decoy Knockdowns miR-195 and Represses Hypertrophy in Chondrocytes. Appl Biochem Biotechnol 2020; 191:1056-1071. [PMID: 31956957 DOI: 10.1007/s12010-020-03229-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
Cartilage hypertrophy is a condition in which the cells are completely differentiated, and new morphological changes and mineralization prevent proper cellular functions. The occurrence of hypertrophy during differentiation fails current regenerative strategies for treatment. Strategies to minimize hypertrophy in chondrocytes are categorized into two levels of protein and gene. Among these strategies, one way to affect multiple pathways involved in the development of hypertrophy is to manage microRNA activity in cells. Recent miRNA profiling studies have shown that miR-195-5p upregulates through the transition from chondrogenic to hypertrophic state. Bioinformatics assessment of microRNA targets also indicates that several genes repressed by miR-195-5p play important roles in processes related to hypertrophy. The aim of this study was to develop a microRNA Tough Decoy to suppress miR-195-5p and investigate whether it can prevent a hypertrophic state in chondrocytes. The Tough Decoy (TUD) was designed and evaluated bioinformatically and then cloned into the pLVX-Puro plasmid. The TUD function was validated by Dual-Luciferase assay and qRT-PCR. After delivering TUD to C28/I2 chondrocytes cultured in a hypertrophic medium, hypertrophic differentiation was assessed by histochemical staining, quantitative RT-PCR of hypertrophy marker genes, and alkaline phosphatase activity. Results showed that the TUD could inhibit miRNA efficiently and downregulate hypertrophic markers such as RUNX2, alkaline phosphatase, and collagen 10 significantly compared with the control group. Alcian blue and alizarin red staining also demonstrated the optimal effect of gene constructs on tissue properties and mineralization of the TUD group. Delivering the miR-195-5p Tough Decoy to the cartilage cells can prevent the occurrence of hypertrophy in chondrocytes and could be considered as a candidate for the treatment of other diseases such as osteoarthritis.
Collapse
Affiliation(s)
| | - Fakher Rahim
- Thalassemia and Hemoglobinopathy Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehryar Habibi Roudkenar
- Department of Medical Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Smt Razavi-Toosi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ammar Ebrahimi
- Department of Medical Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran. .,Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
102
|
Limraksasin P, Kondo T, Zhang M, Okawa H, Osathanon T, Pavasant P, Egusa H. In Vitro Fabrication of Hybrid Bone/Cartilage Complex Using Mouse Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21020581. [PMID: 31963264 PMCID: PMC7014254 DOI: 10.3390/ijms21020581] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/25/2022] Open
Abstract
Cell condensation and mechanical stimuli play roles in osteogenesis and chondrogenesis; thus, they are promising for facilitating self-organizing bone/cartilage tissue formation in vitro from induced pluripotent stem cells (iPSCs). Here, single mouse iPSCs were first seeded in micro-space culture plates to form 3-dimensional spheres. At day 12, iPSC spheres were subjected to shaking culture and maintained in osteogenic induction medium for 31 days (Os induction). In another condition, the osteogenic induction medium was replaced by chondrogenic induction medium at day 22 and maintained for a further 21 days (Os-Chon induction). Os induction produced robust mineralization and some cartilage-like tissue, which promoted expression of osteogenic and chondrogenic marker genes. In contrast, Os-Chon induction resulted in partial mineralization and a large area of cartilage tissue, with greatly increased expression of chondrogenic marker genes along with osterix and collagen 1a1. Os-Chon induction enhanced mesodermal lineage commitment with brachyury expression followed by high expression of lateral plate and paraxial mesoderm marker genes. These results suggest that combined use of micro-space culture and mechanical stimuli facilitates hybrid bone/cartilage tissue formation from iPSCs, and that the bone/cartilage tissue ratio in iPSC constructs could be manipulated through the induction protocol.
Collapse
Affiliation(s)
- Phoonsuk Limraksasin
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Maolin Zhang
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Hiroko Okawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
- Weintraub Center for Reconstructive Biotechnology, UCLA (University of California, Los Angeles) School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Thanaphum Osathanon
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasit Pavasant
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
- Correspondence:
| |
Collapse
|
103
|
De la Vega RE, Scheu M, Brown LA, Evans CH, Ferreira E, Porter RM. Specific, Sensitive, and Stable Reporting of Human Mesenchymal Stromal Cell Chondrogenesis. Tissue Eng Part C Methods 2020; 25:176-190. [PMID: 30727864 DOI: 10.1089/ten.tec.2018.0295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
IMPACT STATEMENT The promoter characterized in this study has been made accessible as a resource for the skeletal tissue engineering and regenerative medicine community. When combined with suitable reporter vectors, the resulting tools can be used for noninvasive and/or high-throughput screening of test conditions for stimulating chondrogenesis by candidate stem/progenitor cells. As demonstrated in this study, they can also be used with small animal imaging platforms to monitor the chondrogenic activity of implanted progenitors within orthotopic models of bone and cartilage repair.
Collapse
Affiliation(s)
- Rodolfo E De la Vega
- 1 Department of Orthopaedic Surgery, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Maximiliano Scheu
- 1 Department of Orthopaedic Surgery, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts.,3 Department of Orthopaedic Surgery, Clínica Alemana de Santiago, Universidad del Desarrollo, Vitacura, Chile
| | - Lennart A Brown
- 1 Department of Orthopaedic Surgery, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Christopher H Evans
- 1 Department of Orthopaedic Surgery, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Elisabeth Ferreira
- 1 Department of Orthopaedic Surgery, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Ryan M Porter
- 1 Department of Orthopaedic Surgery, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
104
|
McCorry MC, Kim J, Springer NL, Sandy J, Plaas A, Bonassar LJ. Regulation of proteoglycan production by varying glucose concentrations controls fiber formation in tissue engineered menisci. Acta Biomater 2019; 100:173-183. [PMID: 31546030 DOI: 10.1016/j.actbio.2019.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/30/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
Abstract
Fibrillar collagens are highly prevalent in the extracellular matrix of all connective tissues and therefore commonly used as a biomaterial in tissue engineering applications. In the native environment, collagen fibers are arranged in a complex hierarchical structure that is often difficult to recreate in a tissue engineered construct. Small leucine rich proteoglycans as well as hyaluronan binding proteoglycans, aggrecan and versican, have been implicated in regulating fiber formation. In this study, we modified proteoglycan production in vitro by altering culture medium glucose concentrations (4500, 1000, 500, 250, and 125 mg/L), and evaluated its effect on the formation of collagen fibers inside tissue engineered meniscal constructs. Reduction of extracellular glucose resulted in a dose dependent decrease in total sulfated glycosaminoglycan (GAG) production, but minimal decreases of decorin and biglycan. However, fibromodulin doubled in production between 125 and 4500 mg/L glucose concentration. A peak in fiber formation was observed at 500 mg/L glucose concentration and corresponded with reductions in total GAG production. Fiber formation reduction at 125 and 250 mg/L glucose concentrations are likely due to changes in metabolic activity associated with a limited supply of glucose. These results point to proteoglycan production as a means to manipulate fiber architecture in tissue engineered constructs. STATEMENT OF SIGNIFICANCE: Fibrillar collagens are highly prevalent in the extracellular matrix of all connective tissues; however achieving appropriate assembly and organization of collagen fibers in engineered connective tissues is a persistent challenge. Proteoglycans have been implicated in regulating collagen fiber organization both in vivo and in vitro, however little is known about methods to control proteoglycan production and the subsequent fiber organization in tissue engineered menisci. Here, we show that media glucose content can be optimized to control proteoglycan production and collagen fiber assembly, with optimal collagen fiber assembly occurring at sub-physiologic levels of glucose.
Collapse
|
105
|
Serum-Free Culture of Human Mesenchymal Stem Cell Aggregates in Suspension Bioreactors for Tissue Engineering Applications. Stem Cells Int 2019; 2019:4607461. [PMID: 31814836 PMCID: PMC6878794 DOI: 10.1155/2019/4607461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/10/2019] [Accepted: 08/26/2019] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have the capacity to differentiate towards bone, fat, and cartilage lineages. The most widely used culture and differentiation protocols for MSCs are currently limited by their use of serum-containing media and small-scale static culture vessels. Suspension bioreactors have multiple advantages over static culture vessels (e.g., scalability, control, and mechanical forces). This study sought to compare the formation and culture of 3D aggregates of human synovial fluid MSCs within suspension bioreactors and static microwell plates. It also sought to elucidate the benefits of these techniques in terms of productivity, cell number, and ability to generate aggregates containing extracellular matrix deposition. MSCs in serum-free medium were either (1) inoculated as single cells into suspension bioreactors, (2) aggregated using static microwell plates prior to being inoculated in the bioreactor environment, or (3) aggregated using microwell plates and kept in the static environment. Preformed aggregates that were size-controlled at inoculation had a greater tendency to form large, irregular super aggregates after a few days of suspension culture. The single MSCs inoculated into suspension bioreactors formed a more uniform population of smaller aggregates after a definite culture period of 8 days. Both techniques showed initial deposition of extracellular matrix within the aggregates. When the relationship between aggregate size and ECM deposition was investigated in static culture, midsized aggregates (100-300 cells/aggregate) were found to most consistently maximize sGAG and collagen productivity. Thus, this study presents a 3D tissue culture method, which avoids the clinical drawbacks of serum-containing medium that can easily be scaled for tissue culture applications.
Collapse
|
106
|
Diederichs S, Klampfleuthner FAM, Moradi B, Richter W. Chondral Differentiation of Induced Pluripotent Stem Cells Without Progression Into the Endochondral Pathway. Front Cell Dev Biol 2019; 7:270. [PMID: 31737632 PMCID: PMC6838640 DOI: 10.3389/fcell.2019.00270] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
A major problem with chondrocytes derived in vitro from stem cells is undesired hypertrophic degeneration, to which articular chondrocytes (ACs) are resistant. As progenitors of all adult tissues, induced pluripotent stem cells (iPSCs) are in theory able to form stable articular cartilage. In vitro differentiation of iPSCs into chondrocytes with an AC-phenotype and resistance to hypertrophy has not been demonstrated so far. Here, we present a novel protocol that succeeded in deriving chondrocytes from human iPSCs without using pro-hypertrophic bone-morphogenetic-proteins. IPSC-chondrocytes had a high cartilage formation capacity and deposited two-fold more proteoglycans per cell than adult ACs. Importantly, cartilage engineered from iPSC-chondrocytes had similar marginal expression of hypertrophic markers (COL10A1, PTH1R, IBSP, ALPL mRNAs) like cartilage from ACs. Collagen X was barely detectable in iPSC-cartilage and 30-fold lower than in hypertrophic cartilage derived from mesenchymal stromal cells (MSCs). Moreover, alkaline phosphatase (ALP) activity remained at basal AC-like levels throughout iPSC chondrogenesis, in contrast to a well-known significant upregulation in hypertrophic MSCs. In line, iPSC-cartilage subjected to mineralizing conditions in vitro showed barely any mineralization, while MSC-derived hypertrophic cartilage mineralized strongly. Low expression of Indian hedgehog (IHH) like in ACs but rising BMP7 expression like in MSCs suggested that phenotype stability was linked to the hedgehog rather than the bone morphogenetic protein (BMP) pathway. Taken together, unlimited amounts of AC-like chondrocytes with a high proteoglycan production reminiscent of juvenile chondrocytes and resistance to hypertrophy and mineralization can now be produced from human iPSCs in vitro. This opens new strategies for cartilage regeneration, disease modeling and pharmacological studies.
Collapse
Affiliation(s)
- Solvig Diederichs
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felicia A M Klampfleuthner
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Babak Moradi
- Clinic for Orthopaedics and Trauma Surgery, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wiltrud Richter
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
107
|
Corrigan MA, Coyle S, Eichholz KF, Riffault M, Lenehan B, Hoey DA. Aged Osteoporotic Bone Marrow Stromal Cells Demonstrate Defective Recruitment, Mechanosensitivity, and Matrix Deposition. Cells Tissues Organs 2019; 207:83-96. [PMID: 31655814 DOI: 10.1159/000503444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/18/2019] [Indexed: 11/19/2022] Open
Abstract
Bone formation requires the replenishment of the osteoblast from a progenitor or stem cell population, which must be recruited, expanded, and differentiated to ensure continued anabolism. How this occurs and whether it is altered in the osteoporotic environment is poorly understood. Furthermore, given that emerging treatments for osteoporosis are targeting this progenitor population, it is critical to determine the regenerative capacity of this cell type in the setting of osteoporosis. Human bone marrow stromal cells (hMSCs) from a cohort of aged osteoporotic patients were compared to MSCs isolated from healthy donors in terms of the ability to undergo recruitment and proliferation, and also respond to both the biophysical and biochemical cues that drive osteogenic matrix deposition. hMSCs isolated from healthy donors demonstrate good recruitment, mechanosensitivity, proliferation, and differentiation capacity. Contrastingly, hMSCs isolated from aged osteoporotic patients had significantly diminished regenerative potential. Interestingly, we demonstrated that osteoporotic hMSCs no longer responded to chemokine-directing recruitment and became desensitised to mechanical stimulation. The osteoporotic MSCs had a reduced proliferative potential and, importantly, they demonstrated an attenuated differentiation capability with reduced mineral and lipid formation. Moreover, during osteogenesis, despite minimal differences in the quantity of deposited collagen, the distribution of collagen was dramatically altered in osteoporosis, suggesting a potential defect in matrix quality. Taken together, this study has demonstrated that hMSCs isolated from aged osteoporotic patients demonstrate defective cell behaviour on multiple fronts, resulting in a significantly reduced regenerative potential, which must be considered during the development of new anabolic therapies that target this cell population.
Collapse
Affiliation(s)
- Michele A Corrigan
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Siobhan Coyle
- Department of Trauma and Orthopaedics, University Hospital Limerick, Limerick, Ireland.,Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - Kian F Eichholz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Mathieu Riffault
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Brian Lenehan
- Department of Trauma and Orthopaedics, University Hospital Limerick, Limerick, Ireland.,Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - David A Hoey
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland, .,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland, .,Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin, Ireland,
| |
Collapse
|
108
|
O'Neill HC, Lim HK, Periasamy P, Kumarappan L, Tan JKH, O'Neill TJ. Transplanted spleen stromal cells with osteogenic potential support ectopic myelopoiesis. PLoS One 2019; 14:e0223416. [PMID: 31584977 PMCID: PMC6777786 DOI: 10.1371/journal.pone.0223416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/20/2019] [Indexed: 12/24/2022] Open
Abstract
Spleen stromal lines which support in vitro hematopoiesis are investigated for their lineage origin and hematopoietic support function in vivo. Marker expression and gene profiling identify a lineage relationship with mesenchymal stem cells and perivascular reticular cells described recently in bone marrow. Stromal lines commonly express Cxcl12, Pdgfra and Pdgfr typical of bone marrow derived perivascular reticular cells but reflect a unique cell type in terms of other gene and marker expression. Their classification as osteoprogenitors is confirmed through ability to undergo osteogenic, but not adipogenic or chondrogenic differentiation. Some stromal lines were shown to form ectopic niches for HSCs following engraftment under the kidney capsule of NOD/SCID mice. The presence of myeloid cells and a higher representation of a specific dendritic-like cell type over other myeloid cells within grafts was consistent with previous in vitro evidence of hematopoietic support capacity. These studies reinforce the role of perivascular/perisinusoidal reticular cells in hematopoiesis and implicate such cells as niches for hematopoiesis in spleen.
Collapse
Affiliation(s)
- Helen C O'Neill
- Clem Jones Research Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Hong K Lim
- Clem Jones Research Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Pravin Periasamy
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.,Department of Microbiology, Yoo Long School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lavanya Kumarappan
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jonathan K H Tan
- Clem Jones Research Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Terence J O'Neill
- Big Data Centre, Bond Business School, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
109
|
Ruhl T, Beier JP. Quantification of chondrogenic differentiation in monolayer cultures of mesenchymal stromal cells. Anal Biochem 2019; 582:113356. [DOI: 10.1016/j.ab.2019.113356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/26/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
|
110
|
Dituri F, Cossu C, Mancarella S, Giannelli G. The Interactivity between TGFβ and BMP Signaling in Organogenesis, Fibrosis, and Cancer. Cells 2019; 8:E1130. [PMID: 31547567 PMCID: PMC6829314 DOI: 10.3390/cells8101130] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
The Transforming Growth Factor beta (TGFβ) and Bone Morphogenic Protein (BMP) pathways intersect at multiple signaling hubs and cooperatively or counteractively participate to bring about cellular processes which are critical not only for tissue morphogenesis and organogenesis during development, but also for adult tissue homeostasis. The proper functioning of the TGFβ/BMP pathway depends on its communication with other signaling pathways and any deregulation leads to developmental defects or diseases, including fibrosis and cancer. In this review we explore the cellular and physio-pathological contexts in which the synergism or antagonism between the TGFβ and BMP pathways are crucial determinants for the normal developmental processes, as well as the progression of fibrosis and malignancies.
Collapse
Affiliation(s)
- Francesco Dituri
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Carla Cossu
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Serena Mancarella
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| |
Collapse
|
111
|
Frauchiger DA, Tekari A, May RD, Džafo E, Chan SCW, Stoyanov J, Bertolo A, Zhang X, Guerrero J, Sakai D, Schol J, Grad S, Tryfonidou M, Benneker LM, Gantenbein B. Fluorescence-Activated Cell Sorting Is More Potent to Fish Intervertebral Disk Progenitor Cells Than Magnetic and Beads-Based Methods. Tissue Eng Part C Methods 2019; 25:571-580. [PMID: 31154900 DOI: 10.1089/ten.tec.2018.0375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Low back pain related to intervertebral disk (IVD) degeneration has a major socioeconomic impact on our aging society. Therefore, stem cell therapy to activate self-repair of the IVD remains an exciting treatment strategy. In this respect, tissue-specific progenitors may play a crucial role in IVD regeneration, as these cells are perfectly adapted to this niche. Such a rare progenitor cell population residing in the nucleus pulposus (NP) (NP progenitor cells [NPPCs]) was found positive for the angiopoietin-1 receptor (Tie2+), and was demonstrated to possess self-renewal capacity and in vitro multipotency. Here, we compared three sorting protocols; that is, fluorescence-activated cell sorting (FACS), magnetic-activated cell sorting (MACS), and a mesh-based label-free cell sorting system (pluriSelect), with respect to cell yield, potential to form colonies (colony-forming units), and in vitro functional differentiation assays for tripotency. The aim of this study was to demonstrate the efficiency of three widespread cell sorting methods for picking rare cells (<5%) and how these isolated cells then behave in downstream functional differentiation in adipogenesis, osteogenesis, and chondrogenesis. The cell yields among the isolation methods differed widely, with FACS presenting the highest yield (5.0% ± 4.0%), followed by MACS (1.6% ± 2.9%) and pluriSelect (1.1% ± 1.0%). The number of colonies formed was not significantly different between Tie2+ and Tie2- NPPCs. Only FACS was able to separate into two functionally different populations that showed trilineage multipotency, while MACS and pluriSelect failed to maintain a clear separation between Tie2+ and Tie2- populations in differentiation assays. To conclude, the isolation of NPPCs was possible with all three sorting methods, while FACS was the preferred technique for separation of functional Tie2+ cells. Impact Statement Tissue-specific progenitor cells such as nucleus pulposus progenitor cells of the IVD could become an ultimate cell source for tissue engineering strategies as these cells are presumably best adapted to the tissue's microenvironment. Fluorescence-activated cell sorting seemed to outcompete magnetic-activated cell sorting and pluriSelect concerning selecting a rare cell population from IVD tissue as could be demonstrated by improved cell yield and functional differentiation assays.
Collapse
Affiliation(s)
- Daniela A Frauchiger
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Adel Tekari
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Rahel D May
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Emina Džafo
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Samantha C W Chan
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | | | | | - Xingshuo Zhang
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Julien Guerrero
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daisuke Sakai
- Department for Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Jordy Schol
- Department for Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | | | - Marianna Tryfonidou
- Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lorin M Benneker
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Benjamin Gantenbein
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
112
|
Cheng B, Liu Y, Zhao Y, Li Q, Liu Y, Wang J, Chen Y, Zhang M. The role of anthrax toxin protein receptor 1 as a new mechanosensor molecule and its mechanotransduction in BMSCs under hydrostatic pressure. Sci Rep 2019; 9:12642. [PMID: 31477767 PMCID: PMC6718418 DOI: 10.1038/s41598-019-49100-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
Anthrax toxin protein receptor (ANTXR) 1 has many similarities to integrin and is regarded in some respects as a single-stranded integrin protein. However, it is not clear whether ANTXR1 responds to mechanical signals secondary to the activation of integrins or whether it is a completely new, independent and previously undiscovered mechanosensor that responds to an undefined subset of mechanical signaling molecules. Our study demonstrates that ANTXR1 is a novel mechanosensor on the cell membrane, acting independently from the classical mechanoreceptor molecule integrinβ1. We show that bone marrow stromal cells (BMSCs) respond to the hydrostatic pressure towards chondrogenic differentiation partly through the glycogen synthase kinase (GSK) 3β/β-Catenin signaling pathway, which can be partly regulated by ANTXR1 and might be related to the direct binding between ANTXR1 and low-density lipoprotein receptor-related protein (LRP) 5/6. In addition, ANTXR1 specifically activates Smad2 and upregulates Smad4 expression to facilitate the transport of activated Smad2 to the nucleus to regulate chondrogenesis, which might be related to the direct binding between ANTXR1 and Actin/Fascin1. We also demonstrate that ANTXR1 binds to some extent with integrinβ1, but this interaction does not affect the expression and function of either protein under pressure. Thus, we conclude that ANTXR1 plays a crucial role in BMSC mechanotransduction and controls specific signaling pathways that are distinct from those of integrin to influence the chondrogenic responses of BMSCs under hydrostatic pressure.
Collapse
Affiliation(s)
- Baixiang Cheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China
| | - Yanzheng Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China
| | - Ying Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China
| | - Qiang Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China
| | - Yanli Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China
| | - Junjun Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China
| | - Yongjin Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China.
| | - Min Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China.
| |
Collapse
|
113
|
Remodeling of Human Osteochondral Defects via rAAV-Mediated Co-Overexpression of TGF-β and IGF-I from Implanted Human Bone Marrow-Derived Mesenchymal Stromal Cells. J Clin Med 2019; 8:jcm8091326. [PMID: 31466339 PMCID: PMC6781264 DOI: 10.3390/jcm8091326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/01/2022] Open
Abstract
The application of chondrogenic gene sequences to human bone marrow-derived mesenchymal stromal cells (hMSCs) is an attractive strategy to activate the reparative activities of these cells as a means to enhance the processes of cartilage repair using indirect cell transplantation procedures that may improve the repopulation of cartilage lesions. In the present study, we examined the feasibility of co-delivering the highly competent transforming growth factor beta (TGF-β) with the insulin-like growth factor I (IGF-I) in hMSCs via recombinant adeno-associated virus (rAAV) vector-mediated gene transfer prior to implantation in a human model of osteochondral defect (OCD) ex vivo that provides a microenvironment similar to that of focal cartilage lesions. The successful co-overexpression of rAAV TGF-β/IGF-I in implanted hMSCs promoted the durable remodeling of tissue injury in human OCDs over a prolonged period of time (21 days) relative to individual gene transfer and the control (reporter lacZ gene) treatment, with enhanced levels of cell proliferation and matrix deposition (proteoglycans, type-II collagen) both in the lesions and at a distance, while hypertrophic, osteogenic, and catabolic processes could be advantageously delayed. These findings demonstrate the value of indirect, progenitor cell-based combined rAAV gene therapy to treat human focal cartilage defects in a natural environment as a basis for future clinical applications.
Collapse
|
114
|
van Geffen EW, van Caam APM, Vitters EL, van Beuningen HM, van de Loo FA, van Lent PLEM, Koenders MI, van der Kraan PM. Interleukin-37 Protects Stem Cell-Based Cartilage Formation in an Inflammatory Osteoarthritis-Like Microenvironment. Tissue Eng Part A 2019; 25:1155-1166. [DOI: 10.1089/ten.tea.2018.0267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Elly Louise Vitters
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Henk Maria van Beuningen
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fons Adrianus van de Loo
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Marije Ingrid Koenders
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter Mario van der Kraan
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
115
|
Qu D, Zhu JP, Childs HR, Lu HH. Nanofiber-based transforming growth factor-β3 release induces fibrochondrogenic differentiation of stem cells. Acta Biomater 2019; 93:111-122. [PMID: 30862549 DOI: 10.1016/j.actbio.2019.03.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
Fibrocartilage is typically found in regions subject to complex, multi-axial loads and plays a critical role in musculoskeletal function. Mesenchymal stem cell (MSC)-mediated fibrocartilage regeneration may be guided by administration of appropriate chemical and/or physical cues, such as by culturing cells on polymer nanofibers in the presence of the chondrogenic growth factor TGF-β3. However, targeted delivery and maintenance of effective local factor concentrations remain challenges for implementation of growth factor-based regeneration strategies in clinical settings. Thus, the objective of this study was to develop and optimize the bioactivity of a biomimetic nanofiber scaffold system that enables localized delivery of TGF-β3. To this end, we fabricated TGF-β3-releasing nanofiber meshes that provide sustained growth factor delivery and demonstrated their potential for guiding synovium-derived stem cell (SDSC)-mediated fibrocartilage regeneration. TGF-β3 delivery enhanced cell proliferation and synthesis of relevant fibrocartilaginous matrix in a dose-dependent manner. By designing a scaffold that eliminates the need for exogenous or systemic growth factor administration and demonstrating that fibrochondrogenesis requires a lower growth factor dose compared to previously reported, this study represents a critical step towards developing a clinical solution for regeneration of fibrocartilaginous tissues. STATEMENT OF SIGNIFICANCE: Fibrocartilage is a tissue that plays a critical role throughout the musculoskeletal system. However, due to its limited self-healing capacity, there is a significant unmet clinical need for more effective approaches for fibrocartilage regeneration. We have developed a nanofiber-based scaffold that provides both the biomimetic physical cues, as well as localized delivery of the chemical factors needed to guide stem cell-mediated fibrocartilage formation. Specifically, methods for fabricating TGF-β3-releasing nanofibers were optimized, and scaffold-mediated TGF-β3 delivery enhanced cell proliferation and synthesis of fibrocartilaginous matrix, demonstrating for the first time, the potential for nanofiber-based TGF-β3 delivery to guide stem cell-mediated fibrocartilage regeneration. This nanoscale delivery platform represents an exciting new strategy for fibrocartilage regeneration.
Collapse
Affiliation(s)
- Dovina Qu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Jennifer P Zhu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Hannah R Childs
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, United States.
| |
Collapse
|
116
|
Hu N, Gao Y, Jayasuriya CT, Liu W, Du H, Ding J, Feng M, Chen Q. Chondrogenic induction of human osteoarthritic cartilage-derived mesenchymal stem cells activates mineralization and hypertrophic and osteogenic gene expression through a mechanomiR. Arthritis Res Ther 2019; 21:167. [PMID: 31287025 PMCID: PMC6615283 DOI: 10.1186/s13075-019-1949-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND While bone marrow-derived mesenchymal stem cells (BMSC) are established sources for stem cell-based cartilage repair therapy, articular cartilage-derived mesenchymal stem cells from osteoarthritis patients (OA-MSC) are new and potentially attractive candidates. We compared OA-MSC and BMSC in chondrogenic potentials, gene expression, and regulation by miR-365, a mechanical-responsive microRNA in cartilage (Guan et al., FASEB J 25: 4457-4466, 2011). METHODS To overcome the limited number of OA-MSC, a newly established human OA-MSC cell line (Jayasuriya et al., Sci Rep 8: 7044, 2018) was utilized for analysis and comparison to BMSC. Chondrogenesis was induced by the chondrogenic medium in monolayer cell culture. After chondrogenic induction, chondrogenesis and mineralization were assessed by Alcian blue and Alizarin red staining respectively. MiRNA and mRNA levels were quantified by real-time PCR while protein levels were determined by western blot analysis at different time points. Immunohistochemistry was performed with cartilage-specific miR-365 over-expression transgenic mice. RESULTS Upon chondrogenic induction, OA-MSC underwent rapid chondrogenesis in comparison to BMSC as shown by Alcian blue staining and activation of ACAN and COL2A1 gene expression. Chondrogenic induction also activated mineralization and the expression of hypertrophic and osteogenic genes in OA-MSC while only hypertrophic genes were activated in BMSC. MiR-365 expression was activated by chondrogenic induction in both OA-MSC and BMSC. Transfection of miR-365 in OA-MSC induced chondrogenic, hypertrophic, and osteogenic genes expression while miR-365 inhibition suppressed the expression of these genes. Over-expression of miR-365 upregulated markers of OA-MSC and hypertrophy and increased OA scores in adult mouse articular cartilage. CONCLUSIONS Induction of chondrogenesis can activate mineralization, hypertrophic, and osteogenic genes in OA-MSC. MiR-365 appears to be a master regulator of these differentiation processes in OA-MSC during OA pathogenesis. These findings have important implications for cartilage repair therapy using cartilage derived stem cells from OA patients.
Collapse
Affiliation(s)
- Nan Hu
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, 02903, USA
| | - Yun Gao
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, 02903, USA
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, 02903, USA
| | - Wenguang Liu
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, 02903, USA.,Bone and Joint Research Center, the First Affiliated Hospital and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Heng Du
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, 02903, USA.,Department of Orthopaedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jing Ding
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, 02903, USA
| | - Meng Feng
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, 02903, USA.,Bone and Joint Research Center, the First Affiliated Hospital and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Orthopaedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qian Chen
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, 02903, USA.
| |
Collapse
|
117
|
Growth factor delivery: Defining the next generation platforms for tissue engineering. J Control Release 2019; 306:40-58. [DOI: 10.1016/j.jconrel.2019.05.028] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022]
|
118
|
Charlier E, Deroyer C, Ciregia F, Malaise O, Neuville S, Plener Z, Malaise M, de Seny D. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol 2019; 165:49-65. [PMID: 30853397 DOI: 10.1016/j.bcp.2019.02.036] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
|
119
|
Bergholt NL, Lysdahl H, Lind M, Foldager CB. A Standardized Method of Applying Toluidine Blue Metachromatic Staining for Assessment of Chondrogenesis. Cartilage 2019; 10:370-374. [PMID: 29582671 PMCID: PMC6585293 DOI: 10.1177/1947603518764262] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Staining with toluidine blue is a well-established procedure for the histological assessment of cartilaginous- and chondrogenic-differentiated tissues. Being a cationic dye, toluidine blue staining visualizes proteoglycans in a tissue because of its high affinity for the sulfate groups in proteoglycans. It is generally accepted that metachromatic staining with toluidine blue represents cartilaginous matrix and that the degree of positive staining corresponds with the amount of proteoglycans. DESIGN Articular cartilage and pellets of chondrocytes or bone marrow stromal cells were analyzed with a standardized staining procedure for toluidine blue. RESULTS In the present study, we illustrate why such an assumption is invalid unless a detailed description of the procedure and/or reference to a detailed published method are provided. This is because the staining specificity and intensity depend, as we have shown, on the pH of the staining solution, the use of dehydration, and on staining time. CONCLUSIONS We can, therefore, suggest a well-controlled standardized protocol for toluidine blue staining, which provides an easy and simple selective staining technique for the assessment of cartilage tissue and proteoglycan development in chondrogenic differentiation. If this procedure is not used, then investigators must provide sufficient technical information concerning the staining protocol to allow an assessment of the validity of the staining results.
Collapse
Affiliation(s)
- Natasja Leth Bergholt
- Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark,Natasja Leth Bergholt, Orthopaedic Research Laboratory, Aarhus University Hospital, Noerrebrogade 44, Building 1A, Aarhus DK-8000, Denmark.
| | - Helle Lysdahl
- Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Lind
- Sports Trauma Clinic, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
120
|
Gaharwar AK, Cross LM, Peak CW, Gold K, Carrow JK, Brokesh A, Singh KA. 2D Nanoclay for Biomedical Applications: Regenerative Medicine, Therapeutic Delivery, and Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900332. [PMID: 30941811 PMCID: PMC6546555 DOI: 10.1002/adma.201900332] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/23/2019] [Indexed: 05/03/2023]
Abstract
Clay nanomaterials are an emerging class of 2D biomaterials of interest due to their atomically thin layered structure, charged characteristics, and well-defined composition. Synthetic nanoclays are plate-like polyions composed of simple or complex salts of silicic acids with a heterogeneous charge distribution and patchy interactions. Due to their biocompatible characteristics, unique shape, high surface-to-volume ratio, and charge, nanoclays are investigated for various biomedical applications. Here, a critical overview of the physical, chemical, and physiological interactions of nanoclay with biological moieties, including cells, proteins, and polymers, is provided. The state-of-the-art biomedical applications of 2D nanoclay in regenerative medicine, therapeutic delivery, and additive manufacturing are reviewed. In addition, recent developments that are shaping this emerging field are discussed and promising new research directions for 2D nanoclay-based biomaterials are identified.
Collapse
Affiliation(s)
- Akhilesh K Gaharwar
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Material Science and Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA
| | - Lauren M Cross
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Charles W Peak
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Karli Gold
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - James K Carrow
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Anna Brokesh
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Kanwar Abhay Singh
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
121
|
Kisiday JD, Colbath AC, Tangtrongsup S. Effect of culture duration on chondrogenic preconditioning of equine bone marrow mesenchymal stem cells in self-assembling peptide hydrogel. J Orthop Res 2019; 37:1368-1375. [PMID: 30095195 DOI: 10.1002/jor.24123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/26/2018] [Indexed: 02/04/2023]
Abstract
Ex vivo induction of chondrogenesis is a promising approach to improve upon the use of bone marrow mesenchymal stem cells (MSCs) for cartilage tissue engineering. This study evaluated the potential to induce chondrogenesis with days of culture in chondrogenic medium for MSCs encapsulated in self-assembling peptide hydrogel. To simulate the transition from preconditioning culture to implantation, MSCs were isolated from self-assembling peptide hydrogel into an individual cell suspension. Commitment to chondrogenesis was evaluated by seeding preconditioned MSCs into agarose and culturing in the absence of the chondrogenic cytokine transforming growth factor beta (TGFβ). Positive controls consisted of undifferentiated MSCs seeded into agarose and cultured in medium containing TGFβ. Three days of preconditioning was sufficient to produce chondrogenic MSCs that accumulated ∼75% more cartilaginous extracellular matrix than positive controls by day 17. However, gene expression of type X collagen was ∼65-fold higher than positive controls, which was attributed to the absence of TGFβ. Potential induction of immunogenicity with preconditioning culture was indicated by expression of major histocompatibility complex class II (MHCII), which was nearly absence in undifferentiated MSCs, and ∼7% positive for preconditioned cells. These data demonstrate the potential to generate chondrogenic MSCs with days of self-assembling peptide hydrogel, and the ability to readily recover an individual cell suspension that is suited for injectable therapies. However, continued exposure to TGFβ may be necessary to prevent hypertrophy indicated by type X collagen expression, while immunogenicity may be a concern for allogeneic applications. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1368-1375, 2019.
Collapse
Affiliation(s)
- John D Kisiday
- Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, 80523
| | - Aimee C Colbath
- Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, 80523
| | - Suwimol Tangtrongsup
- Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, 80523
| |
Collapse
|
122
|
Preparation and characterization of the collagen/cellulose nanocrystals/USPIO scaffolds loaded kartogenin for cartilage regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1362-1373. [DOI: 10.1016/j.msec.2019.02.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 01/16/2023]
|
123
|
Therapeutic Effects of rAAV-Mediated Concomittant Gene Transfer and Overexpression of TGF-β and IGF-I on the Chondrogenesis of Human Bone-Marrow-Derived Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20102591. [PMID: 31137788 PMCID: PMC6567173 DOI: 10.3390/ijms20102591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 11/29/2022] Open
Abstract
Application of chondroreparative gene vectors in cartilage defects is a powerful approach to directly stimulate the regenerative activities of bone-marrow-derived mesenchymal stem cells (MSCs) that repopulate such lesions. Here, we investigated the ability of combined recombinant adeno-associated virus (rAAV) vector-mediated delivery of the potent transforming growth factor beta (TGF-β) and insulin-like growth factor I (IGF-I) to enhance the processes of chondrogenic differentiation in human MSCs (hMSCs) relative to individual candidate treatments and to reporter (lacZ) gene condition. The rAAV-hTGF-β and rAAV-hIGF-I vectors were simultaneously provided to hMSC aggregate cultures (TGF-β/IGF-I condition) in chondrogenic medium over time (21 days) versus TGF-β/lacZ, IGF-I/lacZ, and lacZ treatments at equivalent vector doses. The cultures were then processed to monitor transgene (co)-overexpression, the levels of biological activities in the cells (cell proliferation, matrix synthesis), and the development of a chondrogenic versus osteogenic/hypertrophic phenotype. Effective, durable co-overexpression of TGF-β with IGF-I via rAAV enhanced the proliferative, anabolic, and chondrogenic activities in hMSCs versus lacZ treatment and reached levels that were higher than those achieved upon single candidate gene transfer, while osteogenic/hypertrophic differentiation was delayed over the period of time evaluated. These findings demonstrate the potential of manipulating multiple therapeutic rAAV vectors as a tool to directly target bone-marrow-derived MSCs in sites of focal cartilage defects and to locally enhance the endogenous processes of cartilage repair.
Collapse
|
124
|
Kudva AK, Dikina AD, Luyten FP, Alsberg E, Patterson J. Gelatin microspheres releasing transforming growth factor drive in vitro chondrogenesis of human periosteum derived cells in micromass culture. Acta Biomater 2019; 90:287-299. [PMID: 30905864 PMCID: PMC6597958 DOI: 10.1016/j.actbio.2019.03.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 11/29/2022]
Abstract
For cartilage tissue engineering, several in vitro culture methodologies have displayed potential for the chondrogenic differentiation of mesenchymal stem cells (MSCs). Micromasses, cell aggregates or pellets, and cell sheets are all structures with high cell density that provides for abundant cell-cell interactions, which have been demonstrated to be important for chondrogenesis. Recently, these culture systems have been improved via the incorporation of growth factor releasing components such as degradable microspheres within the structures, further enhancing chondrogenesis. Herein, we incorporated different amounts of gelatin microspheres releasing transforming growth factor β1 (TGF-β1) into micromasses composed of human periosteum derived cells (hPDCs), an MSC-like cell population. The aim of this research was to investigate chondrogenic stimulation by TGF-β1 delivery from these degradable microspheres in comparison to exogenous supplementation with TGF-β1 in the culture medium. Microscopy showed that the gelatin microspheres could be successfully incorporated within hPDC micromasses without interfering with the formation of the structure, while biochemical analysis and histology demonstrated increasing DNA content at week 2 and accumulation of glycosaminoglycan and collagen at weeks 2 and 4. Importantly, similar chondrogenesis was achieved when TGF-β1 was delivered from the microspheres compared to controls with TGF-β1 in the medium. Increasing the amount of growth factor within the micromasses by increasing the amount of microspheres added did not further improve chondrogenesis of the hPDCs. These findings demonstrate the potential of using cytokine releasing, gelatin microspheres to enhance the chondrogenic capabilities of hPDC micromasses as an alternative to supplementation of the culture medium with growth factors. STATEMENT OF SIGNIFICANCE: Gelatin microspheres are utilized for growth factor delivery to enhance chondrogenesis of mesenchymal stem cells (MSCs) in high cell density culture systems. Herein, we employ a new combination of these microspheres with micromasses of human periosteum-derived cells, which possess ease of isolation, excellent expansion potential, and MSC-like differentiation capabilities. The resulting localized delivery of transforming growth factor β1 increases glycosaminoglycan and collagen production within the micromasses without exogenous stimulation in the medium. This unique combination is able to drive chondrogenesis up to similar levels as seen in micromasses that do receive exogenous stimulation. The addition of growth factor releasing microspheres to high cell density micromasses has the potential to reduce costs associated with this strategy for cartilage tissue engineering.
Collapse
Affiliation(s)
- Abhijith K Kudva
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, box 2450, 3001 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, box 813, 3000 Leuven, Belgium; Skeletal Biology and Engineering Research Center, KU Leuven, Herestraat 49, box 813, 3000 Leuven, Belgium.
| | - Anna D Dikina
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Frank P Luyten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, box 813, 3000 Leuven, Belgium; Skeletal Biology and Engineering Research Center, KU Leuven, Herestraat 49, box 813, 3000 Leuven, Belgium.
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Jennifer Patterson
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, box 2450, 3001 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, box 813, 3000 Leuven, Belgium; Department of Imaging & Pathology, KU Leuven, Kapucijnenvoer 7 block a, box 7001, 3000 Leuven, Belgium.
| |
Collapse
|
125
|
Andrzejewska A, Lukomska B, Janowski M. Concise Review: Mesenchymal Stem Cells: From Roots to Boost. Stem Cells 2019; 37:855-864. [PMID: 30977255 DOI: 10.1002/stem.3016] [Citation(s) in RCA: 384] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/25/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022]
Abstract
It was shown as long as half a century ago that bone marrow is a source of not only hematopoietic stem cells, but also stem cells of mesenchymal tissues. Then the term "mesenchymal stem cells" (MSCs) was coined in the early 1990s, and more than a decade later, the criteria for defining MSCs have been released by the International Society for Cellular Therapy. The easy derivation from a variety of fetal and adult tissues and undemanding cell culture conditions made MSCs an attractive research object. It was followed by the avalanche of reports from preclinical studies on potentially therapeutic properties of MSCs, such as immunomodulation, trophic support and capability for a spontaneous differentiation into connective tissue cells, and differentiation into the majority of cell types upon specific inductive conditions. Although ontogenesis, niche, and heterogeneity of MSCs are still under investigation, there is a rapid boost of attempts at clinical applications of MSCs, especially for a flood of civilization-driven conditions in so quickly aging societies, not only in the developed countries, but also in the populous developing world. The fields of regenerative medicine and oncology are particularly extensively addressed by MSC applications, in part due to the paucity of traditional therapeutic options for these highly demanding and costly conditions. There are currently almost 1,000 clinical trials registered worldwide at ClinicalTrials.gov, and it seems that we are starting to witness the snowball effect with MSCs becoming a powerful global industry; however, the spectacular effects of MSCs in the clinic still need to be shown. Stem Cells 2019;37:855-864.
Collapse
Affiliation(s)
- Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
126
|
Lehmann J, Nürnberger S, Narcisi R, Stok KS, van der Eerden BCJ, Koevoet WJLM, Kops N, Ten Berge D, van Osch GJ. Recellularization of auricular cartilage via elastase-generated channels. Biofabrication 2019; 11:035012. [PMID: 30921774 DOI: 10.1088/1758-5090/ab1436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Decellularized tissue matrices are promising substrates for tissue generation by stem cells to replace poorly regenerating tissues such as cartilage. However, the dense matrix of decellularized cartilage impedes colonisation by stem cells. Here, we show that digestion of elastin fibre bundles traversing auricular cartilage creates channels through which cells can migrate into the matrix. Human chondrocytes and bone marrow-derived mesenchymal stromal cells efficiently colonise elastin-treated scaffolds through these channels, restoring a glycosaminoglycan-rich matrix and improving mechanical properties while maintaining size and shape of the restored tissue. The scaffolds are also rapidly colonised by endogenous cartilage-forming cells in a subcutaneously implanted osteochondral biopsy model. Creating channels for cells in tissue matrices may be a broadly applicable strategy for recellularization and restoration of tissue function.
Collapse
Affiliation(s)
- J Lehmann
- Department of Otorhinolaryngology and Head and Neck Surgery Erasmus MC, Rotterdam, The Netherlands. Department of Cell Biology Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Meta-Analysis and Evidence Base for the Efficacy of Autologous Bone Marrow Mesenchymal Stem Cells in Knee Cartilage Repair: Methodological Guidelines and Quality Assessment. Stem Cells Int 2019; 2019:3826054. [PMID: 31089328 PMCID: PMC6476108 DOI: 10.1155/2019/3826054] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023] Open
Abstract
The aim of this study is to review all the published clinical trials on autologous bone marrow mesenchymal stem cells (BM-MSCs) in the repair of cartilage lesions of the knee. We performed a comprehensive search in three electronic databases: PubMed, Medline via Ovid, and Web of Science. A systematic review was conducted according to the guidelines of PRISMA protocol and the Cochrane Handbook for Systematic Reviews of Interventions. The modified Coleman methodology score was used to assess the quality of the included studies. Meta-analysis was conducted to estimate the effect size for Pain and function change after receiving BM-MSCs. Thirty-three studies—including 724 patients of mean age 44.2 years—were eligible. 50.7% of the included patients received cultured BM-MSCs for knee cartilage repair. There was improvement in the MINORS quality score over time with a positive correlation with the publication year. Meta-analysis indicated better improvement and statistical significance in the Visual Analog Scale for Pain, IKDC Function, Tegner Activity Scale, and Lysholm Knee Score after administration of noncultured BM-MSCs when compared to evaluation before the treatment. Meanwhile, there was a clear methodological defect in most studies with an average modified Coleman methodology score (MCMS) of 55. BM-MSCs revealed a clinically relevant improvement in pain, function, and histological regeneration.
Collapse
|
128
|
Rathan S, Dejob L, Schipani R, Haffner B, Möbius ME, Kelly DJ. Fiber Reinforced Cartilage ECM Functionalized Bioinks for Functional Cartilage Tissue Engineering. Adv Healthc Mater 2019; 8:e1801501. [PMID: 30624015 DOI: 10.1002/adhm.201801501] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 01/17/2023]
Abstract
Focal articular cartilage (AC) defects, if left untreated, can lead to debilitating diseases such as osteoarthritis. While several tissue engineering strategies have been developed to promote cartilage regeneration, it is still challenging to generate functional AC capable of sustaining high load-bearing environments. Here, a new class of cartilage extracellular matrix (cECM)-functionalized alginate bioink is developed for the bioprinting of cartilaginous tissues. The bioinks are 3D-printable, support mesenchymal stem cell (MSC) viability postprinting and robust chondrogenesis in vitro, with the highest levels of COLLII and ACAN expression observed in bioinks containing the highest concentration of cECM. Enhanced chondrogenesis in cECM-functionalized bioinks is also associated with progression along an endochondral-like pathway, as evident by increases in RUNX2 expression and calcium deposition in vitro. The bioinks loaded with MSCs and TGF-β3 are also found capable of supporting robust chondrogenesis, opening the possibility of using such bioinks for direct "print-and-implant" cartilage repair strategies. Finally, it is demonstrated that networks of 3D-printed polycaprolactone fibers with compressive modulus comparable to native AC can be used to mechanically reinforce these bioinks, with no loss in cell viability. It is envisioned that combinations of such biomaterials can be used in multiple-tool biofabrication strategies for the bioprinting of biomimetic cartilaginous implants.
Collapse
Affiliation(s)
- Swetha Rathan
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Léa Dejob
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Ecole Nationale Supérieure de Chimie de Mulhouse, Université de Haute-Alsace, 68200, Mulhouse, France
| | - Rossana Schipani
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | | | | | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
129
|
Pfeifer CG, Karl A, Kerschbaum M, Berner A, Lang S, Schupfner R, Koch M, Angele P, Nerlich M, Mueller MB. TGF- β Signalling is Suppressed under Pro-Hypertrophic Conditions in MSC Chondrogenesis Due to TGF- β Receptor Downregulation. Int J Stem Cells 2019; 12:139-150. [PMID: 30836731 PMCID: PMC6457698 DOI: 10.15283/ijsc18088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023] Open
Abstract
Background and Objectives Mesenchymal stem cells (MSCs) become hypertrophic in long term despite chondrogenic differentiation following the pathway of growth plate chondrocytes. This terminal differentiation leads to phenotypically unstable cartilage and was mirrored in vitro by addition of hypertrophy inducing medium. We investigated how intrinsic TGF-β signaling is altered in pro-hypertrophic conditions. Methods and Results Human bone marrow derived MSC were chondrogenically differentiated in 3D culture. At day 14 medium conditions were changed to 1. pro-hypertrophic by addition of T3 and withdrawal of TGF-β and dexamethasone 2. pro-hypertrophic by addition of BMP 4 and withdrawal of TGF-β and dexamethasone and 3. kept in prochondrogenic medium conditions. All groups were treated with and without TGFβ-type-1-receptor inhibitor SB431542 from day 14 on. Aggregates were harvested for histo- and immunohistological analysis at d14 and d28, for gene expression analysis (rt-PCR) on d1, d3, d7, d14, d17, d21 and d28 and for Western blot analysis on d21 and d28. Induction of hypertrophy was achieved in the pro-hypertrophic groups while expression of TGFβ-type-1- and 2-receptor and Sox 9 were significantly downregulated compared to pro-chondrogenic conditions. Western blotting showed reduced phosphorylation of Smad 2 and 3 in hypertrophic samples, reduced TGF-β-1 receptor proteins and reduced SOX 9. Addition of SB431542 did not initiate hypertrophy under pro-chondrogenic conditions, but was capable of enhancing hypertrophy when applied simultaneously with BMP-4. Conclusions Our results suggest that the enhancement of hypertrophy in this model is a result of both activation of pro-hypertrophic BMP signaling and reduction of anti-hypertrophic TGFβ signaling.
Collapse
Affiliation(s)
- Christian G Pfeifer
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany.,Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Alexandra Karl
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Maximilian Kerschbaum
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany.,Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Arne Berner
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Siegmund Lang
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany.,Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Rupert Schupfner
- Department of Trauma and Reconstructive Surgery, Klinikum Bayreuth, Bayreuth, Germany
| | - Matthias Koch
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany.,Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Peter Angele
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany.,Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Michael Nerlich
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany.,Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Michael B Mueller
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany.,Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany.,Department of Trauma and Reconstructive Surgery, Klinikum Bayreuth, Bayreuth, Germany
| |
Collapse
|
130
|
Human Diseased Articular Cartilage Contains a Mesenchymal Stem Cell-Like Population of Chondroprogenitors with Strong Immunomodulatory Responses. J Clin Med 2019; 8:jcm8040423. [PMID: 30925656 PMCID: PMC6517884 DOI: 10.3390/jcm8040423] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
Background: osteoarthritic human articular cartilage (AC)-derived cartilage cells (CCs) with same-donor bone marrow (BMSCs) and adipose tissue (ASCs)-derived mesenchymal stem cells were compared, in terms of stemness features, and secretory and immunomodulatory responses to inflammation. Methods: proteoglycan 4 (PRG4) presence was evaluated in AC and CCs. MSCs and CCs (n = 8) were cultured (P1 to P4) and characterized for clonogenicity, nanog homeobox (NANOG), and POU class 5 homeobox 1 (POU5F1) expression, immunotypification, and tri-lineage differentiation. Their basal and interleukin-1β (IL-1β)-stimulated expression of matrix metalloproteases (MMPs), tissue inhibitors (TIMPs), release of growth factors, and cytokines were analyzed, along with the immunomodulatory ability of CCs. Results: PRG4 was mainly expressed in the intact AC surface, whereas shifted to the intermediate zone in damaged cartilage and increased its expression in CCs upon culture. All cells exhibited a similar phenotype and stemness maintenance over passages. CCs showed highest chondrogenic ability, no adipogenic potential, a superior basal secretion of growth factors and cytokines, the latter further increased after inflammatory stimulation, and an immunomodulatory behavior. All stimulated cells shared an increased MMP expression without a corresponding TIMP production. Conclusion: based on the observed features, CCs obtained from pathological joints may constitute a potential tissue-specific therapeutic target or agent to improve damaged cartilage healing, especially damage caused by inflammatory/immune mediated conditions.
Collapse
|
131
|
Zhang S, Ren Q, Qi H, Liu S, Liu Y. Adverse Effects of Fine-Particle Exposure on Joints and Their Surrounding Cells and Microenvironment. ACS NANO 2019; 13:2729-2748. [PMID: 30773006 DOI: 10.1021/acsnano.8b08517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Current understanding of the health risks and adverse effects upon exposure to fine particles is premised on the direct association of particles with target organs, particularly the lung; however, fine-particle exposure has also been found to have detrimental effects on sealed cavities distant to the portal-of-entry, such as joints. Moreover, the fundamental toxicological issues have been ascribed to the direct toxic mechanisms, in particular, oxidative stress and proinflammatory responses, without exploring the indirect mechanisms, such as compensated, adaptive, and secondary effects. In this Review, we recapitulate the current findings regarding the detrimental effects of fine-particle exposure on joints, the surrounding cells, and microenvironment, as well as their deteriorating impact on the progression of arthritis. We also elaborate the likely molecular mechanisms underlying the particle-induced detrimental influence on joints, not limited to direct toxicity, but also considering the other indirect mechanisms. Because of the similarities between fine air particles and engineered nanomaterials, we compare the toxicities of engineered nanomaterials to those of fine air particles. Arthritis and joint injuries are prevalent, particularly in the elderly population. Considering the severity of global exposure to fine particles and limited studies assessing the detrimental effects of fine-particle exposure on joints and arthritis, this Review aims to appeal to a broad interest and to promote more research efforts in this field.
Collapse
Affiliation(s)
- Shuping Zhang
- Institute for Medical Engineering and Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Hui Qi
- Beijing Jishuitan Hospital , Peking University Health Science Center , Beijing 100035 , P. R. China
- Beijing Research Institute of Traumatology and Orthopaedics , Beijing 100035 , P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Yajun Liu
- Beijing Jishuitan Hospital , Peking University Health Science Center , Beijing 100035 , P. R. China
| |
Collapse
|
132
|
O'Grady B, Balikov DA, Wang JX, Neal EK, Ou YC, Bardhan R, Lippmann ES, Bellan LM. Spatiotemporal control and modeling of morphogen delivery to induce gradient patterning of stem cell differentiation using fluidic channels. Biomater Sci 2019; 7:1358-1371. [PMID: 30778445 PMCID: PMC6485939 DOI: 10.1039/c8bm01199k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The process of cell differentiation in a developing embryo is influenced by numerous factors, including various biological molecules whose presentation varies dramatically over space and time. These morphogens regulate cell fate based on concentration profiles, thus creating discrete populations of cells and ultimately generating large, complex tissues and organs. Recently, several in vitro platforms have attempted to recapitulate the complex presentation of extrinsic signals found in nature. However, it has been a challenge to design versatile platforms that can dynamically control morphogen gradients over extended periods of time. To address some of these issues, we introduce a platform using channels patterned in hydrogels to deliver multiple morphogens to cells in a 3D scaffold, thus creating a spectrum of cell phenotypes based on the resultant morphogen gradients. The diffusion coefficient of a common small molecule morphogen, retinoic acid (RA), was measured within our hydrogel platform using Raman spectroscopy and its diffusion in our platform's geometry was modeled using finite element analysis. The predictive model of spatial gradients was validated in a cell-free hydrogel, and temporal control of morphogen gradients was then demonstrated using a reporter cell line that expresses green fluorescent protein in the presence of RA. Finally, the utility of this approach for regulating cell phenotype was demonstrated by generating opposing morphogen gradients to create a spectrum of mesenchymal stem cell differentiation states.
Collapse
Affiliation(s)
- Brian O'Grady
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Szojka ARA, Lyons BD, Moore CN, Liang Y, Kunze M, Idrees E, Mulet-Sierra A, Jomha NM, Adesida AB. Hypoxia and TGF-β3 Synergistically Mediate Inner Meniscus-Like Matrix Formation by Fibrochondrocytes. Tissue Eng Part A 2019; 25:446-456. [PMID: 30343640 DOI: 10.1089/ten.tea.2018.0211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The interactions of hypoxia and TGF-β3 in aggregates of human meniscus fibrochondrocytes are synergistic in nature, suggesting combinatorial strategies using these factors are promising for tissue engineering the inner meniscus regions. Hypoxia alone in the absence of TGF-β supplementation may be insufficient to initiate an inner meniscus-like extracellular matrix-forming response in this model.
Collapse
Affiliation(s)
- Alexander R A Szojka
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Brayden D Lyons
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Colleen N Moore
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Yan Liang
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
- 2 Division of Burn and Reconstructive Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, People's Republic of China
| | - Melanie Kunze
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Enaam Idrees
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Aillette Mulet-Sierra
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Nadr M Jomha
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Adetola B Adesida
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
134
|
Deliormanlı AM. Direct Write Assembly of Graphene/Poly(ε-Caprolactone) Composite Scaffolds and Evaluation of Their Biological Performance Using Mouse Bone Marrow Mesenchymal Stem Cells. Appl Biochem Biotechnol 2019; 188:1117-1133. [DOI: 10.1007/s12010-019-02976-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/01/2019] [Indexed: 12/17/2022]
|
135
|
Taniguchi Y, Yoshioka T, Sugaya H, Gosho M, Aoto K, Kanamori A, Yamazaki M. Growth factor levels in leukocyte-poor platelet-rich plasma and correlations with donor age, gender, and platelets in the Japanese population. J Exp Orthop 2019; 6:4. [PMID: 30712144 PMCID: PMC6359998 DOI: 10.1186/s40634-019-0175-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/21/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Clinical application of platelet-rich-plasma (PRP) has been accelerated to investigate early recovery from various musculoskeletal conditions. It involves the promotion of tissue damage repair through the action of multiple growth factors at physiological concentrations. The composition of PRP differs based on many factors, which may include age and gender. Therefore, we analyzed correlations between age, gender, and platelet counts in PRP with growth factors in Japanese subjects. METHOD Peripheral blood was drawn from 39 healthy volunteers between 20 and 49 years of age (age, mean ± standard deviation = 33 ± 8.7 years; gender ratio, male:female = 19:20; BMI, mean ± standard deviation = 22 ± 4.0) and prepared through centrifugation (volume, 6 mL per sample). After being activated with CaCl2, the supernatant was stored. The mean platelet count in PRP was 41.4 ± 12.2 × 104/μL. PRP concentration rate (i.e., PRP/peripheral platelet counts) was 1.8 ± 0.4 times. Growth factor levels (platelet-derived growth factor-BB, transforming growth factor-β1, vascular endothelial growth factor, epidermal growth factor, fibroblast growth factor, insulin-like growth factor-1, and hepatocyte growth factor) were measured using enzyme-linked immunosorbent assay (ELISA), and correlations with age, gender, and PRP platelet counts were statistically analyzed by calculating Spearman's rank correlation coefficients (r). RESULTS Age was negatively correlated with platelet-derived growth factor-BB and insulin-like growth factor-1 (r = - 0.32, - 0.39), and gender had no influence on growth factors. Platelet counts in PRP positively correlated with platelet-derived growth factor-BB, transforming growth factor-β1, epidermal growth factor, and hepatocyte growth factor (r = 0.39, 0.75, 0.71, and 0.48, respectively). CONCLUSIONS This clinical study shows a significant variation of PRP among individual patients and that this variation is influenced by the age and the platelet counts of the subjects. Our data demonstrate that patient characteristics account for the differences in PRP physiological activity.
Collapse
Affiliation(s)
- Yu Taniguchi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Musculoskeletal System, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tomokazu Yoshioka
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. .,Musculoskeletal System, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Hisashi Sugaya
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Musculoskeletal System, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masahiko Gosho
- Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Katsuya Aoto
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Akihiro Kanamori
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
136
|
Zykwinska A, Marquis M, Godin M, Marchand L, Sinquin C, Garnier C, Jonchère C, Chédeville C, Le Visage C, Guicheux J, Colliec-Jouault S, Cuenot S. Microcarriers Based on Glycosaminoglycan-Like Marine Exopolysaccharide for TGF-β1 Long-Term Protection. Mar Drugs 2019; 17:md17010065. [PMID: 30669426 PMCID: PMC6356637 DOI: 10.3390/md17010065] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
Articular cartilage is an avascular, non-innervated connective tissue with limited ability to regenerate. Articular degenerative processes arising from trauma, inflammation or due to aging are thus irreversible and may induce the loss of the joint function. To repair cartilaginous defects, tissue engineering approaches are under intense development. Association of cells and signalling proteins, such as growth factors, with biocompatible hydrogel matrix may lead to the regeneration of the healthy tissue. One current strategy to enhance both growth factor bioactivity and bioavailability is based on the delivery of these signalling proteins in microcarriers. In this context, the aim of the present study was to develop microcarriers by encapsulating Transforming Growth Factor-β1 (TGF-β1) into microparticles based on marine exopolysaccharide (EPS), namely GY785 EPS, for further applications in cartilage engineering. Using a capillary microfluidic approach, two microcarriers were prepared. The growth factor was either encapsulated directly within the microparticles based on slightly sulphated derivative or complexed firstly with the highly sulphated derivative before being incorporated within the microparticles. TGF-β1 release, studied under in vitro model conditions, revealed that the majority of the growth factor was retained inside the microparticles. Bioactivity of released TGF-β1 was particularly enhanced in the presence of highly sulphated derivative. It comes out from this study that GY785 EPS based microcarriers may constitute TGF-β1 reservoirs spatially retaining the growth factor for a variety of tissue engineering applications and in particular cartilage regeneration, where the growth factor needs to remain in the target location long enough to induce robust regenerative responses.
Collapse
Affiliation(s)
- Agata Zykwinska
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies, F-44311 Nantes, France.
| | - Mélanie Marquis
- INRA, UR1268 Biopolymères Interactions Assemblages, F-44300 Nantes, France.
| | - Mathilde Godin
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies, F-44311 Nantes, France.
- INRA, UR1268 Biopolymères Interactions Assemblages, F-44300 Nantes, France.
| | - Laëtitia Marchand
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies, F-44311 Nantes, France.
| | - Corinne Sinquin
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies, F-44311 Nantes, France.
| | - Catherine Garnier
- INRA, UR1268 Biopolymères Interactions Assemblages, F-44300 Nantes, France.
| | - Camille Jonchère
- INRA, UR1268 Biopolymères Interactions Assemblages, F-44300 Nantes, France.
| | - Claire Chédeville
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France.
- UFR Odontologie, Université de Nantes, F-44042 Nantes, France.
| | - Catherine Le Visage
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France.
- UFR Odontologie, Université de Nantes, F-44042 Nantes, France.
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France.
- UFR Odontologie, Université de Nantes, F-44042 Nantes, France.
- CHU Nantes, PHU 4 OTONN, F-44093 Nantes, France.
| | - Sylvia Colliec-Jouault
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies, F-44311 Nantes, France.
| | - Stéphane Cuenot
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes-CNRS, 44322 Nantes, France.
| |
Collapse
|
137
|
Ongchai S, Somnoo O, Kongdang P, Peansukmanee S, Tangyuenyong S. TGF-β1 upregulates the expression of hyaluronan synthase 2 and hyaluronan synthesis in culture models of equine articular chondrocytes. J Vet Sci 2019; 19:735-743. [PMID: 30041292 PMCID: PMC6265591 DOI: 10.4142/jvs.2018.19.6.735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/03/2018] [Accepted: 07/13/2018] [Indexed: 11/20/2022] Open
Abstract
We investigated the effect of transforming growth factor beta 1 (TGF-β1) on equine hyaluronan synthase 2 (HAS2) gene expression and hyaluronan (HA) synthesis in culture models of articular chondrocytes. Equine chondrocytes were treated with TGF-β1 at different concentrations and times in monolayer cultures. In three-dimensional cultures, chondrocyte-seeded gelatin scaffolds were cultured in chondrogenic media containing 10 ng/mL of TGF-β1. The amounts of HA in conditioned media and in scaffolds were determined by enzyme-linked immunosorbent assays. HAS2 mRNA expression was analyzed by semi-quantitative reverse transcription polymerase chain reaction. The uronic acid content and DNA content of the scaffolds were measured by using colorimetric and Hoechst 33258 assays, respectively. Cell proliferation was evaluated by using the alamarBlue assay. Scanning electron microscopy (SEM), histology, and immunohistochemistry were used for microscopic analysis of the samples. The upregulation of HAS2 mRNA levels by TGF-β1 stimulation was dose and time dependent. TGF-β1 was shown to enhance HA and uronic acid content in the scaffolds. Cell proliferation and DNA content were significantly lower in TGF-β1 treatments. SEM and histological results revealed the formation of a cartilaginous-like extracellular matrix in the TGF-β1-treated scaffolds. Together, our results suggest that TGF-β1 has a stimulatory effect on equine chondrocytes, enhancing HA synthesis and promoting cartilage matrix generation.
Collapse
Affiliation(s)
- Siriwan Ongchai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Oraphan Somnoo
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patiwat Kongdang
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn Peansukmanee
- Equine Clinic, Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Siriwan Tangyuenyong
- Equine Clinic, Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
138
|
Head to Knee: Cranial Neural Crest-Derived Cells as Promising Candidates for Human Cartilage Repair. Stem Cells Int 2019; 2019:9310318. [PMID: 30766608 PMCID: PMC6350557 DOI: 10.1155/2019/9310318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/04/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
A large array of therapeutic procedures is available to treat cartilage disorders caused by trauma or inflammatory disease. Most are invasive and may result in treatment failure or development of osteoarthritis due to extensive cartilage damage from repeated surgery. Despite encouraging results of early cell therapy trials that used chondrocytes collected during arthroscopic surgery, these approaches have serious disadvantages, including morbidity associated with cell harvesting and low predictive clinical outcomes. To overcome these limitations, adult stem cells derived from bone marrow and subsequently from other tissues are now considered as preferred sources of cells for cartilage regeneration. Moreover, with new evidence showing that the choice of cell source is one of the most important factors for successful cell therapy, there is growing interest in neural crest-derived cells in both the research and clinical communities. Neural crest-derived cells such as nasal chondrocytes and oral stem cells that exhibit chondrocyte-like properties seem particularly promising in cartilage repair. Here, we review the types of cells currently available for cartilage cell therapy, including articular chondrocytes and various mesenchymal stem cells, and then highlight recent developments in the use of neural crest-derived chondrocytes and oral stem cells for repair of cartilage lesions.
Collapse
|
139
|
Aydin S, Şahin F. Stem Cells Derived from Dental Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1144:123-132. [DOI: 10.1007/5584_2018_333] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
140
|
Critchley S, Cunniffe G, O'Reilly A, Diaz-Payno P, Schipani R, McAlinden A, Withers D, Shin J, Alsberg E, Kelly DJ. Regeneration of Osteochondral Defects Using Developmentally Inspired Cartilaginous Templates. Tissue Eng Part A 2018; 25:159-171. [PMID: 30358516 DOI: 10.1089/ten.tea.2018.0046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Successfully treating osteochondral defects involves regenerating both the damaged articular cartilage and the underlying subchondral bone, in addition to the complex interface that separates these tissues. In this study, we demonstrate that a cartilage template, engineered using bone marrow-derived mesenchymal stem cells, can enhance the regeneration of such defects and promote the development of a more mechanically functional repair tissue. We also use a computational mechanobiological model to understand how joint-specific environmental factors, specifically oxygen levels and tissue strains, regulate the conversion of the engineered template into cartilage and bone in vivo.
Collapse
Affiliation(s)
- Susan Critchley
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Gráinne Cunniffe
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Adam O'Reilly
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Pedro Diaz-Payno
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Rossana Schipani
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Aidan McAlinden
- 3 Section of Veterinary Clinical Studies, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | | | - Jungyoun Shin
- 5 Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Eben Alsberg
- 5 Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.,6 Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, Ohio.,7 National Centre for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Daniel J Kelly
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,8 Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland.,9 Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
141
|
Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta Biomater 2018; 82:1-11. [PMID: 30321630 DOI: 10.1016/j.actbio.2018.10.016] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 01/09/2023]
Abstract
In the U.S., 30% of adults suffer joint pain, most commonly in the knee, which severely limits mobility and is often attributed to injury of cartilage and underlying bone in the joint. Current treatment methods such as microfracture result in less resilient fibrocartilage with eventual failure; autografting can cause donor site morbidity and poor integration. To overcome drawbacks in treatment, tissue engineers can design cell-instructive biomimetic scaffolds using biocompatible materials as alternate therapies for osteochondral defects. Nanofibrous poly (l-lactic acid) (PLLA) scaffolds of uniform, spherical, interconnected and well-defined pore sizes that are fabricated using a thermally-induced phase separation and sugar porogen template method create an extracellular matrix-like environment which facilitates cell adhesion and proliferation. Herein we report that chondrogenesis and endochondral ossification of rabbit and human bone marrow stromal cells (BMSCs) can be controlled by scaffold pore architecture, particularly pore size. Small-pore scaffolds support enhanced chondrogenic differentiation in vitro and cartilage formation in vivo compared to large-pore scaffolds. Endochondral ossification is prevented in scaffolds with very small pore sizes; pore interconnectivity is critical to promote capillary ingrowth for mature bone formation. These results provide a novel strategy to control tissue regenerative processes by tunable architecture of macroporous nanofibrous scaffolds. STATEMENT OF SIGNIFICANCE: Progress in understanding the relationship between cell fate and architectural features of tissue engineering scaffolds is critical for engineering physiologically functional tissues. Sugar porogen template scaffolds have uniform, spherical, highly interconnected macropores. Tunable pore-size guides the fate of bone marrow stromal cells (BMSCs) towards chondrogenesis and endochondral ossification, and is a critical design parameter to mediate neotissue vascularization. Preventing vascularization favors a chondrogenic cell fate while allowing vascularization results in endochondral ossification and mineralized bone formation. These results provide a novel strategy to control tissue regenerative processes by tunable architecture of macroporous nanofibrous scaffolds.
Collapse
|
142
|
Metformin; an old antidiabetic drug with new potentials in bone disorders. Biomed Pharmacother 2018; 109:1593-1601. [PMID: 30551413 DOI: 10.1016/j.biopha.2018.11.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
The prevalence of diabetes mellitus especially type 2 diabetes mellitus is increasing all over the world. In addition to cardiomyopathy and nephropathy, diabetics are at higher risk of mortality and morbidity due to greater risk of bone fractures and skeletal abnormalities. Patients with diabetes mellitus have lower bone quality in comparison to their non-diabetic counterparts mainly because of hyperglycemia, toxic effects of advanced glycosylation end-products (AGEs) on bone tissue, and impaired bone microvascular system. AGEs may also contribute to the development of osteoarthritis further to osteoporosis. Therefore, glycemic control in diabetic patients is vital for bone health. Metformin, a widely used antidiabetic drug, has been shown to improve bone quality and decrease the risk of fractures in patients with diabetes in addition to glycemic control and improving insulin sensitivity. AMP activated protein kinase (AMPK), the key molecule in metformin antidiabetic mechanism of action, is also effective in signaling pathways involved in bone physiology. This review, discusses the molecules linking diabetes and bone turnover, role of AMPK in bone metabolism, and the effect of metformin as an activator of AMPK on bone disorders and malignancies.
Collapse
|
143
|
Kunisch E, Knauf AK, Hesse E, Freudenberg U, Werner C, Bothe F, Diederichs S, Richter W. StarPEG/heparin-hydrogel based in vivo engineering of stable bizonal cartilage with a calcified bottom layer. Biofabrication 2018; 11:015001. [PMID: 30376451 DOI: 10.1088/1758-5090/aae75a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Repaired cartilage tissue lacks the typical zonal structure of healthy native cartilage needed for appropriate function. Current grafts for treatment of full thickness cartilage defects focus primarily on a nonzonal design and this may be a reason why inferior nonzonal regeneration tissue developed in vivo. No biomaterial-based solutions have been developed so far to induce a proper zonal architecture into a non-mineralized and a calcified cartilage layer. The objective was to grow bizonal cartilage with a calcified cartilage bottom zone wherein main tissue development is occurring in vivo. We hypothesized that starPEG/heparin-hydrogel owing to the glycosaminoglycan heparin contained as a building-block would prevent mineralization of the upper cartilage zone and be beneficial in inhibiting long-term progression of calcified cartilage into bone. MSCs were pre-cultured as self-assembling non-mineralized cell discs before a chondrocyte-seeded fibrin- or starPEG/heparin-hydrogel layer was cast on top directly before ectopic implantation. Bizonal cartilage with a calcified bottom-layer developed in vivo showing stronger mineralization compared to in vitro samples, but the hydrogel strongly determined outcome. Zonal fibrin-constructs lost volume and allowed non-organized expansion of collagen type X, ALP-activity and mineralization from the bottom-layer into upper regions, whereas zonal starPEG/heparin-constructs were of stable architecture. While non-zonal MSCs-derived discs formed bone over 12 weeks, the starPEG/heparin-chondrocyte layer prevented further progression of calcified cartilage into bone tissue. Conclusively, starPEG/heparin-hydrogel-controlled and cell-type mediated spatiotemporal regulation allowed in vivo growth of bizonal cartilage with a stable calcified cartilage layer. Altogether our work is an important milestone encouraging direct in vivo growth of organized cartilage after biofabrication.
Collapse
Affiliation(s)
- Elke Kunisch
- Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Injectable Systems for Intra-Articular Delivery of Mesenchymal Stromal Cells for Cartilage Treatment: A Systematic Review of Preclinical and Clinical Evidence. Int J Mol Sci 2018. [PMID: 30366400 DOI: 10.3390/ijms19113322.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stem cell-based therapy is a promising approach to treat cartilage lesions and clinical benefits have been reported in a number of studies. However, the efficacy of cell injection procedures may be impaired by cell manipulation and damage as well as by cell dissemination to non-target tissues. To overcome such issues, mesenchymal stromal cell (MSC) delivery may be performed using injectable vehicles as containment systems that further provide a favorable cell microenvironment. The aim of this systematic review was to analyze the preclinical and clinical literature on platelet-rich plasma (PRP), hyaluronic acid (HA), and hydrogels for the delivery of MSCs. The systematic literature search was performed using the PubMed and Web of science databases with the following string: "(stem cells injection) AND (platelet rich plasma OR PRP OR platelet concentrate OR biomaterials OR hyaluronic acid OR hydrogels)": 40 studies (19 preclinical and 21 clinical) met the inclusion criteria. This review revealed an increasing interest on the use of injectable agents for MSC delivery. However, while negligible adverse events and promising clinical outcomes were generally reported, the prevalence of low quality studies hinders the possibility to demonstrate the real benefits of using such injectable systems. Specific studies must be designed to clearly demonstrate the added benefits of these systems to deliver MSCs for the treatment of cartilage lesions and osteoarthritis.
Collapse
|
145
|
Roffi A, Nakamura N, Sanchez M, Cucchiarini M, Filardo G. Injectable Systems for Intra-Articular Delivery of Mesenchymal Stromal Cells for Cartilage Treatment: A Systematic Review of Preclinical and Clinical Evidence. Int J Mol Sci 2018; 19:ijms19113322. [PMID: 30366400 PMCID: PMC6274908 DOI: 10.3390/ijms19113322] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Stem cell-based therapy is a promising approach to treat cartilage lesions and clinical benefits have been reported in a number of studies. However, the efficacy of cell injection procedures may be impaired by cell manipulation and damage as well as by cell dissemination to non-target tissues. To overcome such issues, mesenchymal stromal cell (MSC) delivery may be performed using injectable vehicles as containment systems that further provide a favorable cell microenvironment. The aim of this systematic review was to analyze the preclinical and clinical literature on platelet-rich plasma (PRP), hyaluronic acid (HA), and hydrogels for the delivery of MSCs. The systematic literature search was performed using the PubMed and Web of science databases with the following string: "(stem cells injection) AND (platelet rich plasma OR PRP OR platelet concentrate OR biomaterials OR hyaluronic acid OR hydrogels)": 40 studies (19 preclinical and 21 clinical) met the inclusion criteria. This review revealed an increasing interest on the use of injectable agents for MSC delivery. However, while negligible adverse events and promising clinical outcomes were generally reported, the prevalence of low quality studies hinders the possibility to demonstrate the real benefits of using such injectable systems. Specific studies must be designed to clearly demonstrate the added benefits of these systems to deliver MSCs for the treatment of cartilage lesions and osteoarthritis.
Collapse
Affiliation(s)
- Alice Roffi
- Laboratory of Nano-Biotechnology-IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Norimasa Nakamura
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka 590-0496, Japan.
| | - Mikel Sanchez
- Arthroscopic Surgery Unit-UCA, Hospital Vithas San Jose, 01008 Vitoria-Gasteiz, Spain.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg/Saar, Germany.
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center-IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
146
|
Cohen BP, Bernstein JL, Morrison KA, Spector JA, Bonassar LJ. Tissue engineering the human auricle by auricular chondrocyte-mesenchymal stem cell co-implantation. PLoS One 2018; 13:e0202356. [PMID: 30356228 PMCID: PMC6200177 DOI: 10.1371/journal.pone.0202356] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/01/2018] [Indexed: 01/21/2023] Open
Abstract
Children suffering from microtia have few options for auricular reconstruction. Tissue engineering approaches attempt to replicate the complex anatomy and structure of the ear with autologous cartilage but have been limited by access to clinically accessible cell sources. Here we present a full-scale, patient-based human ear generated by implantation of human auricular chondrocytes and human mesenchymal stem cells in a 1:1 ratio. Additional disc construct surrogates were generated with 1:0, 1:1, and 0:1 combinations of auricular chondrocytes and mesenchymal stem cells. After 3 months in vivo, monocellular auricular chondrocyte discs and 1:1 disc and ear constructs displayed bundled collagen fibers in a perichondrial layer, rich proteoglycan deposition, and elastin fiber network formation similar to native human auricular cartilage, with the protein composition and mechanical stiffness of native tissue. Full ear constructs with a 1:1 cell combination maintained gross ear structure and developed a cartilaginous appearance following implantation. These studies demonstrate the successful engineering of a patient-specific human auricle using exclusively human cell sources without extensive in vitro tissue culture prior to implantation, a critical step towards the clinical application of tissue engineering for auricular reconstruction.
Collapse
Affiliation(s)
- Benjamin P Cohen
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Jaime L Bernstein
- Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Kerry A Morrison
- Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Jason A Spector
- Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Lawrence J Bonassar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
147
|
Martin-Pena A, Porter R, Plumton G, McCarrel T, Morton A, Guijarro M, Ghivizzani S, Sharma B, Palmer G. Lentiviral-based reporter constructs for profiling chondrogenic activity in primary equine cell populations. Eur Cell Mater 2018; 36:156-170. [PMID: 30311630 PMCID: PMC6788286 DOI: 10.22203/ecm.v036a12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Successful clinical translation of mesenchymal stem cell (MSC)-based therapies for cartilage repair will likely require the implementation of standardised protocols and broadly applicable tools to facilitate the comparisons among cell types and chondroinduction methods. The present study investigated the utility of recombinant lentiviral reporter vectors as reliable tools for comparing chondrogenic potential among primary cell populations and distinguishing cellular-level variations of chondrogenic activity in widely used three-dimensional (3D) culture systems. Primary equine MSCs and chondrocytes were transduced with vectors containing combinations of fluorescent and luciferase reporter genes under constitutive cytomeglavirus (CMV) or chondrocyte-lineage (Col2) promoters. Reporter activity was measured by fluorescence imaging and luciferase assay. In 3D cultures of MSC aggregates and polyethylene glycol-hyaluronic acid (PEG-HA) hydrogels, transforming growth factor beta 3 (TGF-β3)-mediated chondroinduction increased Col2 reporter activity, demonstrating close correlation with histology and mRNA expression levels of COL2A1 and SOX9. Comparison of chondrogenic activities among MSC populations using a secretable luciferase reporter revealed enhanced chondrogenesis in bone-marrow-derived MSCs relative to MSC populations from synovium and adipose tissues. A dual fluorescence reporter - enabling discrimination of highly chondrogenic (Col2-GFP) cells within an MSC population (CMV-tdTomato) - revealed marked heterogeneity in differentiating aggregate cultures and identified chondrogenic cells in chondrocyte-seeded PEG-HA hydrogels after 6 weeks in a subcutaneous implant model - indicating stable, long-term reporter expression in vivo. These results suggested that lentiviral reporter vectors may be used to address fundamental questions regarding chondrogenic activity in chondroprogenitor cell populations and accelerate clinical translation of cell-based cartilage repair strategies.
Collapse
Affiliation(s)
- A. Martin-Pena
- Department of Orthopaedics and Rehabilitation, University
of Florida, Gainesville, Florida USA
| | - R.M. Porter
- Department of Orthopaedics, University of Arkansas, Little
Rock, Arkansas, USA
| | - G Plumton
- Department of Biomedical Engineering, University of
Florida, Gainesville, Florida USA
| | - T.M. McCarrel
- College of Veterinary Sciences, University of Florida,
Gainesville, Florida USA
| | - A.J. Morton
- College of Veterinary Sciences, University of Florida,
Gainesville, Florida USA
| | - M.V. Guijarro
- Department of Anatomy and Cell Biology, University of
Florida, Gainesville, Florida USA
| | - S.C. Ghivizzani
- Department of Orthopaedics and Rehabilitation, University
of Florida, Gainesville, Florida USA
| | - B. Sharma
- Department of Orthopaedics, University of Arkansas, Little
Rock, Arkansas, USA
| | - G.D. Palmer
- Department of Orthopaedics and Rehabilitation, University
of Florida, Gainesville, Florida USA,Address for correspondence: Glyn Palmer, Ph.D,
Dept of Orthopaedics and Rehabilitation, University of Florida, 1600 SW Archer
Rd, MSB, M2-235, Gainesville, FL 32610, Telephone: +1 352 273 7087, Fax: +1 352
273 7427,
| |
Collapse
|
148
|
Kim M, Erickson IE, Huang AH, Garrity ST, Mauck RL, Steinberg DR. Donor Variation and Optimization of Human Mesenchymal Stem Cell Chondrogenesis in Hyaluronic Acid. Tissue Eng Part A 2018; 24:1693-1703. [PMID: 29792383 DOI: 10.1089/ten.tea.2017.0520] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are an attractive cell type for cartilage repair that can undergo chondrogenesis in a variety of three-dimensional (3D) scaffolds. Hyaluronic acid (HA) hydrogels provide a biologically relevant interface for cell encapsulation. While previous studies have shown that MSC-laden HA constructs can mature in vitro to match native mechanical properties using cells from animal sources, clinical application will depend on the successful translation of these findings to human cells. Though numerous studies have investigated chondrogenesis of human MSC (hMSC)-laden constructs, their functional outcomes were quite inferior to those using animal sources, and donor-specific responses to 3D HA hydrogels have not been fully investigated. To that end, hMSCs were derived from seven donors, and their ability to undergo chondrogenesis in pellet culture and HA hydrogels was evaluated. Given the initial observation of overt cell aggregation and/or gel contraction for some donors, the impact of variation in cell and HA macromer concentration on functional outcomes during chondrogenesis was evaluated using one young/healthy donor. The findings show marked differences in functional chondrogenesis of hMSCs in 3D HA hydrogels based on donor. Increasing cell density resulted in increased mechanical properties, but also promoted construct contraction. Increasing the macromer density generally stabilized construct dimensions and increased extracellular matrix production, but limited the distribution of formed matrix at the center of the construct and reduced mechanical properties. Collectively, these findings suggest that the use of hMSCs may require tuning of cell density and gel mechanics on a donor-by-donor basis to provide for the most robust tissue formation for clinical application.
Collapse
Affiliation(s)
- Minwook Kim
- 1 McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,2 Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania , Philadelphia, Pennsylvania.,3 Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center , Philadelphia, Pennsylvania
| | - Isaac E Erickson
- 1 McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,4 DiscGenics, Inc. , Salt Lake City, Utah
| | - Alice H Huang
- 1 McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,5 Department of Orthopaedics, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Sean T Garrity
- 1 McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Robert L Mauck
- 1 McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,2 Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania , Philadelphia, Pennsylvania.,3 Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center , Philadelphia, Pennsylvania
| | - David R Steinberg
- 1 McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,3 Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center , Philadelphia, Pennsylvania
| |
Collapse
|
149
|
Improved Chondrogenic Differentiation of rAAV SOX9-Modified Human MSCs Seeded in Fibrin-Polyurethane Scaffolds in a Hydrodynamic Environment. Int J Mol Sci 2018; 19:ijms19092635. [PMID: 30189664 PMCID: PMC6163252 DOI: 10.3390/ijms19092635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
The repair of focal articular cartilage defects remains a problem. Combining gene therapy with tissue engineering approaches using bone marrow-derived mesenchymal stem cells (MSCs) may allow the development of improved options for cartilage repair. Here, we examined whether a three-dimensional fibrin-polyurethane scaffold provides a favorable environment for the effective chondrogenic differentiation of human MSCs (hMSCs) overexpressing the cartilage-specific SOX9 transcription factor via recombinant adeno-associated virus (rAAV) -mediated gene transfer cultured in a hydrodynamic environment in vitro. Sustained SOX9 expression was noted in the constructs for at least 21 days, the longest time point evaluated. Such spatially defined SOX9 overexpression enhanced proliferative, metabolic, and chondrogenic activities compared with control (reporter lacZ gene transfer) treatment. Of further note, administration of the SOX9 vector was also capable of delaying premature hypertrophic and osteogenic differentiation in the constructs. This enhancement of chondrogenesis by spatially defined overexpression of human SOX9 demonstrate the potential benefits of using rAAV-modified hMSCs seeded in fibrin-polyurethane scaffolds as a promising approach for implantation in focal cartilage lesions to improve cartilage repair.
Collapse
|
150
|
Iijima K, Ishikawa S, Sasaki K, Hashizume M, Kawabe M, Otsuka H. Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells in Electrospun Silica Nonwoven Fabrics. ACS OMEGA 2018; 3:10180-10187. [PMID: 31459146 PMCID: PMC6645240 DOI: 10.1021/acsomega.8b01139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/20/2018] [Indexed: 05/12/2023]
Abstract
Silica nonwoven fabrics (SNFs) with enough mechanical strength are candidates as implantable scaffolds. Culture of cells therein is expected to affect the proliferation and differentiation of the cells through cell-cell and cell-SNF interactions. In this study, we examined three-dimensional (3D) SNFs as a scaffold of mesenchymal stem cells (MSCs) for bone tissue engineering applications. The interconnected highly porous microstructure of 3D SNFs is expected to allow omnidirectional cell-cell interactions, and the morphological similarity of a silica nanofiber to that of a fibrous extracellular matrix can contribute to the promotion of cell functions. 3D SNFs were prepared by the sol-gel process, and their mechanical properties were characterized by the compression test and rheological analysis. In the compression test, SNFs showed a compressive elastic modulus of over 1 MPa and a compressive strength of about 200 kPa. These values are higher than those of porous polystyrene disks used for in vitro 3D cell culture. In rheological analysis, the elastic modulus and fracture stress were 3.27 ± 0.54 kPa and 25.9 ± 8.3 Pa, respectively. Then, human bone marrow-derived MSCs were cultured on SNFs, and the effects on proliferation and osteogenic differentiation were evaluated. The MSCs seeded on SNF proliferated, and the thickness of the cell layer became over 80 μm after 14 days of culture. The osteogenic differentiation of MSCs on SNFs was induced by the culture in the commercial osteogenic differentiation medium. The alkaline phosphatase activity of MSCs on SNFs increased rapidly and remained high up to 14 days and was much higher than that on two-dimensional tissue culture-treated polystyrene. The high expression of RUNX2 and intense staining by alizarin red s after differentiation supported that SNFs enhanced the osteogenic differentiation of MSCs. Furthermore, permeation analysis of SNFs using fluorescein isothiocyanate-dextran suggested a sufficient permeability of SNFs for oxygen, minerals, nutrients, and secretions, which is important for maintaining the cell viability and vitality. These results suggested that SNFs are promising scaffolds for the regeneration of bone defects using MSCs, originated from highly porous and elastic SNF characters.
Collapse
Affiliation(s)
- Kazutoshi Iijima
- Department
of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-machi,
Shinjuku-ku, Tokyo 162-0826, Japan
| | - Shohei Ishikawa
- Graduate School of Science and Department of
Applied Chemistry, Faculty of
Science, Tokyo University of Science, 1-3 Kagurazaka,
Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kohei Sasaki
- Japan
Vilene Company Ltd., 7 kita-Tone, Koga, Ibaraki 306-0213, Japan
| | - Mineo Hashizume
- Department
of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-machi,
Shinjuku-ku, Tokyo 162-0826, Japan
| | - Masaaki Kawabe
- Japan
Vilene Company Ltd., 7 kita-Tone, Koga, Ibaraki 306-0213, Japan
| | - Hidenori Otsuka
- Graduate School of Science and Department of
Applied Chemistry, Faculty of
Science, Tokyo University of Science, 1-3 Kagurazaka,
Shinjuku-ku, Tokyo 162-8601, Japan
- E-mail: . Phone: +81-3-5228-8265. Fax: +81-3-5261-4631 (H.O.)
| |
Collapse
|