101
|
He P, Zhao J, Zhang J, Li B, Gou Z, Gou M, Li X. Bioprinting of skin constructs for wound healing. BURNS & TRAUMA 2018; 6:5. [PMID: 29404374 PMCID: PMC5778803 DOI: 10.1186/s41038-017-0104-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/12/2017] [Indexed: 02/05/2023]
Abstract
Extensive burns and full-thickness skin wounds are difficult to repair. Autologous split-thickness skin graft (ASSG) is still used as the gold standard in the clinic. However, the shortage of donor skin tissues is a serious problem. A potential solution to this problem is to fabricate skin constructs using biomaterial scaffolds with or without cells. Bioprinting is being applied to address the need for skin tissues suitable for transplantation, and can lead to the development of skin equivalents for wound healing therapy. Here, we summarize strategies of bioprinting and review current advances of bioprinting of skin constructs. There will be challenges on the way of 3D bioprinting for skin regeneration, but we still believe bioprinting will be potential skills for wounds healing in the foreseeable future.
Collapse
Affiliation(s)
- Peng He
- The Affiliated Hospital of Southwest Medical University, the department of Plastic & Burns Surgery, Tai Ping Street, Luzhou, 646000 People’s Republic of China
| | - Junning Zhao
- Sichuan Academy of Chinese Medical Sciences, Sichuan Translational Medicine Center of Chinese Medicine, Ren Min Nan Lu Road, Chengdu, 610041 People’s Republic of China
| | - Jiumeng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
- Collaborative Innovation Center for Biotherapy, Chengdu, 610041 People’s Republic of China
| | - Bo Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
- Collaborative Innovation Center for Biotherapy, Chengdu, 610041 People’s Republic of China
| | - Zhiyuan Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
- Collaborative Innovation Center for Biotherapy, Chengdu, 610041 People’s Republic of China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
- Collaborative Innovation Center for Biotherapy, Chengdu, 610041 People’s Republic of China
| | - Xiaolu Li
- The Affiliated Hospital of Southwest Medical University, the department of Plastic & Burns Surgery, Tai Ping Street, Luzhou, 646000 People’s Republic of China
- Sichuan Academy of Chinese Medical Sciences, Sichuan Translational Medicine Center of Chinese Medicine, Ren Min Nan Lu Road, Chengdu, 610041 People’s Republic of China
| |
Collapse
|
102
|
Jang TS, Jung HD, Pan HM, Han WT, Chen S, Song J. 3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering. Int J Bioprint 2018; 4:126. [PMID: 33102909 PMCID: PMC7582009 DOI: 10.18063/ijb.v4i1.126] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/22/2017] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D) printing of hydrogels is now an attractive area of research due to its capability to fabricate intricate, complex and highly customizable scaffold structures that can support cell adhesion and promote cell infiltration for tissue engineering. However, pure hydrogels alone lack the necessary mechanical stability and are too easily degraded to be used as printing ink. To overcome this problem, significant progress has been made in the 3D printing of hydrogel composites with improved mechanical performance and biofunctionality. Herein, we provide a brief overview of existing hydrogel composite 3D printing techniques including laser based-3D printing, nozzle based-3D printing, and inkjet printer based-3D printing systems. Based on the type of additives, we will discuss four main hydrogel composite systems in this review: polymer- or hydrogel-hydrogel composites, particle-reinforced hydrogel composites, fiber-reinforced hydrogel composites, and anisotropic filler-reinforced hydrogel composites. Additionally, several emerging potential applications of hydrogel composites in the field of tissue engineering and their accompanying challenges are discussed in parallel.
Collapse
Affiliation(s)
- Tae-Sik Jang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Hyun-Do Jung
- Liquid Processing & Casting Technology R&D Group, Korea Institute of Industrial Technology, Incheon, Republic of Korea
| | - Houwen Matthew Pan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Win Tun Han
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Shengyang Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Juha Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
103
|
Abstract
Three-dimensional (3D) in vitro modeling is increasingly relevant as two-dimensional (2D) cultures have been recognized with limits to recapitulate the complex endogenous conditions in the body. Additionally, fabrication technology is more accessible than ever. Bioprinting, in particular, is an additive manufacturing technique that expands the capabilities of in vitro studies by precisely depositing cells embedded within a 3D biomaterial scaffold that acts as temporary extracellular matrix (ECM). More importantly, bioprinting has vast potential for customization. This allows users to manipulate parameters such as scaffold design, biomaterial selection, and cell types, to create specialized biomimetic 3D systems.The development of a 3D system is important to recapitulate the bone marrow (BM) microenvironment since this particular organ cannot be mimicked with other methods such as organoids. The 3D system can be used to study the interactions between native BM cells and metastatic breast cancer cells (BCCs). Although not perfect, such a system can recapitulate the BM microenvironment. Mesenchymal stem cells (MSCs), a key population within the BM, are known to communicate with BCCs invading the BM and to aid in their transition into dormancy. Dormant BCCs are cycling quiescent and resistant to chemotherapy, which allows them to survive in the BM to resurge even after decades. These persisting BCCs have been identified as the stem cell subset. These BCCs exhibit self-renewal and can be induced to differentiate. More importantly, this BCC subset can initiate tumor formation, exert chemoresistance, and form gap junction with endogenous BM stroma, including MSCs. The bioprinted model detailed in this chapter creates a MSC-BC stem cell coculture system to study intercellular interactions in a model that is more representative of the endogenous 3D microenvironment than conventional 2D cultures. The method can reliably seed primary BM MSCs and BC stem cells within a bioprinted scaffold fabricated from CELLINK Bioink. Since bioprinting is a highly customizable technique, parameters described in this method (i.e., cell-cell ratio, scaffold dimensions) can easily be altered to serve other applications, including studies on hematopoietic regulation.
Collapse
Affiliation(s)
- Caitlyn A Moore
- Division of Hematology/Oncology, Department of Medicine, University of Medicine and Dentistry of New Jersey-Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Niloy N Shah
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Caroline P Smith
- Division of Hematology/Oncology, Department of Medicine, University of Medicine and Dentistry of New Jersey-Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
104
|
Armiento AR, Stoddart MJ, Alini M, Eglin D. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater 2018; 65:1-20. [PMID: 29128537 DOI: 10.1016/j.actbio.2017.11.021] [Citation(s) in RCA: 378] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/05/2017] [Accepted: 11/07/2017] [Indexed: 12/27/2022]
Abstract
Articular cartilage is commonly described as a tissue that is made of up to 80% water, is devoid of blood vessels, nerves, and lymphatics, and is populated by only one cell type, the chondrocyte. At first glance, an easy tissue for clinicians to repair and for scientists to reproduce in a laboratory. Yet, chondral and osteochondral defects currently remain an open challenge in orthopedics and tissue engineering of the musculoskeletal system, without considering osteoarthritis. Why do we fail in repairing and regenerating articular cartilage? Behind its simple and homogenous appearance, articular cartilage hides a heterogeneous composition, a high level of organisation and specific biomechanical properties that, taken together, make articular cartilage a unique material that we are not yet able to repair or reproduce with high fidelity. This review highlights the available therapies for cartilage repair and retraces the research on different biomaterials developed for tissue engineering strategies. Their potential to recreate the structure, including composition and organisation, as well as the function of articular cartilage, intended as cell microenvironment and mechanically competent replacement, is described. A perspective of the limitations of the current research is given in the light of the emerging technologies supporting tissue engineering of articular cartilage. STATEMENT OF SIGNIFICANCE The mechanical properties of articular tissue reflect its functionally organised composition and the recreation of its structure challenges the success of in vitro and in vivo reproduction of the native cartilage. Tissue engineering and biomaterials science have revolutionised the way scientists approach the challenge of articular cartilage repair and regeneration by introducing the concept of the interdisciplinary approach. The clinical translation of the current approaches are not yet fully successful, but promising results are expected from the emerging and developing new generation technologies.
Collapse
Affiliation(s)
- A R Armiento
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - M J Stoddart
- AO Research Institute Davos, Davos Platz, Switzerland; University Medical Center, Albert-Ludwigs University, Freiburg, Germany.
| | - M Alini
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - D Eglin
- AO Research Institute Davos, Davos Platz, Switzerland.
| |
Collapse
|
105
|
Rider P, Kačarević ŽP, Alkildani S, Retnasingh S, Barbeck M. Bioprinting of tissue engineering scaffolds. J Tissue Eng 2018; 9:2041731418802090. [PMID: 30305886 PMCID: PMC6176532 DOI: 10.1177/2041731418802090] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022] Open
Abstract
Bioprinting is the process of creating three-dimensional structures consisting of biomaterials, cells, and biomolecules. The current additive manufacturing techniques, inkjet-, extrusion-, and laser-based, create hydrogel structures for cellular encapsulation and support. The requirements for each technique, as well as the technical challenges of printing living cells, are discussed and compared. This review encompasses the current research of bioprinting for tissue engineering and its potential for creating tissue-mimicking structures.
Collapse
Affiliation(s)
| | - Željka Perić Kačarević
- Department of Anatomy Histology,
Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine
and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Said Alkildani
- Department of Biomedical Engineering,
Faculty of Applied Medical Sciences, German Jordanian University, Amman,
Jordan
| | - Sujith Retnasingh
- Institute for Environmental Toxicology,
Martin-Luther-Universität Halle-Wittenberg and Faculty of Biomedical Engineering,
Anhalt University of Applied Science, Köthen, Germany
| | - Mike Barbeck
- botiss biomaterials, Berlin,
Germany
- Department of Oral and Maxillofacial
Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
106
|
Laurent J, Blin G, Chatelain F, Vanneaux V, Fuchs A, Larghero J, Théry M. Convergence of microengineering and cellular self-organization towards functional tissue manufacturing. Nat Biomed Eng 2017; 1:939-956. [DOI: 10.1038/s41551-017-0166-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
|
107
|
Lee S, Kim H, Kim J. Feasibility study of a biocompatible pneumatic dispensing system using mouse 3T3-J2 fibroblasts. MICRO AND NANO SYSTEMS LETTERS 2017. [DOI: 10.1186/s40486-017-0061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
108
|
Daly AC, Freeman FE, Gonzalez-Fernandez T, Critchley SE, Nulty J, Kelly DJ. 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering. Adv Healthc Mater 2017; 6. [PMID: 28804984 DOI: 10.1002/adhm.201700298] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/15/2017] [Indexed: 12/16/2022]
Abstract
Significant progress has been made in the field of cartilage and bone tissue engineering over the last two decades. As a result, there is real promise that strategies to regenerate rather than replace damaged or diseased bones and joints will one day reach the clinic however, a number of major challenges must still be addressed before this becomes a reality. These include vascularization in the context of large bone defect repair, engineering complex gradients for bone-soft tissue interface regeneration and recapitulating the stratified zonal architecture present in many adult tissues such as articular cartilage. Tissue engineered constructs typically lack such spatial complexity in cell types and tissue organization, which may explain their relatively limited success to date. This has led to increased interest in bioprinting technologies in the field of musculoskeletal tissue engineering. The additive, layer by layer nature of such biofabrication strategies makes it possible to generate zonal distributions of cells, matrix and bioactive cues in 3D. The adoption of biofabrication technology in musculoskeletal tissue engineering may therefore make it possible to produce the next generation of biological implants capable of treating a range of conditions. Here, advances in bioprinting for cartilage and osteochondral tissue engineering are reviewed.
Collapse
Affiliation(s)
- Andrew C. Daly
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Fiona E. Freeman
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Tomas Gonzalez-Fernandez
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Susan E. Critchley
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Jessica Nulty
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Daniel J. Kelly
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
- Advanced Materials and Bioengineering Research Center (AMBER); Royal College of Surgeons in Ireland and Trinity College Dublin; Dublin Ireland
| |
Collapse
|
109
|
Zhou Y. The recent development and applications of fluidic channels by 3D printing. J Biomed Sci 2017; 24:80. [PMID: 29047370 PMCID: PMC5646158 DOI: 10.1186/s12929-017-0384-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/17/2017] [Indexed: 01/09/2023] Open
Abstract
The technology of “Lab-on-a-Chip” allows the synthesis and analysis of chemicals and biological substance within a portable or handheld device. The 3D printed structures enable precise control of various geometries. The combination of these two technologies in recent years makes a significant progress. The current approaches of 3D printing, such as stereolithography, polyjet, and fused deposition modeling, are introduced. Their manufacture specifications, such as surface roughness, resolution, replication fidelity, cost, and fabrication time, are compared with each other. Finally, novel application of 3D printed channel in biology are reviewed, including pathogenic bacteria detection using magnetic nanoparticle clusters in a helical microchannel, cell stimulation by 3D chemical gradients, perfused functional vascular channels, 3D tissue construct, organ-on-a-chip, and miniaturized fluidic “reactionware” devices for chemical syntheses. Overall, the 3D printed fluidic chip is becoming a powerful tool in the both medical and chemical industries.
Collapse
Affiliation(s)
- Yufeng Zhou
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore.
| |
Collapse
|
110
|
|
111
|
Wang X, Ao Q, Tian X, Fan J, Tong H, Hou W, Bai S. Gelatin-Based Hydrogels for Organ 3D Bioprinting. Polymers (Basel) 2017; 9:E401. [PMID: 30965706 PMCID: PMC6418925 DOI: 10.3390/polym9090401] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 01/08/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a family of enabling technologies that can be used to manufacture human organs with predefined hierarchical structures, material constituents and physiological functions. The main objective of these technologies is to produce high-throughput and/or customized organ substitutes (or bioartificial organs) with heterogeneous cell types or stem cells along with other biomaterials that are able to repair, replace or restore the defect/failure counterparts. Gelatin-based hydrogels, such as gelatin/fibrinogen, gelatin/hyaluronan and gelatin/alginate/fibrinogen, have unique features in organ 3D bioprinting technologies. This article is an overview of the intrinsic/extrinsic properties of the gelatin-based hydrogels in organ 3D bioprinting areas with advanced technologies, theories and principles. The state of the art of the physical/chemical crosslinking methods of the gelatin-based hydrogels being used to overcome the weak mechanical properties is highlighted. A multicellular model made from adipose-derived stem cell proliferation and differentiation in the predefined 3D constructs is emphasized. Multi-nozzle extrusion-based organ 3D bioprinting technologies have the distinguished potential to eventually manufacture implantable bioartificial organs for purposes such as customized organ restoration, high-throughput drug screening and metabolic syndrome model establishment.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Qiang Ao
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Xiaohong Tian
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Jun Fan
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Hao Tong
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Weijian Hou
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Shuling Bai
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
112
|
McElheny C, Hayes D, Devireddy R. Design and Fabrication of a Low-Cost Three-Dimensional Bioprinter. J Med Device 2017; 11:0410011-410019. [PMID: 29034057 DOI: 10.1115/1.4037259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/24/2017] [Indexed: 11/08/2022] Open
Abstract
Three-dimensional (3D) bioprinting offers innovative research vectors for tissue engineering. However, commercially available bioprinting platforms can be cost prohibitive to small research facilities, especially in an academic setting. The goal is to design and fabricate a low-cost printing platform able to deliver cell-laden fluids with spatial accuracy along the X, Y, and Z axes of 0.1 mm. The bioprinter consists of three subassemblies: a base unit, a gantry, and a shuttle component. The platform utilizes four stepper motors to position along three axes and a fifth stepper motor actuating a pump. The shuttle and gantry are each driven along their respective horizontal axes via separate single stepper motor, while two coupled stepper motors are used to control location along the vertical axis. The current shuttle configuration allows for a 5 mL syringe to be extruded within a work envelope of 180 mm × 160 mm × 120 mm (X, Y, Z). The shuttle can easily be reconfigured to accommodate larger volume syringes. An attachment for a laser pen is located such that printing material may be light-activated pre-extrusion. Positional fidelity was established with calipers possessing a resolution to the nearest hundredth millimeter. The motors associated with the X and Y axes were calibrated to approximately 0.02 mm per motor impulse. The Z axis has a theoretical step distance of ∼51 nm, generating 0.04% error over a 10 mm travel distance. The A axis, or pump motor, has an impulse distance of 0.001 mm. The volume extruded by a single impulse is dictated by the diameter of the syringe used. With a 5 mL syringe possessing an inner diameter of 12.35 mm, the pump pushes as little as 0.119 μL. While the Z axis is tuned to the highest resolution settings for the motor driver, the X, Y, and A axes can obtain higher or lower resolution via physical switches on the motor drivers.
Collapse
Affiliation(s)
- Colton McElheny
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803
| | - Daniel Hayes
- Department of Biomedical Engineering, Pennsylvania State University, University Park, State College, PA 16802
| | - Ram Devireddy
- Department of Mechanical Engineering, Louisiana State University, 2508 P.F. Taylor Hall, Baton Rouge, LA 70803 e-mail:
| |
Collapse
|
113
|
Jiang T, Munguia-Lopez JG, Flores-Torres S, Grant J, Vijayakumar S, Leon-Rodriguez AD, Kinsella JM. Directing the Self-assembly of Tumour Spheroids by Bioprinting Cellular Heterogeneous Models within Alginate/Gelatin Hydrogels. Sci Rep 2017; 7:4575. [PMID: 28676662 PMCID: PMC5496969 DOI: 10.1038/s41598-017-04691-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/18/2017] [Indexed: 12/27/2022] Open
Abstract
Human tumour progression is a dynamic process involving diverse biological and biochemical events such as genetic mutation and selection in addition to physical, chemical, and mechanical events occurring between cells and the tumour microenvironment. Using 3D bioprinting we have developed a method to embed MDA-MB-231 triple negative breast cancer cells, and IMR-90 fibroblast cells, within a cross-linked alginate/gelatin matrix at specific initial locations relative to each other. After 7 days of co-culture the MDA-MB-231 cells begin to form multicellular tumour spheroids (MCTS) that increase in size and frequency over time. After ~15 days the IMR-90 stromal fibroblast cells migrate through a non-cellularized region of the hydrogel matrix and infiltrate the MDA-MB-231 spheroids creating mixed MDA-MB-231/IMR-90 MCTS. This study provides a proof-of-concept that biomimetic in vitro tissue co-culture models bioprinted with both breast cancer cells and fibroblasts will result in MCTS that can be maintained for durations of several weeks.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Mechanical Engineering, McGill University, Montreal, Quebec, H3A 0C3, Canada
| | - Jose G Munguia-Lopez
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICyT), San Luis Potosi, San Luis Potosi, 78216, Mexico
| | | | - Joel Grant
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, H3A 0C5, Canada
| | - Sanahan Vijayakumar
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, H3A 0C5, Canada
| | - Antonio De Leon-Rodriguez
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICyT), San Luis Potosi, San Luis Potosi, 78216, Mexico
| | - Joseph M Kinsella
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, H3A 2B4, Canada.
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0C3, Canada.
| |
Collapse
|
114
|
Wang C, Liu W, Tan M, Sun H, Yu Y. An open-pattern droplet-in-oil planar array for single cell analysis based on sequential inkjet printing technology. BIOMICROFLUIDICS 2017; 11:044106. [PMID: 28794816 PMCID: PMC5519398 DOI: 10.1063/1.4995294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/10/2017] [Indexed: 05/08/2023]
Abstract
Cellular heterogeneity represents a fundamental principle of cell biology for which a readily available single-cell research tool is urgently required. Here, we present a novel method combining cell-sized well arrays with sequential inkjet printing. Briefly, K562 cells with phosphate buffer saline buffer were captured at high efficiency (74.5%) in a cell-sized well as a "primary droplet" and sealed using fluorinated oil. Then, piezoelectric inkjet printing technology was adapted to precisely inject the cell lysis buffer and the fluorogenic substrate, fluorescein-di-β-D-galactopyranoside, as a "secondary droplet" to penetrate the sealing oil and fuse with the "primary droplet." We thereby successfully measured the intracellular β-galactosidase activity of K562 cells at the single-cell level. Our method allows, for the first time, the ability to simultaneously accommodate the high occupancy rate of single cells and sequential addition of reagents while retaining an open structure. We believe that the feasibility and flexibility of our method will enhance its use as a universal single-cell research tool as well as accelerate the adoption of inkjet printing in the study of cellular heterogeneity.
Collapse
Affiliation(s)
| | | | | | - Hongbo Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | | |
Collapse
|
115
|
Abstract
Bioprinting is becoming a must have capability in tissue engineering research. Key to the growth of the field is the inherent flexibility, which can be used to answer basic scientific questions that can only be addressed under 3D culture conditions, or organ-on-chip systems that could quickly replace underperforming animal models. Almost certainly the most challenging application of bioprinting will be for bottom-up tissue construction, which faces many of the same challenges as scaffold-based tissue engineering. In this review, the current state-of-the-art approaches to 3D bioprinting are discussed in terms of performance and suitability. This is complemented by an overview of hydrogel-based bioinks, with a special emphasis on composite biomaterial systems.
Collapse
Affiliation(s)
- Madeline Burke
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1FD, UK
| | - Benjamin M Carter
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Adam W Perriman
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
116
|
Mir TA, Nakamura M. Three-Dimensional Bioprinting: Toward the Era of Manufacturing Human Organs as Spare Parts for Healthcare and Medicine. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:245-256. [DOI: 10.1089/ten.teb.2016.0398] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tanveer Ahmad Mir
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
- Toyama Nanotechnology Manufacturing Cluster, Toyama, Japan
| | - Makoto Nakamura
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
- Toyama Nanotechnology Manufacturing Cluster, Toyama, Japan
| |
Collapse
|
117
|
Costa RM, Rauf S, Hauser CA. Towards biologically relevant synthetic designer matrices in 3D bioprinting for tissue engineering and regenerative medicine. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
118
|
Ning L, Chen X. A brief review of extrusion-based tissue scaffold bio-printing. Biotechnol J 2017; 12. [PMID: 28544779 DOI: 10.1002/biot.201600671] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 01/17/2023]
Abstract
Extrusion-based bio-printing has great potential as a technique for manipulating biomaterials and living cells to create three-dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion-based bio-printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio-printing and manipulation of multiple materials and cells in bio-printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion-based bio-printing for scaffold fabrication, focusing on the prior-printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to-date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi-materials/cells manipulation, and process-induced cell damage in extrusion-based bio-printing. The key issue and challenges for extrusion-based bio-printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio-printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio-printing. The address of these challenges will significantly enhance the capability of extrusion-based bio-printing.
Collapse
Affiliation(s)
- Liqun Ning
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Xiongbiao Chen
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada.,Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
119
|
Pedde RD, Mirani B, Navaei A, Styan T, Wong S, Mehrali M, Thakur A, Mohtaram NK, Bayati A, Dolatshahi-Pirouz A, Nikkhah M, Willerth SM, Akbari M. Emerging Biofabrication Strategies for Engineering Complex Tissue Constructs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606061. [PMID: 28370405 DOI: 10.1002/adma.201606061] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/16/2017] [Indexed: 05/24/2023]
Abstract
The demand for organ transplantation and repair, coupled with a shortage of available donors, poses an urgent clinical need for the development of innovative treatment strategies for long-term repair and regeneration of injured or diseased tissues and organs. Bioengineering organs, by growing patient-derived cells in biomaterial scaffolds in the presence of pertinent physicochemical signals, provides a promising solution to meet this demand. However, recapitulating the structural and cytoarchitectural complexities of native tissues in vitro remains a significant challenge to be addressed. Through tremendous efforts over the past decade, several innovative biofabrication strategies have been developed to overcome these challenges. This review highlights recent work on emerging three-dimensional bioprinting and textile techniques, compares the advantages and shortcomings of these approaches, outlines the use of common biomaterials and advanced hybrid scaffolds, and describes several design considerations including the structural, physical, biological, and economical parameters that are crucial for the fabrication of functional, complex, engineered tissues. Finally, the applications of these biofabrication strategies in neural, skin, connective, and muscle tissue engineering are explored.
Collapse
Affiliation(s)
- R Daniel Pedde
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Bahram Mirani
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Ali Navaei
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85281, USA
| | - Tara Styan
- Willerth Laboratory, Department of Mechanical Engineering and Division of Medical Sciences, University of Victoria, Victoria, V8P 5C2, Canada
| | - Sarah Wong
- Willerth Laboratory, Department of Mechanical Engineering and Division of Medical Sciences, University of Victoria, Victoria, V8P 5C2, Canada
| | - Mehdi Mehrali
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Ashish Thakur
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Nima Khadem Mohtaram
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Armin Bayati
- Willerth Laboratory, Department of Mechanical Engineering and Division of Medical Sciences, University of Victoria, Victoria, V8P 5C2, Canada
| | - Alireza Dolatshahi-Pirouz
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85281, USA
| | - Stephanie M Willerth
- Willerth Laboratory, Department of Mechanical Engineering and Division of Medical Sciences, University of Victoria, Victoria, V8P 5C2, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, V8P 5C2, Canada
- Center for Biomedical Research, University of Victoria, Victoria, V8P 5C2, Canada
| |
Collapse
|
120
|
Deterministic bead-in-droplet ejection utilizing an integrated plug-in bead dispenser for single bead-based applications. Sci Rep 2017; 7:46260. [PMID: 28393911 PMCID: PMC5385560 DOI: 10.1038/srep46260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/13/2017] [Indexed: 02/03/2023] Open
Abstract
This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead–encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin–biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules.
Collapse
|
121
|
Ji S, Guvendiren M. Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs. Front Bioeng Biotechnol 2017; 5:23. [PMID: 28424770 PMCID: PMC5380738 DOI: 10.3389/fbioe.2017.00023] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/21/2017] [Indexed: 12/26/2022] Open
Abstract
There is a growing demand for alternative fabrication approaches to develop tissues and organs as conventional techniques are not capable of fabricating constructs with required structural, mechanical, and biological complexity. 3D bioprinting offers great potential to fabricate highly complex constructs with precise control of structure, mechanics, and biological matter [i.e., cells and extracellular matrix (ECM) components]. 3D bioprinting is an additive manufacturing approach that utilizes a "bioink" to fabricate devices and scaffolds in a layer-by-layer manner. 3D bioprinting allows printing of a cell suspension into a tissue construct with or without a scaffold support. The most common bioinks are cell-laden hydrogels, decellulerized ECM-based solutions, and cell suspensions. In this mini review, a brief description and comparison of the bioprinting methods, including extrusion-based, droplet-based, and laser-based bioprinting, with particular focus on bioink design requirements are presented. We also present the current state of the art in bioink design including the challenges and future directions.
Collapse
Affiliation(s)
- Shen Ji
- Instructive Biomaterials and Additive Manufacturing (IBAM) Laboratory, Otto H. York Department of Chemical Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Murat Guvendiren
- Instructive Biomaterials and Additive Manufacturing (IBAM) Laboratory, Otto H. York Department of Chemical Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
122
|
Arai K, Yoshida T, Okabe M, Goto M, Mir TA, Soko C, Tsukamoto Y, Akaike T, Nikaido T, Zhou K, Nakamura M. Fabrication of 3D-culture platform with sandwich architecture for preserving liver-specific functions of hepatocytes using 3D bioprinter. J Biomed Mater Res A 2017; 105:1583-1592. [DOI: 10.1002/jbm.a.35905] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/19/2016] [Accepted: 09/14/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Kenichi Arai
- Division of Innovative Life Sciences, Graduate School of Innovative Life Science; University of Toyama; Japan
- Department of Regenerative Medicine and Biomedical Engineering; Saga University; Japan
| | - Toshiko Yoshida
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Japan
| | - Motonori Okabe
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Japan
| | - Mitsuaki Goto
- Biomaterials Center for Regenerative Medical Engineering; Foundation for Advancement of International Science; Japan
| | - Tanveer Ahmad Mir
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education; University of Toyama; Toyama Japan
| | - Chika Soko
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Japan
| | - Yoshinari Tsukamoto
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education; University of Toyama; Toyama Japan
| | - Toshihiro Akaike
- Biomaterials Center for Regenerative Medical Engineering; Foundation for Advancement of International Science; Japan
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology; Yokohama Japan
| | - Toshio Nikaido
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Japan
| | - Kaixuan Zhou
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Japan
| | - Makoto Nakamura
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education; University of Toyama; Toyama Japan
| |
Collapse
|
123
|
Datta P, Ayan B, Ozbolat IT. Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater 2017; 51:1-20. [PMID: 28087487 DOI: 10.1016/j.actbio.2017.01.035] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/14/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022]
Abstract
Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. STATEMENT OF SIGNIFICANCE Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision, which holds a great promise in fabrication of vascular or vascularized tissues for transplantation use. Although a great progress has recently been made on building perfusable tissues and branched vascular network, a comprehensive review on the state-of-the-art in vascular and vascularized tissue bioprinting has not reported so far. This contribution is thus significant because it discusses the use of three major bioprinting modalities in vascular tissue biofabrication for the first time in the literature and compares their strengths and limitations in details. Moreover, the use of scaffold-based and scaffold-free bioprinting is expounded within the domain of vascular tissue fabrication.
Collapse
|
124
|
Zheng Y, Lee J, Duan Q, Chen H, Yan X, Zhang J, Wang L. A Novel Encoded Recording Strategy of Complex Chemical System. CHEM LETT 2017. [DOI: 10.1246/cl.161110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
125
|
Ng WL, Yeong WY, Naing MW. Polyvinylpyrrolidone-Based Bio-Ink Improves Cell Viability and Homogeneity during Drop-On-Demand Printing. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E190. [PMID: 28772551 PMCID: PMC5459162 DOI: 10.3390/ma10020190] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 01/09/2023]
Abstract
Drop-on-demand (DOD) bioprinting has attracted huge attention for numerous biological applications due to its precise control over material volume and deposition pattern in a contactless printing approach. 3D bioprinting is still an emerging field and more work is required to improve the viability and homogeneity of printed cells during the printing process. Here, a general purpose bio-ink was developed using polyvinylpyrrolidone (PVP) macromolecules. Different PVP-based bio-inks (0%-3% w/v) were prepared and evaluated for their printability; the short-term and long-term viability of the printed cells were first investigated. The Z value of a bio-ink determines its printability; it is the inverse of the Ohnesorge number (Oh), which is the ratio between the Reynolds number and a square root of the Weber number, and is independent of the bio-ink velocity. The viability of printed cells is dependent on the Z values of the bio-inks; the results indicated that the cells can be printed without any significant impairment using a bio-ink with a threshold Z value of ≤9.30 (2% and 2.5% w/v). Next, the cell output was evaluated over a period of 30 min. The results indicated that PVP molecules mitigate the cell adhesion and sedimentation during the printing process; the 2.5% w/v PVP bio-ink demonstrated the most consistent cell output over a period of 30 min. Hence, PVP macromolecules can play a critical role in improving the cell viability and homogeneity during the bioprinting process.
Collapse
Affiliation(s)
- Wei Long Ng
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 639798, Singapore.
- Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research, 73 Nanyang Drive, Singapore 637662, Singapore.
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - May Win Naing
- Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research, 73 Nanyang Drive, Singapore 637662, Singapore.
| |
Collapse
|
126
|
Yan X, Zheng Y, Gao J, Lee J. An Ink-jet Printing Strategy for Extensive Exploration of One Chemical Action with Three Interactive Variations. ANAL SCI 2017; 33:1-3. [PMID: 28070062 DOI: 10.2116/analsci.33.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A simple method was created and implemented through the technology of ink-jet printing to study the effects of three chemical factors (chemical reagents) to the ninhydrin reaction. The effects of each single reagent and their interactions on the reaction were studied in one experiment. The three reagents all have effects on ninhydrin reaction, and the effects under the different combinations of reagents were presented on a chip. This work was completed efficiently with a smaller experimental workload compared with the traditional method.
Collapse
Affiliation(s)
- Xing Yan
- College of Tourism and Environment, Shaanxi Normal University
| | | | | | | |
Collapse
|
127
|
|
128
|
Ng WL, Lee JM, Yeong WY, Win Naing M. Microvalve-based bioprinting – process, bio-inks and applications. Biomater Sci 2017; 5:632-647. [DOI: 10.1039/c6bm00861e] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DOD microvalve-based bioprinting system provides a highly advanced manufacturing platform that facilitates precise control over the cellular and biomaterial deposition in a highly reproducible and reliable manner. This article highlights promising directions to transform microvalve-based bioprinting into an enabling technology that will potentially drive significant advances in the field of TERM.
Collapse
Affiliation(s)
- Wei Long Ng
- Singapore Centre for 3D Printing (SC3DP)
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University (NTU)
- Singapore 639798
- Singapore
| | - Jia Min Lee
- Singapore Centre for 3D Printing (SC3DP)
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University (NTU)
- Singapore 639798
- Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing (SC3DP)
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University (NTU)
- Singapore 639798
- Singapore
| | - May Win Naing
- Singapore Institute of Manufacturing Technology (SIMTech)
- Agency for Science
- Technology and Research
- Singapore 637662
| |
Collapse
|
129
|
Liu W, Zhang YS, Heinrich MA, De Ferrari F, Jang HL, Bakht SM, Alvarez MM, Yang J, Li YC, Trujillo-de Santiago G, Miri AK, Zhu K, Khoshakhlagh P, Prakash G, Cheng H, Guan X, Zhong Z, Ju J, Zhu GH, Jin X, Shin SR, Dokmeci MR, Khademhosseini A. Rapid Continuous Multimaterial Extrusion Bioprinting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201604630. [PMID: 27859710 PMCID: PMC5235978 DOI: 10.1002/adma.201604630] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/23/2016] [Indexed: 05/17/2023]
Abstract
The development of a multimaterial extrusion bioprinting platform is reported. This platform is capable of depositing multiple coded bioinks in a continuous manner with fast and smooth switching among different reservoirs for rapid fabrication of complex constructs, through digitally controlled extrusion of bioinks from a single printhead consisting of bundled capillaries synergized with programmed movement of the motorized stage.
Collapse
Affiliation(s)
- Wanjun Liu
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Marcel A Heinrich
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- MIRA Institute of Biomedical Technology and Technical Medicine, Department of Developmental BioEngineering, University of Twente, Enschede, 7500AE, The Netherlands
| | - Fabio De Ferrari
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, 10129, Italy
| | - Hae Lin Jang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Syeda Mahwish Bakht
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- COMSATS Institute of Information and Technology, Islamabad, 45550, Pakistan
| | - Mario Moisés Alvarez
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Microsystems Technologies Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Jingzhou Yang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Mechanical and Chemical Engineering, University of Western Australia, Perth, WA, 6009, Australia
| | - Yi-Chen Li
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Grissel Trujillo-de Santiago
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Microsystems Technologies Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Amir K Miri
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kai Zhu
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
- Shanghai Institute of Cardiovascular Disease, Shanghai, 200032, P. R. China
| | - Parastoo Khoshakhlagh
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Gyan Prakash
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hao Cheng
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xiaofei Guan
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhe Zhong
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jie Ju
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Geyunjian Harry Zhu
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Polymer Engineering, University of Akron, Akron, OH, 44325-0301, USA
| | - Xiangyu Jin
- Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia
| |
Collapse
|
130
|
Moon S, Fritz IL, Singer ZS, Danino T. Spatial Control of Bacteria Using Screen Printing. 3D PRINTING AND ADDITIVE MANUFACTURING 2016; 3:194-203. [PMID: 29577061 PMCID: PMC5363221 DOI: 10.1089/3dp.2016.0040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Synthetic biology has led to advances in both our understanding and engineering of genetic circuits that affect spatial and temporal behaviors in living cells. A growing array of native and synthetic circuits such as oscillators, pattern generators, and cell-cell communication systems has been studied, which exhibit spatiotemporal properties. To better understand the design principles of these genetic circuits, there is a need for versatile and precise methods for patterning cell populations in various configurations. In this study, we develop a screen printing methodology to pattern bacteria on agar, glass, and paper surfaces. Initially, we tested three biocompatible resuspension media with appropriate rheological properties for screen printing. Using microscopy, we characterized the resolution and bleed of bacteria screen prints on agar and glass surfaces, obtaining resolutions as low as 188 μm. Next, we engineered bacterial strains producing visible chromoproteins analogous to the cyan, magenta, and yellow subtractive color system for the creation of multicolored bacteria images. Using this system, we printed distinct populations in overlapping or interlocking designs on both paper and agar substrates. These proof-of-principle experiments demonstrated how the screen printing method could be used to study microbial community interactions and pattern formation of biofilms at submillimeter length scales. Overall, our approach allows for rapid and precise prototyping of patterned bacteria species that will be useful in the understanding and engineering of spatiotemporal behaviors in microbial communities.
Collapse
Affiliation(s)
- Soonhee Moon
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Ian L. Fritz
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Zakary S. Singer
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, New York
- Data Science Institute, Columbia University, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| |
Collapse
|
131
|
Kim YK, Park JA, Yoon WH, Kim J, Jung S. Drop-on-demand inkjet-based cell printing with 30- μm nozzle diameter for cell-level accuracy. BIOMICROFLUIDICS 2016; 10:064110. [PMID: 27990212 PMCID: PMC5135712 DOI: 10.1063/1.4968845] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/14/2016] [Indexed: 05/05/2023]
Abstract
We present drop-on-demand inkjet-based mammalian cell printing with a 30-μm nozzle diameter for cell-level accuracy. High-speed imaging techniques have been used to analyze the go-and-stop movement of cells inside the nozzle under a pulsed pressure generated by a piezo-actuator and the jet formation after ejection. Patterning of an array of 20 × 20 dots on a glass substrate reveals that each printed drop contains 1.30 cells on average at the cell concentration of 5.0 × 106 cells ml-1 for the very small nozzle, whereas larger nozzles with the diameter of 50 and 80 μm deliver 2.57 and 2.88 cells per drop, respectively. The effects of the size and concentration of printed cells on the number of cells have also been investigated. Furthermore, the effect of the nozzle diameter on printed cells has been evaluated through an examination of viability, proliferation, and morphology of cells by using a live/dead assay kit, CCK-8 assay, and cellular morphology imaging, respectively. We believe that the 30-μm inkjet nozzle can be used for precise cell deposition without any damages to the printed mammalian cells.
Collapse
Affiliation(s)
- Young Kwon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Ju An Park
- Department of Creative IT Engineering, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Woong Hee Yoon
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Joonwon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | | |
Collapse
|
132
|
Zhang YS, Duchamp M, Oklu R, Ellisen LW, Langer R, Khademhosseini A. Bioprinting the Cancer Microenvironment. ACS Biomater Sci Eng 2016; 2:1710-1721. [PMID: 28251176 PMCID: PMC5328669 DOI: 10.1021/acsbiomaterials.6b00246] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is intrinsically complex, comprising both heterogeneous cellular compositions and microenvironmental cues. During the various stages of cancer initiation, development, and metastasis, cell-cell interactions (involving vascular and immune cells besides cancerous cells) as well as cell-extracellular matrix (ECM) interactions (e.g., alteration in stiffness and composition of the surrounding matrix) play major roles. Conventional cancer models both two- and three-dimensional (2D and 3D) present numerous limitations as they lack good vascularization and cannot mimic the complexity of tumors, thereby restricting their use as biomimetic models for applications such as drug screening and fundamental cancer biology studies. Bioprinting as an emerging biofabrication platform enables the creation of high-resolution 3D structures and has been extensively used in the past decade to model multiple organs and diseases. More recently, this versatile technique has further found its application in studying cancer genesis, growth, metastasis, and drug responses through creation of accurate models that recreate the complexity of the cancer microenvironment. In this review we will focus first on cancer biology and limitations with current cancer models. We then detail the current bioprinting strategies including the selection of bioinks for capturing the properties of the tumor matrices, after which we discuss bioprinting of vascular structures that are critical toward construction of complex 3D cancer organoids. We finally conclude with current literature on bioprinted cancer models and propose future perspectives.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Margaux Duchamp
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Bioengineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, Lausanne 1015, Switzerland
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, Arizona 85259, United States
| | - Leif W. Ellisen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Robert Langer
- Harvard–MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Abdullah Sulayman Street, Jeddah 21569, Saudi Arabia
| |
Collapse
|
133
|
Wang X, Ao Q, Tian X, Fan J, Wei Y, Hou W, Tong H, Bai S. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E802. [PMID: 28773924 PMCID: PMC5456640 DOI: 10.3390/ma9100802] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023]
Abstract
Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
- Department of Mechanical Engineering, Tsinghua University, Center of Organ Manufacturing, Beijing 100084, China.
| | - Qiang Ao
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Xiaohong Tian
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Jun Fan
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Yujun Wei
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Weijian Hou
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Hao Tong
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Shuling Bai
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
134
|
Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication 2016; 8:032002. [PMID: 27658612 DOI: 10.1088/1758-5090/8/3/032002] [Citation(s) in RCA: 593] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as achievable structural resolution, shape fidelity and cell survival. However, it is the final properties of the matured bioprinted tissue construct that are crucial for the end application. During tissue formation these properties are influenced by the amount of cells present in the construct, their proliferation, migration and interaction with the material. A calibrated computational framework is able to predict the tissue development and maturation and to optimize the bioprinting input parameters such as the starting material, the initial cell loading and the construct geometry. In this contribution relevant bioink properties are reviewed and discussed on the example of most popular bioprinting approaches. The effect of cells on hydrogel processing and vice versa is highlighted. Furthermore, numerical approaches were reviewed and implemented for depicting the cellular mechanics within the hydrogel as well as for prediction of mechanical properties to achieve the desired hydrogel construct considering cell density, distribution and material-cell interaction.
Collapse
Affiliation(s)
- Katja Hölzl
- Institute of Materials Science and Technology, Technical University Vienna, Austria. Austrian Cluster for Tissue Regeneration, Austria
| | | | | | | | | | | |
Collapse
|
135
|
Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med 2016; 14:271. [PMID: 27645770 PMCID: PMC5028995 DOI: 10.1186/s12967-016-1028-0] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/05/2016] [Indexed: 12/25/2022] Open
Abstract
Bioprinting technology shows potential in tissue engineering for the fabrication of scaffolds, cells, tissues and organs reproducibly and with high accuracy. Bioprinting technologies are mainly divided into three categories, inkjet-based bioprinting, pressure-assisted bioprinting and laser-assisted bioprinting, based on their underlying printing principles. These various printing technologies have their advantages and limitations. Bioprinting utilizes biomaterials, cells or cell factors as a "bioink" to fabricate prospective tissue structures. Biomaterial parameters such as biocompatibility, cell viability and the cellular microenvironment strongly influence the printed product. Various printing technologies have been investigated, and great progress has been made in printing various types of tissue, including vasculature, heart, bone, cartilage, skin and liver. This review introduces basic principles and key aspects of some frequently used printing technologies. We focus on recent advances in three-dimensional printing applications, current challenges and future directions.
Collapse
Affiliation(s)
- Jipeng Li
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 People’s Republic of China
| | - Mingjiao Chen
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 People’s Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 People’s Republic of China
| | - Huifang Zhou
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 People’s Republic of China
| |
Collapse
|
136
|
Attalla R, Ling C, Selvaganapathy P. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications. Biomed Microdevices 2016; 18:17. [PMID: 26842949 DOI: 10.1007/s10544-016-0042-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The lack of a simple and effective method to integrate vascular network with engineered scaffolds and tissue constructs remains one of the biggest challenges in true 3D tissue engineering. Here, we detail the use of a commercially available, low-cost, open-source 3D printer modified with a microfluidic print-head in order to develop a method for the generation of instantly perfusable vascular network integrated with gel scaffolds seeded with cells. The print-head features an integrated coaxial nozzle that allows the fabrication of hollow, calcium-polymerized alginate tubes that can be easily patterned using 3D printing techniques. The diameter of the hollow channel can be precisely controlled and varied between 500 μm - 2 mm by changing applied flow rates or print-head speed. These channels are integrated into gel layers with a thickness of 800 μm - 2.5 mm. The structural rigidity of these constructs allows the fabrication of multi-layered structures without causing the collapse of hollow channels in lower layers. The 3D printing method was fully characterized at a range of operating speeds (0-40 m/min) and corresponding flow rates (1-30 mL/min) were identified to produce precise definition. This microfluidic design also allows the incorporation of a wide range of scaffold materials as well as biological constituents such as cells, growth factors, and ECM material. Media perfusion of the channels causes a significant viability increase in the bulk of cell-laden structures over the long-term. With this setup, gel constructs with embedded arrays of hollow channels can be created and used as a potential substitute for blood vessel networks.
Collapse
Affiliation(s)
- R Attalla
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - C Ling
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - P Selvaganapathy
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
137
|
Vijayavenkataraman S, Lu WF, Fuh JYH. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 2016; 8:032001. [DOI: 10.1088/1758-5090/8/3/032001] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
138
|
Wei Xu, Xiaohong Wang, Yongnian Yan, Wei Zheng, Zhuo Xiong, Feng Lin, Rendong Wu, Renji Zhang. Rapid Prototyping Three-Dimensional Cell/Gelatin/Fibrinogen Constructs for Medical Regeneration. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911507079451] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is a need for rapid fabrication of tissue or organs with well-defined structures and functions in regenerative medicine. Two patterns of cell/matrix constructs containing hepatic cells, gelatin and fibrinogen were successfully created by automated rapid prototyping techniques and stabilized with thrombin. No apparent cell damage was found during the process. Mechanical characterization demonstrated that a 1:1 ratio gelatin/fibrin mixture had the greatest elasticity modulus and compressive strength. Microscopic and histological observations showed that hepatic cells were embedded in the gelatin/fibrinogen matrix and were proliferating. Immunostaining and biochemical analysis indicated that the embedded hepatocytes secreted albumin. Fibrin appears to be a favorable component for a gelatin based cell assembly matrix in that it is bioresorbable, easily manipulated, and supports in vitro cell functions.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China, wangxiaohong @tsinghua.edu.cn
| | - Xiaohong Wang
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Yongnian Yan
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Wei Zheng
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Zhuo Xiong
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Feng Lin
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Rendong Wu
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Renji Zhang
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
139
|
He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J. Research on the printability of hydrogels in 3D bioprinting. Sci Rep 2016; 6:29977. [PMID: 27436509 PMCID: PMC4951698 DOI: 10.1038/srep29977] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/24/2016] [Indexed: 12/20/2022] Open
Abstract
As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films (two dimensional, 2D structures) and printing 3D structures with a special attention to the accurate printing. After a series of experiments, we discovered the relationships between the important factors such as air pressure, feedrate, or even printing distance and the printing quality of the expected structures. Dumbbell shape was observed in the lattice structures printing due to the hydrogel diffuses at the intersection. Collapses and fusion of adjacent layer would result in the error accumulation at Z direction which was an important fact that could cause printing failure. Finally, we successfully demonstrated a 3D printing hydrogel scaffold through harmonize with all the parameters. The cell viability after printing was compared with the casting and the results showed that our bioprinting method almost had no extra damage to the cells.
Collapse
Affiliation(s)
- Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, 710054, Xi’an China
| | - FeiFei Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - HaiMing Zhao
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bing Xia
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - JianZhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
140
|
Morris VB, Nimbalkar S, Younesi M, McClellan P, Akkus O. Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography. Ann Biomed Eng 2016; 45:286-296. [PMID: 27164837 DOI: 10.1007/s10439-016-1643-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/05/2016] [Indexed: 01/23/2023]
Abstract
Extracellular matrix mimetic hydrogels which hybridize synthetic and natural polymers offer molecularly-tailored, bioactive properties and tunable mechanical strength. In addition, 3D bioprinting by stereolithography allows fabrication of internal pores and defined macroscopic shapes. In this study, we formulated a hybrid biocompatible resin using natural and synthetic polymers (chitosan and polyethylene glycol diacrylate (PEGDA), respectively) by controlling molecular weight of chitosan, feed-ratios, and photo-initiator concentration. Ear-shaped, hybrid scaffolds were fabricated by a stereolithographic method using a 405 nm laser. Hybrid hydrogel scaffolds of chitosan (50-190 kDa) and PEGDA (575 Da) were mixed at varying feed-ratios. Some of the cationic, amino groups of chitosan were neutralized by dialysis in acidic solution containing chitosan in excess of sodium acetate solution to inhibit quenching of newly formed photoradicals. A feed-ratio of 1:7.5 was found to be the most appropriate of the formulations considered in this study in terms of mechanical properties, cell adhesion, and printability. The biofabricated hybrid scaffold showed interconnected, homogeneous pores with a nominal pore size of 50 µm and an elastic modulus of ~400 kPa. Moreover, long-term cell viability and cell spreading was observed via actin filament staining. Printability of the biocompatible resin was confirmed by printing thresholded MR images of an ear and the feed ratio of 1:7.5 provided the most faithful reproduction of the shape. To the best of our knowledge, this is the first report of stereolithographic printing hybridizing cell-adhesive properties of chitosan with mechanical robustness of PEG in scaffolds suitable for repair of complex tissue geometries, such as those of the human ear.
Collapse
Affiliation(s)
- Viola B Morris
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106-7222, USA
| | - Siddharth Nimbalkar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mousa Younesi
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106-7222, USA
| | - Phillip McClellan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106-7222, USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106-7222, USA. .,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Department of Orthopedics, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
141
|
Martinez V, Forró C, Weydert S, Aebersold MJ, Dermutz H, Guillaume-Gentil O, Zambelli T, Vörös J, Demkó L. Controlled single-cell deposition and patterning by highly flexible hollow cantilevers. LAB ON A CHIP 2016; 16:1663-1674. [PMID: 27046017 DOI: 10.1039/c5lc01466b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Single-cell patterning represents a key approach to decouple and better understand the role and mechanisms of individual cells of a given population. In particular, the bottom-up approach of engineering neuronal circuits with a controlled topology holds immense promises to perceive the relationships between connectivity and function. In order to accommodate these efforts, highly flexible SU-8 cantilevers with integrated microchannels have been fabricated for both additive and subtractive patterning. By directly squeezing out single cells onto adhesive surfaces, controlled deposition with a spatial accuracy of 5 μm could be achieved, while subtractive patterning has been realized by selective removal of targeted single cells. Complex cell patterns were created on substrates pre-patterned with cell-adhesive and repulsive areas, preserving the original pattern geometry for long-term studies. For example, a circular loop with a diameter of 530 μm has been realized using primary hippocampal neurons, which were fully connected to their respective neighbors along the loop. Using the same cantilevers, the versatility of the technique has also been demonstrated via in situ modification of already mature neuronal cultures by both detaching individual cells of the population and adding fresh ones, incorporating them into the culture.
Collapse
Affiliation(s)
- Vincent Martinez
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.
| | - Serge Weydert
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.
| | - Mathias J Aebersold
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.
| | - Harald Dermutz
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.
| | | | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.
| | - László Demkó
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.
| |
Collapse
|
142
|
Three-Dimensional Printing of Tissue/Organ Analogues Containing Living Cells. Ann Biomed Eng 2016; 45:180-194. [PMID: 27080374 DOI: 10.1007/s10439-016-1611-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/05/2016] [Indexed: 02/06/2023]
Abstract
The technical advances of three-dimensional (3D) printing in the field of tissue engineering have enabled the creation of 3D living tissue/organ analogues. Diverse 3D tissue/organ printing techniques with computer-aided systems have been developed and used to dispose living cells together with biomaterials and supporting biochemicals as pre-designed 3D tissue/organ models. Furthermore, recent advances in bio-inks, which are printable hydrogels with living cell encapsulation, have greatly enhanced the versatility of 3D tissue/organ printing. Here, we introduce 3D tissue/organ printing techniques and biomaterials that have been developed and widely used thus far. We also review a variety of applications in an attempt to repair or replace the damaged or defective tissue/organ, and develop the in vitro tissue/organ models. The potential challenges are finally discussed from the technical perspective of 3D tissue/organ printing.
Collapse
|
143
|
Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine. Ann Biomed Eng 2016; 45:115-131. [PMID: 27066784 DOI: 10.1007/s10439-016-1613-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/05/2016] [Indexed: 12/13/2022]
Abstract
Three-dimensional (3-D) cell printing, which can accurately deposit cells, biomaterial scaffolds and growth factors in precisely defined spatial patterns to form biomimetic tissue structures, has emerged as a powerful enabling technology to create live tissue and organ structures for drug discovery and tissue engineering applications. Unlike traditional 3-D printing that uses metals, plastics and polymers as the printing materials, cell printing has to be compatible with living cells and biological matrix. It is also required that the printing process preserves the biological functions of the cells and extracellular matrix, and to mimic the cell-matrix architectures and mechanical properties of the native tissues. Therefore, there are significant challenges in order to translate the technologies of traditional 3-D printing to cell printing, and ultimately achieve functional outcomes in the printed tissues. So it is essential to develop new technologies specially designed for cell printing and in-depth basic research in the bioprinted tissues, such as developing novel biomaterials specifically for cell printing applications, understanding the complex cell-matrix remodeling for the desired mechanical properties and functional outcomes, establishing proper vascular perfusion in bioprinted tissues, etc. In recent years, many exciting research progresses have been made in the 3-D cell printing technology and its application in engineering live tissue constructs. This review paper summarized the current development in 3-D cell printing technologies; focus on the outcomes of the live printed tissues and their potential applications in drug discovery and regenerative medicine. Current challenges and limitations are highlighted, and future directions of 3-D cell printing technology are also discussed.
Collapse
|
144
|
McKee RA, Wingert RA. Repopulating Decellularized Kidney Scaffolds: An Avenue for Ex Vivo Organ Generation. MATERIALS 2016; 9. [PMID: 27375844 PMCID: PMC4927010 DOI: 10.3390/ma9030190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent research has shown that fully developed organs can be decellularized, resulting in a complex scaffold and extracellular matrix (ECM) network capable of being populated with other cells. This work has resulted in a growing field in bioengineering focused on the isolation, characterization, and modification of organ derived acellular scaffolds and their potential to sustain and interact with new cell populations, a process termed reseeding. In this review, we cover contemporary advancements in the bioengineering of kidney scaffolds including novel work showing that reseeded donor scaffolds can be transplanted and can function in recipients using animal models. Several major areas of the field are taken into consideration, including the decellularization process, characterization of acellular and reseeded scaffolds, culture conditions, and cell sources. Finally, we discuss future avenues based on the advent of 3D bioprinting and recent developments in kidney organoid cultures as well as animal models of renal genesis. The ongoing mergers and collaborations between these fields hold the potential to produce functional kidneys that can be generated ex vivo and utilized for kidney transplantations in patients suffering with renal disease.
Collapse
|
145
|
Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs. Sci Rep 2016; 6:21685. [PMID: 26899876 PMCID: PMC4761951 DOI: 10.1038/srep21685] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/27/2016] [Indexed: 12/13/2022] Open
Abstract
Recently, much attention has focused on replacement or/and enhancement of biological tissues via the use of cell-laden hydrogel scaffolds with an architecture that mimics the tissue matrix, and with the desired three-dimensional (3D) external geometry. However, mimicking the heterogeneous tissues that most organs and tissues are formed of is challenging. Although multiple-head 3D printing systems have been proposed for fabricating heterogeneous cell-laden hydrogel scaffolds, to date only the simple exterior form has been realized. Here we describe a computer-aided design and manufacturing (CAD/CAM) system for this application. We aim to develop an algorithm to enable easy, intuitive design and fabrication of a heterogeneous cell-laden hydrogel scaffolds with a free-form 3D geometry. The printing paths of the scaffold are automatically generated from the 3D CAD model, and the scaffold is then printed by dispensing four materials; i.e., a frame, two kinds of cell-laden hydrogel and a support. We demonstrated printing of heterogeneous tissue models formed of hydrogel scaffolds using this approach, including the outer ear, kidney and tooth tissue. These results indicate that this approach is particularly promising for tissue engineering and 3D printing applications to regenerate heterogeneous organs and tissues with tailored geometries to treat specific defects or injuries.
Collapse
|
146
|
Lee JW, Choi YJ, Yong WJ, Pati F, Shim JH, Kang KS, Kang IH, Park J, Cho DW. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication 2016; 8:015007. [DOI: 10.1088/1758-5090/8/1/015007] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
147
|
Detsch R, Blob S, Zehnder T, Boccaccini AR. Evaluation of cell inkjet printing technique for biofabrication. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/bnm-2016-0007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe main goal in biofabrication approach is to build living tissue substitutes on demand. In order to create functional tissue structures, additive manufacturing (AM) technologies are being increasingly considered. They allow generating functional structures created out of CAD models within a short period of time and with a very high precision. Different techniques are already established to build three-dimensional (3D) complex cell-loaded structures. One of these robotic additive fabrication techniques is the ink jet technology which is highly promising for biofabrication. This technique allows to process very small amounts of liquids or low-viscous polymer solutions e.g. to set biomolecules and cells in a suitable structure. The aim of this study is to evaluate a piezo inkjet printing device which is integrated in a commercial modular instrument platform together with a bioplotting system for biofabrication. The inkjet device is able to print single ink droplets of different volumes by controlling the applied voltage and the number of drops released to the spot. In this work different selective sets of parameters influencing the droplet formation and the spot size have been investigated. It has been proven that inkjet printing process in combination with fibrin hydrogel and bone marrow stromal cells is cytocompatible. In summary, the applied piezo inkjet printing is shown to be completely programmable, accurate and the resolution of the device allowed printing of various patterns with biomaterials and vital cells.
Collapse
|
148
|
de Azevedo Gonçalves Mota RC, da Silva EO, de Lima FF, de Menezes LR, Thiele ACS. 3D Printed Scaffolds as a New Perspective for Bone Tissue Regeneration: Literature Review. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/msa.2016.78039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
149
|
Bioprinting a cardiac valve. Biotechnol Adv 2015; 33:1503-21. [DOI: 10.1016/j.biotechadv.2015.07.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/30/2015] [Accepted: 07/27/2015] [Indexed: 12/13/2022]
|
150
|
Abstract
Bone defects can be congenital or acquired resulting from trauma, infection, neoplasm and failed arthroplasty. The osseous reconstruction of these defects is challenging. Unfortunately, none of the current techniques for the repair of bone defects has proven to be fully satisfactory. Bone tissue engineering (BTE) is the field of regenerative medicine (RM) that focuses on alternative treatment options for bone defects that will ideally address all the issues of the traditional techniques in treating large bone defects. However, current techniques of BTE is laborious and have their own shortcomings. More recently, 2D and 3D bone printing has been introduced to overcome most of the limitations of bone grafts and BTE. So far, results are extremely promising, setting new frontiers in the management of bone defects.
Collapse
Affiliation(s)
- Georgios Arealis
- Reading Shoulder Unit, Royal Berkshire NHS Hospital, Reading, Berkshire, UK
| | - Vasileios S Nikolaou
- Second Orthopaedic Department, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|