101
|
Filimonow K, de la Fuente R. Specification and role of extraembryonic endoderm lineages in the periimplantation mouse embryo. Theriogenology 2021; 180:189-206. [PMID: 34998083 DOI: 10.1016/j.theriogenology.2021.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
During mammalian embryo development, the correct formation of the first extraembryonic endoderm lineages is fundamental for successful development. In the periimplantation blastocyst, the primitive endoderm (PrE) is formed, which gives rise to the parietal endoderm (PE) and visceral endoderm (VE) during further developmental stages. These PrE-derived lineages show significant differences in both their formation and roles. Whereas differentiation of the PE as a migratory lineage has been suggested to represent the first epithelial-to-mesenchymal transition (EMT) in development, organisation of the epithelial VE is of utmost importance for the correct axis definition and patterning of the embryo. Despite sharing a common origin, the striking differences between the VE and PE are indicative of their distinct roles in early development. However, there is a significant disparity in the current knowledge of each lineage, which reflects the need for a deeper understanding of their respective specification processes. In this review, we will discuss the origin and maturation of the PrE, PE, and VE during the periimplantation period using the mouse model as an example. Additionally, we consider the latest findings regarding the role of the PrE-derived lineages and early embryo morphogenesis, as obtained from the most recent in vitro models.
Collapse
Affiliation(s)
- Katarzyna Filimonow
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| | - Roberto de la Fuente
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| |
Collapse
|
102
|
Lin YS, Lin YH, Nguyen Thi M, Hsiao SC, Chiu WT. STIM1 Controls the Focal Adhesion Dynamics and Cell Migration by Regulating SOCE in Osteosarcoma. Int J Mol Sci 2021; 23:ijms23010162. [PMID: 35008585 PMCID: PMC8745645 DOI: 10.3390/ijms23010162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
The dysregulation of store-operated Ca2+ entry (SOCE) promotes cancer progression by changing Ca2+ levels in the cytosol or endoplasmic reticulum. Stromal interaction molecule 1 (STIM1), a component of SOCE, is upregulated in several types of cancer and responsible for cancer cell migration, invasion, and metastasis. To explore the impact of STIM1-mediated SOCE on the turnover of focal adhesion (FA) and cell migration, we overexpressed the wild-type and constitutively active or dominant negative variants of STIM1 in an osteosarcoma cell line. In this study, we hypothesized that STIM1-mediated Ca2+ elevation may increase cell migration. We found that constitutively active STIM1 dramatically increased the Ca2+ influx, calpain activity, and turnover of FA proteins, such as the focal adhesion kinase (FAK), paxillin, and vinculin, which impede the cell migration ability. In contrast, dominant negative STIM1 decreased the turnover of FA proteins as its wild-type variant compared to the cells without STIM1 overexpression while promoting cell migration. These unexpected results suggest that cancer cells need an appropriate amount of Ca2+ to control the assembly and disassembly of focal adhesions by regulating calpain activity. On the other hand, overloaded Ca2+ results in excessive calpain activity, which is not beneficial for cancer metastasis.
Collapse
Affiliation(s)
- Yu-Shan Lin
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan;
| | - Yi-Hsin Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan; (Y.-H.L.); (M.N.T.)
| | - MyHang Nguyen Thi
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan; (Y.-H.L.); (M.N.T.)
| | - Shih-Chuan Hsiao
- Department of Hematology & Oncology, Saint Martin de Porres Hospital, Chiayi 600, Taiwan;
| | - Wen-Tai Chiu
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan; (Y.-H.L.); (M.N.T.)
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence:
| |
Collapse
|
103
|
Balasubramaniam L, Mège RM, Ladoux B. Active forces modulate collective behaviour and cellular organization. C R Biol 2021; 344:325-335. [DOI: 10.5802/crbiol.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022]
|
104
|
Chamlali M, Kouba S, Rodat-Despoix L, Todesca LM, Pethö Z, Schwab A, Ouadid-Ahidouch H. Orai3 Calcium Channel Regulates Breast Cancer Cell Migration through Calcium-Dependent and -Independent Mechanisms. Cells 2021; 10:cells10123487. [PMID: 34943998 PMCID: PMC8700618 DOI: 10.3390/cells10123487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Orai3 calcium (Ca2+) channels are implicated in multiple breast cancer processes, such as proliferation and survival as well as resistance to chemotherapy. However, their involvement in the breast cancer cell migration processes remains vague. In the present study, we exploited MDA-MB-231 and MDA-MB-231 BrM2 basal-like estrogen receptor-negative (ER-) cell lines to assess the direct role of Orai3 in cell migration. We showed that Orai3 regulates MDA-MB-231 and MDA-MB-231 BrM2 cell migration in two distinct ways. First, we showed that Orai3 remodels cell adhesive capacities by modulating the intracellular Ca2+ concentration. Orai3 silencing (siOrai3) decreased calpain activity, cell adhesion and migration in a Ca2+-dependent manner. In addition, Orai3 interacts with focal adhesion kinase (FAK) and regulates the actin cytoskeleton, in a Ca2+-independent way. Thus, siOrai3 modulates cell morphology by altering F-actin polymerization via a loss of interaction between Orai3 and FAK. To summarize, we demonstrated that Orai3 regulates cell migration through a Ca2+-dependent modulation of calpain activity and, in a Ca2+-independent manner, the actin cytoskeleton architecture via FAK.
Collapse
Affiliation(s)
- Mohamed Chamlali
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne, 33 Rue Saint Leu, 80000 Amiens, France; (M.C.); (S.K.); (L.R.-D.)
| | - Sana Kouba
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne, 33 Rue Saint Leu, 80000 Amiens, France; (M.C.); (S.K.); (L.R.-D.)
| | - Lise Rodat-Despoix
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne, 33 Rue Saint Leu, 80000 Amiens, France; (M.C.); (S.K.); (L.R.-D.)
| | - Luca Matteo Todesca
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany; (L.M.T.); (Z.P.); (A.S.)
| | - Zoltán Pethö
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany; (L.M.T.); (Z.P.); (A.S.)
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany; (L.M.T.); (Z.P.); (A.S.)
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne, 33 Rue Saint Leu, 80000 Amiens, France; (M.C.); (S.K.); (L.R.-D.)
- Correspondence: ; Tel.: +33-322827646
| |
Collapse
|
105
|
Hasselmann S, Hahn L, Lorson T, Schätzlein E, Sébastien I, Beudert M, Lühmann T, Neubauer JC, Sextl G, Luxenhofer R, Heinrich D. Freeform direct laser writing of versatile topological 3D scaffolds enabled by intrinsic support hydrogel. MATERIALS HORIZONS 2021; 8:3334-3344. [PMID: 34617095 DOI: 10.1039/d1mh00925g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a novel approach to create arbitrarily shaped 3D hydrogel objects is presented, wherein freeform two-photon polymerization (2PP) is enabled by the combination of a photosensitive hydrogel and an intrinsic support matrix. This way, topologies without physical contact such as a highly porous 3D network of concatenated rings were realized, which are impossible to manufacture with most current 3D printing technologies. Micro-Raman and nanoindentation measurements show the possibility to control water uptake and hence tailor the Young's modulus of the structures via the light dosage, proving the versatility of the concept regarding many scaffold characteristics that makes it well suited for cell specific cell culture as demonstrated by cultivation of human induced pluripotent stem cell derived cardiomyocytes.
Collapse
Affiliation(s)
- Sebastian Hasselmann
- Fraunhofer Project Center for Stem Cell Process Engineering Neunerplatz 2, Würzburg 97082, Germany
| | - Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, University of Würzburg, Röntgenring 11, 97070, Germany
| | - Thomas Lorson
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, University of Würzburg, Röntgenring 11, 97070, Germany
| | - Eva Schätzlein
- East Bavarian Technical University of Applied Sciences, Prüfeninger Str. 58, Regensburg 93049, Germany
| | - Isabelle Sébastien
- Fraunhofer Institute for Biomedical Engineering, Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, Würzburg 97082, Germany
| | - Matthias Beudert
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Julia C Neubauer
- Fraunhofer Institute for Biomedical Engineering, Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, Würzburg 97082, Germany
| | - Gerhard Sextl
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, Würzburg 97082, Germany.
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, University of Würzburg, Röntgenring 11, 97070, Germany
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science University of Helsinki, Helsinki 00014, Finland.
| | - Doris Heinrich
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, Würzburg 97082, Germany.
- Institute for Bioprocessing and Analytical Measurement Techniques, Rosenhof, Heilbad Heiligenstadt 37308, Germany
- Faculty for Mathematics and Natural Sciences, Ilmenau University of Technology, Ilmenau, Germany
| |
Collapse
|
106
|
Slater B, Li J, Indana D, Xie Y, Chaudhuri O, Kim T. Transient mechanical interactions between cells and viscoelastic extracellular matrix. SOFT MATTER 2021; 17:10274-10285. [PMID: 34137758 PMCID: PMC8695121 DOI: 10.1039/d0sm01911a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
During various physiological processes, such as wound healing and cell migration, cells continuously interact mechanically with a surrounding extracellular matrix (ECM). Contractile forces generated by the actin cytoskeleton are transmitted to a surrounding ECM, resulting in structural remodeling of the ECM. To better understand how matrix remodeling takes place, a myriad of in vitro experiments and simulations have been performed during recent decades. However, physiological ECMs are viscoelastic, exhibiting stress relaxation or creep over time. The time-dependent nature of matrix remodeling induced by cells remains poorly understood. Here, we employed a discrete model to investigate how the viscoelastic nature of ECMs affects matrix remodeling and stress profiles. In particular, we used explicit transient cross-linkers with varied density and unbinding kinetics to capture viscoelasticity unlike most of the previous models. Using this model, we quantified the time evolution of generation, propagation, and relaxation of stresses induced by a contracting cell in an ECM. It was found that matrix connectivity, regulated by fiber concentration and cross-linking density, significantly affects the magnitude and propagation of stress and subsequent matrix remodeling, as characterized by fiber displacements and local net deformation. In addition, we demonstrated how the base rate and force sensitivity of cross-linker unbinding regulate stress profiles and matrix remodeling. We verified simulation results using in vitro experiments performed with fibroblasts encapsulated in a three-dimensional collagen matrix. Our study provides key insights into the dynamics of physiologically relevant mechanical interactions between cells and a viscoelastic ECM.
Collapse
Affiliation(s)
- Brandon Slater
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN 47907, USA.
| | - Jing Li
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN 47907, USA.
| | - Dhiraj Indana
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA, 94305, USA
| | - Yihao Xie
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, 452 Escondido Mall, Stanford, CA, 94305, USA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN 47907, USA.
| |
Collapse
|
107
|
Mierke CT. The Pertinent Role of Cell and Matrix Mechanics in Cell Adhesion and Migration. Front Cell Dev Biol 2021; 9:720494. [PMID: 34722504 PMCID: PMC8548417 DOI: 10.3389/fcell.2021.720494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/20/2021] [Indexed: 01/17/2023] Open
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
108
|
Zhang C, Zhu H, Ren X, Gao B, Cheng B, Liu S, Sha B, Li Z, Zhang Z, Lv Y, Wang H, Guo H, Lu TJ, Xu F, Genin GM, Lin M. Mechanics-driven nuclear localization of YAP can be reversed by N-cadherin ligation in mesenchymal stem cells. Nat Commun 2021; 12:6229. [PMID: 34711824 PMCID: PMC8553821 DOI: 10.1038/s41467-021-26454-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal stem cells adopt differentiation pathways based upon cumulative effects of mechanosensing. A cell's mechanical microenvironment changes substantially over the course of development, beginning from the early stages in which cells are typically surrounded by other cells and continuing through later stages in which cells are typically surrounded by extracellular matrix. How cells erase the memory of some of these mechanical microenvironments while locking in memory of others is unknown. Here, we develop a material and culture system for modifying and measuring the degree to which cells retain cumulative effects of mechanosensing. Using this system, we discover that effects of the RGD adhesive motif of fibronectin (representative of extracellular matrix), known to impart what is often termed "mechanical memory" in mesenchymal stem cells via nuclear YAP localization, are erased by the HAVDI adhesive motif of the N-cadherin (representative of cell-cell contacts). These effects can be explained by a motor clutch model that relates cellular traction force, nuclear deformation, and resulting nuclear YAP re-localization. Results demonstrate that controlled storage and removal of proteins associated with mechanical memory in mesenchymal stem cells is possible through defined and programmable material systems.
Collapse
Affiliation(s)
- Cheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xinru Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Bin Gao
- Department of Endocrinology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, People's Republic of China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Shaobao Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Baoyong Sha
- School of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Zhaoqing Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, People's Republic of China
| | - Haohua Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, People's Republic of China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
- MOE Key Laboratory of Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, 63130, MO, USA
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, 63130, MO, USA
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
109
|
Lamb MC, Kaluarachchi CP, Lansakara TI, Mellentine SQ, Lan Y, Tivanski AV, Tootle TL. Fascin limits Myosin activity within Drosophila border cells to control substrate stiffness and promote migration. eLife 2021; 10:69836. [PMID: 34698017 PMCID: PMC8547955 DOI: 10.7554/elife.69836] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
A key regulator of collective cell migrations, which drive development and cancer metastasis, is substrate stiffness. Increased substrate stiffness promotes migration and is controlled by Myosin. Using Drosophila border cell migration as a model of collective cell migration, we identify, for the first time, that the actin bundling protein Fascin limits Myosin activity in vivo. Loss of Fascin results in: increased activated Myosin on the border cells and their substrate, the nurse cells; decreased border cell Myosin dynamics; and increased nurse cell stiffness as measured by atomic force microscopy. Reducing Myosin restores on-time border cell migration in fascin mutant follicles. Further, Fascin’s actin bundling activity is required to limit Myosin activation. Surprisingly, we find that Fascin regulates Myosin activity in the border cells to control nurse cell stiffness to promote migration. Thus, these data shift the paradigm from a substrate stiffness-centric model of regulating migration, to uncover that collectively migrating cells play a critical role in controlling the mechanical properties of their substrate in order to promote their own migration. This understudied means of mechanical regulation of migration is likely conserved across contexts and organisms, as Fascin and Myosin are common regulators of cell migration.
Collapse
Affiliation(s)
- Maureen C Lamb
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, United States
| | | | | | - Samuel Q Mellentine
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, United States
| | - Yiling Lan
- Department of Chemistry, University of Iowa, Iowa City, United States
| | - Alexei V Tivanski
- Department of Chemistry, University of Iowa, Iowa City, United States
| | - Tina L Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, United States
| |
Collapse
|
110
|
Lou Y, Jiang Y, Liang Z, Liu B, Li T, Zhang D. Role of RhoC in cancer cell migration. Cancer Cell Int 2021; 21:527. [PMID: 34627249 PMCID: PMC8502390 DOI: 10.1186/s12935-021-02234-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Migration is one of the five major behaviors of cells. Although RhoC-a classic member of the Rho gene family-was first identified in 1985, functional RhoC data have only been widely reported in recent years. Cell migration involves highly complex signaling mechanisms, in which RhoC plays an essential role. Cell migration regulated by RhoC-of which the most well-known function is its role in cancer metastasis-has been widely reported in breast, gastric, colon, bladder, prostate, lung, pancreatic, liver, and other cancers. Our review describes the role of RhoC in various types of cell migration. The classic two-dimensional cell migration cycle constitutes cell polarization, adhesion regulation, cell contraction and tail retraction, most of which are modulated by RhoC. In the three-dimensional cell migration model, amoeboid migration is the most classic and well-studied model. Here, RhoC modulates the formation of membrane vesicles by regulating myosin II, thereby affecting the rate and persistence of amoeba-like migration. To the best of our knowledge, this review is the first to describe the role of RhoC in all cell migration processes. We believe that understanding the detail of RhoC-regulated migration processes will help us better comprehend the mechanism of cancer metastasis. This will contribute to the study of anti-metastatic treatment approaches, aiding in the identification of new intervention targets for therapeutic or genetic transformational purposes.
Collapse
Affiliation(s)
- Yingyue Lou
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuhan Jiang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhen Liang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Bingzhang Liu
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tian Li
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
111
|
Kou J, Wang X, Wei Y, Zhao R, Wang X, He J, Li X, Wang X. Aurora kinase inhibitor VX-680 enhances sensitivity of esophageal squamous cell carcinoma cells to cisplatin chemotherapy. Anticancer Drugs 2021; 32:969-977. [PMID: 34016831 DOI: 10.1097/cad.0000000000001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is malignant cancer with a high mortality rate. Cisplatin is one of the most potent chemotherapy agents used in the treatment of ESCC. However, chemoresistance and severe adverse effects of cisplatin become major obstacles to clinical utility. The combination treatment with molecule-targeted drugs and chemotherapy agents is a promising treatment strategy for cancer to improve antineoplastic responses. VX-680 is a potent inhibitor of Aurora kinases. This study was performed to investigate if VX-680 and cisplatin can synergistically inhibit the malignant behavior of ESCC cells. The results obtained from 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide assay and combination index analysis demonstrated that the combination of VX-680 and cisplatin synergistically enhanced cytotoxic effects in ESCC cells. 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride staining and western blot analysis suggested that VX-680 increased cisplatin-mediated cell apoptosis. Further analysis revealed that VX-680 combined with cisplatin could attenuate cell migration and angiogenesis confirmed by wound-healing assay and tube formation assay. Subsequently, VX-680 and cisplatin combined treatment significantly promoted cell-cell cohesion, and reduced cell-extracellular matrix interaction, as analyzed by the cell dissociation assay and cell-matrix attachment assay. In addition, the combination of VX-680 and cisplatin markedly decreased the expressions of matrix metalloproteinases-2 (MMP-2), vascular endothelial growth factor (VEGF), p-extracellular signal-regulated protein kinase and p-RAC-α serine/threonine-protein kinase compared to VX-680 or cisplatin only treatment. Altogether, these findings strongly suggest that the combination of VX-680 and cisplatin could exert a synergistic antitumor effect in ESCC cells and this combination might represent a promising therapeutic strategy against ESCC.
Collapse
Affiliation(s)
- Junting Kou
- Department of Biochemistry and Molecular Biology, Shanxi Medical University
| | - Xuewei Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University
| | - Yuan Wei
- Department of Biochemistry and Molecular Biology, Shanxi Medical University
| | - Rong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University
| | - Xiuli Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University
| | - Jiefeng He
- Department of General Surgery, Shanxi Academy of Medical Sciences and Shanxi Bethune Hospital
| | - Xiaozhong Li
- Department of Infectious Diseases, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xiaoxia Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University
| |
Collapse
|
112
|
Sinha S, Malmi-Kakkada AN. Interparticle Adhesion Regulates the Surface Roughness of Growing Dense Three-Dimensional Active Particle Aggregates. J Phys Chem B 2021; 125:10445-10451. [PMID: 34499496 DOI: 10.1021/acs.jpcb.1c02758] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Activity and self-generated motion are fundamental features observed in many living and nonliving systems. Given that interparticle adhesive forces can regulate particle dynamics, we investigate how interparticle adhesion strength controls the boundary growth and roughness of active particle aggregates. Using particle based simulations incorporating both activity (birth, death, and growth) and systematic physical interactions (elasticity and adhesion), we establish that interparticle adhesion strength (fad) controls the surface roughness of a densely packed three-dimensional(3D) active particle aggregate expanding into a highly viscous medium. We discover that the surface roughness of a 3D active particle aggregate increases in proportion to the interparticle adhesion strength (fad) and show that asymmetry in the radial and transverse active particle mean-squared displacement (MSD) suppresses 3D surface roughness at lower adhesion strengths. By analyzing the statistical properties of particle displacements at the aggregate periphery, we determine that the 3D surface roughness is driven by the movement of active particle toward the core at high interparticle adhesion strengths. Our results elucidate the physics controlling the expansion of adhesive 3D active particle collectives into a highly viscous medium, with implications into understanding stochastic interface growth in active matter systems characterized by self-generation of particles.
Collapse
Affiliation(s)
- Sumit Sinha
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, United States
| | - Abdul N Malmi-Kakkada
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia 30912, United States
| |
Collapse
|
113
|
Ahuja S, Lazar IM. Systems-Level Proteomics Evaluation of Microglia Response to Tumor-Supportive Anti-Inflammatory Cytokines. Front Immunol 2021; 12:646043. [PMID: 34566949 PMCID: PMC8458581 DOI: 10.3389/fimmu.2021.646043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background Microglia safeguard the CNS against injuries and pathogens, and in the presence of certain harmful stimuli are capable of inducing a disease-dependent inflammatory response. When exposed to anti-inflammatory cytokines, however, these cells possess the ability to switch from an inflammatory to an immunosuppressive phenotype. Cancer cells exploit this property to evade the immune system, and elicit an anti-inflammatory microenvironment that facilitates tumor attachment and growth. Objective The tumor-supportive biological processes that are activated in microglia cells in response to anti-inflammatory cytokines released from cancer cells were explored with mass spectrometry and proteomic technologies. Methods Serum-depleted and non-depleted human microglia cells (HMC3) were treated with a cocktail of IL-4, IL-13, IL-10, TGFβ, and CCL2. The cellular protein extracts were analyzed by LC-MS/MS. Using functional annotation clustering tools, statistically significant proteins that displayed a change in abundance between cytokine-treated and non-treated cells were mapped to their biological networks and pathways. Results The proteomic analysis of HMC3 cells enabled the identification of ~10,000 proteins. Stimulation with anti-inflammatory cytokines resulted in the activation of distinct, yet integrated clusters of proteins that trigger downstream a number of tumor-promoting biological processes. The observed changes could be classified into four major categories, i.e., mitochondrial gene expression, ECM remodeling, immune response, and impaired cell cycle progression. Intracellular immune activation was mediated mainly by the transducers of MAPK, STAT, TGFβ, NFKB, and integrin signaling pathways. Abundant collagen formation along with the expression of additional receptors, matrix components, growth factors, proteases and protease inhibitors, was indicative of ECM remodeling processes supportive of cell-cell and cell-matrix adhesion. Overexpression of integrins and their modulators was reflective of signaling processes that link ECM reorganization with cytoskeletal re-arrangements supportive of cell migration. Antigen processing/presentation was represented by HLA class I histocompatibility antigens, and correlated with upregulated proteasomal subunits, vesicular/viral transport, and secretory processes. Immunosuppressive and proangiogenic chemokines, as well as anti-angiogenic factors, were detectable in low abundance. Pronounced pro-inflammatory, chemotactic or phagocytic trends were not observed, however, the expression of certain receptors, signaling and ECM proteins indicated the presence of such capabilities. Conclusions Comprehensive proteomic profiling of HMC3 cells stimulated with anti-inflammatory cytokines revealed a spectrum of microglia phenotypes supportive of cancer development in the brain via microenvironment-dependent biological mechanisms.
Collapse
Affiliation(s)
- Shreya Ahuja
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Iulia M. Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
114
|
Zhang X, van Rijt S. 2D biointerfaces to study stem cell-ligand interactions. Acta Biomater 2021; 131:80-96. [PMID: 34237424 DOI: 10.1016/j.actbio.2021.06.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Stem cells have great potential in the field of tissue engineering and regenerative medicine due to their inherent regenerative capabilities. However, an ongoing challenge within their clinical translation is to elicit or predict the desired stem cell behavior once transplanted. Stem cell behavior and function are regulated by their interaction with biophysical and biochemical signals present in their natural environment (i.e., stem cell niches). To increase our understanding about the interplay between stem cells and their resident microenvironments, biointerfaces have been developed as tools to study how these substrates can affect stem cell behaviors. This article aims to review recent developments on fabricating cell-instructive interfaces to control cell adhesion processes towards directing stem cell behavior. After an introduction on stem cells and their natural environment, static surfaces exhibiting predefined biochemical signals to probe the effect of chemical features on stem cell behaviors are discussed. In the third section, we discuss more complex dynamic platforms able to display biochemical cues with spatiotemporal control using on-off ligand display, reversible ligand display, and ligand mobility. In the last part of the review, we provide the reader with an outlook on future designs of biointerfaces. STATEMENT OF SIGNIFICANCE: Stem cells have great potential as treatments for many degenerative disorders prevalent in our aging societies. However, an ongoing challenge within their clinical translation is to promote stem cell mediated regeneration once they are transplanted in the body. Stem cells reside within our bodies where their behavior and function are regulated by interactions with their natural environment called the stem cell niche. To increase our understanding about the interplay between stem cells and their niche, 2D materials have been developed as tools to study how specific signals can affect stem cell behaviors. This article aims to review recent developments on fabricating cell-instructive interfaces to control cell adhesion processes towards directing stem cell behavior.
Collapse
|
115
|
Cytoskeleton Response to Ionizing Radiation: A Brief Review on Adhesion and Migration Effects. Biomedicines 2021; 9:biomedicines9091102. [PMID: 34572287 PMCID: PMC8465203 DOI: 10.3390/biomedicines9091102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
The cytoskeleton is involved in several biological processes, including adhesion, motility, and intracellular transport. Alterations in the cytoskeletal components (actin filaments, intermediate filaments, and microtubules) are strictly correlated to several diseases, such as cancer. Furthermore, alterations in the cytoskeletal structure can lead to anomalies in cells’ properties and increase their invasiveness. This review aims to analyse several studies which have examined the alteration of the cell cytoskeleton induced by ionizing radiations. In particular, the radiation effects on the actin cytoskeleton, cell adhesion, and migration have been considered to gain a deeper knowledge of the biophysical properties of the cell. In fact, the results found in the analysed works can not only aid in developing new diagnostic tools but also improve the current cancer treatments.
Collapse
|
116
|
Benwell CJ, Taylor JAGE, Robinson SD. Endothelial neuropilin-2 influences angiogenesis by regulating actin pattern development and α5-integrin-p-FAK complex recruitment to assembling adhesion sites. FASEB J 2021; 35:e21679. [PMID: 34314542 DOI: 10.1096/fj.202100286r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023]
Abstract
The ability to form a variety of cell-matrix connections is crucial for angiogenesis to take place. Without stable anchorage to the extracellular matrix (ECM), endothelial cells (ECs) are unable to sense, integrate and disseminate growth factor stimulated responses that drive growth of a vascular bed. Neuropilin-2 (NRP2) is a widely expressed membrane-bound multifunctional non-tyrosine kinase receptor, which has previously been implicated in influencing cell adhesion and migration by interacting with α5-integrin and regulating adhesion turnover. α5-integrin, and its ECM ligand fibronectin (FN) are both known to be upregulated during the formation of neo-vasculature. Despite being descriptively annotated as a candidate biomarker for aggressive cancer phenotypes, the EC-specific roles for NRP2 during developmental and pathological angiogenesis remain unexplored. The data reported here support a model whereby NRP2 actively promotes EC adhesion and migration by regulating dynamic cytoskeletal remodeling and by stimulating Rab11-dependent recycling of α5-integrin-p-FAK complexes to newly assembling adhesion sites. Furthermore, temporal depletion of EC-NRP2 in vivo impairs primary tumor growth by disrupting vessel formation. We also demonstrate that EC-NRP2 is required for normal postnatal retinal vascular development, specifically by regulating cell-matrix adhesion. Upon loss of endothelial NRP2, vascular outgrowth from the optic nerve during superficial plexus formation is disrupted, likely due to reduced FAK phosphorylation within sprouting tip cells.
Collapse
Affiliation(s)
- Christopher J Benwell
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - James A G E Taylor
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Stephen D Robinson
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
117
|
Balasubramaniam L, Doostmohammadi A, Saw TB, Narayana GHNS, Mueller R, Dang T, Thomas M, Gupta S, Sonam S, Yap AS, Toyama Y, Mège RM, Yeomans JM, Ladoux B. Investigating the nature of active forces in tissues reveals how contractile cells can form extensile monolayers. NATURE MATERIALS 2021; 20:1156-1166. [PMID: 33603188 PMCID: PMC7611436 DOI: 10.1038/s41563-021-00919-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 12/23/2020] [Indexed: 05/24/2023]
Abstract
Actomyosin machinery endows cells with contractility at a single-cell level. However, within a monolayer, cells can be contractile or extensile based on the direction of pushing or pulling forces exerted by their neighbours or on the substrate. It has been shown that a monolayer of fibroblasts behaves as a contractile system while epithelial or neural progentior monolayers behave as an extensile system. Through a combination of cell culture experiments and in silico modelling, we reveal the mechanism behind this switch in extensile to contractile as the weakening of intercellular contacts. This switch promotes the build-up of tension at the cell-substrate interface through an increase in actin stress fibres and traction forces. This is accompanied by mechanotransductive changes in vinculin and YAP activation. We further show that contractile and extensile differences in cell activity sort cells in mixtures, uncovering a generic mechanism for pattern formation during cell competition, and morphogenesis.
Collapse
Affiliation(s)
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK.
| | - Thuan Beng Saw
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, Singapore
- National University of Singapore, Department of Biomedical Engineering, Singapore, Singapore
| | | | - Romain Mueller
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Tien Dang
- Université de Paris, CNRS, Institut Jacques Monod (IJM), Paris, France
| | - Minnah Thomas
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, Singapore
| | - Shafali Gupta
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Surabhi Sonam
- Université de Paris, CNRS, Institut Jacques Monod (IJM), Paris, France
- D Y Patil International University, Pune, India
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Yusuke Toyama
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, Singapore
| | - René-Marc Mège
- Université de Paris, CNRS, Institut Jacques Monod (IJM), Paris, France.
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK.
| | - Benoît Ladoux
- Université de Paris, CNRS, Institut Jacques Monod (IJM), Paris, France.
| |
Collapse
|
118
|
Mandal P, Belapurkar V, Nair D, Ramanan N. Vinculin-mediated axon growth requires interaction with actin but not talin in mouse neocortical neurons. Cell Mol Life Sci 2021; 78:5807-5826. [PMID: 34148098 PMCID: PMC11071915 DOI: 10.1007/s00018-021-03879-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/12/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022]
Abstract
The actin-binding protein vinculin is a major constituent of focal adhesion, but its role in neuronal development is poorly understood. We found that vinculin deletion in mouse neocortical neurons attenuated axon growth both in vitro and in vivo. Using functional mutants, we found that expression of a constitutively active vinculin significantly enhanced axon growth while the head-neck domain had an inhibitory effect. Interestingly, we found that vinculin-talin interaction was dispensable for axon growth and neuronal migration. Strikingly, expression of the tail domain delayed migration, increased branching, and stunted axon. Inhibition of the Arp2/3 complex or abolishing the tail domain interaction with actin completely reversed the branching phenotype caused by tail domain expression without affecting axon length. Super-resolution microscopy showed increased mobility of actin in tail domain expressing neurons. Our results provide novel insights into the role of vinculin and its functional domains in regulating neuronal migration and axon growth.
Collapse
Affiliation(s)
- Pranay Mandal
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Vivek Belapurkar
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Narendrakumar Ramanan
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
119
|
Alegre-Cebollada J. Protein nanomechanics in biological context. Biophys Rev 2021; 13:435-454. [PMID: 34466164 PMCID: PMC8355295 DOI: 10.1007/s12551-021-00822-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
How proteins respond to pulling forces, or protein nanomechanics, is a key contributor to the form and function of biological systems. Indeed, the conventional view that proteins are able to diffuse in solution does not apply to the many polypeptides that are anchored to rigid supramolecular structures. These tethered proteins typically have important mechanical roles that enable cells to generate, sense, and transduce mechanical forces. To fully comprehend the interplay between mechanical forces and biology, we must understand how protein nanomechanics emerge in living matter. This endeavor is definitely challenging and only recently has it started to appear tractable. Here, I introduce the main in vitro single-molecule biophysics methods that have been instrumental to investigate protein nanomechanics over the last 2 decades. Then, I present the contemporary view on how mechanical force shapes the free energy of tethered proteins, as well as the effect of biological factors such as post-translational modifications and mutations. To illustrate the contribution of protein nanomechanics to biological function, I review current knowledge on the mechanobiology of selected muscle and cell adhesion proteins including titin, talin, and bacterial pilins. Finally, I discuss emerging methods to modulate protein nanomechanics in living matter, for instance by inducing specific mechanical loss-of-function (mLOF). By interrogating biological systems in a causative manner, these new tools can contribute to further place protein nanomechanics in a biological context.
Collapse
|
120
|
Shim G, Devenport D, Cohen DJ. Overriding native cell coordination enhances external programming of collective cell migration. Proc Natl Acad Sci U S A 2021; 118:e2101352118. [PMID: 34272284 PMCID: PMC8307614 DOI: 10.1073/pnas.2101352118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As collective cell migration is essential in biological processes spanning development, healing, and cancer progression, methods to externally program cell migration are of great value. However, problems can arise if the external commands compete with strong, preexisting collective behaviors in the tissue or system. We investigate this problem by applying a potent external migratory cue-electrical stimulation and electrotaxis-to primary mouse skin monolayers where we can tune cell-cell adhesion strength to modulate endogenous collectivity. Monolayers with high cell-cell adhesion showed strong natural coordination and resisted electrotactic control, with this conflict actively damaging the leading edge of the tissue. However, reducing preexisting coordination in the tissue by specifically inhibiting E-cadherin-dependent cell-cell adhesion, either by disrupting the formation of cell-cell junctions with E-cadherin-specific antibodies or rapidly dismantling E-cadherin junctions with calcium chelators, significantly improved controllability. Finally, we applied this paradigm of weakening existing coordination to improve control and demonstrate accelerated wound closure in vitro. These results are in keeping with those from diverse, noncellular systems and confirm that endogenous collectivity should be considered as a key quantitative design variable when optimizing external control of collective migration.
Collapse
Affiliation(s)
- Gawoon Shim
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540;
| |
Collapse
|
121
|
Yang Y, Huang Y, Liu H, Zheng Y, Jia L, Li W. Compressive force regulates cementoblast migration via downregulation of autophagy. J Periodontol 2021; 92:128-138. [PMID: 34231875 DOI: 10.1002/jper.20-0806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Migration of cementoblasts to resorption lacunae is the foundation for repairing root resorption during orthodontic tooth movement. Previous studies reported that autophagy was activated by compression in periodontal ligament cells. The aim of this study was to investigate the migration of cementoblasts and determine whether autophagy is involved in the regulation of cementoblast migration under compressive force. METHODS Flow cytometry was employed to examine the apoptosis of murine cementoblasts (OCCM-30) at different compression times (0, 6, 12, and 24 hours) and magnitudes (0, 1.0, 1.5, and 2.0 g/cm2 ). Cell proliferation was examined using the CCK-8 method. Wound healing migration assays and transwell migration assays were performed to compare the migration of cementoblasts. Chloroquine (CQ) and rapamycin were used to inhibit and activate autophagy, respectively. The level of autophagy was determined using western blotting and immunofluorescence staining. The expression of matrix metalloproteinases (MMPs) was assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blot analysis, and enzyme-linked immunosorbent assay (ELISA). RESULTS Cell apoptosis and proliferation did not significantly change in OCCM-30 cells under mechanical compression at magnitude of 1.5 g/cm2 for 12 hours. However, the migration of cementoblasts was significantly inhibited after the application of compressive force. MMP2, MMP9, and MMP13 mRNA expression was decreased, and MMP9 and MMP13 protein expression and secretion level were also decreased. Further, autophagic activity was inhibited in cementoblasts under compressive force. Treatment with chloroquine reduced the cellular migration, and rapamycin partially relieved the inhibition of cementoblast migration induced by the compressive force. MMP9 and MMP13 mRNA expression, protein expression, and secretion levels showed a similar trend. CONCLUSION Migration of OCCM-30 cells was inhibited under compressive force partially dependent on the inhibition of MMPs, which was mediated by downregulation of autophagy. The findings provide new insights into the role of autophagy in biological behaviors of cementoblasts under compressive force and a potential therapeutic strategy for reducing external root resorption.
Collapse
Affiliation(s)
- Yuhui Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lingfei Jia
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
122
|
Osuchowska PN, Wachulak P, Kasprzycka W, Nowak-Stępniowska A, Wakuła M, Bartnik A, Fiedorowicz H, Trafny EA. Adhesion of Triple-Negative Breast Cancer Cells under Fluorescent and Soft X-ray Contact Microscopy. Int J Mol Sci 2021; 22:ijms22147279. [PMID: 34298899 PMCID: PMC8306697 DOI: 10.3390/ijms22147279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022] Open
Abstract
Understanding cancer cell adhesion could help to diminish tumor progression and metastasis. Adhesion mechanisms are currently the main therapeutic target of TNBC-resistant cells. This work shows the distribution and size of adhesive complexes determined with a common fluorescence microscopy technique and soft X-ray contact microscopy (SXCM). The results presented here demonstrate the potential of applying SXCM for imaging cell protrusions with high resolution when the cells are still alive in a physiological buffer. The possibility to observe the internal components of cells at a pristine and hydrated state with nanometer resolution distinguishes SXCM from the other more commonly used techniques for cell imaging. Thus, SXCM can be a promising technique for investigating the adhesion and organization of the actin cytoskeleton in cancer cells.
Collapse
Affiliation(s)
- Paulina Natalia Osuchowska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (P.N.O.); (W.K.); (A.N.-S.)
| | - Przemysław Wachulak
- Laser Technology Division, Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (P.W.); (A.B.)
| | - Wiktoria Kasprzycka
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (P.N.O.); (W.K.); (A.N.-S.)
| | - Agata Nowak-Stępniowska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (P.N.O.); (W.K.); (A.N.-S.)
| | - Maciej Wakuła
- Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (M.W.); (H.F.)
| | - Andrzej Bartnik
- Laser Technology Division, Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (P.W.); (A.B.)
| | - Henryk Fiedorowicz
- Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (M.W.); (H.F.)
| | - Elżbieta Anna Trafny
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (P.N.O.); (W.K.); (A.N.-S.)
- Correspondence: ; Tel.: +48-261-839-544
| |
Collapse
|
123
|
Wang Z, Zhu X, Cong X. Spatial micro-variation of 3D hydrogel stiffness regulates the biomechanical properties of hMSCs. Biofabrication 2021; 13. [PMID: 34107453 DOI: 10.1088/1758-5090/ac0982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are one of the most promising candidates for cell-based therapeutic products. Nonetheless, their biomechanical phenotype afterin vitroexpansion is still unsatisfactory, for example, restricting the efficiency of microcirculation of delivered hMSCs for further cell therapies. Here, we propose a scheme using maleimide-dextran hydrogel with locally varied stiffness in microscale to modify the biomechanical properties of hMSCs in three-dimensional (3D) niches. We show that spatial micro-variation of stiffness can be controllably generated in the hydrogel with heterogeneously cross-linking via atomic force microscopy measurements. The result of 3D cell culture experiment demonstrates the hydrogels trigger the formation of multicellular spheroids, and the derived hMSCs could be rationally softened via adjustment of the stiffness variation (SV) degree. Importantly,in vitro, the hMSCs modified with the higher SV degree can pass easier through capillary-shaped micro-channels. Further, we discuss the underlying mechanics of the increased cellular elasticity by focusing on the effect of rearranged actin networks, via the proposed microscopic model of biomechanically modified cells. Overall, this work highlights the effectiveness of SV-hydrogels in reprogramming and manufacturing hMSCs with designed biomechanical properties for improved therapeutic potential.
Collapse
Affiliation(s)
- Zheng Wang
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou, Jiangsu 213022, People's Republic of China
| | - Xiaolu Zhu
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou, Jiangsu 213022, People's Republic of China.,Changzhou Key Laboratory of Digital Manufacture Technology, Hohai University, Changzhou, Jiangsu 213022, People's Republic of China.,Jiangsu Key Laboratory of Special Robot Technology, Hohai University, Changzhou, Jiangsu 213022, People's Republic of China
| | - Xiuli Cong
- Department of Orthopaedics, Zhejiang Hospital, No. 12 Lingyin Road, Hangzhou, Zhejiang 310013, People's Republic of China
| |
Collapse
|
124
|
Kojima M, Sugimoto K, Kobayashi M, Ichikawa-Tomikawa N, Kashiwagi K, Watanabe T, Soeda S, Fujimori K, Chiba H. Aberrant Claudin-6-Adhesion Signaling Promotes Endometrial Cancer Progression via Estrogen Receptor α. Mol Cancer Res 2021; 19:1208-1220. [PMID: 33727343 DOI: 10.1158/1541-7786.mcr-20-0835] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/04/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
Cell adhesion proteins not only maintain tissue integrity, but also possess signaling abilities to organize diverse cellular events in a variety of physiologic and pathologic processes; however, the underlying mechanism remains obscure. Among cell adhesion molecules, the claudin (CLDN) family is often aberrantly expressed in various cancers, but the biological relevance and molecular basis for this observation have not yet been established. Here, we show that high CLDN6 expression accelerates cellular proliferation and migration in two distinct human endometrial cancer cell lines in vitro. Using a xenograft model, we also revealed that aberrant CLDN6 expression promotes tumor growth and invasion in endometrial cancer tissues. The second extracellular domain and Y196/200 of CLDN6 were required to recruit and activate Src-family kinases (SFK) and to stimulate malignant phenotypes. Knockout and overexpression of ESR1 in endometrial carcinoma cells showed that the CLDN6-adhesion signal links to estrogen receptor α (ERα) to advance tumor progression. In particular, aberrant CLDN6-ERα signaling contributed to collective cell behaviors in the leading front of endometrial cancer cells. Importantly, we demonstrate that CLDN6/SFK/PI3K-dependent AKT and SGK (serum- and glucocorticoid-regulated kinase) signaling in endometrial cancer cells targets Ser518 in the human ERα to activate ERα transcriptional activity in a ligand-independent manner, thereby promoting tumor progression. Furthermore, CLDN6, at least in part, also regulated gene expression in an ERα-independent manner. IMPLICATIONS: The identification of this machinery highlights regulation of the transcription factors by cell adhesion to advance tumor progression.
Collapse
Affiliation(s)
- Manabu Kojima
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kotaro Sugimoto
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | - Makoto Kobayashi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoki Ichikawa-Tomikawa
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Korehito Kashiwagi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takafumi Watanabe
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shu Soeda
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan.
| |
Collapse
|
125
|
Desmoglein-2 harnesses a PDZ-GEF2/Rap1 signaling axis to control cell spreading and focal adhesions independent of cell-cell adhesion. Sci Rep 2021; 11:13295. [PMID: 34168237 PMCID: PMC8225821 DOI: 10.1038/s41598-021-92675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Desmosomes have a central role in mediating extracellular adhesion between cells, but they also coordinate other biological processes such as proliferation, differentiation, apoptosis and migration. In particular, several lines of evidence have implicated desmosomal proteins in regulating the actin cytoskeleton and attachment to the extracellular matrix, indicating signaling crosstalk between cell–cell junctions and cell–matrix adhesions. In our study, we found that cells lacking the desmosomal cadherin Desmoglein-2 (Dsg2) displayed a significant increase in spreading area on both fibronectin and collagen, compared to control A431 cells. Intriguingly, this effect was observed in single spreading cells, indicating that Dsg2 can exert its effects on cell spreading independent of cell–cell adhesion. We hypothesized that Dsg2 may mediate cell–matrix adhesion via control of Rap1 GTPase, which is well known as a central regulator of cell spreading dynamics. We show that Rap1 activity is elevated in Dsg2 knockout cells, and that Dsg2 harnesses Rap1 and downstream TGFβ signaling to influence both cell spreading and focal adhesion protein phosphorylation. Further analysis implicated the Rap GEF PDZ-GEF2 in mediating Dsg2-dependent cell spreading. These data have identified a novel role for Dsg2 in controlling cell spreading, providing insight into the mechanisms via which cadherins exert non-canonical junction-independent effects.
Collapse
|
126
|
Pang X, Li W, Chang L, Gautrot JE, Wang W, Azevedo HS. Hyaluronan (HA) Immobilized on Surfaces via Self-Assembled Monolayers of HA-Binding Peptide Modulates Endothelial Cell Spreading and Migration through Focal Adhesion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25792-25804. [PMID: 34037376 DOI: 10.1021/acsami.1c05574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The extracellular matrix (ECM) modulates a multitude of cell functions, and this regulation is provided by key ECM components forming a complex network. Hyaluronic acid (HA) is an abundant component of the ECM that binds to proteins and influences various activities of endothelial cells (ECs). Although the effect of soluble HA on cell spreading has been studied, the impact of peptide-bound HA has not yet been investigated in great detail. We aim to comprehensively study the roles of immobilized HA on the regulation of EC behavior compared to the more conventional use of soluble HA. A 2D model surface formed by self-assembled monolayers (SAMs) of a HA-binding peptide (Pep-1) is used as an anchor for HA immobilization. Mixed SAMs, consisting of thiolated Pep-1 and 1-octanethiol, are prepared and characterized by using ellipsometry and contact angle measurement. Full density Pep-1 SAMs are more hydrophilic and bind more HA than mixed SAMs. Cell spreading and migration are enhanced by immobilized low molecular weight (LMW) HA, which also facilitates cell alignment and elongation under laminar flow conditions and potentially drives directional migration. This effect is not mediated by the expression of CD44, and immobilized LMW HA is found to accelerate the assembly of focal adhesions. Such biomimetic surfaces provide new insights into the role of HA in regulating the spreading and phenotype of endothelial cells.
Collapse
Affiliation(s)
- Xinqing Pang
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Weiqi Li
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Lan Chang
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Julien E Gautrot
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Wen Wang
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Helena S Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| |
Collapse
|
127
|
The Migration and Invasion of Oral Squamous Carcinoma Cells: Matrix, Growth Factor and Signalling Involvement. Cancers (Basel) 2021; 13:cancers13112633. [PMID: 34071963 PMCID: PMC8198562 DOI: 10.3390/cancers13112633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
The link between the migration of cancer cells and the spread of cancers has been established for many years [...].
Collapse
|
128
|
Wang H, Wang C, Long Q, Zhang Y, Wang M, Liu J, Qi X, Cai D, Lu G, Sun J, Yao YG, Chan WY, Chan WY, Deng Y, Zhao H. Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway. Development 2021; 148:264926. [PMID: 33999995 DOI: 10.1242/dev.199441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022]
Abstract
The focal adhesion protein Kindlin2 is essential for integrin activation, a process that is fundamental to cell-extracellular matrix adhesion. Kindlin 2 (Fermt2) is widely expressed in mouse embryos, and its absence causes lethality at the peri-implantation stage due to the failure to trigger integrin activation. The function of kindlin2 during embryogenesis has not yet been fully elucidated as a result of this early embryonic lethality. Here, we showed that kindlin2 is essential for neural crest (NC) formation in Xenopus embryos. Loss-of-function assays performed with kindlin2-specific morpholino antisense oligos (MOs) or with CRISPR/Cas9 techniques in Xenopus embryos severely inhibit the specification of the NC. Moreover, integrin-binding-deficient mutants of Kindlin2 rescued the phenotype caused by loss of kindlin2, suggesting that the function of kindlin2 during NC specification is independent of integrins. Mechanistically, we found that Kindlin2 regulates the fibroblast growth factor (FGF) pathway, and promotes the stability of FGF receptor 1. Our study reveals a novel function of Kindlin2 in regulating the FGF signaling pathway and provides mechanistic insights into the function of Kindlin2 during NC specification.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chengdong Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Long
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Zhang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Meiling Wang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Gunadong 518055, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Jie Liu
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Gunadong 518055, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gang Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianmin Sun
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Yong-Gang Yao
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Yee Chan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Yi Deng
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Gunadong 518055, China.,Shenzhen Key Laboratory of Cell Microenvironment, Department of Chemistry, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| |
Collapse
|
129
|
Kiran A, Kumar N, Mehandia V. Distinct Modes of Tissue Expansion in Free Versus Earlier-Confined Boundaries for More Physiological Modeling of Wound Healing, Cancer Metastasis, and Tissue Formation. ACS OMEGA 2021; 6:11209-11222. [PMID: 34056276 PMCID: PMC8153934 DOI: 10.1021/acsomega.0c06232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/05/2021] [Indexed: 05/02/2023]
Abstract
Collective cell migration is often seen in many biological processes like embryogenesis, cancer metastasis, and wound healing. Despite extensive experimental and theoretical research, the unified mechanism responsible for collective cell migration is not well known. Most of the studies have investigated artificial model wound to study the collective cell migration in an epithelial monolayer. These artificial model wounds possess a high cell number density compared to the physiological scenarios like wound healing (cell damage due to applied cut) and cancer metastasis (smaller cell clusters). Therefore, both systems may not completely relate to each other, and further investigation is needed to understand the collective cell migration in physiological scenarios. In an effort to fill this existing knowledge gap, we investigated the freely expanding monolayer that closely represented the physiological scenarios and compared it with the artificially created model wound. In the present work, we report the effect of initial boundary conditions (free and confined) on the collective cell migration of the epithelial cell monolayer. The expansion and migration aspects of the freely expanding and earlier-confined monolayer were investigated at the tissue and cellular levels. The freely expanding monolayer showed significantly higher expansion and lower migration in comparison to the earlier-confined monolayer. The expansion and migration rate of the monolayer exhibited a strong negative correlation. The study highlights the importance of initial boundary conditions in the collective cell migration of the expanding tissue and provides useful insights that might be helpful in the future to tune the collective cell migration in wound healing, cancer metastasis, and tissue formation.
Collapse
Affiliation(s)
- Abhimanyu Kiran
- Department
of Mechanical Engineering, Indian Institute
of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Navin Kumar
- Department
of Mechanical Engineering, Indian Institute
of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Vishwajeet Mehandia
- Department
of Chemical Engineering, Indian Institute
of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
130
|
Fabrication of Adhesive Substrate for Incorporating Hydrogels to Investigate the Influence of Stiffness on Cancer Cell Behavior. Methods Mol Biol 2021; 2174:277-297. [PMID: 32813257 DOI: 10.1007/978-1-0716-0759-6_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stiffness control of cell culture platforms provides researchers in cell biology with the ability to study different experimental models in conditions of mimicking physiological or pathological microenvironments. Nevertheless, the signal transduction pathways and drug sensibility of cancer cells have been poorly characterized widely using biomimetic platforms because the limited experience of cancer cell biology groups about handling substrates with specific mechanical properties. The protein cross-linking and stiffening control are crucial checkpoints that could strongly affect cell adhesion and spreading, misrepresenting the data acquired, and also generating inaccurate cellular models. Here, we introduce a simple method to adhere to polyacrylamide (PAA) hydrogels on glass coverslips without any special treatment for mechanics studies in cancer cell biology. By using a commercial photosensitive glue, Loctite 3525, it is possible to polymerize PAA hydrogels directly on glass surfaces. Furthermore, we describe a cross-linking reaction method to attach proteins to PAA as an alternative method to Sulfo-SANPAH cross-linking, which is sometimes difficult to implement and reproduce. In this chapter, we describe a reliable procedure to fabricate ECM protein-cross-linked PAA hydrogels for mechanotransduction studies on cancer cells.
Collapse
|
131
|
Sun B, Qu R, Fan T, Yang Y, Jiang X, Khan AU, Zhou Z, Zhang J, Wei K, Ouyang J, Dai J. Actin polymerization state regulates osteogenic differentiation in human adipose-derived stem cells. Cell Mol Biol Lett 2021; 26:15. [PMID: 33858321 PMCID: PMC8048231 DOI: 10.1186/s11658-021-00259-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/03/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Actin is an essential cellular protein that assembles into microfilaments and regulates numerous processes such as cell migration, maintenance of cell shape, and material transport. METHODS In this study, we explored the effect of actin polymerization state on the osteogenic differentiation of human adipose-derived stem cells (hASCs). The hASCs were treated for 7 days with different concentrations (0, 1, 5, 10, 20, and 50 nM) of jasplakinolide (JAS), a reagent that directly polymerizes F-actin. The effects of the actin polymerization state on cell proliferation, apoptosis, migration, and the maturity of focal adhesion-related proteins were assessed. In addition, western blotting and alizarin red staining assays were performed to assess osteogenic differentiation. RESULTS Cell proliferation and migration in the JAS (0, 1, 5, 10, and 20 nM) groups were higher than in the control group and the JAS (50 nM) group. The FAK, vinculin, paxillin, and talin protein expression levels were highest in the JAS (20 nM) group, while zyxin expression was highest in the JAS (50 nM) group. Western blotting showed that osteogenic differentiation in the JAS (0, 1, 5, 10, 20, and 50 nM) group was enhanced compared with that in the control group, and was strongest in the JAS (50 nM) group. CONCLUSIONS In summary, our data suggest that the actin polymerization state may promote the osteogenic differentiation of hASCs by regulating the protein expression of focal adhesion-associated proteins in a concentration-dependent manner. Our findings provide valuable information for exploring the mechanism of osteogenic differentiation in hASCs.
Collapse
Affiliation(s)
- Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xin Jiang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Zhitao Zhou
- Central Laboratory, Southern Medical University, Guangzhou, China
| | - Jingliao Zhang
- Department of Foot and Ankle Surgery, Henan Luoyang Orthopedic Hospital, Zhengzhou, China
| | - Kuanhai Wei
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| |
Collapse
|
132
|
Stock J, Pauli A. Self-organized cell migration across scales - from single cell movement to tissue formation. Development 2021; 148:148/7/dev191767. [PMID: 33824176 DOI: 10.1242/dev.191767] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-organization is a key feature of many biological and developmental processes, including cell migration. Although cell migration has traditionally been viewed as a biological response to extrinsic signals, advances within the past two decades have highlighted the importance of intrinsic self-organizing properties to direct cell migration on multiple scales. In this Review, we will explore self-organizing mechanisms that lay the foundation for both single and collective cell migration. Based on in vitro and in vivo examples, we will discuss theoretical concepts that underlie the persistent migration of single cells in the absence of directional guidance cues, and the formation of an autonomous cell collective that drives coordinated migration. Finally, we highlight the general implications of self-organizing principles guiding cell migration for biological and medical research.
Collapse
Affiliation(s)
- Jessica Stock
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC) Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC) Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| |
Collapse
|
133
|
Ozawa M, Hiver S, Yamamoto T, Shibata T, Upadhyayula S, Mimori-Kiyosue Y, Takeichi M. Adherens junction regulates cryptic lamellipodia formation for epithelial cell migration. J Cell Biol 2021; 219:152072. [PMID: 32886101 PMCID: PMC7659716 DOI: 10.1083/jcb.202006196] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Collective migration of epithelial cells plays crucial roles in various biological processes such as cancer invasion. In migrating epithelial sheets, leader cells form lamellipodia to advance, and follower cells also form similar motile apparatus at cell-cell boundaries, which are called cryptic lamellipodia (c-lamellipodia). Using adenocarcinoma-derived epithelial cells, we investigated how c-lamellipodia form and found that they sporadically grew from around E-cadherin-based adherens junctions (AJs). WAVE and Arp2/3 complexes were localized along the AJs, and silencing them not only interfered with c-lamellipodia formation but also prevented follower cells from trailing the leaders. Disruption of AJs by removing αE-catenin resulted in uncontrolled c-lamellipodia growth, and this was brought about by myosin II activation and the resultant contraction of AJ-associated actomyosin cables. Additional observations indicated that c-lamellipodia tended to grow at mechanically weak sites of the junction. We conclude that AJs not only tie cells together but also support c-lamellipodia formation by recruiting actin regulators, enabling epithelial cells to undergo ordered collective migration.
Collapse
Affiliation(s)
- Masayuki Ozawa
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Sylvain Hiver
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takaki Yamamoto
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Srigokul Upadhyayula
- Advanced Bioimaging Center, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Yuko Mimori-Kiyosue
- Laboratory for Molecular and Cellular Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
134
|
Fischer LS, Rangarajan S, Sadhanasatish T, Grashoff C. Molecular Force Measurement with Tension Sensors. Annu Rev Biophys 2021; 50:595-616. [PMID: 33710908 DOI: 10.1146/annurev-biophys-101920-064756] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability of cells to generate mechanical forces, but also to sense, adapt to, and respond to mechanical signals, is crucial for many developmental, postnatal homeostatic, and pathophysiological processes. However, the molecular mechanisms underlying cellular mechanotransduction have remained elusive for many decades, as techniques to visualize and quantify molecular forces across individual proteins in cells were missing. The development of genetically encoded molecular tension sensors now allows the quantification of piconewton-scale forces that act upon distinct molecules in living cells and even whole organisms. In this review, we discuss the physical principles, advantages, and limitations of this increasingly popular method. By highlighting current examples from the literature, we demonstrate how molecular tension sensors can be utilized to obtain access to previously unappreciated biophysical parameters that define the propagation of mechanical forces on molecular scales. We discuss how the methodology can be further developed and provide a perspective on how the technique could be applied to uncover entirely novel aspects of mechanobiology in the future.
Collapse
Affiliation(s)
- Lisa S Fischer
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster D-48149, Germany;
| | - Srishti Rangarajan
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster D-48149, Germany;
| | - Tanmay Sadhanasatish
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster D-48149, Germany;
| | - Carsten Grashoff
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster D-48149, Germany;
| |
Collapse
|
135
|
Wang Z, Wang X, Zhang Y, Xu W, Han X. Principles and Applications of Single Particle Tracking in Cell Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005133. [PMID: 33533163 DOI: 10.1002/smll.202005133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
It is a tough challenge for many decades to decipher the complex relationships between cell behaviors and cellular physical properties. Single particle tracking (SPT) with high spatial and temporal resolution has been applied extensively in cell research to understand physicochemical properties of cells and their bio-functions by tracking endogenous or exogenous probes. This review describes the fundamental principles of SPT as well as its applications in intracellular mechanics, membrane dynamics, organelles distribution, and processes of internalization and transport. Finally, challenges and future directions of SPT are also discussed.
Collapse
Affiliation(s)
- Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xuejing Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhang
- School of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150027, China
| | - Weili Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
136
|
Ma D, Ma Z, Kudo LC, Karsten SL. Automated Capillary-Based Vacuum Pulse-Assisted Instrument for Single-Cell Acquisition and Concurrent Detachment/Adhesion Assay, A-picK. SLAS Technol 2021; 26:519-531. [PMID: 33615859 DOI: 10.1177/2472630320987219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A large body of evidence points to the importance of cell adhesion molecules in cancer metastasis. Alterations in adhesion and attachment properties of neoplastic cells are important biomarkers of the metastatic potential of cancer. Loss of intracellular adhesion is correlated with more invasive phenotype by increasing the chances of malignant cells escaping from their site of origin, promoting metastasis. Therefore, there is great demand for rapid and accurate measurements of individual cell adhesion and attachment. Current technologies that measure adhesion properties in either suspension or bulk (microfluidics) remain very complex (e.g., atomic force microscopy [AFM], optical tweezers). Moreover, existing tools cannot provide measurements for fully attached individual adherent cells as they operate outside of such a force range. Even more importantly, none of the existing approaches permit concurrent and automated single-cell adhesion measurement and collection, which prohibits direct correlation between single-cell adhesion properties and molecular profile. Here, we report a fully automated and versatile platform, A-picK, that offers single-cell adhesion assay and isolation in parallel. We demonstrate the use of this approach for a time course analysis of human lung carcinoma A549 cells and substrate-specific adhesion potential using seven different substrates, including fibronectin, laminin, poly-l-lysine, carboxyl, amine, collagen, and gelatin.
Collapse
Affiliation(s)
- David Ma
- NeuroInDx, Inc., Torrance, CA, USA
| | | | | | | |
Collapse
|
137
|
Wang C, Zhang T, Liao Q, Dai M, Guo J, Yang X, Tan W, Lin D, Wu C, Zhao Y. Metformin inhibits pancreatic cancer metastasis caused by SMAD4 deficiency and consequent HNF4G upregulation. Protein Cell 2021; 12:128-144. [PMID: 32737864 PMCID: PMC7862466 DOI: 10.1007/s13238-020-00760-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has poor prognosis due to limited therapeutic options. This study examines the roles of genome-wide association study identified PDAC-associated genes as therapeutic targets. We have identified HNF4G gene whose silencing most effectively repressed PDAC cell invasiveness. HNF4G overexpression is induced by the deficiency of transcriptional factor and tumor suppressor SMAD4. Increased HNF4G are correlated with SMAD4 deficiency in PDAC tumor samples and associated with metastasis and poor survival time in xenograft animal model and in patients with PDAC (log-rank P = 0.036; HR = 1.60, 95% CI = 1.03-2.47). We have found that Metformin suppresses HNF4G activity via AMPK-mediated phosphorylation-coupled ubiquitination degradation and inhibits in vitro invasion and in vivo metastasis of PDAC cells with SMAD4 deficiency. Furthermore, Metformin treatment significantly improve clinical outcomes and survival in patients with SMAD4-deficient PDAC (log-rank P = 0.022; HR = 0.31, 95% CI = 0.14-0.68) but not in patients with SMAD4-normal PDAC. Pathway analysis shows that HNF4G may act in PDAC through the cell-cell junction pathway. These results indicate that SMAD4 deficiency-induced overexpression of HNF4G plays a critical oncogenic role in PDAC progression and metastasis but may form a druggable target for Metformin treatment.
Collapse
Affiliation(s)
- Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xinyu Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute (COI), Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
138
|
Ma H, Yang K, Li H, Luo M, Wufuer R, Kang L. Photodynamic effect of chlorin e6 on cytoskeleton protein of human colon cancer SW480 cells. Photodiagnosis Photodyn Ther 2021; 33:102201. [PMID: 33529743 DOI: 10.1016/j.pdpdt.2021.102201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) is based on photochemical and photobiological reactions mediated by photosensitizers to achieve a killing effect on diseased cells. It is used in the treatment of malignant tumors, precancerous lesions and infections. OBJECTIVE In order to provide theoretical data for further study of the mechanism of PDT for colorectal cancer, SW480 cells were treated with Ce6-PDT and effect of photodynamic therapy (Ce6-PDT) on cytoskeleton and E-cadherin protein were observed. METHODS The survival of SW480 cells was detected by MTT assay. The morphological changes of SW480 cells after Ce6-PDT were observed by scanning electron microscope (ESM). The migration ability was determined by wound healing assay. The distribution of F-actin in the cytoplasm was observed with confocal laser scanning microscope. Western blot analysis was used to detect the expression of cytoskeleton proteins in SW480 cells after Ce6-PDT. RESULTS Compared with the control group, there was significant difference in cell viability of cells treated with Ce6-PDT (F = 78753.78, P < 0.05). The pseudopodia almost disappeared and cellular atrophy was clearly visible in the cells of Ce6-PDT group. The migration ability of cells treated with Ce6-PDT for 48 h was significantly lower than the control group (F = 11.794, P<0.001). The result of Western blot analysis showed that the expression of F-actin, α-tubulin, β-tubulin and Vimentin in the cells treated with Ce6-PDT were significantly higher than that in the control group (F = 22.251,8.109, 5.840, 4.685 and 18.754, P < 0.05). The expression of E-cadherin in cells of Ce6-PDT group was significantly higher than that in control group (F = 30.882, P < 0.001). Perhaps Ce6-PDT inhibits the proliferation and migration of colon cancer SW480 cells by enhancing the expression of E-cadherin, causing the disappearance of cell pseudopodia and the destruction of cytoskeleton. CONCLUSIONS The destruction of cytoskeleton might be one of the reasons for the inhibition of cell proliferation and migration by Ce6-PDT.
Collapse
Affiliation(s)
- Haixiu Ma
- College of Public Health, Xinjiang Medical University, Urumqi 830000, China
| | - Kaizhen Yang
- Teaching & Research Department, The First People's Hospital of Urumqi, Urumqi 830000, China
| | - Hongxia Li
- College of Public Health, Xinjiang Medical University, Urumqi 830000, China
| | - Mengyu Luo
- College of Public Health, Xinjiang Medical University, Urumqi 830000, China
| | - Reziwan Wufuer
- College of Public Health, Xinjiang Medical University, Urumqi 830000, China
| | - Ling Kang
- College of Public Health, Xinjiang Medical University, Urumqi 830000, China.
| |
Collapse
|
139
|
Collective Polarization of Cancer Cells at the Monolayer Boundary. MICROMACHINES 2021; 12:mi12020112. [PMID: 33499191 PMCID: PMC7912252 DOI: 10.3390/mi12020112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 02/08/2023]
Abstract
Cell polarization, a process depending on both intracellular and intercellular interactions, is crucial for collective cell migration that commonly emerges in embryonic development, tissue morphogenesis, wound healing and cancer metastasis. Although invasive cancer cells display weak cell-cell interactions, they can invade host tissues through a collective mode. Yet, how cancer cells without stable cell-cell junctions polarize collectively to migrate and invade is not fully understood. Here, using a wound-healing assay, we elucidate the polarization of carcinoma cells at the population level. We show that with loose intercellular connections, the highly polarized leader cells can induce the polarization of following cancer cells and subsequent transmission of polarity information by membrane protrusions, leading to gradient polarization at the monolayer boundary. Unlike the polarization of epithelial monolayer where Rac1/Cdc42 pathway functions primarily, our data show that collective polarization of carcinoma cells is predominantly controlled by Golgi apparatus, a disruption of which results in the destruction of collective polarization over a large scale. We reveal that the Golgi apparatus can sustain membrane protrusion formation, polarized secretion, intracellular trafficking, and F-actin polarization, which contribute to collective cancer cell polarization and its transmission between cells. These findings could advance our understanding of collective cancer invasion in tumors.
Collapse
|
140
|
Yang Z, Wu S, Fontana F, Li Y, Xiao W, Gao Z, Krudewig A, Affolter M, Belting HG, Abdelilah-Seyfried S, Zhang J. The tight junction protein Claudin-5 limits endothelial cell motility. J Cell Sci 2021; 134:jcs248237. [PMID: 33323504 DOI: 10.1242/jcs.248237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/26/2020] [Indexed: 12/26/2022] Open
Abstract
Steinberg's differential adhesion hypothesis suggests that adhesive mechanisms are important for sorting of cells and tissues during morphogenesis (Steinberg, 2007). During zebrafish vasculogenesis, endothelial cells sort into arterial and venous vessel beds but it is unknown whether this involves adhesive mechanisms. Claudins are tight junction proteins regulating the permeability of epithelial and endothelial tissue barriers. Previously, the roles of claudins during organ development have exclusively been related to their canonical functions in determining paracellular permeability. Here, we use atomic force microscopy to quantify claudin-5-dependent adhesion and find that this strongly contributes to the adhesive forces between arterial endothelial cells. Based on genetic manipulations, we reveal a non-canonical role of Claudin-5a during zebrafish vasculogenesis, which involves the regulation of adhesive forces between adjacent dorsal aortic endothelial cells. In vitro and in vivo studies demonstrate that loss of claudin-5 results in increased motility of dorsal aorta endothelial cells and in a failure of the dorsal aorta to lumenize. Our findings uncover a novel role of claudin-5 in limiting arterial endothelial cell motility, which goes beyond its traditional sealing function during embryonic development.
Collapse
Affiliation(s)
- Zhenguo Yang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| | - Shuilong Wu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| | - Federica Fontana
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Yanyu Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| | - Wei Xiao
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| | - Zhangdai Gao
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| | - Alice Krudewig
- Department of Cell Biology, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Markus Affolter
- Department of Cell Biology, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Heinz-Georg Belting
- Department of Cell Biology, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
- Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
141
|
Abstract
NETosis is an innate immune response occurring after infection or inflammation: activated neutrophils expel decondensed DNA in complex with histones into the extracellular environment in a controlled manner. It activates coagulation and fuels the risk of thrombosis. Human pregnancy is associated with a mild proinflammatory state characterized by circulatory neutrophil activation which is further increased in complicated pregnancies, placenta-mediated complications being associated with an increased thrombotic risk. This aberrant activation leads to an increased release of nucleosomes in the blood flow. The aim of our study was to initially quantify nucleosome-bound histones in normal pregnancy and in placenta-mediated complication counterpart. We analyzed the role of histones on extravillous trophoblast function. Circulating nucleosome-bound histones H3 (Nu.QH3.1, Nu.QH3PanCit, Nu.QH3K27me3) and H4 (Nu.QH4K16Ac) were increased in complicated pregnancies. In vitro using the extravillous cell line HTR-8/SVNeo, we observed that free recombinant H2B, H3, and H4 inhibited migration in wound healing assay, but only H3 also blocked invasion in Matrigel-coated Transwell experiments. H3 and H4 also induced apoptosis, whereas H2B did not. Finally, the negative effects of H3 on invasion and apoptosis could be restored with enoxaparin, a low-molecular-weight heparin (LMWH), but not with aspirin. Different circulating nucleosome-bound histones are increased in complicated pregnancy and this would affect migration, invasion, and induce apoptosis of extravillous trophoblasts. Histones might be part of the link between the risk of thrombosis and pregnancy complications, with an effect of LMWH on both.
Collapse
|
142
|
Wang XH, Yang F, Pan JB, Kang B, Xu JJ, Chen HY. Quantitative Imaging of pN Intercellular Force and Energetic Costs during Collective Cell Migration in Epithelial Wound Healing. Anal Chem 2020; 92:16180-16187. [PMID: 33253543 DOI: 10.1021/acs.analchem.0c03935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Collective cell migration plays a key role in tissue repair, metastasis, and development. Cellular tension is a vital mechanical regulator during the force-driven cell movements. However, the contribution and mechanism of cell-cell force interaction and energetic costs during cell migration are yet to be understood. Here, we attempted to unfold the mechanism of collective cell movement through quantification of the intercellular tension and energetic costs. The measurement of pN intercellular force is based on a "spring-like" DNA-probe and a molecular tension fluorescence microscopy. During the process of wound healing, the intercellular force along with the cell monolayer mainly originates from actin polymerization, which is strongly related to the cellular energy metabolism level. Intracellular force at different spatial regions of wound and the energetic costs of leader and follower cells were measured. The maximum force and energy consumption are mainly concentrated at the wound edge and dynamically changed along with different stages of wound healing. These results indicated the domination of leader cells other than follower cells during the collective cell migration.
Collapse
Affiliation(s)
- Xiao-Hong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fan Yang
- College of Textile and Clothing, Dezhou University, Dezhou 253023, China
| | - Jian-Bin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
143
|
Blockage of Squamous Cancer Cell Collective Invasion by FAK Inhibition Is Released by CAFs and MMP-2. Cancers (Basel) 2020; 12:cancers12123708. [PMID: 33321813 PMCID: PMC7764466 DOI: 10.3390/cancers12123708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancers include a diverse collection of cells harboring distinct molecular signatures with different levels of pro-metastatic activities. This intratumoral heterogeneity and phenotypic plasticity are major causes of targeted therapeutic failure and it should be considered when developing prognostic tests. Through the analysis of the Focal Adhesion Kinase (FAK) protein and the matrix metalloprotease MMP-2, both implicated in multiple steps of the metastatic spectrum, in complex multicellular tumor spheroids we show that cancer cell populations over-expressing MMP-2 or cancer-associated fibroblasts can release FAK-deficient cancer cells from their constrained metastatic fitness. Consistently, MMP-2, not FAK, serves as an independent prognostic factor in head and neck squamous cell carcinomas. Measurement of intratumor heterogeneity facilitate the development of more efficient biomarkers to predict the risk of metastasis and of more-effective personalized cancer therapies. Abstract Metastasis remains a clinically unsolved issue in cancer that is initiated by the acquisition of collective migratory properties of cancer cells. Phenotypic and functional heterogeneity that arise among cancer cells within the same tumor increase cellular plasticity and promote metastasis, however, their impact on collective cell migration is incompletely understood. Here, we show that in vitro collective cancer cell migration depends on FAK and MMP-2 and on the presence of cancer-associated fibroblasts (CAFs). The absence of functional FAK rendered cancer cells incapable of invading the surrounding stroma. However, CAFs and cancer cells over-expressing MMP-2 released FAK-deficient cells from this constraint by taking the leader positions in the invasive tracks, pushing FAK-deficient squamous cell carcinoma (SCC) cells towards the stroma and leading to the transformation of non-invasive cells into invasive cells. Our cell-based studies and the RNAseq data from the TCGA cohort of patients with head and neck squamous cell carcinomas reveal that, although both FAK and MMP-2 over-expression are associated with epithelial–mesenchymal transition, it is only MMP-2, not FAK, that functions as an independent prognostic factor. Given the significant role of MMP-2 in cancer dissemination, targeting of this molecule, better than FAK, presents a more promising opportunity to block metastasis.
Collapse
|
144
|
Thanuthanakhun N, Kino-Oka M, Borwornpinyo S, Ito Y, Kim MH. The impact of culture dimensionality on behavioral epigenetic memory contributing to pluripotent state of iPS cells. J Cell Physiol 2020; 236:4985-4996. [PMID: 33305410 DOI: 10.1002/jcp.30211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) culture platforms have been explored to establish physiologically relevant cell culture environment and permit expansion scalability; however, little is known about the mechanisms underlying the regulation of pluripotency of human induced pluripotent stem cells (hiPSCs). This study elucidated epigenetic modifications contributing to pluripotency of hiPSCs in response to 3D culture. Unlike two-dimensional (2D) monolayer cultures, 3D cultured cells aggregated with each other to form ball-like aggregates. 2D cultured cells expressed elevated levels of Rac1 and RhoA; however, Rac1 level was significantly lower while RhoA level was persisted in 3D aggregates. Compared with 2D monolayers, the 3D aggregates also exhibited significantly lower myosin phosphorylation. Histone methylation analysis revealed remarkable H3K4me3 upregulation and H3K27me3 maintenance throughout the duration of 3D culture; in addition, we observed the existence of naïve pluripotency signatures in cells grown in 3D culture. These results demonstrated that hiPSCs adapted to 3D culture through alteration of the Rho-Rho kinase-phospho-myosin pathway, influencing the epigenetic modifications and transcriptional expression of pluripotency-associated factors. These results may help design culture environments for stable and high-quality hiPSCs.
Collapse
Affiliation(s)
- Naruchit Thanuthanakhun
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
145
|
Adil MS, Narayanan SP, Somanath PR. Cell-cell junctions: structure and regulation in physiology and pathology. Tissue Barriers 2020; 9:1848212. [PMID: 33300427 DOI: 10.1080/21688370.2020.1848212] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epithelial and endothelial cell-cell contacts are established and maintained by several intercellular junctional complexes. These structurally and biochemically differentiated regions on the plasma membrane primarily include tight junctions (TJs), and anchoring junctions. While the adherens junctions (AJs) provide essential adhesive and mechanical properties, TJs hold the cells together and form a near leak-proof intercellular seal by the fusion of adjacent cell membranes. AJs and TJs play essential roles in vascular permeability. Considering their involvement in several key cellular functions such as barrier formation, proliferation, migration, survival, and differentiation, further research is warranted on the composition and signaling pathways regulating cell-cell junctions to develop novel therapeutics for diseases such as organ injuries. The current review article presents our current state of knowledge on various cell-cell junctions, their molecular composition, and mechanisms regulating their expression and function in endothelial and epithelial cells.
Collapse
Affiliation(s)
- Mir S Adil
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center , Augusta, GA, USA
| | - S Priya Narayanan
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center , Augusta, GA, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center , Augusta, GA, USA
| |
Collapse
|
146
|
Boismal F, Serror K, Dobos G, Zuelgaray E, Bensussan A, Michel L. [Skin aging: Pathophysiology and innovative therapies]. Med Sci (Paris) 2020; 36:1163-1172. [PMID: 33296633 DOI: 10.1051/medsci/2020232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
One of the major challenges of the 21st century is the fight against aging, defined as a set of physiological mechanisms altering the physical and intellectual capacities of human beings. Aging of the skin is only one visible part of this process. It is associated with major healing defects linked in part to the alteration of the biomechanical properties of skin cells, mainly dermal fibroblasts. The immune system, another key component in maintaining skin homeostasis and the efficient healing of wounds, also suffers the effects of time: the consequent skin immunosenescence would limit the anti-infectious and vaccine response, while promoting a pro-tumor environment. The main skin damages due to aging, whether intrinsic or extrinsic, will be detailed before listing the effective anti-aging strategies to combat age-related dermal and epidermal stigmas.
Collapse
Affiliation(s)
- Françoise Boismal
- Inserm U976 ; Centre de recherche sur la peau ; hôpital Saint-Louis, Paris, France
| | - Kevin Serror
- Service de chirurgie plastique et reconstructrice, hôpital Saint-Louis, Paris, France
| | - Gabor Dobos
- Inserm U976 ; Centre de recherche sur la peau ; hôpital Saint-Louis, Paris, France - Service de dermatologie, hôpital Saint Louis, Paris, France
| | - Elina Zuelgaray
- Inserm U976 ; Centre de recherche sur la peau ; hôpital Saint-Louis, Paris, France - Service de dermatologie, hôpital Saint Louis, Paris, France
| | - Armand Bensussan
- Inserm U976 ; Centre de recherche sur la peau ; hôpital Saint-Louis, Paris, France
| | - Laurence Michel
- Inserm U976 ; Centre de recherche sur la peau ; hôpital Saint-Louis, Paris, France - Service de dermatologie, hôpital Saint Louis, Paris, France
| |
Collapse
|
147
|
Schnoor M, Santos-Argumedo L, Girón-Pérez DA, Vadillo E. Analysis of B Cell Migration by Intravital Microscopy. Bio Protoc 2020; 10:e3842. [PMID: 33659491 DOI: 10.21769/bioprotoc.3842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
During immune responses, B cells home to lymph nodes (LNs), where they encounter antigens. Homing starts with capture and L-selectin-dependent rolling on the activated endothelium of high endothelial venules (HEV). After recognition of chemokines presented on HEV, activation of B cell integrins occurs mediating firm arrest. Subsequently, B cells crawl to the spot of extravasation to enter the LN. Extravasation can be visualized and quantified in vivo by intravital microscopy (IVM) of the inguinal LN. Here, we describe an established protocol that permits detailed in vivo analysis of B cell recruitment to LN under sterile inflammatory conditions. We describe data acquisition, exportation, quantification, and statistical analysis using specialized software. IVM of LN is a powerful technique that can provide a better understanding of B cell migratory behavior during inflammation in vivo.
Collapse
Affiliation(s)
- Michael Schnoor
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Leopoldo Santos-Argumedo
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Daniel Alberto Girón-Pérez
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Calle Tres s/n. Col. Cd Industrial. Z.P. 63173. Tepic, Mexico
| | - Eduardo Vadillo
- Oncology Research Unit (UIMEO). Hospital de Oncología, Centro Médico Nacional, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| |
Collapse
|
148
|
Buttenschön A, Edelstein-Keshet L. Bridging from single to collective cell migration: A review of models and links to experiments. PLoS Comput Biol 2020; 16:e1008411. [PMID: 33301528 PMCID: PMC7728230 DOI: 10.1371/journal.pcbi.1008411] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mathematical and computational models can assist in gaining an understanding of cell behavior at many levels of organization. Here, we review models in the literature that focus on eukaryotic cell motility at 3 size scales: intracellular signaling that regulates cell shape and movement, single cell motility, and collective cell behavior from a few cells to tissues. We survey recent literature to summarize distinct computational methods (phase-field, polygonal, Cellular Potts, and spherical cells). We discuss models that bridge between levels of organization, and describe levels of detail, both biochemical and geometric, included in the models. We also highlight links between models and experiments. We find that models that span the 3 levels are still in the minority.
Collapse
Affiliation(s)
- Andreas Buttenschön
- Department of Mathematics, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
149
|
Park H, Maruhashi K, Yamaguchi R, Imoto S, Miyano S. Global gene network exploration based on explainable artificial intelligence approach. PLoS One 2020; 15:e0241508. [PMID: 33156825 PMCID: PMC7647077 DOI: 10.1371/journal.pone.0241508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, personalized gene regulatory networks have received significant attention, and interpretation of the multilayer networks has been a critical issue for a comprehensive understanding of gene regulatory systems. Although several statistical and machine learning approaches have been developed and applied to reveal sample-specific regulatory pathways, integrative understanding of the massive multilayer networks remains a challenge. To resolve this problem, we propose a novel artificial intelligence (AI) strategy for comprehensive gene regulatory network analysis. In our strategy, personalized gene networks corresponding specific clinical characteristic are constructed and the constructed network is considered as a second-order tensor. Then, an explainable AI method based on deep learning is applied to decompose the multilayer networks, thus we can reveal all-encompassing gene regulatory systems characterized by clinical features of patients. To evaluate the proposed methodology, we apply our method to the multilayer gene networks under varying conditions of an epithelial–mesenchymal transition (EMT) process. From the comprehensive analysis of multilayer networks, we identified novel markers, and the biological mechanisms of the identified genes and their reciprocal mechanisms are verified through the literature. Although any biological knowledge about the identified genes was not incorporated in our analysis, our data-driven approach based on AI approach provides biologically reliable results. Furthermore, the results provide crucial evidences to reveal biological mechanism related to various diseases, e.g., keratinocyte proliferation. The use of explainable AI method based on the tensor decomposition enables us to reveal global and novel mechanisms of gene regulatory system from the massive multiple networks, which cannot be demonstrated by existing methods. We expect that the proposed method provides a new insight into network biology and it will be a useful tool to integrative gene network analysis related complex architectures of diseases.
Collapse
Affiliation(s)
- Heewon Park
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| | | | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Aichi, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
150
|
Revach OY, Grosheva I, Geiger B. Biomechanical regulation of focal adhesion and invadopodia formation. J Cell Sci 2020; 133:133/20/jcs244848. [DOI: 10.1242/jcs.244848] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
Integrin adhesions are a structurally and functionally diverse family of transmembrane, multi-protein complexes that link the intracellular cytoskeleton to the extracellular matrix (ECM). The different members of this family, including focal adhesions (FAs), focal complexes, fibrillar adhesions, podosomes and invadopodia, contain many shared scaffolding and signaling ‘adhesome’ components, as well as distinct molecules that perform specific functions, unique to each adhesion form. In this Hypothesis, we address the pivotal roles of mechanical forces, generated by local actin polymerization or actomyosin-based contractility, in the formation, maturation and functionality of two members of the integrin adhesions family, namely FAs and invadopodia, which display distinct structures and functional properties. FAs are robust and stable ECM contacts, associated with contractile stress fibers, while invadopodia are invasive adhesions that degrade the underlying matrix and penetrate into it. We discuss here the mechanisms, whereby these two types of adhesion utilize a similar molecular machinery to drive very different – often opposing cellular activities, and hypothesize that early stages of FAs and invadopodia assembly use similar biomechanical principles, whereas maturation of the two structures, and their ‘adhesive’ and ‘invasive’ functionalities require distinct sources of biomechanical reinforcement.
Collapse
Affiliation(s)
- Or-Yam Revach
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inna Grosheva
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Geiger
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|