101
|
Falahati F, Fereshtehnejad SM, Religa D, Wahlund LO, Westman E, Eriksdotter M. The use of MRI, CT and lumbar puncture in dementia diagnostics: data from the SveDem Registry. Dement Geriatr Cogn Disord 2015; 39:81-91. [PMID: 25358376 DOI: 10.1159/000366194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The use of structural brain imaging [computed tomography (CT)/magnetic resonance imaging (MRI)] and the analysis of cerebrospinal fluid biomarkers are included in the guidelines for the diagnosis of dementia. The influence of variables such as age, gender and disease severity on the use of MRI, CT and lumbar puncture (LP) for the differential diagnosis of dementia and the consonance with the recommendations of the Swedish national guidelines were investigated. METHODS From the National Swedish Dementia Registry (SveDem), 17,057 newly diagnosed dementia patients were included in our study, with the majority from specialist care units (90%). RESULTS In the diagnostic workup, a CT was performed in 87%, MRI in 16% and LP in 40% of the cases. Age (p < 0.001) and cognitive status (p < 0.001) significantly influenced the use of MRI, CT or LP. Older patients with severe dementia were often investigated with CT. LP and MRI were used more often when less common dementia disorders were suspected. CONCLUSION Our findings indicate that age, severity of cognitive impairment and the type of dementia disorder suspected are determinants for the choice of CT, MRI or LP. The majority of the dementia workups in specialist care units follow the recommendations of the Swedish national guidelines where CT is performed as a basic workup, and MRI and LP are chosen when extended workup is needed. .
Collapse
Affiliation(s)
- Farshad Falahati
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
102
|
Blanc F, Colloby SJ, Philippi N, de Pétigny X, Jung B, Demuynck C, Phillipps C, Anthony P, Thomas A, Bing F, Lamy J, Martin-Hunyadi C, O'Brien JT, Cretin B, McKeith I, Armspach JP, Taylor JP. Cortical Thickness in Dementia with Lewy Bodies and Alzheimer's Disease: A Comparison of Prodromal and Dementia Stages. PLoS One 2015; 10:e0127396. [PMID: 26061655 PMCID: PMC4489516 DOI: 10.1371/journal.pone.0127396] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/15/2015] [Indexed: 11/18/2022] Open
Abstract
Objectives To assess and compare cortical thickness (CTh) of patients with prodromal Dementia with Lewy bodies (pro-DLB), prodromal Alzheimer's disease (pro-AD), DLB dementia (DLB-d), AD dementia (AD-d) and normal ageing. Methods Study participants(28 pro-DLB, 27 pro-AD, 31 DLB-d, 54 AD-d and 33 elderly controls) underwent 3Tesla T1 3D MRI and detailed clinical and cognitive assessments. We used FreeSurfer analysis package to measure CTh and investigate patterns of cortical thinning across groups. Results Comparison of CTh between pro-DLB and pro-AD (p<0.05, FDR corrected) showed more right anterior insula thinning in pro-DLB, and more bilateral parietal lobe and left parahippocampal gyri thinning in pro-AD. Comparison of prodromal patients to healthy elderly controls showed the involvement of the same regions. In DLB-d (p<0.05, FDR corrected) cortical thinning was found predominantly in the right temporo-parietal junction, and insula, cingulate, orbitofrontal and lateral occipital cortices. In AD-d(p<0.05, FDR corrected),the most significant areas affected included the entorhinal cortices, parahippocampal gyri and parietal lobes. The comparison of AD-d and DLB-d demonstrated more CTh in AD-d in the left entorhinal cortex (p<0.05, FDR corrected). Conclusion Cortical thickness is a sensitive measure for characterising patterns of grey matter atrophy in early stages of DLB distinct from AD. Right anterior insula involvement may be a key region at the prodromal stage of DLB and needs further investigation.
Collapse
Affiliation(s)
- Frederic Blanc
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de MédecineTranslationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France
- University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
- Institute of Neuroscience, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
- University Hospital of Strasbourg, Hôpital de jour de gériatrie, Geriatry Service, Strasbourg, France
- * E-mail:
| | - Sean J. Colloby
- Institute of Neuroscience, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nathalie Philippi
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de MédecineTranslationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France
- University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
| | - Xavier de Pétigny
- University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
- University Hospital of Strasbourg, Hôpital de jour de gériatrie, Geriatry Service, Strasbourg, France
| | - Barbara Jung
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de MédecineTranslationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France
- University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
- University Hospital of Strasbourg, Hôpital de jour de gériatrie, Geriatry Service, Strasbourg, France
| | - Catherine Demuynck
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France
- University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
- University Hospital of Strasbourg, Hôpital de jour de gériatrie, Geriatry Service, Strasbourg, France
| | - Clélie Phillipps
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France
- University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
- University Hospital of Strasbourg, Hôpital de jour de gériatrie, Geriatry Service, Strasbourg, France
| | - Pierre Anthony
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France
- University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
| | - Alan Thomas
- Institute of Neuroscience, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Fabrice Bing
- University Hospital of Strasbourg, Neuroradiology Service, Strasbourg, France
| | - Julien Lamy
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de MédecineTranslationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France
| | - Catherine Martin-Hunyadi
- University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
- University Hospital of Strasbourg, Hôpital de jour de gériatrie, Geriatry Service, Strasbourg, France
| | - John T. O'Brien
- Institute of Neuroscience, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Benjamin Cretin
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de MédecineTranslationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France
- University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
| | - Ian McKeith
- Institute of Neuroscience, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jean-Paul Armspach
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de MédecineTranslationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France
| | - John-Paul Taylor
- Institute of Neuroscience, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
103
|
Nedelska Z, Schwarz CG, Boeve BF, Lowe VJ, Reid RI, Przybelski SA, Lesnick TG, Gunter JL, Senjem ML, Ferman TJ, Smith GE, Geda YE, Knopman DS, Petersen RC, Jack CR, Kantarci K. White matter integrity in dementia with Lewy bodies: a voxel-based analysis of diffusion tensor imaging. Neurobiol Aging 2015; 36:2010-7. [PMID: 25863527 PMCID: PMC4433563 DOI: 10.1016/j.neurobiolaging.2015.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 11/21/2022]
Abstract
Many patients with dementia with Lewy bodies (DLB) have overlapping Alzheimer's disease (AD)-related pathology, which may contribute to white matter (WM) diffusivity alterations on diffusion tensor imaging (DTI). Consecutive patients with DLB (n = 30), age- and sex-matched AD patients (n = 30), and cognitively normal controls (n = 60) were recruited. All subjects underwent DTI, 18F 2-fluoro-deoxy-d-glucose, and (11)C Pittsburgh compound B positron emission tomography scans. DLB patients had reduced fractional anisotropy (FA) in the parietooccipital WM but not elsewhere compared with cognitively normal controls, and elevated FA in parahippocampal WM compared with AD patients, which persisted after controlling for β-amyloid load in DLB. The pattern of WM FA alterations on DTI was consistent with the more diffuse posterior parietal and occipital glucose hypometabolism of 2-fluoro-deoxy-d-glucose positron emission tomography in the cortex. DLB is characterized by a loss of parietooccipital WM integrity, independent of concomitant AD-related β-amyloid load. Cortical glucose hypometabolism accompanies WM FA alterations with a concordant pattern of gray and WM involvement in the parietooccipital lobes in DLB.
Collapse
Affiliation(s)
- Zuzana Nedelska
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Charles University in Prague, 2nd Faculty of Medicine and Motol University Hospital, Prague, The Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, The Czech Republic
| | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Robert I Reid
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | - Timothy G Lesnick
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey L Gunter
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Matthew L Senjem
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Glenn E Smith
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Yonas E Geda
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, The Czech Republic; Department of Psychiatry and Psychology, Mayo Clinic, Scottsdale, AZ, USA; Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
| | | | | | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
104
|
On visual hallucinations and cortical networks: a trans-diagnostic review. J Neurol 2015; 262:1780-90. [PMID: 25761375 PMCID: PMC4503861 DOI: 10.1007/s00415-015-7687-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 12/20/2022]
Abstract
Our current clinical approach to visual hallucinations is largely derived from work carried out by Georges de Morsier in the 1930s. Now, almost a century after his influential papers, we have the research tools to further explore the ideas he put forward. In this review, we address de Morsier's proposal that visual hallucinations in all clinical conditions have a similar neurological mechanism by comparing structural imaging studies of susceptibility to visual hallucinations in Parkinson's disease, Alzheimer's disease, Dementia with Lewy bodies and schizophrenia. Systematic review of the literature was undertaken using PubMed searches. A total of 18 studies across conditions were identified reporting grey matter differences between patients with and without visual hallucinations. Grey matter changes were categorised into brain regions relevant to current theories of visual hallucinations. The distribution of cortical atrophy supports de Morsier's premise that visual hallucinations are invariably linked to aberrant activity within visual thalamo-cortical networks. Further work is required to determine by what mechanism these networks become predisposed to spontaneous activation, and whether the frontal lobe and hippocampal changes identified are present in all conditions. The findings have implications for the development of effective treatments for visual hallucinations.
Collapse
|
105
|
Maani R, Yang YH, Kalra S. Voxel-based texture analysis of the brain. PLoS One 2015; 10:e0117759. [PMID: 25756621 PMCID: PMC4355627 DOI: 10.1371/journal.pone.0117759] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/30/2014] [Indexed: 01/22/2023] Open
Abstract
This paper presents a novel voxel-based method for texture analysis of brain images. Texture analysis is a powerful quantitative approach for analyzing voxel intensities and their interrelationships, but has been thus far limited to analyzing regions of interest. The proposed method provides a 3D statistical map comparing texture features on a voxel-by-voxel basis. The validity of the method was examined on artificially generated effects as well as on real MRI data in Alzheimer's Disease (AD). The artificially generated effects included hyperintense and hypointense signals added to T1-weighted brain MRIs from 30 healthy subjects. The AD dataset included 30 patients with AD and 30 age/sex matched healthy control subjects. The proposed method detected artificial effects with high accuracy and revealed statistically significant differences between the AD and control groups. This paper extends the usage of texture analysis beyond the current region of interest analysis to voxel-by-voxel 3D statistical mapping and provides a hypothesis-free analysis tool to study cerebral pathology in neurological diseases.
Collapse
Affiliation(s)
- Rouzbeh Maani
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Yee Hong Yang
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Sanjay Kalra
- Departments of Medicine, Computing Science, and Biomedical Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
106
|
Suri S, Topiwala A, Mackay CE, Ebmeier KP, Filippini N. Using structural and diffusion magnetic resonance imaging to differentiate the dementias. Curr Neurol Neurosci Rep 2015; 14:475. [PMID: 25030502 DOI: 10.1007/s11910-014-0475-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dementia is one of the major causes of personal, societal and financial dependence in older people and in today's ageing society there is a pressing need for early and accurate markers of cognitive decline. There are several subtypes of dementia but the four most common are Alzheimer's disease, Lewy body dementia, vascular dementia and frontotemporal dementia. These disorders can only be diagnosed at autopsy, and ante-mortem assessments of "probable dementia (e.g. of Alzheimer type)" are traditionally driven by clinical symptoms of cognitive or behavioural deficits. However, owing to the overlapping nature of symptoms and age of onset, a significant proportion of dementia cases remain incorrectly diagnosed. Misdiagnosis can have an extensive impact, both at the level of the individual, who may not be offered the appropriate treatment, and on a wider scale, by influencing the entry of patients into relevant clinical trials. Magnetic resonance imaging (MRI) may help to improve diagnosis by providing non-invasive and detailed disease-specific markers of cognitive decline. MRI-derived measurements of grey and white matter structural integrity are potential surrogate markers of disease progression, and may also provide valuable diagnostic information. This review summarises the latest evidence on the use of structural and diffusion MRI in differentiating between the four major dementia subtypes.
Collapse
Affiliation(s)
- Sana Suri
- Department of Psychiatry, Warneford Hospital, Warneford Lane, University of Oxford, Oxford, OX3 7JX, UK
| | | | | | | | | |
Collapse
|
107
|
Ciric J, Lazic K, Petrovic J, Kalauzi A, Saponjic J. Aging induced cortical drive alterations during sleep in rats. Mech Ageing Dev 2015; 146-148:12-22. [DOI: 10.1016/j.mad.2015.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 11/30/2022]
|
108
|
Rogus-Pulia N, Malandraki GA, Johnson S, Robbins J. Understanding Dysphagia in Dementia: The Present and the Future. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2015. [DOI: 10.1007/s40141-015-0078-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
109
|
Neuropsychiatric Manifestations in Atypical Parkinsonian Syndromes. NEUROPSYCHIATRIC SYMPTOMS OF MOVEMENT DISORDERS 2015. [DOI: 10.1007/978-3-319-09537-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
110
|
Watson R, Colloby SJ, Blamire AM, O'Brien JT. Assessment of regional gray matter loss in dementia with Lewy bodies: a surface-based MRI analysis. Am J Geriatr Psychiatry 2015; 23:38-46. [PMID: 25218360 DOI: 10.1016/j.jagp.2014.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 06/01/2014] [Accepted: 07/16/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To compare magnetic resonance imaging (MRI) patterns of cortical thinning in subjects with dementia with Lewy bodies (DLB), Alzheimer's disease (AD), and normal aging and investigate the relationship between cortical thickness and clinical measures. METHODS Study participants (31 DLB, 30 AD, and 33 healthy comparison subjects) underwent 3-Tesla T1-weighted MRI and completed clinical and cognitive assessments. We used the FreeSurfer analysis package to measure cortical thickness and investigated the patterns of cortical thinning across groups. RESULTS Cortical thinning in AD was found predominantly in the temporal and parietal areas extending into the frontal lobes (N = 63, df = 59, t >3.3, p <0.005, FDR-corrected). In DLB, cortical thinning was less diffuse with focal areas of cortical change predominantly affecting posterior structures (inferior parietal, posterior cingulate, and fusiform gyrus) (N = 64, df = 60, t >3.6, p <0.005, FDR-corrected). The average reduction in cortical thickness in medial temporal lobe structures was less in DLB (6%-10%) than in AD (15%-24%), and similar to the reduction in cortical thickness observed in other regions including inferior parietal, precuneus, and posterior cingulate (6%-9%). Associations between cortical thickness and clinical measures (MMSE and verbal fluency) were also observed in DLB (N = 31, df = 27, t >2.8, p <0.01 uncorrected). CONCLUSION Cortical thickness may be a sensitive measure for characterising gray matter loss in DLB and highlights important structural imaging differences between the conditions.
Collapse
Affiliation(s)
- Rosie Watson
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom; Department of Aged Care, The Royal Melbourne Hospital, Parkville, Australia.
| | - Sean J Colloby
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Andrew M Blamire
- Institute of Cellular Medicine & Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John T O'Brien
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
111
|
Kilimann I, Grothe M, Heinsen H, Alho EJL, Grinberg L, Amaro E, Dos Santos GAB, da Silva RE, Mitchell AJ, Frisoni GB, Bokde ALW, Fellgiebel A, Filippi M, Hampel H, Klöppel S, Teipel SJ. Subregional basal forebrain atrophy in Alzheimer's disease: a multicenter study. J Alzheimers Dis 2014; 40:687-700. [PMID: 24503619 DOI: 10.3233/jad-132345] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Histopathological studies in Alzheimer's disease (AD) suggest severe and region-specific neurodegeneration of the basal forebrain cholinergic system (BFCS). Here, we studied the between-center reliability and diagnostic accuracy of MRI-based BFCS volumetry in a large multicenter data set, including participants with prodromal (n = 41) or clinically manifest AD (n = 134) and 148 cognitively healthy controls. Atrophy was determined using voxel-based and region-of-interest based analyses of high-dimensionally normalized MRI scans using a newly created map of the BFCS based on postmortem in cranio MRI and histology. The AD group showed significant volume reductions of all subregions of the BFCS, which were most pronounced in the posterior nucleus basalis Meynert (NbM). The mild cognitive impairment-AD group showed pronounced volume reductions in the posterior NbM, but preserved volumes of anterior-medial regions. Diagnostic accuracy of posterior NbM volume was superior to hippocampus volume in both groups, despite higher multicenter variability of the BFCS measurements. The data of our study suggest that BFCS morphometry may provide an emerging biomarker in AD.
Collapse
Affiliation(s)
- Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Michel Grothe
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Helmut Heinsen
- Laboratory of Morphological Brain Research, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Eduardo Joaquim Lopez Alho
- Laboratory of Morphological Brain Research, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Lea Grinberg
- Department of Neurology, University of California San Francisco, San Francisco, USA Aging Brain Study Group, LIM-22, Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Edson Amaro
- Department of Radiology, University of Sao Paulo, Medical School, Sao Paulo, Brazil
| | | | | | - Alex J Mitchell
- Department of Psycho-oncology, University of Leicester, Leicester, UK
| | - Giovanni B Frisoni
- LENITEM Laboratory of Epidemiology, Neuroimaging and Telemedicine, IRCCS Centro San Giovanni di Dio, FBF, Brescia, Italy
| | - Arun L W Bokde
- Cognitive Systems Group, Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Andreas Fellgiebel
- Department of Psychiatry, University Medical Center of Mainz, Mainz, Germany
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute and University "Vita-Salute" San Raffaele, Mailand, Italy
| | - Harald Hampel
- Department of Psychiatry, Goethe University, Frankfurt, Germany
| | - Stefan Klöppel
- Department of Psychiatry and Psychotherapy, Freiburg Brain Imaging, University Medical Center Freiburg, Freiburg, Germany
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
112
|
Narayanan L, Murray AD. What is the role of neuroimaging in dementia? A review. IMAGING 2014. [DOI: 10.1259/img.20120015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
113
|
Nasrallah IM, Wolk DA. Multimodality imaging of Alzheimer disease and other neurodegenerative dementias. J Nucl Med 2014; 55:2003-11. [PMID: 25413136 DOI: 10.2967/jnumed.114.141416] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer disease, result in cognitive decline and dementia and are a leading cause of mortality in the growing elderly population. These progressive diseases typically have an insidious onset, with overlapping clinical features early in the disease course that make diagnosis challenging. The neurodegenerative diseases are associated with characteristic, although not completely understood, changes in the brain: abnormal protein deposition, synaptic dysfunction, neuronal injury, and neuronal death. Neuroimaging biomarkers-principally regional atrophy on structural MR imaging, patterns of hypometabolism on (18)F-FDG PET, and detection of cerebral amyloid plaque on amyloid PET--are able to evaluate the patterns of these abnormalities in the brain to improve early diagnosis and help predict the disease course. These techniques have unique strengths and synergies in multimodality evaluation of the patient with cognitive decline or dementia. This review discusses the key imaging biomarkers from MR imaging, (18)F-FDG PET, and amyloid PET; the imaging features of the most common neurodegenerative dementias; the role of various neuroimaging studies in differential diagnosis and prognosis; and some promising imaging techniques under development.
Collapse
Affiliation(s)
- Ilya M Nasrallah
- Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A Wolk
- Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
114
|
Krolak-Salmon P, Xie J. Malattia a corpi di Lewy. Neurologia 2014. [DOI: 10.1016/s1634-7072(14)68870-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
115
|
Su L, Blamire AM, Watson R, He J, Aribisala B, O'Brien JT. Tissue microstructural changes in dementia with Lewy bodies revealed by quantitative MRI. J Neurol 2014; 262:165-72. [PMID: 25355453 DOI: 10.1007/s00415-014-7541-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 12/23/2022]
Abstract
We aimed to characterize dementia with Lewy bodies (DLB) by the quantitative MRI parameters of longitudinal relaxation time (qT1) and transverse relaxation time (qT2). These parameters reflect potential pathological changes in tissue microstructures, which may be detectable noninvasively in brain areas without evident atrophy, so may have potential value in revealing the early neuropathological changes in DLB. We conducted a cross-sectional study of subjects with DLB (N = 35) and similarly aged control participants (N = 35). All subjects underwent a detailed clinical and neuropsychological assessment and structural and quantitative 3T MRI. Quantitative MRI maps were obtained using relaxation time mapping methods. Statistical analysis was performed on gray matter qT1 and qT2 values. We found significant alterations of quantitative parameters in DLB compared to controls. In particular, qT1 decreases in bilateral temporal lobes, right parietal lobes, basal ganglia including left putamen, left caudate nucleus and left amygdala, and left hippocampus/parahippocampus; qT2 decreases in left putamen and increases in left precuneus. These regions showed only partial overlap with areas where grey matter loss was found, making atrophy an unlikely explanation for our results. Our findings support that DLB is predominantly associated with changes in posterior regions, such as visual association areas, and subcortical structures, and that qT1 and qT2 measurement can detect subtle changes not seen on structural volumetric imaging. Hence, quantitative MRI may compliment other imaging techniques in detecting early changes in DLB and in understanding neurobiological changes associated with the disorder.
Collapse
Affiliation(s)
- Li Su
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Level E4, Cambridge Biomedical Campus, Cambridge, Box 189, CB2 0SP, UK,
| | | | | | | | | | | |
Collapse
|
116
|
Colloby SJ, O׳Brien JT, Taylor JP. Patterns of cerebellar volume loss in dementia with Lewy bodies and Alzheimer׳s disease: A VBM-DARTEL study. Psychiatry Res 2014; 223:187-91. [PMID: 25037902 PMCID: PMC4333903 DOI: 10.1016/j.pscychresns.2014.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/27/2014] [Accepted: 06/19/2014] [Indexed: 12/20/2022]
Abstract
Evidence suggests that the cerebellum contributes to cognition as well as motor function. We investigated cerebellar grey matter (GM) and white matter (WM) changes from magnetic resonance images in dementia with Lewy bodies (DLB), Alzheimer׳s disease (AD) and healthy older subjects using voxel-based morphometry (VBM). Subjects (39 controls, 41 DLB, and 48 AD) underwent magnetic resonance imaging as well as clinical and cognitive assessments. VBM used SPM8 with a cerebellar brain mask to define the subspace for voxel analysis. Statistical analyses were conducted using the general linear model. Relative to findings in controls, VBM analysis revealed cerebellar GM loss in lobule VI bilaterally in AD and in left Crus I and right Crus II regions in DLB. WM deficits were confined to AD in the bilateral middle cerebellar peduncles. DLB demonstrates a different pattern of cerebellar GM loss which, although not significantly different from that in AD, could be an important feature in understanding the neurobiology of DLB and warrants further investigation.
Collapse
Affiliation(s)
- Sean. J. Colloby
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK,Corresponding author. Tel.: +44 191 208 1321; fax: +44 191 208 1301.
| | - John. T. O׳Brien
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK,Department of Psychiatry, University of Cambridge, Cambridge CB2 0QC, UK
| | - John-Paul Taylor
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
117
|
Abstract
Although Alzheimer's disease (AD) is a common cause of memory impairment and dementia in the elderly disturbed memory function is a widespread subjective and/or objective symptom in a variety of medical conditions. The early detection and correct distinction of AD from non-AD memory impairment is critically important to detect possibly treatable and reversible underlying causes. In the context of clinical research, it is crucial to correctly distinguish between AD or non-AD memory impairment in order to build homogenous study populations for the assessment of new therapeutic possibilities. The distinction of AD from non-AD memory impairment may be difficult, especially in mildly affected patients, due to an overlap of clinical symptoms and biomarker alterations between AD and certain non-AD conditions. This review aims to describe recent aspects of the differential diagnosis of AD and non-AD related memory impairment and how these may be considered in the presence of memory deficits.
Collapse
Affiliation(s)
- Sönke Arlt
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
118
|
Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer’s disease dementia. J Neurol 2014; 261:1939-48. [PMID: 25059393 DOI: 10.1007/s00415-014-7439-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 02/03/2023]
|
119
|
Nedelska Z, Ferman TJ, Boeve BF, Przybelski SA, Lesnick TG, Murray ME, Gunter JL, Senjem ML, Vemuri P, Smith GE, Geda YE, Graff-Radford J, Knopman DS, Petersen RC, Parisi JE, Dickson DW, Jack CR, Kantarci K. Pattern of brain atrophy rates in autopsy-confirmed dementia with Lewy bodies. Neurobiol Aging 2014; 36:452-61. [PMID: 25128280 DOI: 10.1016/j.neurobiolaging.2014.07.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/16/2014] [Accepted: 07/08/2014] [Indexed: 11/27/2022]
Abstract
Dementia with Lewy bodies (DLB) is characterized by preserved whole brain and medial temporal lobe volumes compared with Alzheimer's disease dementia (AD) on magnetic resonance imaging. However, frequently coexistent AD-type pathology may influence the pattern of regional brain atrophy rates in DLB patients. We investigated the pattern and magnitude of the atrophy rates from 2 serial MRIs in autopsy-confirmed DLB patients (n = 20) and mixed DLB/AD patients (n = 22), compared with AD (n = 30) and elderly nondemented control subjects (n = 15), followed antemortem. DLB patients without significant AD-type pathology were characterized by lower global and regional rates of atrophy, similar to control subjects. The mixed DLB/AD patients displayed greater atrophy rates in the whole brain, temporoparietal cortices, hippocampus and amygdala, and ventricle expansion, similar to AD patients. In the DLB and DLB/AD patients, the atrophy rates correlated with Braak neurofibrillary tangle stage, cognitive decline, and progression of motor symptoms. Global and regional atrophy rates are associated with AD-type pathology in DLB, and these rates can be used as biomarkers of AD progression in patients with LB pathology.
Collapse
Affiliation(s)
- Zuzana Nedelska
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, 2nd Faculty of Medicine and Motol University Hospital, Charles University in Prague, Prague, the Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, the Czech Republic
| | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Timothy G Lesnick
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Glenn E Smith
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Yonas E Geda
- Department of Psychiatry and Psychology, Mayo Clinic, Scottsdale, AZ, USA; Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
| | | | | | | | - Joseph E Parisi
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neuropathology Laboratory, Mayo Clinic, Jacksonville, FL, USA
| | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
120
|
Zhong J, Pan P, Dai Z, Shi H. Voxelwise meta-analysis of gray matter abnormalities in dementia with Lewy bodies. Eur J Radiol 2014; 83:1870-4. [PMID: 25043498 DOI: 10.1016/j.ejrad.2014.06.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/19/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Increasing neuroimaging studies have revealed brain gray matter (GM) atrophy by voxel-based morphometry (VBM) studies in patients with dementia with Lewy bodies (DLB) relative to healthy controls. However, the spatial localization of GM abnormalities reported in the existing studies is heterogeneous. Here, we aimed to investigate concurrence across VBM studies to help clarify the structural abnormalities underpinning this condition. METHODS A systematic search for VBM studies of DLB patients and healthy controls published in PubMed database from January 2000 to March 2014 was conducted. A quantitative meta-analysis of whole-brain VBM studies in DLB patients and healthy controls was performed by means of Anisotropic Effect Size version of Signed Differential Mapping (AES-SDM) software package. RESULTS Seven studies comprising 218 DLB patients and 219 healthy controls were included in the present study. Compared to healthy subjects, the patients group showed consistent decreased GM in right lateral temporal/insular cortex and left lenticular nucleus/insular cortex. The results remained largely unchanged in the following jackknife sensitivity analyses. Meta-regression analysis indicated an increased probability of finding brain atrophy in left superior temporal gyrus in patients with lower MMSE scores. CONCLUSIONS The present meta-analysis quantitatively demonstrates a characteristic pattern of GM alternations that contributed to the understanding of pathophysiology underlying DLB. Future studies will benefit from employing meta-analytical comparisons to other dementia subtypes with solid evidence to extend these findings.
Collapse
Affiliation(s)
- JianGuo Zhong
- Department of Neurology, Affiliated Yancheng Hospital of Southeast University, Yancheng, PR China
| | - PingLei Pan
- Department of Neurology, Affiliated Yancheng Hospital of Southeast University, Yancheng, PR China
| | - ZhenYu Dai
- Department of Radiology, Affiliated Yancheng Hospital of Southeast University, Yancheng, PR China
| | - HaiCun Shi
- Department of Neurology, Affiliated Yancheng Hospital of Southeast University, Yancheng, PR China.
| |
Collapse
|
121
|
Booth TC, Nathan M, Waldman AD, Quigley AM, Schapira AH, Buscombe J. The role of functional dopamine-transporter SPECT imaging in parkinsonian syndromes, part 2. AJNR Am J Neuroradiol 2014; 36:236-44. [PMID: 24924549 DOI: 10.3174/ajnr.a3971] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARY The functional imaging technique most widely used in European clinics to differentiate a true parkinsonian syndrome from vascular parkinsonism, drug-induced changes, or essential tremor is dopamine-transporter SPECT. This technique commonly reports dopamine-transporter function, with decreasing striatal uptake demonstrating increasingly severe disease. The strength of dopamine-transporter SPECT is that nigrostriatal degeneration is observed in both clinically inconclusive parkinsonism and early, even premotor, disease. In this clinical review (Part 2), we present the dopamine-transporter SPECT findings in a variety of neurodegenerative diseases, including multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, and dementia with Lewy bodies. The findings in vascular parkinsonism, drug-induced parkinsonism, and essential tremor are also described. It is hoped that this technique will be the forerunner of a range of routinely used, process-specific ligands that can identify early degenerative disease and subsequently guide disease-modifying interventions.
Collapse
Affiliation(s)
- T C Booth
- From the Department of Neuroradiology (T.C.B.), National Hospital for Neurology and Neurosurgery, London, UK
| | - M Nathan
- Department of Nuclear Medicine (M.N., A.-M.Q.), Royal Free Hospital NHS Trust, London, UK
| | - A D Waldman
- Department of Imaging (A.D.W.), Imperial College Healthcare NHS Trust, London, UK
| | - A-M Quigley
- Department of Nuclear Medicine (M.N., A.-M.Q.), Royal Free Hospital NHS Trust, London, UK
| | - A H Schapira
- Department of Clinical Neurosciences (A.H.S.), Institute of Neurology, University College London, London, UK
| | - J Buscombe
- Department of Nuclear Medicine (J.B.), Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
122
|
Morra LF, Donovick PJ. Clinical presentation and differential diagnosis of dementia with Lewy bodies: a review. Int J Geriatr Psychiatry 2014; 29:569-76. [PMID: 24150834 DOI: 10.1002/gps.4039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/23/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND Dementia with Lewy bodies is one of the most prevalent dementia diagnoses. However, differential diagnosis between dementia with Lewy bodies, Alzheimer's disease, and Parkinson's disease with dementia can still be very difficult given the overlap in neuropathology, clinical presentation, cognitive, and neuroanatomical changes. METHOD A literature review of dementia with Lewy bodies, Alzheimer's disease, and Parkinson's disease with dementia was conducted using PubMed. RESULTS AND IMPLICATIONS Accurate diagnosis of dementia with Lewy bodies is crucial in order to more accurately predict the progression of the disease and negative side effects from pharmacological treatment. The differences and similarities between dementia with Lewy bodies, Alzheimer's disease, and Parkinson's disease with dementia are highlighted in order to aid clinicians in differential diagnosis.
Collapse
Affiliation(s)
- L F Morra
- State University of New York at Binghamton, Binghamton, NY, USA
| | | |
Collapse
|
123
|
Mak E, Su L, Williams GB, O'Brien JT. Neuroimaging characteristics of dementia with Lewy bodies. ALZHEIMERS RESEARCH & THERAPY 2014; 6:18. [PMID: 25031634 PMCID: PMC4055038 DOI: 10.1186/alzrt248] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarises the findings and applications from neuroimaging studies in dementia with Lewy bodies (DLB), highlighting key differences between DLB and other subtypes of dementia. We also discuss the increasingly important role of imaging biomarkers in differential diagnosis and outline promising areas for future research in DLB. DLB shares common clinical, neuropsychological and pathological features with Parkinson’s disease dementia and other dementia subtypes, such as Alzheimer’s disease. Despite the development of consensus diagnostic criteria, the sensitivity for differential diagnosis of DLB in clinical practice remains low and many DLB patients will be misdiagnosed. The importance of developing accurate imaging markers in dementia is highlighted by the potential for treatments targeting specific molecular abnormalities as well as the responsiveness to cholinesterase inhibitors and marked neuroleptic sensitivity of DLB. We review various brain imaging techniques that have been applied to investigate DLB, including the characteristic nigrostriatal degeneration in DLB using positron emission tomography (PET) and single-photon emission computed tomography (SPECT) tracers. Dopamine transporter loss has proven to reliably differentiate DLB from other dementias and has been incorporated into the revised clinical diagnostic criteria for DLB. To date, this remains the 'gold standard' for diagnostic imaging of DLB. Regional cerebral blood flow, 18 F-fluorodeoxygluclose-PET and SPECT have also identified marked deficits in the occipital regions with relative sparing of the medial temporal lobe when compared to Alzheimer’s disease. In addition, structural, diffusion, and functional magnetic resonance imaging techniques have shown alterations in structure, white matter integrity, and functional activity in DLB. We argue that the multimodal identification of DLB-specific biomarkers has the potential to improve ante-mortem diagnosis and contribute to our understanding of the pathological background of DLB and its progression.
Collapse
Affiliation(s)
- Elijah Mak
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Box 189, Level E4 Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Li Su
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Box 189, Level E4 Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | | | - John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Box 189, Level E4 Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| |
Collapse
|
124
|
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) are common forms of dementia, yet diagnosis is often difficult. Diffusion tensor imaging (DTI) is an MR technique used to assess neuronal microstructural integrity that may help develop a better understanding of the differences between the conditions. METHODS We recruited subjects with DLB (n = 35), AD (n = 36), and similar aged healthy controls (n = 35). T1 weighted anatomical and diffusion MR images were acquired at 3 Tesla. Region of interest (ROI) analysis was used to measure fractional anisotropy (FA) and mean diffusivity (MD) in five structures: precuneus, thalamus, pons, midbrain, and amygdala. Where appropriate diffusivity measures (FA, MD) were correlated with selected clinical measures. RESULTS Compared to controls, DLB subjects were characterized by reduced FA (p = 0.016) and increased MD (p = 0.007) in the precuneus. Amygdala diffusivity was positively correlated with UPDRS-III score in DLB (p = 0.003). In AD, reduced FA in the precuneus was also observed compared to controls (p = 0.026), and was associated with impaired global cognition (MMSE score) (p = 0.03). CONCLUSIONS Our findings highlight the potential importance of the precuneus in the pathogenesis of DLB as well as AD. Diffusion tensor MRI may shed new light on the different neurobiological changes underpinning the key clinical features of DLB and AD.
Collapse
|
125
|
Menéndez-González M, López-Muñiz A, Vega JA, Salas-Pacheco JM, Arias-Carrión O. MTA index: a simple 2D-method for assessing atrophy of the medial temporal lobe using clinically available neuroimaging. Front Aging Neurosci 2014; 6:23. [PMID: 24715861 PMCID: PMC3970022 DOI: 10.3389/fnagi.2014.00023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 02/11/2014] [Indexed: 01/11/2023] Open
Abstract
Background and purpose: Despite a strong correlation to severity of AD pathology, the measurement of medial temporal lobe atrophy (MTA) is not being widely used in daily clinical practice as a criterion in the diagnosis of prodromal and probable AD. This is mainly because the methods available to date are sophisticated and difficult to implement for routine use in most hospitals—volumetric methods—or lack objectivity—visual rating scales. In this pilot study we aim to describe a new, simple and objective method for measuring the rate of MTA in relation to the global atrophy using clinically available neuroimaging and describe the rationale behind this method. Description: This method consists of calculating a ratio with the area of 3 regions traced manually on one single coronal MRI slide at the level of the interpeduncular fossa: (1) the medial temporal lobe (MTL) region (A); (2) the parenchima within the medial temporal region, that includes the hippocampus and the parahippocampal gyrus—the fimbria taenia and plexus choroideus are excluded—(B); and (3) the body of the ipsilateral lateral ventricle (C). Therefrom we can compute the ratio “Medial Temporal Atrophy index” at both sides as follows: MTAi = (A − B)× 10/C. Conclusions: The MTAi is a simple 2D-method for measuring the relative extent of atrophy in the MTL in relation to the global brain atrophy. This method can be useful for a more accurate diagnosis of AD in routine clinical practice. Further studies are needed to assess the usefulness of MTAi in the diagnosis of early AD, in tracking the progression of AD and in the differential diagnosis of AD with other dementias.
Collapse
Affiliation(s)
- Manuel Menéndez-González
- Unidad de Neurología, Hospital Álvarez-Buylla Mieres, Spain ; Departamento de Morfología y Biología Celular, Universidad de Oviedo Oviedo, Spain ; Instituto de Neurociencias, Universidad de Oviedo Oviedo, Spain
| | - Alfonso López-Muñiz
- Departamento de Morfología y Biología Celular, Universidad de Oviedo Oviedo, Spain ; Instituto de Neurociencias, Universidad de Oviedo Oviedo, Spain
| | - José A Vega
- Departamento de Morfología y Biología Celular, Universidad de Oviedo Oviedo, Spain
| | - José M Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango Durango, México
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González/UNAM México DF, Mexico ; Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Ajusco Medio México DF, Mexico
| |
Collapse
|
126
|
Valkanova V, Ebmeier KP. Neuroimaging in dementia. Maturitas 2014; 79:202-8. [PMID: 24685291 DOI: 10.1016/j.maturitas.2014.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
Abstract
Over the last few years, advances in neuroimaging have generated biomarkers, which increase diagnostic certainty, provide valuable information about prognosis, and suggest a particular pathology underlying the clinical dementia syndrome. We aim to review the evidence for use of already established imaging modalities, along with selected techniques that have a great potential to guide clinical decisions in the future. We discuss structural, functional and molecular imaging, focusing on the most common dementias: Alzheimer's disease, fronto-temporal dementia, dementia with Lewy bodies and vascular dementia. Finally, we stress the importance of conducting research using representative cohorts and in a naturalistic set up, in order to build a strong evidence base for translating imaging methods for a National Health Service. If we assess a broad range of patients referred to memory clinic with a variety of imaging modalities, we will make a step towards accumulating robust evidence and ultimately closing the gap between the dramatic advances in neurosciences and meaningful clinical applications for the maximum benefit of our patients.
Collapse
Affiliation(s)
- Vyara Valkanova
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | - Klaus P Ebmeier
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK.
| |
Collapse
|
127
|
Spehl TS, Hellwig S, Amtage F, Weiller C, Bormann T, Weber WA, Hüll M, Meyer PT, Frings L. Syndrome-specific patterns of regional cerebral glucose metabolism in posterior cortical atrophy in comparison to dementia with Lewy bodies and Alzheimer's disease--a [F-18]-FDG pet study. J Neuroimaging 2014; 25:281-288. [PMID: 24593796 DOI: 10.1111/jon.12104] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/12/2013] [Accepted: 11/19/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Posterior cortical atrophy (PCA) is a rare neurodegenerative syndrome with visuospatial deficits. PET studies have identified hypometabolism of the occipital cortex in PCA. There is, however, a huge overlap in clinical presentation and involvement of the occipital cortex between PCA, dementia with Lewy bodies (DLB), and Alzheimer's disease (AD). Syndrome-specific patterns of metabolism have not yet been demonstrated that allow for a reliable differentiation with [F-18]-FDG-PET. METHODS A total of 33 dementia patients (PCA n = 6, DLB n = 12, AD n = 15) who underwent [F-18]-FDG-PET imaging and a neuropsychological examination were retrospectively analyzed. Group comparisons of regional cerebral glucose metabolism were calculated with statistical parametric mapping. Extracted clusters were used to evaluate discrimination accuracy by logistic regression. RESULTS PCA patients showed a syndrome-specific area of hypometabolism in the right lateral temporooccipital cortex. DLB patients showed specific hypometabolism predominantly in the left occipital cortex. Logistic regression based on these two regions correctly separated patients with a sensitivity/specificity of 83/93% for PCA, 75/86% for DLB and 67/78% for AD. Overall accuracy was 73%. CONCLUSION [F-18]-FDG-PET could reveal syndrome-specific patterns of glucose metabolism in PCA and DLB. Accurate group discrimination in the differential diagnosis of dementia with visuospatial impairment is feasible.
Collapse
Affiliation(s)
- Timo S Spehl
- Department of Nuclear Medicine, Freiburg, Germany
| | - Sabine Hellwig
- Department of Psychiatry and Psychotherapy, Freiburg, Germany.,Department of Neurology, Freiburg, Germany
| | | | | | | | | | - Michael Hüll
- Centre of Geriatrics and Gerontology Freiburg, Germany
| | | | - Lars Frings
- Centre of Geriatrics and Gerontology Freiburg, Germany.,Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
128
|
Boripuntakul S, Lord SR, Brodie MAD, Smith ST, Methapatara P, Wongpakaran N, Sungkarat S. Spatial variability during gait initiation while dual tasking is increased in individuals with mild cognitive impairment. J Nutr Health Aging 2014; 18:307-12. [PMID: 24626760 DOI: 10.1007/s12603-013-0390-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Gait initiation (GI) is a complex transition phase of gait that can induce postural instability. Gait impairment has been well documented in people with Alzheimer's disease, but it is still inconclusive in individuals with Mild Cognitive Impairment (MCI). Previous studies have usually investigated gait performance of cognitive impaired persons under steady state walking. OBJECTIVE This study aimed to examine spatiotemporal variability during GI under single- and dual-task conditions in people with and without MCI. METHODS Spatiotemporal stepping characteristics and variability under single- and dual-task conditions (counting backwards by 3s) were assessed in 30 older adults with MCI and 30 cognitively intact controls. Mean and coefficients of variation (COV) of swing time, step time, step length and step width were compared between the two groups. RESULTS Mixed-model repeated measures ANOVA revealed a significant Group x Walking condition interaction for COV of step length and step width (P<0.05). Post-hoc analysis revealed that variability for these measures were significantly larger in the MCI group compared with the control group under the dual-task condition (P<0.05). CONCLUSIONS Step length and step width variability is increased in people with MCI during GI, particularly in a condition involving a secondary cognitive task. These findings suggest that individuals with MCI have reduced balance control when undertaking a challenging walking task such as gait initiation, and this is exacerbated with an added cognitive task. Future studies should prospectively investigate the relationship between GI variability and fall risk in this population.
Collapse
Affiliation(s)
- S Boripuntakul
- Somporn Sungkarat, PhD, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand,
| | | | | | | | | | | | | |
Collapse
|
129
|
Busatto GF, Diniz BS, Zanetti MV. Voxel-based morphometry in Alzheimer’s disease. Expert Rev Neurother 2014; 8:1691-702. [DOI: 10.1586/14737175.8.11.1691] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
130
|
Han D, Wang Q, Gao Z, Chen T, Wang Z. Clinical features of dementia with lewy bodies in 35 Chinese patients. Transl Neurodegener 2014; 3:1. [PMID: 24398160 PMCID: PMC3896842 DOI: 10.1186/2047-9158-3-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 01/04/2014] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To investigate the clinical features of dementia with Lewy bodies (DLB) in a Chinese population. METHODS Computer-based online searches through China Biology Medicine disc and China National Knowledge Infrastructure were performed to collect case reports of DLB published between 1980 and 2012. Clinical characteristics were analyzed. RESULTS A total of 18 studies comprising 35 patients (26 males and 9 females) were included. The mean age at onset was 67.2 ± 9.8 years. Onset was characterized by memory impairment and accounted for 58.8% of all cases, followed by parkinsonism (11.8%), visual hallucinations (8.8%), and compulsive personality disorder (2.9%). The other patients (17.6%) presented two of the three core features of DLB at onset. With disease progression, parkinsonism was reported in 100% of cases, followed by visual hallucinations (97.1%), psychiatric symptoms (85.7%), severe neuroleptic sensitivity (81.8%), fluctuating cognition (68.6%), repeated falls (40.0%), sleep disorders (22.9%), and transient loss of consciousness (17.1%). 26 patients who were subjected to Mini-Mental State Examination scored ≤ 24. 10 patients presented relative preservation of hippocampus and medial temporal lobe structures on CT/MRI scan. Occipital hypometabolism occurred in 2 of 3 patients who underwent SPECT/PET perfusion scan. 12 patients showed an increasing of slow frequency activity on EEG, prominently in frontal and temporal lobes. CONCLUSIONS DLB often strikes elderly individuals. Its clinical core features are dementia, fluctuating cognition, recurrent visual hallucinations and spontaneous features of parkinsonism. Neuropsychological, neuroimaging and EEG examinations may improve the diagnostic accuracy and discriminate DLB from other dementias.
Collapse
Affiliation(s)
- Ding Han
- Department of Neurology, South Building, General Hospital of Chinese PLA, Beijing 100853, China
| | - Qiong Wang
- Department of Neurology, South Building, General Hospital of Chinese PLA, Beijing 100853, China
| | - Zhongbao Gao
- Department of Neurology, South Building, General Hospital of Chinese PLA, Beijing 100853, China
| | - Tong Chen
- Department of Neurology, South Building, General Hospital of Chinese PLA, Beijing 100853, China
| | - Zhenfu Wang
- Department of Neurology, South Building, General Hospital of Chinese PLA, Beijing 100853, China
| |
Collapse
|
131
|
Effects of baseline CSF α-synuclein on regional brain atrophy rates in healthy elders, mild cognitive impairment and Alzheimer's disease. PLoS One 2013; 8:e85443. [PMID: 24392009 PMCID: PMC3877372 DOI: 10.1371/journal.pone.0085443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/28/2013] [Indexed: 11/20/2022] Open
Abstract
Background Cerebrospinal fluid (CSF) α-synuclein is reduced in synucleinopathies, including dementia with Lewy bodies, and some studies have found increased CSF α-synuclein in Alzheimer’s disease (AD). No study has explored effects of CSF α-synuclein on brain atrophy. Here we tested if baseline CSF α-synuclein affects brain atrophy rates and if these effects vary across brain regions, and across the cognitive spectrum from healthy elders (NL), to patients with mild cognitive impairment (MCI) and AD. Methods Baseline CSF α-synuclein measurements and longitudinal structural brain magnetic resonance imaging was performed in 74 NL, 118 MCI patients and 55 AD patients. Effects of baseline CSF α-synuclein on regional atrophy rates were tested in 1) four pre-hoc defined regions possibly associated with Lewy body and/or AD pathology (amygdala, caudate, hippocampus, brainstem), and 2) all available regions of interest. Differences across diagnoses were tested by assessing the interaction of CSF α-synuclein and diagnosis (testing NL versus MCI, and NL versus AD). Results The effects of CSF α-synuclein on longitudinal atrophy rates were not significant after correction for multiple comparisons. There were tendencies for effects in AD in caudate (higher atrophy rates in subjects with higher CSF α-synuclein, P=0.046) and brainstem (higher atrophy rates in subjects with lower CSF α-synuclein, P=0.063). CSF α-synuclein had significantly different effects on atrophy rates in NL and AD in brainstem (P=0.037) and caudate (P=0.006). Discussion: With the possible exception of caudate and brainstem, the overall weak effects of CSF α-synuclein on atrophy rates in NL, MCI and AD argues against CSF α-synuclein as a biomarker related to longitudinal brain atrophy in these diagnostic groups. Any effects of CSF α-synuclein may be attenuated by possible simultaneous occurrence of AD-related neuronal injury and concomitant Lewy body pathology, which may elevate and reduce CSF α-synuclein levels, respectively.
Collapse
|
132
|
Taylor JP, Colloby SJ, McKeith IG, O'Brien JT. Covariant perfusion patterns provide clues to the origin of cognitive fluctuations and attentional dysfunction in dementia with Lewy bodies. Int Psychogeriatr 2013; 25:1917-28. [PMID: 24148774 PMCID: PMC3819183 DOI: 10.1017/s1041610213001488] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND Fluctuating cognition (FC), particularly in attention, is a core and defining symptom in dementia with Lewy bodies (DLB) but is seen much less frequently in Alzheimer's dementia (AD). However, its neurobiological origin is poorly understood. The aim of our study was therefore to characterize perfusion patterns in DLB patients that are associated with the severity and frequency of FC as measured both clinically and using objective neuropsychological assessments. METHODS Spatial covariance analyses were applied to data derived from single photon emission computed tomography (SPECT) HMPAO brain imaging in 19 DLB and 23 AD patients. Patients underwent clinical assessment of their FC and cognitive function as well as objective testing of their attention. RESULTS Covariant perfusion principal components (PCs) were not associated with either FC or cognitive or attentional measures in AD. However, in DLB patients, the second PC (defined as DLB-cognitive motor pattern, DLB-PCI2) which was characterized by bilateral relative increases in cerebellum, basal ganglia, and supplementary motor areas and widespread bilateral decreases in parietal regions, positively correlated with poorer cognitive function, increased FC and worse attentional function measured both clinically and neurophysiologically (p < 0.05) as well as with the severity of bradykinesia (p = 0.04). CONCLUSIONS FC in DLB appears distinct from those seen in AD, and likely to be driven by internal neurobiological perturbations in brain circuitry as evidenced using spatial covariance analyses of cerebral perfusion. FC and certain aspects of attentional dysfunction in DLB may, in part, depend upon both distributed motor and non-motor networks.
Collapse
Affiliation(s)
- John-Paul Taylor
- Institute for Ageing and Health, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Sean J. Colloby
- Institute for Ageing and Health, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Ian G. McKeith
- Institute for Ageing and Health, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - John T. O'Brien
- Institute for Ageing and Health, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, UK
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, UK
| |
Collapse
|
133
|
Petrovic J, Lazic K, Ciric J, Kalauzi A, Saponjic J. Topography of the sleep/wake states related EEG microstructure and transitions structure differentiates the functionally distinct cholinergic innervation disorders in rat. Behav Brain Res 2013; 256:108-18. [DOI: 10.1016/j.bbr.2013.07.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 01/30/2023]
|
134
|
Murray ME, Ferman TJ, Boeve BF, Przybelski SA, Lesnick TG, Liesinger AM, Senjem ML, Gunter JL, Preboske GM, Lowe VJ, Vemuri P, Dugger BN, Knopman DS, Smith GE, Parisi JE, Silber MH, Graff-Radford NR, Petersen RC, Jack CR, Dickson DW, Kantarci K. MRI and pathology of REM sleep behavior disorder in dementia with Lewy bodies. Neurology 2013; 81:1681-9. [PMID: 24107861 DOI: 10.1212/01.wnl.0000435299.57153.f0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine structural MRI and digital microscopic characteristics of REM sleep behavior disorder in individuals with low-, intermediate-, and high-likelihood dementia with Lewy bodies (DLB) at autopsy. METHODS Patients with autopsy-confirmed low-, intermediate-, and high-likelihood DLB, according to the probability statement recommended by the third report of the DLB Consortium, and antemortem MRI, were identified (n = 75). The clinical history was assessed for presence (n = 35) and absence (n = 40) of probable REM sleep behavior disorder (pRBD), and patients' antemortem MRIs were compared using voxel-based morphometry. Pathologic burdens of phospho-tau, β-amyloid, and α-synuclein were measured in regions associated with early neuropathologic involvement, the hippocampus and amygdala. RESULTS pRBD was present in 21 patients (60%) with high-likelihood, 12 patients (34%) with intermediate-likelihood, and 2 patients (6%) with low-likelihood DLB. Patients with pRBD were younger, more likely to be male (p ≤ 0.001), and had a more frequent neuropathologic diagnosis of diffuse (neocortical) Lewy body disease. In the hippocampus and amygdala, phospho-tau and β-amyloid burden were lower in patients with pRBD compared with those without pRBD (p < 0.01). α-Synuclein burden did not differ in the hippocampus, but trended in the amygdala. Patients without pRBD had greater atrophy of temporoparietal cortices, hippocampus, and amygdala (p < 0.001) than those with pRBD; atrophy of the hippocampus (p = 0.005) and amygdala (p = 0.02) were associated with greater phospho-tau burdens in these regions. CONCLUSION Presence of pRBD is associated with a higher likelihood of DLB and less severe Alzheimer-related pathology in the medial temporal lobes, whereas absence of pRBD is characterized by Alzheimer-like atrophy patterns on MRI and increased phospho-tau burden.
Collapse
Affiliation(s)
- Melissa E Murray
- From the Department of Neuroscience (M.E.M., A.M.L., B.N.D., D.W.D.), Psychiatry and Psychology (T.J.F.), and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (B.F.B., D.S.K., M.H.S., R.C.P.), Biomedical Statistics (S.A.P., T.G.L.), Radiology (M.L.S., J.L.G., G.M.P., P.V., C.R.J., K.K.), Nuclear Medicine (V.J.L.), Psychology (G.E.S.), Laboratory Medicine and Pathology (J.E.P.), and Center for Sleep Medicine (M.H.S.), Mayo Clinic, Rochester, MN
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Galvin JE, Balasubramaniam M. Lewy Body Dementia: The Under-Recognized but Common FOE. CEREBRUM : THE DANA FORUM ON BRAIN SCIENCE 2013; 2013:13. [PMID: 24772233 PMCID: PMC3999867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
After Alzheimer's disease, Lewy body dementia (LBD) is the most prevalent progressive dementia of the many cognitive disorders wreaking unspeakable havoc on millions of lives. LBD is characterized by the presence of Lewy bodies, which are abnormal aggregates of a protein called alpha-synuclein, and are found in regions of the brain that regulate behavior, memory, movement, and personality. Many of the symptoms of Alzheimer's, Parkinson's, and LBD overlap, but LBD is more difficult to diagnose. Underdiagnosis is just part of the reason why LBD is unknown to the public and many health-care providers, and why funding for research lags far behind that for almost every other cognitive disorder.
Collapse
|
136
|
Petrovic J, Ciric J, Lazic K, Kalauzi A, Saponjic J. Lesion of the pedunculopontine tegmental nucleus in rat augments cortical activation and disturbs sleep/wake state transitions structure. Exp Neurol 2013; 247:562-71. [DOI: 10.1016/j.expneurol.2013.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/30/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
|
137
|
Hayashi H, Kawakatsu S, Suzuki A, Shibuya Y, Kobayashi R, Sato C, Otani K. Application of the VSRAD, a specific and sensitive voxel-based morphometry, to comparison of entorhinal cortex atrophy between dementia with Lewy bodies and Alzheimer's disease. Dement Geriatr Cogn Disord 2013. [PMID: 23208522 DOI: 10.1159/000345792] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Previous studies using magnetic resonance imaging (MRI) showed that dementia with Lewy bodies (DLB) had less atrophy in some medial temporal structures than Alzheimer's disease (AD). However, very few studies have focused on the entorhinal cortex, which is closely related to episodic memory. We compared the degree of entorhinal cortex atrophy between the two types of dementia using the voxel-based specific regional analysis system for AD (VSRAD) targeting this region. METHODS The subjects consisted of 60 patients with DLB and 210 patients with AD. The degree of entorhinal cortex atrophy was quantified by application of the VSRAD to MRI data, and a Z score >2 was defined as significant atrophy. RESULTS The DLB group had significantly lower Z scores than the AD group (mean ± SD: 2.25 ± 1.10 vs. 2.85 ± 1.33, p < 0.01). The analysis of covariance with possible confounding factors as covariates also showed that Z scores were significantly lower in the DLB group than in the AD group (p < 0.01). The proportion of patients with atrophy was significantly lower in the DLB group than in the AD group (53 vs. 72%, p < 0.01). CONCLUSIONS The present study using the VSRAD suggests that DLB shows less atrophy in the entorhinal cortex than AD.
Collapse
Affiliation(s)
- Hiroshi Hayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan.
| | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
Dementia with Lewy bodies (DLB) is the second most common form of dementia after Alzheimer disease (AD). DLB is characterized pathologically by Lewy body and Lewy neuritic pathology, often with variable levels of Alzheimer-type pathology. Core clinical features include fluctuating cognition, visual hallucinations, and parkinsonism resulting in greater impairments of quality of life, more caregiver burden, and higher health-related costs compared with AD. These issues, together with a high sensitivity to adverse events with treatment with antipsychotic agents, make the need for an early and accurate diagnosis of DLB essential. Unfortunately, current consensus criteria are highly specific but lack sufficient sensitivity. Use of composite risk scores may improve accuracy of clinical diagnosis. Imaging findings, particularly targeting dopaminergic systems have shown promise as potential markers to differentiate DLB from AD. A combination of non-pharmacologic treatments and pharmacotherapy interventions may maximize cognitive function and overall quality of life in DLB patients.
Collapse
|
139
|
Zhang M, Han L, Xu Y. Roles of cocaine- and amphetamine-regulated transcript in the central nervous system. Clin Exp Pharmacol Physiol 2013; 39:586-92. [PMID: 22077697 DOI: 10.1111/j.1440-1681.2011.05642.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
1. Cocaine- and amphetamine-regulated transcript (CART), first isolated from the ovine hypothalamus, is a potential neurotransmitter widely distributed throughout the central and peripheral nervous systems, as well as in endocrine cells in the pituitary and adrenal glands, pancreatic islets and stomach. 2. Numerous studies have established the role of CART in food intake, maintenance of bodyweight, stress control, reward and pain transmission. Recently, it was demonstrated that CART, as a neurotrophic peptide, had a cerebroprotective against focal ischaemic stroke and inhibited the neurotoxicity of β-amyloid protein, which focused attention on the role of CART in the central nervous system (CNS) and neurological diseases. 3. In fact, little is known about the way in which CART peptide interacts with its receptors, initiates downstream cascades and finally exerts its neuroprotective effect under normal or pathological conditions. The literature indicates that there are many factors, such as regulation of the immunological system and protection against energy failure, that may be involved in the cerebroprotection afforded by CART. 4. The present review provides a brief summary of the current literature on CART synthesis and active fragments, its distribution in the CNS and, in particular, the role of CART peptide (and its receptors and signalling) in neurological diseases.
Collapse
Affiliation(s)
- Meijuan Zhang
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | | | | |
Collapse
|
140
|
Nakatsuka T, Imabayashi E, Matsuda H, Sakakibara R, Inaoka T, Terada H. Discrimination of dementia with Lewy bodies from Alzheimer's disease using voxel-based morphometry of white matter by statistical parametric mapping 8 plus diffeomorphic anatomic registration through exponentiated Lie algebra. Neuroradiology 2013; 55:559-66. [PMID: 23322456 PMCID: PMC3659278 DOI: 10.1007/s00234-013-1138-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/04/2013] [Indexed: 01/08/2023]
Abstract
Introduction The purpose of this study was to identify brain atrophy specific for dementia with Lewy bodies (DLB) and to evaluate the discriminatory performance of this specific atrophy between DLB and Alzheimer’s disease (AD). Methods We retrospectively reviewed 60 DLB and 30 AD patients who had undergone 3D T1-weighted MRI. We randomly divided the DLB patients into two equal groups (A and B). First, we obtained a target volume of interest (VOI) for DLB-specific atrophy using correlation analysis of the percentage rate of significant whole white matter (WM) atrophy calculated using the Voxel-based Specific Regional Analysis System for Alzheimer’s Disease (VSRAD) based on statistical parametric mapping 8 (SPM8) plus diffeomorphic anatomic registration through exponentiated Lie algebra, with segmented WM images in group A. We then evaluated the usefulness of this target VOI for discriminating the remaining 30 DLB patients in group B from the 30 AD patients. Z score values in this target VOI obtained from VSRAD were used as the determinant in receiver operating characteristic (ROC) analysis. Results Specific target VOIs for DLB were determined in the right-side dominant dorsal midbrain, right-side dominant dorsal pons, and bilateral cerebellum. ROC analysis revealed that the target VOI limited to the midbrain exhibited the highest area under the ROC curves of 0.75. Conclusions DLB patients showed specific atrophy in the midbrain, pons, and cerebellum. Midbrain atrophy demonstrated the highest power for discriminating DLB and AD. This approach may be useful for determining the contributions of DLB and AD pathologies to the dementia syndrome.
Collapse
Affiliation(s)
- Tomoya Nakatsuka
- Department of Radiology, Toho University Sakura Medical Center, 564-1, Shimoshizu, Sakura, Chiba 285-8741, Japan.
| | | | | | | | | | | |
Collapse
|
141
|
Does posterior cortical atrophy on MRI discriminate between Alzheimer's disease, dementia with Lewy bodies, and normal aging? Int Psychogeriatr 2013; 25:111-9. [PMID: 22809815 DOI: 10.1017/s1041610212001214] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Previous studies suggest that posterior cortical atrophy may be a useful marker for early onset Alzheimer's disease (AD). Dementia with Lewy bodies (DLB) is associated with less temporal lobe atrophy than AD, though posterior cortical atrophy may be greater. Therefore, we assessed whether visual rating scales for assessing posterior atrophy (PA), medial temporal lobe atrophy (MTA), and ventricular enlargement (VEn) aid in the discrimination between AD, DLB, and normal aging. METHODS T1-weighted MRI scans acquired at 3 Tesla were visually rated for PA (range 0-3), MTA (range 0-4), and VEn (range 0-3) in older subjects with AD (n = 36), DLB (n = 35), and healthy controls (n = 35). The diagnostic utility of MTA, PA, and VEn visual ratings in distinguishing AD and DLB from controls as well as AD from DLB was investigated. RESULTS Significantly higher MTA ratings were associated with AD and DLB compared to controls (p < 0.001). MTA ratings were greater in AD relative to DLB (U = 384.5, p = 0.004). For PA ratings, scores did not differ between groups (p = 0.20). VEn ratings were significantly higher in AD and DLB compared to controls (p = 0.003), but similar between AD and DLB (U = 384.5, p = 0.4). CONCLUSIONS Unlike findings reported in younger subjects, visual ratings for PA are not a reliable marker at older ages for distinguishing AD from controls, or for distinguishing DLB from AD. However, visual ratings of MTA and VEn may be useful markers in distinguishing both AD and DLB from older subjects without dementia.
Collapse
|
142
|
Multivariate classification of patients with Alzheimer's and dementia with Lewy bodies using high-dimensional cortical thickness measurements: an MRI surface-based morphometric study. J Neurol 2012; 260:1104-15. [PMID: 23224109 DOI: 10.1007/s00415-012-6768-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 10/27/2022]
Abstract
CONTEXT Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) are the most common neurodegenerative dementia types. It is important to differentiate between them because of the differences in prognosis and treatment approaches. OBJECTIVE Investigate if sparse partial least squares (SPLS) classification of cortical thickness measurements could differentiate between AD and DLB. METHODS Two independent cohorts without MR-protocol alignment in Norway and Slovenia with 97 AD and DLB subjects were enrolled. Cortical thickness measurements acquired with Freesurfer were used in subsequent SPLS classification runs. The cohorts were analyzed separately and afterwards combined. The models were trained with leave-one-out cross validation and test datasets where used when available. To study the impact of MR-protocol alignment, the classifiers were additionally tested on sets drawn exclusively from the independent cohorts. RESULTS The obtained sensitivity/specificity/AUC values were 94.4/88.89/0.978 and 88.2/94.1/0.969 in the Norwegian and Slovenian cohorts, respectively. Both cohorts showed AD-associated pattern of thinning in mid-anterior temporal, occipital and subgenual cingulate cortex, whereas the pattern supportive for DLB included thinning in dorsal cingulate, posterior temporal and lateral orbitofrontal regions. When combining the cohorts, sensitivity/specificity/AUC were 82.1/85.7/0.948 for the training and 77.8/75/0.731 for the testing datasets with the same pattern-of-difference. The models tested on datasets drawn exclusively from the independent cohorts did not produce adequate accuracy. CONCLUSION SPLS classification of cortical thickness is a good method for differentiating between AD and DLB, relatively stable even for mixed data, but not when tested on completely independent data drawn from different cohorts (without MR-protocol alignment).
Collapse
|
143
|
Mao P. Oxidative Stress and Its Clinical Applications in Dementia. JOURNAL OF NEURODEGENERATIVE DISEASES 2012; 2013:319898. [PMID: 26316986 PMCID: PMC4437276 DOI: 10.1155/2013/319898] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/16/2012] [Indexed: 02/08/2023]
Abstract
Dementia is a complex disorder that mostly affects the elderly and represents a significant and growing public health burden in the world. Alzheimer's disease (AD)- associated dementia and dementia with Lewy bodies (DLB) are the most common forms of dementia, in which oxidative stress is significantly involved. Oxidative stress mechanisms may have clinical applications, that is, providing information for potential biomarkers. Thus brain-rich peptides with an antioxidant property, such as CART (cocaine- and amphetamine-regulated transcript), may be promising new markers. This paper summarizes the progress in research regarding oxidative stress in dementia with a focus on potential biomarkers in the cerebrospinal fluid (CSF) in the main forms of dementia. Other central and peripheral biomarkers, especially those considered oxidative stress related, are also discussed. This paper aims to provide information to improve current understanding of the pathogenesis and progression of dementia. It also offers insight into the differential diagnosis of AD and DLB.
Collapse
Affiliation(s)
- Peizhong Mao
- The Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
- The Departments of Physiology and Pharmacology, Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
144
|
Filippi M, Agosta F, Barkhof F, Dubois B, Fox NC, Frisoni GB, Jack CR, Johannsen P, Miller BL, Nestor PJ, Scheltens P, Sorbi S, Teipel S, Thompson PM, Wahlund LO. EFNS task force: the use of neuroimaging in the diagnosis of dementia. Eur J Neurol 2012; 19:e131-40, 1487-501. [DOI: 10.1111/j.1468-1331.2012.03859.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/18/2012] [Indexed: 01/18/2023]
Affiliation(s)
- M. Filippi
- Neuroimaging Research Unit; Division of Neuroscience; Institute of Experimental Neurology; San Raffaele Scientific Institute; Vita-Salute San Raffaele University; Milan Italy
| | - F. Agosta
- Neuroimaging Research Unit; Division of Neuroscience; Institute of Experimental Neurology; San Raffaele Scientific Institute; Vita-Salute San Raffaele University; Milan Italy
| | - F. Barkhof
- Department of Radiology; VU University Medical Center; Amsterdam The Netherlands
| | - B. Dubois
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière; Université Pierre et Marie Curie; Paris France
| | - N. C. Fox
- Dementia Research Centre; Institute of Neurology; University College London; London UK
| | - G. B. Frisoni
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli di Brescia; Brescia Italy
| | - C. R. Jack
- Department of Radiology; Mayo Clinic and Foundation; Rochester MN USA
| | - P. Johannsen
- Memory Clinic; Rigshospitalet; Copenhagen University Hospital; Copenhagen Denmark
| | - B. L. Miller
- Memory and Aging Center; University of California; San Francisco CA USA
| | - P. J. Nestor
- Department of Clinical Neuroscience; University of Cambridge; Cambridge UK
| | - P. Scheltens
- Department of Neurology and Alzheimer Center; VU University Medical Center; Amsterdam The Netherlands
| | - S. Sorbi
- Department of Neurological and Psychiatric Sciences; Azienda Ospedaliero-Universitaria di Careggi; Florence Italy
| | - S. Teipel
- Department of Psychiatry; University of Rostock, and German Center for Neuro-degenerative Diseases (DZNE); Rostock Germany
| | - P. M. Thompson
- Department of Neurology; David Geffen School of Medicine at the University of California Los Angeles; Los Angeles CA USA
| | - L.-O. Wahlund
- Division of Clinical Geriatrics; Department of Neurobiology; Karolinska Institute; Stockholm Sweden
| |
Collapse
|
145
|
Kantarci K, Ferman TJ, Boeve BF, Weigand SD, Przybelski S, Vemuri P, Murray ME, Murray MM, Senjem ML, Smith GE, Knopman DS, Petersen RC, Jack CR, Parisi JE, Dickson DW. Focal atrophy on MRI and neuropathologic classification of dementia with Lewy bodies. Neurology 2012; 79:553-60. [PMID: 22843258 PMCID: PMC3413765 DOI: 10.1212/wnl.0b013e31826357a5] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/10/2012] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the association between the focal atrophy measures on antemortem MRI and postmortem neuropathologic classification of dementia with Lewy bodies (DLB) using the Third Report of the DLB Consortium criteria. METHODS We retrospectively identified 56 subjects who underwent antemortem MRI and had Lewy body (LB) pathology at autopsy. Subjects were pathologically classified as high (n = 25), intermediate (n = 22), and low likelihood DLB (n = 9) according to the Third Report of the DLB Consortium criteria. We included 2 additional pathologic comparison groups without LBs: one with low likelihood Alzheimer disease (AD) (control; n = 27) and one with high likelihood AD (n = 33). The associations between MRI-based volumetric measurements and the pathologic classification of DLB were tested with analysis of covariance by adjusting for age, sex, and MRI-to-death interval. RESULTS Antemortem hippocampal and amygdalar volumes increased from low to intermediate to high likelihood DLB (p < 0.001, trend test). Smaller hippocampal and amygdalar volumes were associated with higher Braak neurofibrillary tangle stage (p < 0.001). Antemortem dorsal mesopontine gray matter (GM) atrophy was found in those with high likelihood DLB compared with normal control subjects (p = 0.004) and those with AD (p = 0.01). Dorsal mesopontine GM volume decreased from low to intermediate to high likelihood DLB (p = 0.01, trend test). CONCLUSION Antemortem hippocampal and amygdalar volumes increase and dorsal mesopontine GM volumes decrease in patients with low to high likelihood DLB according to the Third Report of the DLB Consortium criteria. Patients with high likelihood DLB typically have normal hippocampal volumes but have atrophy in the dorsal mesopontine GM nuclei.
Collapse
Affiliation(s)
- Kejal Kantarci
- Departments of Radiology, Mayo Clinic,Rochester, MN, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Watson R, O’Brien JT. Differentiating dementia with Lewy bodies and Alzheimer’s disease using MRI. Neurodegener Dis Manag 2012. [DOI: 10.2217/nmt.12.41] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
SUMMARY Despite the characteristic clinical differences between dementia with Lewy bodies (DLB) and Alzheimer’s disease (AD), a large degree of overlap exists. In particular, the clinical diagnostic criteria for DLB lack sensitivity so that many cases of DLB will be missed during life. MRI techniques offer a noninvasive method to assess the brain structure and function in more detail. In particular, advanced MRI methods such as diffusion-tensor imaging, functional MRI, arterial spin labeling (perfusion) and magnetic resonance spectroscopy may offer more sensitive methods to detect early and, possibly, preclinical change in dementia and contribute to our understanding of the differences between AD and DLB. This paper provides an overview of MRI changes in DLB and AD, the relationship to other imaging modalities such as single-photon emission computed tomography and PET, highlighting the differences between the conditions currently applicable to the clinical setting, as well as recent developments in MRI methods yet to be translated into large-scale clinical studies.
Collapse
Affiliation(s)
- Rosie Watson
- Institute for Ageing & Health, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - John T O’Brien
- Institute for Ageing & Health, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
147
|
Hassan A, Whitwell JL, Josephs KA. The corticobasal syndrome-Alzheimer's disease conundrum. Expert Rev Neurother 2012; 11:1569-78. [PMID: 22014136 DOI: 10.1586/ern.11.153] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Corticobasal syndrome (CBS), once thought to be pathognomonic for corticobasal degeneration pathology, is increasingly reported with various underlying pathologies. Alzheimer's disease is one such pathology, also once believed to be unique for its clinical syndrome of dementia of the Alzheimer's type. CBS is believed to result from topography of asymmetric parietofrontal cortical lesion involvement, rather than lesion subtype. However, this topographical pattern is strikingly different to that typically associated with AD for unclear reasons. This article will focus on CBS with underlying AD pathology (CBS-AD), and will review associated clinical, imaging and demographic factors. Predicting AD pathology is of marked interest as disease-modifying therapies loom on the horizon, with biomarkers and imaging research underway. By reviewing the literature for CBS-AD case reports and series and contrasting them with CBS with underlying corticobasal degeneration pathology cases, the article aims to examine factors that may predict AD pathology. How AD pathology may produce this clinical phenotype, rather than the prototype dementia of the Alzheimer's type, will also be reviewed.
Collapse
Affiliation(s)
- Anhar Hassan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
148
|
Jack CR. Alzheimer disease: new concepts on its neurobiology and the clinical role imaging will play. Radiology 2012; 263:344-61. [PMID: 22517954 DOI: 10.1148/radiol.12110433] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer disease (AD) is one of, if not the most, feared diseases associated with aging. The prevalence of AD increases exponentially with age after 60 years. Increasing life expectancy coupled with the absence of any approved disease-modifying therapies at present position AD as a dominant public health problem. Major advances have occurred in the development of disease biomarkers for AD in the past 2 decades. At present, the most well-developed AD biomarkers are the cerebrospinal fluid analytes amyloid-β 42 and tau and the brain imaging measures amyloid positron emission tomography (PET), fluorodeoxyglucose PET, and magnetic resonance imaging. CSF and imaging biomarkers are incorporated into revised diagnostic guidelines for AD, which have recently been updated for the first time since their original formulation in 1984. Results of recent studies suggest the possibility of an ordered evolution of AD biomarker abnormalities that can be used to stage the typical 20-30-year course of the disease. When compared with biomarkers in other areas of medicine, however, the absence of standardized quantitative metrics for AD imaging biomarkers constitutes a major deficiency. Failure to move toward a standardized system of quantitative metrics has substantially limited potential diagnostic usefulness of imaging in AD. This presents an important opportunity that, if widely embraced, could greatly expand the application of imaging to improve clinical diagnosis and the quality and efficiency of clinical trials.
Collapse
Affiliation(s)
- Clifford R Jack
- Department of Radiology, Mayo Clinic and Foundation, Rochester, MN 55905, USA.
| |
Collapse
|
149
|
Graff-Radford J, Boeve BF, Pedraza O, Ferman TJ, Przybelski S, Lesnick TG, Vemuri P, Senjem ML, Smith GE, Knopman DS, Lowe V, Jack CR, Petersen RC, Kantarci K. Imaging and acetylcholinesterase inhibitor response in dementia with Lewy bodies. Brain 2012; 135:2470-7. [PMID: 22810436 DOI: 10.1093/brain/aws173] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acetylcholinesterase inhibitors are commonly used to treat patients with dementia with Lewy bodies. Hippocampal atrophy on magnetic resonance imaging and amyloid-β load on positron emission tomography are associated with the Alzheimer's disease-related pathology in patients with dementia with Lewy bodies. To date, few studies have investigated imaging markers that predict treatment response in patients with dementia with Lewy bodies. Our objective was to determine whether imaging markers of Alzheimer's disease-related pathology such as hippocampal volume, brain amyloid-β load on (11)C Pittsburgh compound B positron emission tomography predict treatment response to acetylcholinesterase inhibitors in patients with dementia with Lewy bodies. We performed a retrospective analysis on consecutive treatment-naive patients with dementia with Lewy bodies (n = 54) from the Mayo Clinic Alzheimer's Disease Research Centre who subsequently received acetylcholinesterase inhibitors and underwent magnetic resonance imaging with hippocampal volumetry. Baseline and follow-up assessments were obtained with the Mattis Dementia Rating Scale. Subjects were divided into three groups (reliable improvement, stable or reliable decline) using Dementia Rating Scale reliable change indices determined previously. Associations between hippocampal volumes and treatment response were tested with analysis of covariance adjusting for baseline Dementia Rating Scale, age, gender, magnetic resonance field strength and Dementia Rating Scale interval. Seven subjects underwent (11)C Pittsburgh compound B imaging within 12 weeks of magnetic resonance imaging. Global cortical (11)C Pittsburgh compound B retention (scaled to cerebellar retention) was calculated in these patients. Using a conservative psychometric method of assessing treatment response, there were 12 patients with reliable decline, 29 stable cases and 13 patients with reliable improvement. The improvers had significantly larger hippocampi than those that declined (P = 0.02) and the stable (P = 0.04) group. An exploratory analysis demonstrated larger grey matter volumes in the temporal and parietal lobes in improvers compared with those who declined (P < 0.05). The two patients who had a positive (11)C Pittsburgh compound B positron emission tomography scan declined and those who had a negative (11)C Pittsburgh compound B positron emission tomography scan improved or were stable after treatment. Patients with dementia with Lewy bodies who do not have the imaging features of coexistent Alzheimer's disease-related pathology are more likely to cognitively improve with acetylcholinesterase inhibitor treatment.
Collapse
|
150
|
Taylor JP, Firbank MJ, He J, Barnett N, Pearce S, Livingstone A, Vuong Q, McKeith IG, O'Brien JT. Visual cortex in dementia with Lewy bodies: magnetic resonance imaging study. Br J Psychiatry 2012; 200:491-8. [PMID: 22500014 PMCID: PMC3365275 DOI: 10.1192/bjp.bp.111.099432] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/17/2011] [Accepted: 12/21/2011] [Indexed: 01/29/2023]
Abstract
BACKGROUND Visual hallucinations and visuoperceptual deficits are common in dementia with Lewy bodies, suggesting that cortical visual function may be abnormal. AIMS To investigate: (1) cortical visual function using functional magnetic resonance imaging (fMRI); and (2) the nature and severity of perfusion deficits in visual areas using arterial spin labelling (ASL)-MRI. METHOD In total, 17 participants with dementia with Lewy bodies (DLB group) and 19 similarly aged controls were presented with simple visual stimuli (checkerboard, moving dots, and objects) during fMRI and subsequently underwent ASL-MRI (DLB group n = 15, control group n = 19). RESULTS Functional activations were evident in visual areas in both the DLB and control groups in response to checkerboard and objects stimuli but reduced visual area V5/MT (middle temporal) activation occurred in the DLB group in response to motion stimuli. Posterior cortical perfusion deficits occurred in the DLB group, particularly in higher visual areas. CONCLUSIONS Higher visual areas, particularly occipito-parietal, appear abnormal in dementia with Lewy bodies, while there is a preservation of function in lower visual areas (V1 and V2/3).
Collapse
Affiliation(s)
- John-Paul Taylor
- Institute for Ageing and Health, Newcastle University, Wolfson Research Centre, Campus for Ageing and Vitality, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|