101
|
Engel A. Robert Feulgen Lecture. Microscopic assessment of membrane protein structure and function. Histochem Cell Biol 2003; 120:93-102. [PMID: 12898277 DOI: 10.1007/s00418-003-0560-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2003] [Indexed: 11/25/2022]
Abstract
Membrane proteins represent an important class of proteins that are encoded by about 40% of all genes, but compared to soluble proteins structural information is sparse. Most of the atomic coordinates currently available are from bacterial membrane proteins and have been obtained by X-ray crystallography. Recent results demonstrate the imaging power of the atomic force microscope and the accuracy of electron crystallography. These methods allow membrane proteins to be studied while embedded in the bilayer, and thus in a functional state. The low signal-to-noise ratio of cryoelectron microscopy is overcome by crystallizing membrane proteins in a two-dimensional protein-lipid membrane, allowing its atomic structure to be determined. In contrast, the high signal-to-noise ratio of atomic force microscopy allows individual protein surfaces to be imaged at subnanometer resolution, and their conformational states to be sampled. This review discusses examples of microscopic membrane protein structure determination and illuminates recent progress.
Collapse
Affiliation(s)
- Andreas Engel
- M.E. Müller Institute for Microscopy, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
102
|
Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J Biol Chem 2003; 278:21655-21662. [PMID: 12663652 PMCID: PMC1360145 DOI: 10.1074/jbc.m302536200] [Citation(s) in RCA: 448] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors (GPCRs), which constitute the largest and structurally best conserved family of signaling molecules, are involved in virtually all physiological processes. Crystal structures are available only for the detergent-solubilized light receptor rhodopsin. In addition, this receptor is the only GPCR for which the presumed higher order oligomeric state in native membranes has been demonstrated (Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D. A., Engel, A., and Palczewski, K. (2003) Nature 421, 127-128). Here, we have determined by atomic force microscopy the organization of rhodopsin in native membranes obtained from wild-type mouse photoreceptors and opsin isolated from photoreceptors of Rpe65-/- mutant mice, which do not produce the chromophore 11-cis-retinal. The higher order organization of rhodopsin was present irrespective of the support on which the membranes were adsorbed for imaging. Rhodopsin and opsin form structural dimers that are organized in paracrystalline arrays. The intradimeric contact is likely to involve helices IV and V, whereas contacts mainly between helices I and II and the cytoplasmic loop connecting helices V and VI facilitate the formation of rhodopsin dimer rows. Contacts between rows are on the extracellular side and involve helix I. This is the first semi-empirical model of a higher order structure of a GPCR in native membranes, and it has profound implications for the understanding of how this receptor interacts with partner proteins.
Collapse
Affiliation(s)
- Yan Liang
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195
| | - Dimitrios Fotiadis
- the M. E. Müller Institute for Microscopy, Biozentrum, University of Basel, Basel CH-4056, Switzerland
| | - Sławomir Filipek
- the International Institute of Molecular and Cell Biology and the Faculty of Chemistry, Warsaw University, Warsaw 02109, Poland
| | - David A Saperstein
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195
| | - Krzysztof Palczewski
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
- Department Chemistry, University of Washington, Seattle, Washington 98195
| | - Andreas Engel
- the M. E. Müller Institute for Microscopy, Biozentrum, University of Basel, Basel CH-4056, Switzerland
| |
Collapse
|
103
|
Wang HW, Chen Y, Yang H, Chen X, Duan MX, Tai PC, Sui SF. Ring-like pore structures of SecA: implication for bacterial protein-conducting channels. Proc Natl Acad Sci U S A 2003; 100:4221-6. [PMID: 12642659 PMCID: PMC153074 DOI: 10.1073/pnas.0737415100] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SecA, an essential component of the general protein secretion pathway of bacteria, is present in Escherichia coli as soluble and membrane-integral forms. Here we show by electron microscopy that SecA assumes two characteristic forms in the presence of phospholipid monolayers: dumbbell-shaped elongated structures and ring-like pore structures. The ring-like pore structures with diameters of 8 nm and holes of 2 nm are found only in the presence of anionic phospholipids. These ring-like pore structures with larger 3- to 6-nm holes (without staining) were also observed by atomic force microscopic examination. They do not form in solution or in the presence of uncharged phosphatidylcholine. These ring-like phospholipid-induced pore-structures may form the core of bacterial protein-conducting channels through bacterial membranes.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Department of Biological Sciences and Biotechnology, State-Key Laboratory of Biomembranes, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
104
|
Müller DJ, Engel A. Conformations, flexibility, and interactions observed on individual membrane proteins by atomic force microscopy. Methods Cell Biol 2003; 68:257-99. [PMID: 12053734 DOI: 10.1016/s0091-679x(02)68014-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Daniel J Müller
- M. E. Müller Institute, Biocenter, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
105
|
Scheuring S, Seguin J, Marco S, Lévy D, Breyton C, Robert B, Rigaud JL. AFM characterization of tilt and intrinsic flexibility of Rhodobacter sphaeroides light harvesting complex 2 (LH2). J Mol Biol 2003; 325:569-80. [PMID: 12498803 DOI: 10.1016/s0022-2836(02)01241-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Atomic force microscopy (AFM) has developed into a powerful tool to investigate membrane protein surfaces in a close-to-native environment. Here we report on the surface topography of Rhodobacter sphaeroides light harvesting complex 2 (LH2) reconstituted into two-dimensional crystals. These photosynthetic trans-membrane proteins formed cylindrical oligomeric complexes, which inserted tilted into the lipid membrane. This peculiar packing of an integral membrane protein allowed us to determine oligomerization and tilt of the LH2 complexes, but also protrusion height and intrinsic flexibility of their individual subunits. Furthermore the surface contouring reliability and limits of the atomic force microscopy could be studied. The two-dimensional crystals examined had sizes of up to 5 microm and, as revealed by a 10 A cryo electron microscopy projection map, p22(1)2(1) crystal symmetry. The unit cell had dimensions of a = b = 150 A and gamma = 90 degrees, and housed four nonameric complexes, two pointing up and two pointing down. AFM topographs of these 2D crystals had a lateral resolution of 10 A. Further, the high vertical resolution of approximately 1 A, allowed the protrusion height of the cylindrical LH2 complexes over the membrane to be determined. This was maximally 13.1 A on one side and 3.8 A on the other. Interestingly, the protrusion height varied across the LH2 complexes, showing the complexes to be inserted with a 6.2 degree tilt with respect to the membrane plane. A detailed analysis of the individual subunits showed the intrinsic flexibility of the membrane protruding peptide stretches to be equal and independent of their protrusion height. Furthermore, our analysis of membrane proteins within this peculiar packing confirmed the high vertical resolution of the atomic force microscopy on biological samples, and led us to conclude that the image acquisition function was equally accurate for contouring protrusions with heights up to approximately 15 A.
Collapse
Affiliation(s)
- Simon Scheuring
- Institut Curie, UMR-CNRS 168 and LRC-CEA 34V, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
106
|
Engel A, Stahlberg H. Aquaglyceroporins: channel proteins with a conserved core, multiple functions, and variable surfaces. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 215:75-104. [PMID: 11952238 DOI: 10.1016/s0074-7696(02)15006-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Membrane channels for water and small nonionic solutes are required for osmoregulation in bacteria, plants, and animals. Aquaporin-1, the water channel of human erythrocytes, is the first channel demonstrated to conduct water, by expression in Xenopus oocytes. Phylogenetic analyses reveal the existence of two clusters of subfamilies, the aquaporins (AQPs) and glycerol facilitators (GLPs). Sequence-based structure prediction provided a model comprising six membrane-spanning helices, while sequence analyses suggested strategic residues that are important for structure and function. The surface topography of several AQPs has been mapped by atomic force microscopy, revealing different features that correlate with differences in the loops connecting transmembrane helices. The 3D structures of AQP1 and GlpF have been determined by electron cryomicroscopy. The 3.8-A density map allowed the first atomic model of AQP1 to be built, taking into account data from sequence analyses. This model provides some insight into the permeation of water through a channel that blocks the passage of protons. GIpF has been resolved to 6.9 A, revealing helices that are similar to those of AQP1. Homology modeling shows the channel region of these distant aquaglyceroporins to be similar, as confirmed by the 2.2-A structure of GlpF from X-ray crystallography.
Collapse
Affiliation(s)
- Andreas Engel
- M. E. Müller-Institute for Microscopic Structural Biology, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
107
|
Affiliation(s)
- Yves F Dufrêne
- Unité de Chimie des Interfaces, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
108
|
Thomas D, Bron P, Ranchy G, Duchesne L, Cavalier A, Rolland JP, Raguénès-Nicol C, Hubert JF, Haase W, Delamarche C. Aquaglyceroporins, one channel for two molecules. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:181-6. [PMID: 12206912 DOI: 10.1016/s0005-2728(02)00275-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the light of the recently published structure of GlpF and AQP1, we have analysed the nature of the residues which could be involved in the formation of the selectivity filter of aquaporins, glycerol facilitators and aquaglyceroporins. We demonstrate that the functional specificity for major intrinsic protein (MIP) channels can be explained on one side by analysing the polar environment of the residues that form the selective filter. On the other side, we show that the channel selectivity could be associated with the oligomeric state of the membrane protein. We conclude that a non-polar environment in the vicinity of the top of helix 5 could allow aquaglyceroporins and GlpF to exist as monomers within the hydrophobic environment of the membrane.
Collapse
Affiliation(s)
- Daniel Thomas
- UMR CNRS 6026, Interactions Cellulaires et Moléculaires, Equipe Canaux et Récepteurs Membranaires, Université de Rennes 1, Rennes, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
|
110
|
Scheuring S, Stahlberg H, Chami M, Houssin C, Rigaud JL, Engel A. Charting and unzipping the surface layer of Corynebacterium glutamicum with the atomic force microscope. Mol Microbiol 2002; 44:675-84. [PMID: 11994150 DOI: 10.1046/j.1365-2958.2002.02864.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacterial surface layers (S-layers) are extracellular protein networks that act as molecular sieves and protect a large variety of archaea and bacteria from hostile environments. Atomic force microscopy (AFM) was used to asses the S-layer of Coryne-bacterium glutamicum formed of PS2 proteins that assemble into hexameric complexes within a hexagonal lattice. Native and trypsin-treated S-layers were studied. Using the AFM stylus as a nanodissector, native arrays that adsorbed to mica as double layers were separated. All surfaces of native and protease-digested S-layers were imaged at better than 1 nm lateral resolution. Difference maps of the topographies of native and proteolysed samples revealed the location of the cleaved C-terminal fragment and the sidedness of the S-layer. Because the corrugation depths determined from images of both sides span the total thickness of the S-layer, a three-dimensional reconstruction of the S-layer could be calculated. Lattice defects visualized at 1 nm resolution revealed the molecular boundaries of PS2 proteins. The combination of AFM imaging and single molecule force spectroscopy allowed the mechanical properties of the Corynebacterium glutamicum S-layer to be examined. The results provide a basis for understanding the amazing stability of this protective bacterial surface coat.
Collapse
Affiliation(s)
- Simon Scheuring
- M. E. Müller Institute for Microscopy at the Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Switzerland
| | | | | | | | | | | |
Collapse
|
111
|
Müller DJ, Janovjak H, Lehto T, Kuerschner L, Anderson K. Observing structure, function and assembly of single proteins by AFM. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2002; 79:1-43. [PMID: 12225775 DOI: 10.1016/s0079-6107(02)00009-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Single molecule experiments provide insight into the individuality of biological macromolecules, their unique function, reaction pathways, trajectories and molecular interactions. The exceptional signal-to-noise ratio of the atomic force microscope allows individual proteins to be imaged under physiologically relevant conditions at a lateral resolution of 0.5-1nm and a vertical resolution of 0.1-0.2nm. Recently, it has become possible to observe single molecule events using this technique. This capability is reviewed on various water-soluble and membrane proteins. Examples of the observation of function, variability, and assembly of single proteins are discussed. Statistical analysis is important to extend conclusions derived from single molecule experiments to protein species. Such approaches allow the classification of protein conformations and movements. Recent developments of probe microscopy techniques allow simultaneous measurement of multiple signals on individual macromolecules, and greatly extend the range of experiments possible for probing biological systems at the molecular level. Biologists exploring molecular mechanisms will benefit from a burgeoning of scanning probe microscopes and of their future combination with molecular biological experiments.
Collapse
Affiliation(s)
- Daniel J Müller
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauer Str. 108, D-01307 Dresden, Germany.
| | | | | | | | | |
Collapse
|
112
|
Hafner JH, Cheung CL, Woolley AT, Lieber CM. Structural and functional imaging with carbon nanotube AFM probes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 77:73-110. [PMID: 11473787 DOI: 10.1016/s0079-6107(01)00011-6] [Citation(s) in RCA: 280] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Atomic force microscopy (AFM) has great potential as a tool for structural biology, a field in which there is increasing demand to characterize larger and more complex biomolecular systems. However, the poorly characterized silicon and silicon nitride probe tips currently employed in AFM limit its biological applications. Carbon nanotubes represent ideal AFM tip materials due to their small diameter, high aspect ratio, large Young's modulus, mechanical robustness, well-defined structure, and unique chemical properties. Nanotube probes were first fabricated by manual assembly, but more recent methods based on chemical vapor deposition provide higher resolution probes and are geared towards mass production, including recent developments that enable quantitative preparation of individual single-walled carbon nanotube tips [J. Phys. Chem. B 105 (2001) 743]. The high-resolution imaging capabilities of these nanotube AFM probes have been demonstrated on gold nanoparticles and well-characterized biomolecules such as IgG and GroES. Using the nanotube probes, new biological structures have been investigated in the areas of amyloid-beta protein aggregation and chromatin remodeling, and new biotechnologies have been developed such as AFM-based haplotyping. In addition to measuring topography, chemically functionalized AFM probes can measure the spatial arrangement of chemical functional groups in a sample. However, standard silicon and silicon nitride tips, once functionalized, do not yield sufficient resolution to allow combined structural and functional imaging of biomolecules. The unique end-group chemistry of carbon nanotubes, which can be arbitrarily modified by established chemical methods, has been exploited for chemical force microscopy, allowing single-molecule measurements with well-defined functionalized tips.
Collapse
Affiliation(s)
- J H Hafner
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
113
|
Scheuring S, Fotiadis D, Möller C, Müller SA, Engel A, Müller DJ. Single Proteins Observed by Atomic Force Microscopy. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/1438-5171(200107)2:2<59::aid-simo59>3.0.co;2-p] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
114
|
Ratcliff GC, Erie DA. A novel single-molecule study to determine protein--protein association constants. J Am Chem Soc 2001; 123:5632-5. [PMID: 11403593 DOI: 10.1021/ja005750n] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atomic force microscopy (AFM) is traditionally used as an imaging technique to gain qualitative information for a biological system. We have successfully used the imaging capabilities of the AFM to determine protein-protein association constants. We have developed a method to measure the molecular weight of a protein based on its volume determined from AFM images. Our volume determination method allows for rapid, accurate analysis of large protein populations. On the basis of the measured volume, the fraction of monomers as dimers was determined for the DNA helicase UvrD, and the dissociation constant (K(d)) for the helicase was calculated. We determined a K(d) for UvrD of 1.4 microM, which is in good agreement with published K(d) data obtained from analytical ultracentrifugation (AUC) studies. Our method provides a rapid method for determining protein-protein association constants.
Collapse
Affiliation(s)
- G C Ratcliff
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
115
|
Scheuring S, Reiss-Husson F, Engel A, Rigaud JL, Ranck JL. High-resolution AFM topographs of Rubrivivax gelatinosus light-harvesting complex LH2. EMBO J 2001; 20:3029-35. [PMID: 11406579 PMCID: PMC150200 DOI: 10.1093/emboj/20.12.3029] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2001] [Revised: 04/12/2001] [Accepted: 04/23/2001] [Indexed: 11/13/2022] Open
Abstract
Light-harvesting complexes 2 (LH2) are the accessory antenna proteins in the bacterial photosynthetic apparatus and are built up of alphabeta-heterodimers containing three bacteriochlorophylls and one carotenoid each. We have used atomic force microscopy (AFM) to investigate reconstituted LH2 from Rubrivivax gelatinosus, which has a C-terminal hydrophobic extension of 21 amino acids on the alpha-subunit. High-resolution topographs revealed a nonameric organization of the regularly packed cylindrical complexes incorporated into the membrane in both orientations. Native LH2 showed one surface which protruded by approximately 6 A and one that protruded by approximately 14 A from the membrane. Topographs of samples reconstituted with thermolysin-digested LH2 revealed a height reduction of the strongly protruding surface to approximately 9 A, and a change of its surface appearance. These results suggested that the alpha-subunit of R.gelatinosus comprises a single transmembrane helix and an extrinsic C-terminus, and allowed the periplasmic surface to be assigned. Occasionally, large rings ( approximately 120 A diameter) surrounded by LH2 rings were observed. Their diameter and appearance suggest the large rings to be LH1 complexes.
Collapse
Affiliation(s)
| | - Francoise Reiss-Husson
- M.E.Müller Institute for Microscopy at the Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland,
Centre Génétique Moléculaire, UPR-CNRS 2167, 91198 Gif-sur-Yvette Cedex and Institut Curie, UMR-CNRS 168 and LRC-CEA 8, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France Corresponding author e-mail:
| | - Andreas Engel
- M.E.Müller Institute for Microscopy at the Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland,
Centre Génétique Moléculaire, UPR-CNRS 2167, 91198 Gif-sur-Yvette Cedex and Institut Curie, UMR-CNRS 168 and LRC-CEA 8, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France Corresponding author e-mail:
| | - Jean-Louis Rigaud
- M.E.Müller Institute for Microscopy at the Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland,
Centre Génétique Moléculaire, UPR-CNRS 2167, 91198 Gif-sur-Yvette Cedex and Institut Curie, UMR-CNRS 168 and LRC-CEA 8, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France Corresponding author e-mail:
| | - Jean-Luc Ranck
- M.E.Müller Institute for Microscopy at the Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland,
Centre Génétique Moléculaire, UPR-CNRS 2167, 91198 Gif-sur-Yvette Cedex and Institut Curie, UMR-CNRS 168 and LRC-CEA 8, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France Corresponding author e-mail:
| |
Collapse
|
116
|
Abstract
Helicobacter pylori (Hp) and Streptococcus salivarius (Ss) require intrabacterial urease for acid resistance and express a urea channel, UreI. The presence of UreI was shown to increase urea permeability approximately 300-fold over that of a non-polar ureI deletion mutant. Expression of SsUreI in Xenopus oocytes increased urea uptake pH independently, whereas HpUreI shows an acidic pH dependence, half-maximal at pH 6.0. Mutagenesis of all histidines, aspartates, glutamates and the lysine in the periplasmic domain of HpUreI showed that His-123, His-131, Asp-129, Asp-140, Glu-138 and Lys-132 in the second periplasmic loop (PL2) and His-193 in the C-terminus (Ct) were important for activation of transport. With the exception of a lysine that was shown to substitute for His-193 in HpUreI, these charged amino acids are absent in SsUreI. A chimera in which PL1 of HpUreI was replaced by PL1 of SsUreI retained activity at acidic pH and gained partial activity at neutral pH. Exchange of PL2 inactivated transport, whereas exchange of Ct had no effect. Chimeras, in which either PL1 or PL2 of HpUreI replaced those of SsUreI, retained wild-type transport, but replacement of the Ct or both loops inactivated transport. PL1 appears to be important for restricting transport through HpUreI at neutral pH, whereas protonation of three histidines in PL2 and Ct and the presence of three dicarboxylic amino acids in PL2 appears to be necessary to activate HpUreI at acidic pH.
Collapse
Affiliation(s)
- D L Weeks
- University of California, Los Angeles, and Building 113, Room 324, VA Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| | | |
Collapse
|
117
|
Froger A, Rolland JP, Bron P, Lagrée V, Cahérec FL, Deschamps S, Hubert JF, Pellerin I, Thomas D, Delamarche C. Functional characterization of a microbial aquaglyceroporin. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1129-1135. [PMID: 11320116 DOI: 10.1099/00221287-147-5-1129] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The major intrinsic proteins (MIPs) constitute a widespread membrane channel family essential for osmotic cell equilibrium. The MIPs can be classified into three functional subgroups: aquaporins, glycerol facilitators and aquaglyceroporins. Bacterial MIP genes have been identified in archaea as well as in Gram-positive and Gram-negative eubacteria. However, with the exception of Escherichia coli, most bacterial MIPs have been analysed by sequence homology. Since no MIP has yet been functionally characterized in Gram-positive bacteria, we have studied one of these members from Lactococcus lactis. This MIP is shown to be permeable to glycerol, like E. coli GlpF, and to water, like E. coli AqpZ. This is the first characterization of a microbial MIP that has a mixed function. This result provides important insights to reconstruct the evolutionary history of the MIP family and to elucidate the molecular pathway of water and other solutes in these channels.
Collapse
Affiliation(s)
- Alexandrine Froger
- UMR CNRS, Interactions Cellulaires et Moléculaires, Equipe Canaux et Récepteurs Membranaires, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France1
| | - Jean-Paul Rolland
- UMR CNRS, Interactions Cellulaires et Moléculaires, Equipe Canaux et Récepteurs Membranaires, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France1
| | - Patrick Bron
- UMR CNRS, Interactions Cellulaires et Moléculaires, Equipe Canaux et Récepteurs Membranaires, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France1
| | - Valérie Lagrée
- UMR CNRS, Interactions Cellulaires et Moléculaires, Equipe Canaux et Récepteurs Membranaires, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France1
| | - Françoise Le Cahérec
- UMR CNRS, Interactions Cellulaires et Moléculaires, Equipe Canaux et Récepteurs Membranaires, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France1
| | - Stéphane Deschamps
- UMR CNRS, Interactions Cellulaires et Moléculaires, Equipe Canaux et Récepteurs Membranaires, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France1
| | - Jean-François Hubert
- UMR CNRS, Interactions Cellulaires et Moléculaires, Equipe Canaux et Récepteurs Membranaires, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France1
| | - Isabelle Pellerin
- UMR CNRS, Interactions Cellulaires et Moléculaires, Equipe Canaux et Récepteurs Membranaires, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France1
| | - Daniel Thomas
- UMR CNRS, Interactions Cellulaires et Moléculaires, Equipe Canaux et Récepteurs Membranaires, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France1
| | - Christian Delamarche
- UMR CNRS, Interactions Cellulaires et Moléculaires, Equipe Canaux et Récepteurs Membranaires, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France1
| |
Collapse
|
118
|
Borgnia MJ, Agre P. Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli. Proc Natl Acad Sci U S A 2001; 98:2888-93. [PMID: 11226336 PMCID: PMC30235 DOI: 10.1073/pnas.051628098] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2000] [Indexed: 11/18/2022] Open
Abstract
A large family of membrane channel proteins selective for transport of water (aquaporins) or water plus glycerol (aquaglyceroporins) has been found in diverse life forms. Escherichia coli has two members of this family-a water channel, AqpZ, and a glycerol facilitator, GlpF. Despite having similar primary amino acid sequences and predicted structures, the oligomeric state and solute selectivity of AqpZ and GlpF are disputed. Here we report biochemical and functional characterizations of affinity-purified GlpF and compare it to AqpZ. Histidine-tagged (His-GlpF) and hemagglutinin-tagged (HA-GlpF) polypeptides encoded by a bicistronic construct were expressed in bacteria. HA-GlpF and His-GlpF appear to form oligomers during Ni-nitrilotriacetate affinity purification. Sucrose gradient sedimentation analyses showed that the oligomeric state of octyl glucoside-solubilized GlpF varies: low ionic strength favors subunit dissociation, whereas Mg(2+) stabilizes tetrameric assembly. Reconstitution of affinity-purified GlpF into proteoliposomes increases glycerol permeability more than 100-fold and water permeability up to 10-fold compared with control liposomes. Glycerol and water permeability of GlpF both occur with low Arrhenius activation energies and are reversibly inhibited by HgCl(2). Our studies demonstrate that, unlike AqpZ, a water-selective stable tetramer, purified GlpF exists in multiple oligomeric forms under nondenaturing conditions and is highly permeable to glycerol but less well permeated by water.
Collapse
Affiliation(s)
- M J Borgnia
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | | |
Collapse
|
119
|
Lal R, Lin H. Imaging molecular structure and physiological function of gap junctions and hemijunctions by multimodal atomic force microscopy. Microsc Res Tech 2001; 52:273-88. [PMID: 11180620 DOI: 10.1002/1097-0029(20010201)52:3<273::aid-jemt1013>3.0.co;2-m] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gap junctions are specialized plasma membrane structures that join neighboring cells via specialized intercellular ion channels (hemichannels) and provide a direct pathway for cell-cell communication. They presumably mediate regulation of growth, transmission of developmental signals, coordination of muscle contraction, and maintenance of metabolic homeostasis. Hemichannels are also present in the non-junctional regions of the cell plasma membrane and they provide a direct pathway for communication between the cytoplasm and the extracellular region. Recent studies suggest that gap junctional communication is much more complex than previously anticipated, in terms of both its structure as well as its activity. While the mechanism of gap junction activity is being studied extensively, their quaternary structure, assembly, and conformational changes underlying gating of their activity as well as their physiological role are poorly understood because, due to their complex structure, these junctions are less amenable to existing techniques for high-resolution three-dimensional structure-function analyses. Atomic Force Microscopy (AFM) images molecular structure of biological specimens in an aqueous environment, allows on-line perturbations, and can be coupled with electrophysiological, biochemical, and other microscopic techniques. The present review examines the potential of AFM application for the study of the molecular structure of hydrated, native gap junctions and hemijunctions as well as their physiological functions. Special attention is paid to new, complementary, or provocative findings from AFM studies of both vertebrate and invertebrate gap junctions and hemijunctions.
Collapse
Affiliation(s)
- R Lal
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA.
| | | |
Collapse
|
120
|
Fotiadis D, Jenö P, Mini T, Wirtz S, Müller SA, Fraysse L, Kjellbom P, Engel A. Structural characterization of two aquaporins isolated from native spinach leaf plasma membranes. J Biol Chem 2001; 276:1707-14. [PMID: 11050104 DOI: 10.1074/jbc.m009383200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two members of the aquaporin family, PM28A and a new one, PM28C, were isolated and shown to be the major constituents of spinach leaf plasma membranes. These two isoforms were identified and characterized by matrix-assisted laser desorption ionization-mass spectrometry. Edman degradation yielded the amino acid sequence of two domains belonging to the new isoform. PM28B, a previously described isoform, was not found in our preparations. Scanning transmission electron microscopy mass analysis revealed both PM28 isoforms to be tetrameric. Two types of particles, a larger and a smaller one, were found by transmission electron microscopy of negatively stained solubilized proteins and by atomic force microscopy of PM28 two-dimensional crystals. The ratio of larger to smaller particles observed by transmission electron microscopy and single particle analysis correlated with the ratio of PM28A to PM28C determined by matrix-assisted laser desorption ionization-mass spectrometry. The absence of PM28B and the ratio of PM28A to PM28C indicate that these plasma membrane intrinsic proteins are differentially expressed in spinach leaves. These findings suggest that differential expression of the various aquaporin isoforms may regulate the water flux across the plasma membrane, in addition to the known mechanism of regulation by phosphorylation.
Collapse
Affiliation(s)
- D Fotiadis
- M. E. Müller-Institute for Microscopy, Biozentrum of the University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Stahlberg H, Heymann B, Mitsuoka K, Fuyijoshi Y, Engel A. Chapter 2 The aquaporin superfamily: Structure and function. CURRENT TOPICS IN MEMBRANES 2001. [DOI: 10.1016/s1063-5823(01)51004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
122
|
Dufrêne YF, Lee GU. Advances in the characterization of supported lipid films with the atomic force microscope. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1509:14-41. [PMID: 11118515 DOI: 10.1016/s0005-2736(00)00346-1] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During the past decade, the atomic force microscope (AFM) has become a key technique in biochemistry and biophysics to characterize supported lipid films, as testified by the continuous growth in the number of papers published in the field. The unique capabilities of AFM are: (i) capacity to probe, in real time and in aqueous environment, the surface structure of lipid films; (ii) ability to directly measure physical properties at high spatial resolution; (iii) possibility to modify the film structure and biophysical processes in a controlled way. Such experiments, published up to June 2000, are the focus of the present review. First, we provide a general introduction on the preparation and characterization of supported lipid films as well as on the principles of AFM. The section 'Structural properties' focuses on the various applications of AFM for characterizing the structure of supported lipid films: visualization of molecular structure, formation of structural defects, effect of external agents, formation of supported films, organization of phase-separated films (coexistence region, mixed films) and, finally, the use of supported lipid bilayers for anchoring biomolecules such as DNA, enzymes and crystalline protein arrays. The section 'Physical properties' introduces the principles of force measurements by AFM, interpretation of these measurements and their recent application to supported lipid films and related structures. Finally, we highlight the major achievements brought by the technique and some of the current limitations.
Collapse
Affiliation(s)
- Y F Dufrêne
- Unité de chimie des interfaces, Université catholique de Louvain, Belgium.
| | | |
Collapse
|
123
|
Lahajnar G, Macek P, Zupancic I. Suppression of red cell diffusional water permeability by lipophilic solutes. Bioelectrochemistry 2000; 52:179-85. [PMID: 11129241 DOI: 10.1016/s0302-4598(00)00100-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The inhibitory effect of a series of neutral lipophilic solutes (methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-amylalcohol, n-hexanol, diethylether, nitrobenzene, and pyridine) on the diffusional water permeability (Pd, tot) of bovine erythrocyte membrane at 25 degrees C was studied in comparison to that of p-chloromercuri benzoate (pCMB). Permeability data were obtained by measuring the transmembrane diffusional water exchange time tau(exch) using an 1H-T2 NMR technique. Maximal inhibition by approximately 50% of Pd, tot was produced by 2 mM pCMB which completely blocked the membrane water channels in 20 min, hence suggesting the channel-to-lipid diffusional water permeability ratio of about 1:1. Furthermore, the maximal inhibitory effect of pCMB in combination with the lipophilic solutes was lower than that of pCMB alone. As pCMB does not interfere with the lipid bilayer, and provided that it blocks the water channels in solute presence as well, this confirms that the solutes induce an increase in the lipid-mediated background water permeability contribution (Pd, lipid) by the formation of aqueous leaks in the membrane hydrophobic barrier. However, faster but less efficient in permeability inhibition than pCMB (either alone or combined with solutes) were the lipophilic solutes alone. Taken together, the results indicate that the lipophilic solutes suppress the membrane total permeability Pd, tot by two opposing effects: a reduction of its channel-mediated part (Pd, channel) to the extent exceeding that of a simultaneous Pd, lipid increase. The inhibitory potency of the solutes tested appears to be correlated with their solubility in the membrane medium.
Collapse
Affiliation(s)
- G Lahajnar
- Jozef Stefan Institute, Ljubljana, Slovenia.
| | | | | |
Collapse
|
124
|
Stahlberg H, Braun T, de Groot B, Philippsen A, Borgnia MJ, Agre P, Kühlbrandt W, Engel A. The 6.9-A structure of GlpF: a basis for homology modeling of the glycerol channel from Escherichia coli. J Struct Biol 2000; 132:133-41. [PMID: 11162735 DOI: 10.1006/jsbi.2000.4317] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The three-dimensional structure of GlpF, the glycerol facilitator of Escherichia coli, was determined by cryo-electron microscopy. The 6.9-A density map calculated from images of two-dimensional crystals shows the GlpF helices to be similar to those of AQP1, the erythrocyte water channel. While the helix arrangement of GlpF does not reflect the larger pore diameter as seen in the projection map, additional peripheral densities observed in GlpF are compatible with the 31 additional residues in loops C and E, which accordingly do not interfere with the inner channel construction. Therefore, the atomic structure of AQP1 was used as a basis for homology modeling of the GlpF channel, which is predicted to be free of bends, wider, and more vertically oriented than the AQP1 channel. Furthermore, the residues facing the GlpF channel exhibit an amphiphilic nature, being hydrophobic on one side and hydrophilic on the other side. This property may partially explain the contradiction of glycerol diffusion but limited water permeation capacity.
Collapse
Affiliation(s)
- H Stahlberg
- M. E. Müller Institute for Microscopy, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y. Structural determinants of water permeation through aquaporin-1. Nature 2000; 407:599-605. [PMID: 11034202 DOI: 10.1038/35036519] [Citation(s) in RCA: 1169] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human red cell AQP1 is the first functionally defined member of the aquaporin family of membrane water channels. Here we describe an atomic model of AQP1 at 3.8A resolution from electron crystallographic data. Multiple highly conserved amino-acid residues stabilize the novel fold of AQP1. The aqueous pathway is lined with conserved hydrophobic residues that permit rapid water transport, whereas the water selectivity is due to a constriction of the pore diameter to about 3 A over a span of one residue. The atomic model provides a possible molecular explanation to a longstanding puzzle in physiology-how membranes can be freely permeable to water but impermeable to protons.
Collapse
Affiliation(s)
- K Murata
- National Institute for Physiological Sciences, Okazaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Stolz M, Stoffler D, Aebi U, Goldsbury C. Monitoring biomolecular interactions by time-lapse atomic force microscopy. J Struct Biol 2000; 131:171-80. [PMID: 11052889 DOI: 10.1006/jsbi.2000.4301] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The atomic force microscope (AFM) is a unique imaging tool that enables the tracking of single macromolecule events in response to physiological effectors and pharmacological stimuli. Direct correlation can therefore be made between structural and functional states of individual biomolecules in an aqueous environment. This review explores how time-lapse AFM has been used to learn more about normal and disease-associated biological processes. Three specific examples have been chosen to illustrate the capabilities of this technique. In the cell, actin polymerizes into filaments, depolymerizes, and undergoes interactions with numerous effector molecules (i.e., severing, capping, depolymerizing, bundling, and cross-linking proteins) in response to many different stimuli. Such events are critical for the function and maintenance of the molecular machinery of muscle contraction and the dynamic organization of the cytoskeleton. One goal is to use time-lapse AFM to examine and manipulate some of these events in vitro, in order to learn more about how these processes occur in the cell. Aberrant protein polymerization into amyloid fibrils occurs in a multitude of diseases, including Alzheimer's and type 2 diabetes. Local amyloid deposits may cause organ dysfunction and cell death; hence, it is of interest to learn how to interfere with fibril formation. One application of time-lapse AFM in this area has been the direct visualization of amyloid fibril growth in vitro. This experimental approach holds promise for the future testing of potential therapeutic drugs, for example, by directly visualizing at which level of fibril assembly (i.e., nucleation, elongation, branching, or lateral association of protofibrils) a given active compound will interfere. Nuclear pore complexes (NPCs) are large supramolecular assemblies embedded in the nuclear envelope. Transport of ions, small molecules, proteins, RNAs, and RNP particles in and out of the nucleus occurs via NPCs. Time-lapse AFM has been used to structurally visualize the response of individual NPC particles to various chemical and physical effectors known to interfere with nucleocytoplasmic transport. Taken together, such time-lapse AFM studies could provide novel insights into the molecular mechanisms of fundamental biological processes under both normal and pathological conditions at the single molecule level.
Collapse
Affiliation(s)
- M Stolz
- M. E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
127
|
Müller DJ, Heymann JB, Oesterhelt F, Möller C, Gaub H, Büldt G, Engel A. Atomic force microscopy of native purple membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:27-38. [PMID: 10984588 DOI: 10.1016/s0005-2728(00)00127-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Atomic force microscopy (AFM) allows the observation of surface structures of purple membrane (PM) in buffer solution with subnanometer resolution. This offers the possibility to classify the major conformations of the native bacteriorhodopsin (BR) surfaces and to map the variability of individual polypeptide loops connecting transmembrane alpha-helices of BR. The position, the variability and the flexibility of these loops depend on the packing arrangement of BR molecules in the lipid bilayer with significant differences observed between the trigonal and orthorhombic crystal forms. Cleavage of the Schiff base bond leads to a disassembly of the trigonal PM crystal, which is restored by regenerating the bleached PM. The combination of single molecule AFM imaging and single molecule force-spectroscopy provides an unique insight into the interactions between individual BR molecules and the PM, and between secondary structure elements within BR.
Collapse
Affiliation(s)
- D J Müller
- M.E. Müller-Institute for Structural Biology, Biozentrum, University of Basel, Klingelkbergstr. 70, CH-4056 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
128
|
Möller C, Büldt G, Dencher NA, Engel A, Müller DJ. Reversible loss of crystallinity on photobleaching purple membrane in the presence of hydroxylamine. J Mol Biol 2000; 301:869-79. [PMID: 10966792 DOI: 10.1006/jmbi.2000.3995] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural changes of purple membrane during photobleaching in the presence of hydroxylamine were monitored using atomic force microscopy (AFM). The process of bleaching was associated with the disassembly of the purple membrane crystal into smaller crystals. Imaging steps of the photobleaching progress showed that disassembly proceeds until the sample is fully bleached and its crystallinity is almost lost. As revealed from high resolution AFM topographs, the loss of crystallinity was initiated by loss of lattice forming contact between the individual bacteriorhodopsin trimers. The bacteriorhodopsin molecules, however, remained assembled into trimers during the entire photobleaching process. Regeneration of the photobleached sample into intact purple membrane resulted in the reassembly of the bacteriorhodopsin trimers into the trigonal lattice of purple membrane. The data provide novel insights into factors triggering purple membrane formation and structure.
Collapse
Affiliation(s)
- C Möller
- M. E. Müller Institute for Structural Biology, Biozentrum, Klingelbergstr. 70, Basel, CH-4056, Switzerland
| | | | | | | | | |
Collapse
|
129
|
de Groot BL, Heymann JB, Engel A, Mitsuoka K, Fujiyoshi Y, Grubmüller H. The fold of human aquaporin 1. J Mol Biol 2000; 300:987-94. [PMID: 10891283 DOI: 10.1006/jmbi.2000.3913] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fold of human aquaporin 1 is determined from cryo-electron microscopic data at 4.5 A resolution. The monomeric structure consists of two transmembrane triple helices arranged around a pseudo-2-fold axis connected by a long flexible extracellular loop. Each triplet contains between its second and third helix a functional loop containing the highly conserved fingerprint NPA motif. These functional loops are assumed to fold inwards between the two triplets, thereby forming the heart of the water channel. The helix topology was determined from the directionality pattern of each of the six transmembrane helices with respect to the membrane, together with constraints defined by the sequence and atomic force microscopy data. The directionality of the helices was determined by collecting the best-fitting orientations resulting from a search through the three-dimensional experimental map for a large number of alpha-helical fragments. Tests on cryo-electron crystallographic bacteriorhodopsin data suggest that our method is generally applicable to determine the topology of helical proteins for which only medium-resolution electron microscopy data are available.
Collapse
Affiliation(s)
- B L de Groot
- Theoretical Molecular Biophysics Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, D-37077, Germany
| | | | | | | | | | | |
Collapse
|
130
|
Abstract
The membrane pathway of the rapid fluxes of water by which microorganisms adapt promptly to abrupt changes in environmental osmolality have begun to be understood since the discovery of the Escherichia coli aquaporin-Z water channel, AqpZ. As in animals and plants, aquaporins are variously represented among microorganisms, in which 31 homologous genes have already been identified in eubacteria, Archaea, fungi and protozoa. The AqpZ channel is selectively permeable to water, although other functions are not excluded. Consistent with a conservation over the course of evolution, AqpZ and AQP1, a human counterpart, share similar structures. The aqpZ gene is growth phase and osmotically regulated. AqpZ has a role in both the short- and the long-term osmoregulatory response and is required by rapidly growing cells. AqpZ-like proteins seem to be necessary for the virulence expressed by some pathogenic bacteria. Microbial aquaporins are also likely to be involved in spore formation and/or germination. Additional roles may still be unknown. The use of AqpZ as a model system will continue to provide insight into the understanding of the importance of aquaporins.
Collapse
Affiliation(s)
- G Calamita
- Dipartimento di Fisiologia Generale e Ambientale, Università degli Studi di Bari, via Amendola, 165/A, 70126 Bari, Italy.
| |
Collapse
|
131
|
Scheuring S, Tittmann P, Stahlberg H, Ringler P, Borgnia M, Agre P, Gross H, Engel A. The aquaporin sidedness revisited. J Mol Biol 2000; 299:1271-8. [PMID: 10873451 DOI: 10.1006/jmbi.2000.3811] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aquaporins are transmembrane water channel proteins, which play important functions in the osmoregulation and water balance of micro-organisms, plants, and animal tissues. All aquaporins studied to date are thought to be tetrameric assemblies of four subunits each containing its own aqueous pore. Moreover, the subunits contain an internal sequence repeat forming two obversely symmetric hemichannels predicted to resemble an hour-glass. This unique arrangement of two highly related protein domains oriented at 180 degrees to each other poses a significant challenge in the determination of sidedness. Aquaporin Z (AqpZ) from Escherichia coli was reconstituted into highly ordered two-dimensional crystals. They were freeze-dried and metal-shadowed to establish the relationship between surface structure and underlying protein density by electron microscopy. The shadowing of some surfaces was prevented by protruding aggregates. Thus, images collected from freeze-dried crystals that exhibited both metal-coated and uncoated regions allowed surface relief reconstructions and projection maps to be obtained from the same crystal. Cross-correlation peak searches along lattices crossing metal-coated and uncoated regions allowed an unambiguous alignment of the surface reliefs to the underlying density maps. AqpZ topographs previously determined by AFM could then be aligned with projection maps of AqpZ, and finally with human erythrocyte aquaporin-1 (AQP1). Thereby features of the AqpZ topography could be interpreted by direct comparison to the 6 A three-dimensional structure of AQP1. We conclude that the sidedness we originally proposed for aquaporin density maps was inverted.
Collapse
Affiliation(s)
- S Scheuring
- M. E. Müller Institute for Microscopy at the Biozentrum, University of Basel, Klingelbergstr. 70, Basel, CH-4056, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
132
|
|
133
|
Engel A, Fujiyoshi Y, Agre P. The importance of aquaporin water channel protein structures. EMBO J 2000; 19:800-6. [PMID: 10698922 PMCID: PMC305620 DOI: 10.1093/emboj/19.5.800] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/1999] [Revised: 01/12/2000] [Accepted: 01/12/2000] [Indexed: 11/13/2022] Open
Abstract
The history of the water channel and recent structural and functional analyses of aquaporins are reviewed. These ubiquitous channels are important for bacteria, plants and animals, exhibit a pronounced sequence homology and share functional as well as structural similarities. Aquaporins allow water or small specific solutes to pass unhindered, but block the passage of ions to prevent dissipation of the transmembrane potential. Besides advances in structure determination, recent experiments suggest that many of these channels are regulated by pH variations, phosphorylation and binding of auxiliary proteins.
Collapse
Affiliation(s)
- A Engel
- M.E.Müller-Institute for Microscopy at the Biozentrum, University of Basel, CH-4056, Switzerland.
| | | | | |
Collapse
|
134
|
Bron P, Lagrée V, Froger A, Rolland JP, Hubert JF, Delamarche C, Deschamps S, Pellerin I, Thomas D, Haase W. Oligomerization state of MIP proteins expressed in Xenopus oocytes as revealed by freeze-fracture electron-microscopy analysis. J Struct Biol 1999; 128:287-96. [PMID: 10633068 DOI: 10.1006/jsbi.1999.4196] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The MIP (major intrinsic protein) family is a widespread family of membrane proteins exhibiting two major types of channel properties: aquaporins and solute facilitators. In the present study, freeze-fracture electron microscopy was used to investigate the oligomerization state of two MIP proteins heterologously expressed in the plasma membrane of Xenopus laevis oocytes: AQPcic, an aquaporin from the insect Cicadella viridis, and GlpF, a glycerol facilitator from Escherichia coli. Swelling assays performed on oocytes 48 and 72 h following cRNA microinjections showed that these proteins were functionally expressed. Particle density determinations indicated that expression of proteins is related to an increase in particle density on the P fracture face of oocyte plasma membranes. Statistical analysis of particle sizes was performed on protoplasmic fracture faces of the plasma membrane of oocytes expressing AQPcic and GlpF 72 h after cRNA microinjections. Compared to control oocytes, AQPcic-expressing oocytes exhibited a specific population of particles with a mean diameter of 8.7 +/- 0.1 nm. This value is consistent with the previously reported tetrameric organization of AQPcic. In addition, AQPcic particles aggregate and form orthogonal arrays similar to those observed in native membranes of C. viridis, consisting of homotetramers of AQPcic. On the protoplasmic fracture face of oocytes expressing GlpF, the particle density is increased by 4.1-fold and the mean diameter of specifically added particles is 5.8 +/- 0.1 nm. This value fits with a monomer of the 28-kDa GlpF protein plus the platinum-carbon layer. These results clearly demonstrate that GlpF is a monomer when functionally expressed in plasma membranes of Xenopus oocytes and therefore emphasize the key role of the oligomerization state of MIP proteins with respect to their function.
Collapse
Affiliation(s)
- P Bron
- Equipe Canaux et Récepteurs Membranaires, UPRES-A CNRS 6026, Rennes Cedex, Bretagne, 35042, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Ringler P, Borgnia MJ, Stahlberg H, Maloney PC, Agre P, Engel A. Structure of the water channel AqpZ from Escherichia coli revealed by electron crystallography. J Mol Biol 1999; 291:1181-90. [PMID: 10518953 DOI: 10.1006/jmbi.1999.3031] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molecular water channels (aquaporins) allow living cells to adapt to osmotic variations by rapid and specific diffusion of water molecules. Aquaporins are present in animals, plants, algae, fungi and bacteria. Here we present an electron microscopic analysis of the most ancient water channel described so far: the aquaporin Z (AqpZ) of Escherichia coli. A recombinant AqpZ with a poly(histidine) tag at the N terminus has been constructed, overexpressed and purified to homogeneity. Solubilized with octylglucoside, the purified AqpZ remains associated as a homotetramer, and assembles into highly ordered two-dimensional tetragonal crystals with unit cell dimensions a = b = 95 A, gamma = 90 degrees when reconstituted by dialysis in the presence of lipids. Three-dimensional reconstruction of negatively stained lattices revealed the p42(1)2 packing arrangement that is also observed with the human erythrocyte water channel (AQP1). The 8 A projection map of the AqpZ tetramer in frozen hydrated samples is similar to that of AQP1, consistent with the high sequence homology between these proteins.
Collapse
Affiliation(s)
- P Ringler
- M.E. Müller Institute for Microscopy, University of Basel, Switzerland
| | | | | | | | | | | |
Collapse
|