101
|
Jiang WQ, Zhong ZH, Henson JD, Reddel RR. Identification of candidate alternative lengthening of telomeres genes by methionine restriction and RNA interference. Oncogene 2007; 26:4635-47. [PMID: 17297460 DOI: 10.1038/sj.onc.1210260] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/27/2006] [Accepted: 11/29/2006] [Indexed: 11/09/2022]
Abstract
Telomerase-negative cancer cells can maintain their telomeres by a recombination-mediated alternative lengthening of telomeres (ALT) process. We reported previously that sequestration of MRE11/RAD50/NBS1 complexes represses ALT-mediated telomere length maintenance, and suppresses formation of ALT-associated promyelocytic leukemia (PML) bodies (APBs). APBs are PML bodies containing telomeric DNA and telomere-binding proteins, and are observed only in a small fraction of cells within asynchronously dividing ALT-positive cell populations. Here, we report that methionine restriction caused a reversible arrest in G0/G1 phase of the cell cycle and reversible induction of APB formation in most cells within an ALT-positive population. We combined methionine restriction with RNA interference to test whether the following proteins are required for APB formation: PML body-associated proteins, PML and Sp100; telomere-associated proteins, TRF1, TRF2, TIN2 and RAP1; and DNA repair proteins, MRE11, RAD50, NBS1 and 53BP1. APB formation was not decreased by depletion of Sp100 (as reported previously) or of 53BP1, although 53BP1 partially colocalizes with APBs. Depletion of the other proteins suppressed APB formation. Because of the close linkage between ALT-mediated telomere maintenance and ability to form APBs, the eight proteins identified by this screen as being required for APB formation are also likely to be required for the ALT mechanism.
Collapse
Affiliation(s)
- W-Q Jiang
- Cancer Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | | | | | | |
Collapse
|
102
|
Potts PR, Yu H. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat Struct Mol Biol 2007; 14:581-90. [PMID: 17589526 DOI: 10.1038/nsmb1259] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 05/02/2007] [Indexed: 11/08/2022]
Abstract
Most cancer cells activate telomerase to elongate telomeres and achieve unlimited replicative potential. Some cancer cells cannot activate telomerase and use telomere homologous recombination (HR) to elongate telomeres, a mechanism termed alternative lengthening of telomeres (ALT). A hallmark of ALT cells is the recruitment of telomeres to PML bodies (termed APBs). Here, we show that the SMC5/6 complex localizes to APBs in ALT cells and is required for targeting telomeres to APBs. The MMS21 SUMO ligase of the SMC5/6 complex SUMOylates multiple telomere-binding proteins, including TRF1 and TRF2. Inhibition of TRF1 or TRF2 SUMOylation prevents APB formation. Depletion of SMC5/6 subunits by RNA interference inhibits telomere HR, causing telomere shortening and senescence in ALT cells. Thus, the SMC5/6 complex facilitates telomere HR and elongation in ALT cells by promoting APB formation through SUMOylation of telomere-binding proteins.
Collapse
Affiliation(s)
- Patrick Ryan Potts
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390-9041, USA
| | | |
Collapse
|
103
|
Cheng WH, Muftuoglu M, Bohr VA. Werner syndrome protein: functions in the response to DNA damage and replication stress in S-phase. Exp Gerontol 2007; 42:871-8. [PMID: 17587522 DOI: 10.1016/j.exger.2007.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/23/2007] [Accepted: 04/27/2007] [Indexed: 12/14/2022]
Abstract
Werner syndrome (WS) is an excellent model system for the study of human aging. WRN, a nuclear protein mutated in WS, plays multiple roles in DNA metabolism. Our understanding about the metabolic regulation and function of this RecQ helicase has advanced greatly during the past decade, largely due to the availability of purified WRN protein, WRN knockdown cells, and WRN knockout mice. Recent biochemical and genetic studies indicate that WRN plays significant roles in DNA replication, DNA repair, and telomere maintenance. Interestingly, many WRN functions require handling of DNA ends during S-phase, and evidence suggests that WRN plays both upstream and downstream roles in the response to DNA damage. Future research should focus on the mechanism(s) of WRN in the regulation of the various DNA metabolism pathways and development of therapeutic approaches to treat premature aging syndromes such as WS.
Collapse
Affiliation(s)
- Wen-Hsing Cheng
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
104
|
Abstract
When a telomere becomes unprotected or if only one end of a chromosomal double-strand break succeeds in recombining with a template sequence, DNA can be repaired by a recombination-dependent DNA replication process termed break-induced replication (BIR). In budding yeasts, there are two BIR pathways, one dependent on the Rad51 recombinase protein and one Rad51 independent; these two repair processes lead to different types of survivors in cells lacking the telomerase enzyme that is required for normal telomere maintenance. Recombination at telomeres is triggered by either excessive telomere shortening or disruptions in the function of telomere-binding proteins. Telomere elongation by BIR appears to often occur through a "roll and spread" mechanism. In this process, a telomeric circle produced by recombination at a dysfunctional telomere acts as a template for a rolling circle BIR event to form an elongated telomere. Additional BIR events can then copy the elongated sequence to all other telomeres.
Collapse
|
105
|
Kusumoto R, Muftuoglu M, Bohr VA. The role of WRN in DNA repair is affected by post-translational modifications. Mech Ageing Dev 2007; 128:50-7. [PMID: 17116323 DOI: 10.1016/j.mad.2006.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Werner syndrome (WS) is an autosomal recessive progeroid disease characterized by genomic instability. WRN gene encodes one of the RecQ helicase family proteins, WRN, which has ATPase, helicase, exonuclease and single stranded DNA annealing activities. There is accumulating evidence suggesting that WRN contributes to the maintenance of genomic integrity through its involvement in DNA repair, replication and recombination. The role of WRN in these pathways can be modulated by its post-translational modifications in response to DNA damage. Here, we review the functional consequences of post-translational modifications on WRN as well as specific DNA repair pathways where WRN is involved and discuss how these modifications affect DNA repair pathways.
Collapse
Affiliation(s)
- Rika Kusumoto
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
106
|
Sharma S, Doherty K, Brosh R. Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 2006; 398:319-37. [PMID: 16925525 PMCID: PMC1559444 DOI: 10.1042/bj20060450] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Helicases are molecular motor proteins that couple the hydrolysis of NTP to nucleic acid unwinding. The growing number of DNA helicases implicated in human disease suggests that their vital specialized roles in cellular pathways are important for the maintenance of genome stability. In particular, mutations in genes of the RecQ family of DNA helicases result in chromosomal instability diseases of premature aging and/or cancer predisposition. We will discuss the mechanisms of RecQ helicases in pathways of DNA metabolism. A review of RecQ helicases from bacteria to human reveals their importance in genomic stability by their participation with other proteins to resolve DNA replication and recombination intermediates. In the light of their known catalytic activities and protein interactions, proposed models for RecQ function will be summarized with an emphasis on how this distinct class of enzymes functions in chromosomal stability maintenance and prevention of human disease and cancer.
Collapse
Affiliation(s)
- Sudha Sharma
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
| | - Kevin M. Doherty
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
107
|
Abstract
Given the constitutive expression of telomerase in the majority of human tumors, telomerase inhibition is an attractive, broad-spectrum therapeutic target for cancer treatment. Therapeutic strategies for inhibiting telomerase activity have included both targeting components of telomerase (the protein component, TERT, or the RNA component, TERC) or by directly targeting telomere DNA structures. Recently a combination telomerase inhibition therapy has been studied also. The TERT promoter has been used to selectively express cytotoxic gene(s) in cancer cells and a TERT vaccine for immunization against telomerase has been tested. The 10% to 15% of immortalized cancer cells that do not express telomerase use a recombination-based mechanism for maintaining telomere structures that has been called the alternative lengthening of telomeres (ALT). In view of the increasing study of telomerase inhibitors as anticancer treatments, it will be crucial to determine whether inhibition of telomerase will select for cancer cells that activate ALT mechanisms of telomere maintenance.
Collapse
Affiliation(s)
- Aisha Siddiqa
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | |
Collapse
|
108
|
Abstract
Werner syndrome (WS) is a segmental progeroid syndrome in which patients display pleiotropic features of aging seen in the normal population. The advent of positional cloning in the 1990s markedly accelerated the identification of human disease-causing genes. In 1996, mutations in WRN, which was shown to encode a new, putative member of the family of RecQ DNA helicases, were identified in four patients as the cause of WS. Ten years after the identification of WRN, what have we learned about its role in WS, and its contribution to normal aging?
Collapse
Affiliation(s)
- Fuki M Hisama
- Department of Neurology, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
109
|
Spillare EA, Wang XW, von Kobbe C, Bohr VA, Hickson ID, Harris CC. Redundancy of DNA helicases in p53-mediated apoptosis. Oncogene 2006; 25:2119-23. [PMID: 16288211 PMCID: PMC1420682 DOI: 10.1038/sj.onc.1209242] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A subset of DNA helicases, the RecQ family, has been found to be associated with the p53-mediated apoptotic pathway and is involved in maintaining genomic integrity. This family contains the BLM and WRN helicases, in which germline mutations are responsible for Bloom and Werner syndromes, respectively. TFIIH DNA helicases, XPB and XPD, are also components in this apoptotic pathway. We hypothesized that there may be some redundancy between helicases in their ability to complement the attenuated p53-mediated apoptotic levels seen in cells from individuals with diseases associated with these defective helicase genes. The attenuated apoptotic phenotype in Bloom syndrome cells was rescued not only by ectopic expression of BLM, but also by WRN or XPB, both 3' --> 5' helicases, but not expression of the 5' --> 3' helicase XPD. Overexpression of Sgs1, a WRN/BLM yeast homolog, corrected the reduction in BS cells only, which is consistent with Sgs1 being evolutionarily most homologous to BLM. A restoration of apoptotic levels in cells from WS, XPB or XPD patients was attained only by overexpression of the specific helicase. Our data suggest a limited redundancy in the pathways of these RecQ helicases in p53-induced apoptosis.
Collapse
Affiliation(s)
- E A Spillare
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | |
Collapse
|
110
|
Huang S, Lee L, Hanson NB, Lenaerts C, Hoehn H, Poot M, Rubin CD, Chen DF, Yang CC, Juch H, Dorn T, Spiegel R, Oral EA, Abid M, Battisti C, Lucci-Cordisco E, Neri G, Steed EH, Kidd A, Isley W, Showalter D, Vittone JL, Konstantinow A, Ring J, Meyer P, Wenger SL, von Herbay A, Wollina U, Schuelke M, Huizenga CR, Leistritz DF, Martin GM, Mian IS, Oshima J. The spectrum of WRN mutations in Werner syndrome patients. Hum Mutat 2006; 27:558-67. [PMID: 16673358 PMCID: PMC1868417 DOI: 10.1002/humu.20337] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The International Registry of Werner syndrome (www.wernersyndrome.org) has been providing molecular diagnosis of the Werner syndrome (WS) for the past decade. The present communication summarizes, from among 99 WS subjects, the spectrum of 50 distinct mutations discovered by our group and by others since the WRN gene (also called RECQL2 or REQ3) was first cloned in 1996; 25 of these have not previously been published. All WRN mutations reported thus far have resulted in the elimination of the nuclear localization signal at the C-terminus of the protein, precluding functional interactions in the nucleus; thus, all could be classified as null mutations. We now report two new mutations in the N-terminus that result in instability of the WRN protein. Clinical data confirm that the most penetrant phenotype is bilateral ocular cataracts. Other cardinal signs were seen in more than 95% of the cases. The median age of death, previously reported to be in the range of 46-48 years, is 54 years. Lymphoblastoid cell lines (LCLs) have been cryopreserved from the majority of our index cases, including material from nuclear pedigrees. These, as well as inducible and complemented hTERT (catalytic subunit of human telomerase) immortalized skin fibroblast cell lines are available to qualified investigators.
Collapse
Affiliation(s)
- Shurong Huang
- Department of Pathology, University of Washington, Seattle, Washington 98195-7470, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
Telomeres are composed of repetitive G-rich sequence and an abundance of associated proteins that together form a dynamic cap that protects chromosome ends and allows them to be distinguished from deleterious DSBs. Telomere-associated proteins also function to regulate telomerase, the ribonucleoprtotein responsible for addition of the species-specific terminal repeat sequence. Loss of telomere function is an important mechanism for the chromosome instability commonly found in cancer. Dysfunctional telomeres can result either from alterations in the telomere-associated proteins required for end-capping function, or from alterations that promote the gradual or sudden loss of sufficient repeat sequence necessary to maintain proper telomere structure. Regardless of the mechanism, loss of telomere function can result in sister chromatid fusion and prolonged breakage/fusion/bridge (B/F/B) cycles, leading to extensive DNA amplification and large terminal deletions. B/F/B cycles terminate primarily when the unstable chromosome acquires a new telomere, most often by translocation of the ends of other chromosomes, thereby providing a mechanism for transfer of instability from one chromosome to another. Thus, the loss of a single telomere can result in on-going instability, affect multiple chromosomes, and generate many of the types of rearrangements commonly associated with human cancer.
Collapse
Affiliation(s)
- Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
112
|
Huber MD, Duquette ML, Shiels JC, Maizels N. A Conserved G4 DNA Binding Domain in RecQ Family Helicases. J Mol Biol 2006; 358:1071-80. [PMID: 16530788 DOI: 10.1016/j.jmb.2006.01.077] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/17/2006] [Accepted: 01/20/2006] [Indexed: 11/18/2022]
Abstract
RecQ family helicases play important roles at G-rich domains of the genome, including the telomeres, rDNA, and immunoglobulin switch regions. This appears to reflect the unusual ability of enzymes in this family to unwind G4 DNA. How RecQ family helicases recognize this substrate has not been established. Here, we show that G4 DNA is a preferred target for BLM helicase within the context of long DNA molecules. We identify the RQC domain, found only in RecQ family enzymes, as an independent, high affinity and conserved G4 DNA binding domain; and show that binding to Holliday junctions involves both the RQC and the HRDC domains. These results provide mechanistic understanding of differences and redundancies of function and activities among RecQ family helicases, and of how deficiencies in human members of this family may contribute to genomic instability and disease.
Collapse
Affiliation(s)
- Michael D Huber
- Department of Biochemistry, University of Washington Medical School, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
113
|
Tsai HJ, Huang WH, Li TK, Tsai YL, Wu KJ, Tseng SF, Teng SC. Involvement of Topoisomerase III in Telomere-Telomere Recombination. J Biol Chem 2006; 281:13717-13723. [PMID: 16546998 DOI: 10.1074/jbc.m600649200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of telomerase. In both mammalian tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative (ALT) recombination mechanism. In yeast, Sgs1p and its associated type IA topoisomerase, Top3p, may work coordinately in removing Holliday junction intermediates from a crossover-producing recombination pathway. Previous studies have also indicated that Sgs1 helicase acts in a telomere recombination pathway. Here we show that topoisomerase III is involved in telomere-telomere recombination. The recovery of telomere recombination-dependent survivors in a telomerase-minus yeast strain was dependent on Top3p catalytic activity. Moreover, the RIF1 and RIF2 genes are required for the establishment of TOP3/SGS1-dependent telomere-telomere recombination. In human Saos-2 ALT cells, human topoisomerase IIIalpha (hTOP3alpha) also contributes to telomere recombination. Strikingly, the telomerase activity is clearly enhanced in surviving si-hTOP3alpha Saos-2 ALT cells. Altogether, the present results suggest a potential role for hTOP3alpha in dissociating telomeric structures in telomerase-deficient cells, providing therapeutic implications in human tumors.
Collapse
Affiliation(s)
- Hung-Ji Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 10018, Taiwan
| | - Wei-Hsiang Huang
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 10018, Taiwan
| | - Tsai-Kun Li
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 10018, Taiwan
| | - Yun-Luen Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 10018, Taiwan
| | - Kou-Juey Wu
- Institute of Biochemistry, National Yang-Ming University, Taipei 11221, Taiwan
| | - Shun-Fu Tseng
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 10018, Taiwan
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 10018, Taiwan; Institute of Internal Medicine, National Taiwan University Hospital, Taipei 10018, Taiwan.
| |
Collapse
|
114
|
Rossi ML, Purohit V, Brandt PD, Bambara RA. Lagging strand replication proteins in genome stability and DNA repair. Chem Rev 2006; 106:453-73. [PMID: 16464014 DOI: 10.1021/cr040497l] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marie L Rossi
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | | | | | |
Collapse
|
115
|
Wen WY, Tsai HJ, Lin CC, Tseng SF, Wong CW, Teng SC. Telomere configuration influences the choice of telomere maintenance pathways. Biochem Biophys Res Commun 2006; 343:459-66. [PMID: 16546132 DOI: 10.1016/j.bbrc.2006.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 03/03/2006] [Indexed: 10/24/2022]
Abstract
Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of telomerase. In yeast cells that lack telomerase, telomeres are maintained by alternative type I and type II recombination mechanisms. Previous studies identified several proteins to control the choice between two types of recombinations. Here, we demonstrate that configuration of telomeres also plays a role to determine the fate of telomere replication in progeny. When diploid yeasts from mating equip with a specific type of telomeric structure in their genomes, they prefer to maintain this type of telomere replication in their descendants. While inherited telomere structure is easier to be utilized in progeny at the beginning stage, the telomeres in type I diploids can gradually switch to the type II cells in liquid culture. Importantly, the TLC1/tlc1 yeast cells develop type II survivors suggesting that haploid insufficiency of telomerase RNA component, which is similar to a type of dyskeratosis congenital in human. Altogether, our results suggest that both protein factors and substrate availability contribute to the choice among telomere replication pathways in yeast.
Collapse
Affiliation(s)
- Wan-Ying Wen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
116
|
Zhang DH, Zhou B, Huang Y, Xu LX, Zhou JQ. The human Pif1 helicase, a potential Escherichia coli RecD homologue, inhibits telomerase activity. Nucleic Acids Res 2006; 34:1393-404. [PMID: 16522649 PMCID: PMC1390689 DOI: 10.1093/nar/gkl029] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Telomeres, the protein-DNA complexes at the ends of eukaryotic chromosomes, are essential for chromosome stability, and their maintenance is achieved by the specialized reverse transcriptase activity of telomerase or the homologous recombination pathway in most eukaryotes. Here, we identified a human helicase, hPif1 that inhibits telomerase activity. The primary sequence and biochemical analysis suggest that hPif1 is a potential homologue of Escherichia coli RecD, an ATP-dependent 5' to 3' DNA helicase. Ectopic expression of wild-type, but not the ATPase/helicase-deficient hPif1, causes telomere shortening in HT1080 cells. hPif1 reduces telomerase processivity and unwinds DNA/RNA duplex in vitro. hPif1 preferentially binds telomeric DNA in vitro and in vivo. We propose that the mechanism of hPif1's inhibition on telomerase involves unwinding of the DNA/RNA duplex formed by telomerase RNA and telomeric DNA, and RecD homologues in eukaryotes may have evolved gaining additional functions.
Collapse
Affiliation(s)
| | | | | | | | - Jin-Qiu Zhou
- To whom correspondence should be addressed. Tel: 86 21 54921078; Fax: 86 21 54921076;
| |
Collapse
|
117
|
Hartung F, Puchta H. The RecQ gene family in plants. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:287-96. [PMID: 16371241 DOI: 10.1016/j.jplph.2005.10.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 10/15/2005] [Indexed: 05/05/2023]
Abstract
RecQ helicases are conserved throughout all kingdoms of life regarding their overall structure and function. They are 3'-5' DNA helicases resolving different recombinogenic DNA structures. The RecQ helicases are key factors in a number of DNA repair and recombination pathways involved in the maintenance of genome integrity. In eukaryotes the number of RecQ genes and the structure of RecQ proteins vary strongly between organisms. Therefore, they have been named RecQ-like genes. Knockouts of several RecQ-like genes cause severe diseases in animals or harmful cellular phenotypes in yeast. Until now the largest number of RecQ-like genes per organism has been found in plants. Arabidopsis and rice possess seven different RecQ-like genes each. In the almost completely sequenced genome of the moss Physcomitrella patens at least five RecQ-like genes are present. One of the major present and future research aims is to define putative plant-specific functions and to assign their roles in DNA repair and recombination pathways in relation to RecQ genes from other eukaryotes. Regarding their intron positions, the structures of six RecQ-like genes of dicots and monocots are virtually identical indicating a conservation over a time scale of 150 million years. In contrast to other eukaryotes one gene (RecQsim) exists exclusively in plants. It possesses an interrupted helicase domain but nevertheless seems to have maintained the RecQ function. Owing to a recent gene duplication besides the AtRecQl4A gene an additional RecQ-like gene (AtRecQl4B) exists in the Brassicaceae only. Genetic studies indicate that a AtRecQl4A knockout results in sensitivity to mutagens as well as an hyper-recombination phenotype. Since AtRecQl4B was still present, both genes must have non-redundant roles. Analysis of plant RecQ-like genes will not only increase the knowledge on DNA repair and recombination, but also on the evolution and radiation of protein families.
Collapse
Affiliation(s)
- Frank Hartung
- Botanisches Institut II, Universität Karlsruhe (TH), Kaiserstr. 12, 76128 Karlsruhe, Germany.
| | | |
Collapse
|
118
|
Azam M, Lee JY, Abraham V, Chanoux R, Schoenly KA, Johnson FB. Evidence that the S.cerevisiae Sgs1 protein facilitates recombinational repair of telomeres during senescence. Nucleic Acids Res 2006; 34:506-16. [PMID: 16428246 PMCID: PMC1342037 DOI: 10.1093/nar/gkj452] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RecQ DNA helicases, including yeast Sgs1p and the human Werner and Bloom syndrome proteins, participate in telomere biology, but the underlying mechanisms are not fully understood. Here, we explore the protein sequences and genetic interactors of Sgs1p that function to slow the senescence of telomerase (tlc1) mutants. We find that the S-phase checkpoint function of Sgs1p is dispensable for preventing rapid senescence, but that Sgs1p sequences required for homologous recombination, including the helicase domain and topoisomerase III interaction domain, are essential. sgs1 and rad52 mutations are epistatic during senescence, indicating that Sgs1p participates in a RAD52-dependent recombinational pathway of telomere maintenance. Several mutations that are synthetically lethal with sgs1 mutation and which individually lead to genome instability, including mus81, srs2, rrm3, slx1 and top1, do not speed the senescence of tlc1 mutants, indicating that the rapid senescence of sgs1 tlc1 mutants is not caused by generic genome instability. However, mutations in SLX5 or SLX8, which encode proteins that function together in a complex that is required for viability in sgs1 mutants, do speed the senescence of tlc1 mutants. These observations further define roles for RecQ helicases and related proteins in telomere maintenance.
Collapse
Affiliation(s)
- Mahrukh Azam
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of MedicinePhiladelphia, PA, USA
| | - Julia Y. Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of MedicinePhiladelphia, PA, USA
| | - Veena Abraham
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of MedicinePhiladelphia, PA, USA
| | - Rebecca Chanoux
- Cell and Molecular Biology Graduate Program, University of Pennsylvania School of MedicinePhiladelphia, PA, USA
| | - Kimberly A. Schoenly
- Cell and Molecular Biology Graduate Program, University of Pennsylvania School of MedicinePhiladelphia, PA, USA
| | - F. Brad Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of MedicinePhiladelphia, PA, USA
- Cell and Molecular Biology Graduate Program, University of Pennsylvania School of MedicinePhiladelphia, PA, USA
- To whom correspondence should be addressed. Tel: +1 215 573 5037; Fax: +1 215 573 6317;
| |
Collapse
|
119
|
Laud PR, Multani AS, Bailey SM, Wu L, Ma J, Kingsley C, Lebel M, Pathak S, DePinho RA, Chang S. Elevated telomere-telomere recombination in WRN-deficient, telomere dysfunctional cells promotes escape from senescence and engagement of the ALT pathway. Genes Dev 2006; 19:2560-70. [PMID: 16264192 PMCID: PMC1276730 DOI: 10.1101/gad.1321305] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Werner Syndrome (WS) is characterized by premature aging, genomic instability, and cancer. The combined impact of WRN helicase deficiency and limiting telomere reserves is central to disease pathogenesis. Here, we report that cells doubly deficient for telomerase and WRN helicase show chromosomal aberrations and elevated recombination rates between telomeres of sister chromatids. Somatic reconstitution of WRN function, but not a WRN helicase-deficient mutant, abolished telomere sister chromatid exchange (T-SCE), indicating that WRN normally represses T-SCEs. Elevated T-SCE was associated with greater immortalization potential and resultant tumors maintained telomeres via the alternative lengthening of telomere (ALT) pathway. We propose that the increased incidence of chromosomal instability and cancer in WS relates in part to aberrant recombinations between sister chromatids at telomeres, which facilitates the activation of ALT and engenders cancer-relevant chromosomal aberrations and tumor formation.
Collapse
Affiliation(s)
- Purnima R Laud
- Department of Molecular Genetics, University of Texas, The M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Lin CY, Chang HH, Wu KJ, Tseng SF, Lin CC, Lin CP, Teng SC. Extrachromosomal telomeric circles contribute to Rad52-, Rad50-, and polymerase delta-mediated telomere-telomere recombination in Saccharomyces cerevisiae. EUKARYOTIC CELL 2005; 4:327-36. [PMID: 15701795 PMCID: PMC549320 DOI: 10.1128/ec.4.2.327-336.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the telomerase reverse transcriptase. In both tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative recombination mechanism. By using an in vivo inducible Cre-loxP system to generate and trace the fate of marked telomeric DNA-containing rings, the efficiency of telomere-telomere recombination can be determined quantitatively. We show that the telomeric loci are the primary sites at which a marked telomeric ring-containing DNA is observed among wild-type and surviving cells lacking telomerase. Marked telomeric DNAs can be transferred to telomeres and form tandem arrays through Rad52-, Rad50-, and polymerase delta-mediated recombination. Moreover, increases of extrachromosomal telomeric and Y' rings were observed in telomerase-deficient cells. These results imply that telomeres can use looped-out telomeric rings to promote telomere-telomere recombination in telomerase-deficient Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Chi-Ying Lin
- Department of Microbiology, National Taiwan University College of Medicine,Taipei 10018, Taiwan
| | | | | | | | | | | | | |
Collapse
|
121
|
Ozgenc A, Loeb LA. Current advances in unraveling the function of the Werner syndrome protein. Mutat Res 2005; 577:237-51. [PMID: 15946710 DOI: 10.1016/j.mrfmmm.2005.03.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 03/29/2005] [Accepted: 03/29/2005] [Indexed: 05/02/2023]
Abstract
Werner syndrome (WS) is an autosomal recessive premature aging disease manifested by the mimicry of age-related phenotypes such as atherosclerosis, arteriosclerosis, cataracts, osteoporosis, soft tissue calcification, premature thinning, graying, and loss of hair, as well as a high incidence of some types of cancers. The gene product defective in WS, WRN, is a member of the RecQ family of DNA helicases that are widely distributed in nature and believed to play central roles in genomic stability of organisms ranging from prokaryotes to mammals. Interestingly, WRN is a bifunctional protein that is exceptional among RecQ helicases in that it also harbors an exonuclease activity. Furthermore, it preferentially operates on aberrant DNA structures believed to exist in vivo as intermediates in specific DNA transactions such as replication (forked DNA), recombination (Holliday junction, triplex and tetraplex DNA), and repair (partial duplex with single stranded bubble). In addition, WRN has been shown to physically and functionally interact with a variety of DNA-processing proteins, including those that are involved in resolving alternative DNA structures, repair DNA damage, and provide checkpoints for genomic stability. Despite significant research activity and considerable progress in understanding the biochemical and molecular genetic function of WRN, the in vivo molecular pathway(s) of WRN remain elusive. The following review focuses on the recent advances in the biochemistry of WRN and considers the putative in vivo functions of WRN in light of its many protein partners.
Collapse
Affiliation(s)
- Ali Ozgenc
- The Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle, WA 98195-7705, USA
| | | |
Collapse
|
122
|
Opresko PL, Mason PA, Podell ER, Lei M, Hickson ID, Cech TR, Bohr VA. POT1 Stimulates RecQ Helicases WRN and BLM to Unwind Telomeric DNA Substrates. J Biol Chem 2005; 280:32069-80. [PMID: 16030011 DOI: 10.1074/jbc.m505211200] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defects in human RecQ helicases WRN and BLM are responsible for the cancer-prone disorders Werner syndrome and Bloom syndrome. Cellular phenotypes of Werner syndrome and Bloom syndrome, including genomic instability and premature senescence, are consistent with telomere dysfunction. RecQ helicases are proposed to function in dissociating alternative DNA structures during recombination and/or replication at telomeric ends. Here we report that the telomeric single-strand DNA-binding protein, POT1, strongly stimulates WRN and BLM to unwind long telomeric forked duplexes and D-loop structures that are otherwise poor substrates for these helicases. This stimulation is dependent on the presence of telomeric sequence in the duplex regions of the substrates. In contrast, POT1 failed to stimulate a bacterial 3'-5'-helicase. We find that purified POT1 binds to WRN and BLM in vitro and that full-length POT1 (splice variant 1) precipitates a higher amount of endogenous WRN protein, compared with BLM, from the HeLa nuclear extract. We propose roles for the cooperation of POT1 with RecQ helicases WRN and BLM in resolving DNA structures at telomeric ends, in a manner that protects the telomeric 3' tail as it is exposed during unwinding.
Collapse
Affiliation(s)
- Patricia L Opresko
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
123
|
Bagherieh-Najjar MB, de Vries OMH, Hille J, Dijkwel PP. Arabidopsis RecQI4A suppresses homologous recombination and modulates DNA damage responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:789-98. [PMID: 16146519 DOI: 10.1111/j.1365-313x.2005.02501.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The DNA damage response and DNA recombination are two interrelated mechanisms involved in maintaining the integrity of the genome, but in plants they are poorly understood. RecQ is a family of genes with conserved roles in the regulation of DNA recombination in eukaryotes; there are seven members in Arabidopsis. Here we report on the functional analysis of the Arabidopsis RecQl4A gene. Ectopic expression of Arabidopsis RecQl4A in yeast RecQ-deficient cells suppressed their hypersensitivity to the DNA-damaging drug methyl methanesulfonate (MMS) and enhanced their rate of homologous recombination (HR). Analysis of three recQl4A mutant alleles revealed no obvious developmental defects or telomere deregulation in plants grown under standard growth conditions. Compared with wild-type Arabidopsis, the recQl4A mutant seedlings were found to be hypersensitive to UV light and MMS, and more resistant to mitomycin C. The average frequency of intrachromosomal HR in recQl4A mutant plants was increased 7.5-fold over that observed in wild-type plants. The data reveal roles for Arabidopsis RecQl4A in maintenance of genome stability by modulation of the DNA damage response and suppression of HR.
Collapse
Affiliation(s)
- Mohammad B Bagherieh-Najjar
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | |
Collapse
|
124
|
Lillard-Wetherell K, Combs KA, Groden J. BLM Helicase Complements Disrupted Type II Telomere Lengthening in Telomerase-Negative sgs1 Yeast: Figure 1. Cancer Res 2005; 65:5520-2. [PMID: 15994923 DOI: 10.1158/0008-5472.can-05-0632] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recombination-mediated pathways for telomere lengthening may be utilized in the absence of telomerase activity. The RecQ-like helicases, BLM and Sgs1, are implicated in recombination-mediated telomere lengthening in human cells and budding yeast, respectively. Here, we show that BLM expression rescues disrupted telomere lengthening in telomerase-negative sgs1 yeast. BLM helicase activity is required for this complementation, indicating BLM and Sgs1 resolve the same telomeric structures. These data support a conserved function for BLM and Sgs1 in recombination-mediated telomere lengthening.
Collapse
Affiliation(s)
- Kate Lillard-Wetherell
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | | | |
Collapse
|
125
|
Lee JW, Harrigan J, Opresko PL, Bohr VA. Pathways and functions of the Werner syndrome protein. Mech Ageing Dev 2005; 126:79-86. [PMID: 15610765 DOI: 10.1016/j.mad.2004.09.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutations in human WRN (also known as RECQ3) gene give rise to a rare autosomal recessive genetic disorder, Werner syndrome (WS). WS is a premature aging disease characterized by predisposition to cancer and early onset of symptoms related to normal aging including osteoporosis, ocular cataracts, graying and loss of hair, diabetes mellitus, arteriosclerosis, and atherosclerosis. This review focuses on the functional role of Werner protein (WRN) in guarding the genetic stability of cells, particularly by playing an integral role in the base excision repair, and at the telomere ends. Furthermore, in-depth biochemical investigations have significantly advanced our understanding of WRN protein regarding its binding partners and the site of protein-protein interaction. The mapping analysis of protein interaction sites in WRN for most of its binding partners have revealed a common site of protein-protein interaction in the RecQ conserved (RQC) region of WRN.
Collapse
Affiliation(s)
- Jae Wan Lee
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
126
|
Fasching CL, Bower K, Reddel RR. Telomerase-independent telomere length maintenance in the absence of alternative lengthening of telomeres-associated promyelocytic leukemia bodies. Cancer Res 2005; 65:2722-9. [PMID: 15805271 DOI: 10.1158/0008-5472.can-04-2881] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immortal tumor cells and cell lines employ a telomere maintenance mechanism that allows them to escape the normal limits on proliferative potential. In the absence of telomerase, telomere length may be maintained by an alternative lengthening of telomeres (ALT) mechanism. All human ALT cell lines described thus far have nuclear domains of unknown function, termed ALT-associated promyelocytic leukemia bodies (APB), containing promyelocytic leukemia protein, telomeric DNA and telomere binding proteins. Here we describe telomerase-negative human cells with telomeres that contain a substantial proportion of nontelomeric DNA sequences (like telomerase-null Saccharomyces cerevisiae survivor type I cells) and that are maintained in the absence of APBs. In other respects, they resemble typical ALT cell lines: the telomeres are highly heterogeneous in length (ranging from very short to very long) and undergo rapid changes in length. In addition, these cells are capable of copying a targeted DNA tag from one telomere into other telomeres. These data show that APBs are not always essential for ALT-mediated telomere maintenance.
Collapse
Affiliation(s)
- Clare L Fasching
- Children's Medical Research Institute, Westmead, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
127
|
Marciniak RA, Cavazos D, Montellano R, Chen Q, Guarente L, Johnson FB. A novel telomere structure in a human alternative lengthening of telomeres cell line. Cancer Res 2005; 65:2730-7. [PMID: 15805272 DOI: 10.1158/0008-5472.can-04-2888] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer cells require mechanisms to maintain telomeres. Most use telomerase, but 5% to 20% of tumors use alternative lengthening of telomeres (ALT), a telomerase-independent mechanism that seems to depend on recombination. ALT is characterized by amplification of telomere TTAGGG repeats to lengths beyond 50 kb, by elevated rates of telomere recombination, and by nuclear structures called ALT-associated promyelocytic leukemia bodies. In Saccharomyces cerevisiae, survivors of telomerase inactivation also use recombination to maintain telomeres. There are two types of survivors, which differ in telomere structure. The first possesses telomere repeats and the Y' subtelomeric element amplified together as a tandem array at chromosome termini (type I), and the other possesses amplification of telomeric repeats alone (type II), similar to previously described human ALT cells. Here, we describe the first human ALT cell line having "tandem array" telomeres with a structure similar to that of type I yeast survivors. The chromosome termini consist of a repeat unit containing approximately 2.5 kb of SV40 DNA and a variable amount of TTAGGG sequence repeated in tandem an average of 10 to 20 times. Similar to previously described ALT cells, they show evidence of telomere recombination, but unlike standard ALT cells, they lack ALT-associated promyelocytic leukemia bodies and their telomeres are transcribed. These findings have implications for the pathogenesis and diagnosis of cancer.
Collapse
Affiliation(s)
- Robert A Marciniak
- Department of Medicine, University of Texas Health Science Center at San Antonio, South Texas Veterans Health Care System, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
128
|
Jiang WQ, Zhong ZH, Henson JD, Neumann AA, Chang ACM, Reddel RR. Suppression of alternative lengthening of telomeres by Sp100-mediated sequestration of the MRE11/RAD50/NBS1 complex. Mol Cell Biol 2005; 25:2708-21. [PMID: 15767676 PMCID: PMC1061646 DOI: 10.1128/mcb.25.7.2708-2721.2005] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Approximately 10% of cancers overall use alternative lengthening of telomeres (ALT) instead of telomerase to prevent telomere shortening, and ALT is especially common in astrocytomas and various types of sarcomas. The hallmarks of ALT in telomerase-negative cancer cells include a unique pattern of telomere length heterogeneity, rapid changes in individual telomere lengths, and the presence of ALT-associated promyelocytic leukemia bodies (APBs) containing telomeric DNA and proteins involved in telomere binding, DNA replication, and recombination. The ALT mechanism appears to involve recombination-mediated DNA replication, but the molecular details are largely unknown. In telomerase-null Saccharomyces cerevisiae, an analogous survivor mechanism is dependent on the RAD50 gene. We demonstrate here that overexpression of Sp100, a constituent of promyelocytic leukemia nuclear bodies, sequestered the MRE11, RAD50, and NBS1 recombination proteins away from APBs. This resulted in repression of the ALT mechanism, as evidenced by progressive telomere shortening at 121 bp per population doubling, a rate within the range found in telomerase-negative normal cells, suppression of rapid telomere length changes, and suppression of APB formation. Spontaneously generated C-terminally truncated Sp100 that did not sequester the MRE11, RAD50, and NBS1 proteins failed to inhibit ALT. These findings identify for the first time proteins that are required for the ALT mechanism.
Collapse
Affiliation(s)
- Wei-Qin Jiang
- Children's Medical Research Institute, 214 Hawkesbury Rd., Westmead, NSW 2145, Australia
| | | | | | | | | | | |
Collapse
|
129
|
Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW. DNA repair, genome stability, and aging. Cell 2005; 120:497-512. [PMID: 15734682 DOI: 10.1016/j.cell.2005.01.028] [Citation(s) in RCA: 648] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aging can be defined as progressive functional decline and increasing mortality over time. Here, we review evidence linking aging to nuclear DNA lesions: DNA damage accumulates with age, and DNA repair defects can cause phenotypes resembling premature aging. We discuss how cellular DNA damage responses may contribute to manifestations of aging. We review Sir2, a factor linking genomic stability, metabolism, and aging. We conclude with a general discussion of the role of mutant mice in aging research and avenues for future investigation.
Collapse
Affiliation(s)
- David B Lombard
- Howard Hughes Medical Institute, The Children's Hospital, Department of Genetics, Harvard Medical School and, The CBR Institute for Biomedical Research, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
130
|
Abstract
RecQ family helicases play important roles in coordinating genome maintenance pathways in living cells. In the absence of functional RecQ proteins, cells exhibit a variety of phenotypes, including increased mitotic recombination, elevated chromosome missegregation, hypersensitivity to DNA-damaging agents, and defects in meiosis. Mutations in three of the five human RecQ family members give rise to genetic disorders associated with a predisposition to cancer and premature aging, highlighting the importance of RecQ proteins and their cellular activities for human health. Current evidence suggests that RecQ proteins act at multiple steps in DNA replication, including stabilization of replication forks and removal of DNA recombination intermediates, in order to maintain genome integrity. The cellular basis of RecQ helicase function may be explained through interactions with multiple components of the DNA replication and recombination machinery. This review focuses on biochemical and structural aspects of the RecQ helicases and how these features relate to their known cellular function, specifically in preventing excessive recombination.
Collapse
Affiliation(s)
- Richard J Bennett
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | | |
Collapse
|
131
|
Maringele L, Lydall D. EXO1 plays a role in generating type I and type II survivors in budding yeast. Genetics 2005; 166:1641-9. [PMID: 15126386 PMCID: PMC1470825 DOI: 10.1534/genetics.166.4.1641] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Telomerase-defective budding yeast cells escape senescence by using homologous recombination to amplify telomeric or subtelomeric structures. Similarly, human cells that enter senescence can use homologous recombination for telomere maintenance, when telomerase cannot be activated. Although recombination proteins required to generate telomerase-independent survivors have been intensively studied, little is known about the nucleases that generate the substrates for recombination. Here we demonstrate that the Exo1 exonuclease is an initiator of the recombination process that allows cells to escape senescence and become immortal in the absence of telomerase. We show that EXO1 is important for generating type I survivors in yku70delta mre11delta cells and type II survivors in tlc1delta cells. Moreover, in tlc1delta cells, EXO1 seems to contribute to the senescence process itself.
Collapse
Affiliation(s)
- Laura Maringele
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
132
|
Global expression changes resulting from loss of telomeric DNA in fission yeast. Genome Biol 2004; 6:R1. [PMID: 15642092 PMCID: PMC549061 DOI: 10.1186/gb-2004-6-1-r1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 11/16/2004] [Accepted: 11/24/2004] [Indexed: 11/23/2022] Open
Abstract
Gene expression profiling of the response of Schizosaccharomyces pombe cells to loss of the catalytic subunit of telomerase (trt1+) identified two waves of altered gene expression and a continued up-regulation of Core Environmental stress Response (CESR) genes. Background Schizosaccharomyces pombe cells lacking the catalytic subunit of telomerase (encoded by trt1+) lose telomeric DNA and enter crisis, but rare survivors arise with either circular or linear chromosomes. Survivors with linear chromosomes have normal growth rates and morphology, but those with circular chromosomes have growth defects and are enlarged. We report the global gene-expression response of S. pombe to loss of trt1+. Results Survivors with linear chromosomes had expression profiles similar to cells with native telomeres, whereas survivors with circular chromosomes showed continued upregulation of core environmental stress response (CESR) genes. In addition, survivors with circular chromosomes had altered expression of 51 genes compared to survivors with linear chromosomes, providing an expression signature. S. pombe progressing through crisis displayed two waves of altered gene expression. One coincided with crisis and consisted of around 110 genes, 44% of which overlapped with the CESR. The second was synchronized with the emergence of survivors and consisted of a single class of open reading frames (ORFs) with homology both to RecQ helicases and to dh repeats at centromeres targeted for heterochromatin formation via an RNA interference (RNAi) mechanism. Accumulation of transcript from the ORF was found not only in trt1- cells, but also in dcr1- and ago1- RNAi mutants, suggesting that RNAi may control its expression. Conclusions These results demonstrate a correlation between a state of cellular stress, short telomeres and growth defects in cells with circular chromosomes. A putative new RecQ helicase was expressed as survivors emerged and appears to be transcriptionally regulated by RNAi, suggesting that this mechanism operates at telomeres.
Collapse
|
133
|
Chang S. A mouse model of Werner Syndrome: what can it tell us about aging and cancer? Int J Biochem Cell Biol 2004; 37:991-9. [PMID: 15743673 DOI: 10.1016/j.biocel.2004.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 10/20/2004] [Accepted: 11/01/2004] [Indexed: 11/25/2022]
Abstract
The molecular mechanisms involved in mammalian aging and the consequent organ dysfunction/degeneration pathologies are not well understood. Studies of progeroid syndromes such as Werner Syndrome have advanced our understanding of how certain genetic pathways can influence the aging process on both cellular and molecular levels. In addition, improper maintenance of telomere length and the consequent cellular responses to dysfunctional telomeres have been proposed to promote replicative senescence that impact upon the onset of premature aging and cancer. Recent studies of the telomerase-Werner double null mouse link telomere dysfunction to accelerated aging and tumorigenesis in the setting of Werner deficiency. This mouse model thus provides a unique genetic platform to explore molecular mechanisms by which telomere dysfunction and loss of WRN gene function leads to the onset of premature aging and cancer.
Collapse
Affiliation(s)
- Sandy Chang
- Department of Molecular Genetics, Box 11, The M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|
134
|
Mandell JG, Goodrich KJ, Bähler J, Cech TR. Expression of a RecQ helicase homolog affects progression through crisis in fission yeast lacking telomerase. J Biol Chem 2004; 280:5249-57. [PMID: 15591066 DOI: 10.1074/jbc.m412756200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecQ helicases play roles in telomere maintenance in cancerous human cells using the alternative lengthening of telomeres mechanism and in budding yeast lacking telomerase. Fission yeast lacking the catalytic subunit of telomerase (trt1(+)) up-regulate the expression of a previously uncharacterized sub-telomeric open reading frame as survivors emerge from crisis. Here we show that this open reading frame encodes a protein with homology to RecQ helicases such as the human Bloom's and Werner's syndrome proteins and that copies of the helicase gene are present on multiple chromosome ends. Characterization of the helicase transcript revealed a 7.6-kilobase RNA that was associated with polyribosomes, suggesting it is translated. A 3.6-kilobase domain of the helicase gene predicted to encode the region with catalytic activity was cloned, and both native and mutant forms of this domain were overexpressed in trt1(-) cells as they progressed through crisis. Overexpression of the native form caused cells to recover from crisis earlier than cells with a vector-only control, whereas overexpression of the mutant form caused delayed recovery from crisis. Taken together, the sequence homology, functional analysis, and site-directed mutagenesis indicate that the protein is likely a second fission yeast RecQ helicase (in addition to Rqh1) that participates in telomere metabolism during crisis. These results strengthen the notion that in multiple organisms RecQ helicases contribute to survival after telomere damage.
Collapse
MESH Headings
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Amino Acid Sequence
- Chromosomes, Fungal/enzymology
- Chromosomes, Fungal/genetics
- Chromosomes, Fungal/metabolism
- Cloning, Molecular
- DNA Helicases/chemistry
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Gene Expression Regulation, Fungal
- Humans
- Molecular Sequence Data
- Open Reading Frames/genetics
- Phylogeny
- Polyribosomes/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RecQ Helicases
- Schizosaccharomyces/cytology
- Schizosaccharomyces/enzymology
- Schizosaccharomyces/genetics
- Schizosaccharomyces/growth & development
- Schizosaccharomyces pombe Proteins/chemistry
- Schizosaccharomyces pombe Proteins/genetics
- Schizosaccharomyces pombe Proteins/metabolism
- Sequence Homology, Amino Acid
- Telomerase/deficiency
- Telomerase/genetics
- Telomere/enzymology
- Telomere/genetics
- Telomere/metabolism
Collapse
Affiliation(s)
- Jeffrey G Mandell
- Department of Chemistry and Biochemistry and Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309-0215, USA
| | | | | | | |
Collapse
|
135
|
Du X, Shen J, Kugan N, Furth EE, Lombard DB, Cheung C, Pak S, Luo G, Pignolo RJ, DePinho RA, Guarente L, Johnson FB. Telomere shortening exposes functions for the mouse Werner and Bloom syndrome genes. Mol Cell Biol 2004; 24:8437-46. [PMID: 15367665 PMCID: PMC516757 DOI: 10.1128/mcb.24.19.8437-8446.2004] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Werner and Bloom syndromes are caused by loss-of-function mutations in WRN and BLM, respectively, which encode the RecQ family DNA helicases WRN and BLM, respectively. Persons with Werner syndrome displays premature aging of the skin, vasculature, reproductive system, and bone, and those with Bloom syndrome display more limited features of aging, including premature menopause; both syndromes involve genome instability and increased cancer. The proteins participate in recombinational repair of stalled replication forks or DNA breaks, but the precise functions of the proteins that prevent rapid aging are unknown. Accumulating evidence points to telomeres as targets of WRN and BLM, but the importance in vivo of the proteins in telomere biology has not been tested. We show that Wrn and Blm mutations each accentuate pathology in later-generation mice lacking the telomerase RNA template Terc, including acceleration of phenotypes characteristic of latest-generation Terc mutants. Furthermore, pathology not observed in Terc mutants but similar to that observed in Werner syndrome and Bloom syndrome, such as bone loss, was observed. The pathology was accompanied by enhanced telomere dysfunction, including end-to-end chromosome fusions and greater loss of telomere repeat DNA compared with Terc mutants. These findings indicate that telomere dysfunction may contribute to the pathogenesis of Werner syndrome and Bloom syndrome.
Collapse
Affiliation(s)
- Xiaobing Du
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
Telomeres are essential for genome stability in all eukaryotes. Changes in telomere functions and the associated chromosomal abnormalities have been implicated in human aging and cancer. Telomeres are composed of repetitive sequences that can be maintained by telomerase, a complex containing a reverse transcriptase (hTERT in humans and Est2 in budding yeast), a template RNA (hTERC in humans and Tlc1 in yeast), and accessory factors (the Est1 proteins and dyskerin in humans and Est1, Est3, and Sm proteins in budding yeast). Telomerase is regulated in cis by proteins that bind to telomeric DNA. This regulation can take place at the telomere terminus, involving single-stranded DNA-binding proteins (POT1 in humans and Cdc13 in budding yeast), which have been proposed to contribute to the recruitment of telomerase and may also regulate the extent or frequency of elongation. In addition, proteins that bind along the length of the telomere (TRF1/TIN2/tankyrase in humans and Rap1/Rif1/Rif2 in budding yeast) are part of a negative feedback loop that regulates telomere length. Here we discuss the details of telomerase and its regulation by the telomere.
Collapse
|
137
|
Kipling D, Davis T, Ostler EL, Faragher RGA. What can progeroid syndromes tell us about human aging? Science 2004; 305:1426-31. [PMID: 15353794 DOI: 10.1126/science.1102587] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human genetic diseases that resemble accelerated aging provide useful models for gerontologists. They combine known single-gene mutations with deficits in selected tissues that are reminiscent of changes seen during normal aging. Here, we describe recent progress toward linking molecular and cellular changes with the phenotype seen in two of these disorders. One in particular, Werner syndrome, provides evidence to support the hypothesis that the senescence of somatic cells may be a causal agent of normal aging.
Collapse
Affiliation(s)
- David Kipling
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | | | | | | |
Collapse
|
138
|
Callén E, Surrallés J. Telomere dysfunction in genome instability syndromes. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2004; 567:85-104. [PMID: 15341904 DOI: 10.1016/j.mrrev.2004.06.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 06/22/2004] [Accepted: 06/22/2004] [Indexed: 12/28/2022]
Abstract
Telomeres are nucleoprotein complexes located at the end of eukaryotic chromosomes. They have essential roles in preventing terminal fusions, protecting chromosome ends from degradation, and in chromosome positioning in the nucleus. These terminal structures consist of a tandemly repeated DNA sequence (TTAGGG in vertebrates) that varies in length from 5 to 15 kb in humans. Several proteins are attached to this telomeric DNA, some of which are also involved in different DNA damage response pathways, including Ku80, Mre11, NBS and BLM, among others. Mutations in the genes encoding these proteins cause a number of rare genetic syndromes characterized by chromosome and/or genetic instability and cancer predisposition. Deletions or mutations in any of these genes may also cause a telomere defect resulting in accelerated telomere shortening, lack of end-capping function, and/or end-to-end chromosome fusions. This telomere phenotype is also known to promote chromosomal instability and carcinogenesis. Therefore, it is essential to understand the interplay between telomere biology and genome stability. This review is focused in the dual role of chromosome fragility proteins in telomere maintenance.
Collapse
Affiliation(s)
- Elsa Callén
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain
| | | |
Collapse
|
139
|
Hao LY, Strong MA, Greider CW. Phosphorylation of H2AX at short telomeres in T cells and fibroblasts. J Biol Chem 2004; 279:45148-54. [PMID: 15322096 DOI: 10.1074/jbc.m403924200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic cells undergo arrest and enter apoptosis in response to short telomeres. T cells from late generation mTR(-/-) mice that lack telomerase show increased apoptosis when stimulated to enter the cell cycle. The increased apoptosis was not inhibited by colcemid, indicating that the response did not result from breakage of dicentric chromosomes at mitosis. The damage response protein gamma-H2AX localized to telomeres in metaphases from T cells and fibroblasts from mTR(-/-) cells with short telomeres. These data suggest that the major mechanism for induction of apoptosis in late generation mTR(-/-) cells is independent of chromosome segregation and that loss of telomere function through progressive telomere shortening in the absence of telomerase leads to recognition of telomeres as DNA breaks.
Collapse
Affiliation(s)
- Ling-Yang Hao
- Graduate Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
140
|
Tsukamoto M, Yamashita K, Miyazaki T, Shinohara M, Shinohara A. The N-terminal DNA-binding domain of Rad52 promotes RAD51-independent recombination in Saccharomyces cerevisiae. Genetics 2004; 165:1703-15. [PMID: 14704160 PMCID: PMC1462901 DOI: 10.1093/genetics/165.4.1703] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In Saccharomyces cerevisiae, the Rad52 protein plays a role in both RAD51-dependent and RAD51-independent recombination pathways. We characterized a rad52 mutant, rad52-329, which lacks the C-terminal Rad51-interacting domain, and studied its role in RAD51-independent recombination. The rad52-329 mutant is completely defective in mating-type switching, but partially proficient in recombination between inverted repeats. We also analyzed the effect of the rad52-329 mutant on telomere recombination. Yeast cells lacking telomerase maintain telomere length by recombination. The rad52-329 mutant is deficient in RAD51-dependent telomere recombination, but is proficient in RAD51-independent telomere recombination. In addition, we examined the roles of other recombination genes in the telomere recombination. The RAD51-independent recombination in the rad52-329 mutant is promoted by a paralogue of Rad52, Rad59. All components of the Rad50-Mre11-Xrs2 complex are also important, but not essential, for RAD51-independent telomere recombination. Interestingly, RAD51 inhibits the RAD51-independent, RAD52-dependent telomere recombination. These findings indicate that Rad52 itself, and more precisely its N-terminal DNA-binding domain, promote an essential reaction in recombination in the absence of RAD51.
Collapse
Affiliation(s)
- Mariko Tsukamoto
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
141
|
Jul-Larsen A, Visted T, Karlsen BO, Rinaldo CH, Bjerkvig R, Lønning PE, Bøe SO. PML-nuclear bodies accumulate DNA in response to polyomavirus BK and simian virus 40 replication. Exp Cell Res 2004; 298:58-73. [PMID: 15242762 DOI: 10.1016/j.yexcr.2004.03.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 03/10/2004] [Indexed: 01/08/2023]
Abstract
Promyelocytic nuclear bodies (PML-NBs) are distinct nuclear structures that are involved in apoptosis, differentiation, transcriptional regulation and DNA damage response. These bodies have also been shown to associate with nuclear sites of viral DNA replication. In the present study, we used BrdU pulse labeling to demonstrate that PML-NBs accumulate newly synthesized DNA in cells infected by the polyomaviruses simian virus 40 (SV40) or polyomavirus BK (BKV). Sequestration of DNA molecules in these structures depended on active viral DNA replication, and was observed exclusively in cells that contained prominent viral replication domains. Furthermore, a significant portion of the accumulated DNA was found to be single-stranded, indicating that the sequestered DNA had been subjected to processing by nuclease or DNA unwinding activities. siRNA-mediated suppression of the PML protein prevented the recruitment of single-stranded DNA into nuclear foci, but did not significantly affect the overall efficiency of viral DNA replication. These results indicate a role of PML and PML-NBs in post-replication DNA processing, and suggest that PML-NBs become linked to sites of viral DNA synthesis due to a role of these structures in DNA metabolism.
Collapse
Affiliation(s)
- Asne Jul-Larsen
- Section of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, 5009, Norway
| | | | | | | | | | | | | |
Collapse
|
142
|
Sugimoto M, Tahara H, Okubo M, Kobayashi T, Goto M, Ide T, Furuichi Y. WRN gene and other genetic factors affecting immortalization of human B-lymphoblastoid cell lines transformed by Epstein-Barr virus. ACTA ACUST UNITED AC 2004; 152:95-100. [PMID: 15262425 DOI: 10.1016/j.cancergencyto.2003.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 11/12/2003] [Accepted: 11/13/2003] [Indexed: 11/24/2022]
Abstract
The immortalization of human B-lymphoblastoid cell lines (LCL) transformed by Epstein-Barr virus (EBV) is accompanied by two major events: increase in telomerase activity and change in karyotype from normal diploid to aneuploidy. We investigated the effect of genetic factors on the incidence of immortalization by putting old and new data together to collect enough samples for statistical analysis. Among 50 LCL from normal individuals, 5 LCL (10.0%) were immortalized and the remaining 45 LCL were mortal. None of the 44 LCL (0%; P < 0.031 against normal individuals by chi square test) from patients having Werner syndrome (WS), a recessive genetic disorder showing premature aging, were immortalized. Among 11 LCL from a family with a tendency to have hereditary type 2 diabetes mellitus, 5 LCL (45.5%; P < 0.0040 against normal individuals, P < 0.00001 against WS patients) were immortalized. Duplicated measurements of the lifespan of 33 LCL showed a good coincidence (r=0.785) between the first and second estimations, indicating that each mortal LCL has a predetermined lifespan. These results strongly suggest that the normal WRN gene, the causative gene of WS, is essential for LCL to immortalize, and genetic factor(s) of a family having diabetes mellitus increases immortalization, implicating that host genetic factors affect immortalization of EBV and probably carcinogenesis by EBV.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Aging, Premature/pathology
- Aging, Premature/virology
- B-Lymphocytes/virology
- Cell Transformation, Viral
- Cells, Cultured
- Child
- Child, Preschool
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/virology
- Exodeoxyribonucleases
- Female
- Genetic Markers/physiology
- Herpesvirus 4, Human/physiology
- Humans
- Infant, Newborn
- Male
- Middle Aged
- Pedigree
- RecQ Helicases
- Telomerase/metabolism
- Telomere/genetics
- Werner Syndrome/pathology
- Werner Syndrome/virology
- Werner Syndrome Helicase
Collapse
Affiliation(s)
- Masanobu Sugimoto
- GeneCare Research Institute, 200 Kajiwara, Kamakura, Kanagawa 247-0063, Japan.
| | | | | | | | | | | | | |
Collapse
|
143
|
Lillard-Wetherell K, Machwe A, Langland GT, Combs KA, Behbehani GK, Schonberg SA, German J, Turchi JJ, Orren DK, Groden J. Association and regulation of the BLM helicase by the telomere proteins TRF1 and TRF2. Hum Mol Genet 2004; 13:1919-32. [PMID: 15229185 DOI: 10.1093/hmg/ddh193] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In addition to increased DNA-strand exchange, a cytogenetic feature of cells lacking the RecQ-like BLM helicase is a tendency for telomeres to associate. We also report additional cellular and biochemical evidence for the role of BLM in telomere maintenance. BLM co-localizes and complexes with the telomere repeat protein TRF2 in cells that employ the recombination-mediated mechanism of telomere lengthening known as ALT (alternative lengthening of telomeres). BLM co-localizes with TRF2 in foci actively synthesizing DNA during late S and G2/M; co-localization increases in late S and G2/M when ALT is thought to occur. Additionally, TRF1 and TRF2 interact directly with BLM and regulate BLM unwinding activity in vitro. Whereas TRF2 stimulates BLM unwinding of telomeric and non-telomeric substrates, TRF1 inhibits BLM unwinding of telomeric substrates only. Finally, TRF2 stimulates BLM unwinding with equimolar concentrations of TRF1, but not when TRF1 is added in molar excess. These data suggest a function for BLM in recombination-mediated telomere lengthening and support a model for the coordinated regulation of BLM activity at telomeres by TRF1 and TRF2.
Collapse
Affiliation(s)
- Kate Lillard-Wetherell
- Department of Molecular Genetics, Biochemistry and Microbiology, Howard Hughes Medical Institute, University of Cincinnati College of Medicine, OH 45267, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Opresko PL, Otterlei M, Graakjaer J, Bruheim P, Dawut L, Kølvraa S, May A, Seidman MM, Bohr VA. The Werner Syndrome Helicase and Exonuclease Cooperate to Resolve Telomeric D Loops in a Manner Regulated by TRF1 and TRF2. Mol Cell 2004; 14:763-74. [PMID: 15200954 DOI: 10.1016/j.molcel.2004.05.023] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 04/27/2004] [Accepted: 04/27/2004] [Indexed: 11/25/2022]
Abstract
Werner syndrome (WS) is characterized by features of premature aging and is caused by loss of the RecQ helicase protein WRN. WS fibroblasts display defects associated with telomere dysfunction, including accelerated telomere erosion and premature senescence. In yeast, RecQ helicases act in an alternative pathway for telomere lengthening (ALT) via homologous recombination. We found that WRN associates with telomeres when dissociation of telomeric D loops is likely during replication and recombination. In human ALT cells, WRN associates directly with telomeric DNA. The majority of TRF1/PCNA colocalizing foci contained WRN in live S phase ALT cells but not in telomerase-positive HeLa cells. Biochemically, the WRN helicase and 3' to 5' exonuclease act simultaneously and cooperate to release the 3' invading tail from a telomeric D loop in vitro. The telomere binding proteins TRF1 and TRF2 limit digestion by WRN. We propose roles for WRN in dissociating telomeric structures in telomerase-deficient cells.
Collapse
Affiliation(s)
- Patricia L Opresko
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
Replicative senescence, the irreversible loss of proliferative capacity, is a common feature of somatic cells derived from many different species. The molecular mechanisms controlling senescence in mammals, and especially in humans, have now been substantively elucidated. However, to date, attempts to link the senescence of cells with the ageing of the organisms they comprise has not met with any similar degree of success, largely due to a lack of systematic investigation and the absence of the necessary biochemical tools. This review will summarise current data linking replicative senescence and organismal ageing. It will also suggest some essential tests of the cell senescence hypothesis and some necessary ground work which must be carried out before such tests can be fruitfully performed. It will not discuss the detailed molecular 'clockwork' controlling the decision to exit the cell cycle irreversibly because this is covered by other authors in this special issue.
Collapse
Affiliation(s)
- Joseph Bird
- School of Pharmacy and Biomolecular Sciences, University of Brighton Sciences, Cockcroft Building, Lewes Road, Moulsecoomb, Brighton, East Sussex BN2 4GJ, UK
| | | | | |
Collapse
|
146
|
Opresko PL, Cheng WH, Bohr VA. Junction of RecQ Helicase Biochemistry and Human Disease. J Biol Chem 2004; 279:18099-102. [PMID: 15023996 DOI: 10.1074/jbc.r300034200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Patricia L Opresko
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
147
|
Maringele L, Lydall D. EXO1 Plays a Role in Generating Type I and Type II Survivors in Budding Yeast. Genetics 2004. [DOI: 10.1093/genetics/166.4.1641] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Abstract
Telomerase-defective budding yeast cells escape senescence by using homologous recombination to amplify telomeric or subtelomeric structures. Similarly, human cells that enter senescence can use homologous recombination for telomere maintenance, when telomerase cannot be activated. Although recombination proteins required to generate telomerase-independent survivors have been intensively studied, little is known about the nucleases that generate the substrates for recombination. Here we demonstrate that the Exo1 exonuclease is an initiator of the recombination process that allows cells to escape senescence and become immortal in the absence of telomerase. We show that EXO1 is important for generating type I survivors in yku70Δ mre11Δ cells and type II survivors in tlc1Δ cells. Moreover, in tlc1Δ cells, EXO1 seems to contribute to the senescence process itself.
Collapse
Affiliation(s)
| | - David Lydall
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
148
|
Dantzer F, Giraud-Panis MJ, Jaco I, Amé JC, Schultz I, Blasco M, Koering CE, Gilson E, Ménissier-de Murcia J, de Murcia G, Schreiber V. Functional interaction between poly(ADP-Ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2. Mol Cell Biol 2004; 24:1595-607. [PMID: 14749375 PMCID: PMC344168 DOI: 10.1128/mcb.24.4.1595-1607.2004] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA damage-dependent poly(ADP-ribose) polymerase-2 (PARP-2) is, together with PARP-1, an active player of the base excision repair process, thus defining its key role in genome surveillance and protection. Telomeres are specialized DNA-protein structures that protect chromosome ends from being recognized and processed as DNA strand breaks. In mammals, telomere protection depends on the T(2)AG(3) repeat binding protein TRF2, which has been shown to remodel telomeres into large duplex loops (t-loops). In this work we show that PARP-2 physically binds to TRF2 with high affinity. The association of both proteins requires the N-terminal domain of PARP-2 and the myb domain of TRF2. Both partners colocalize at promyelocytic leukemia bodies in immortalized telomerase-negative cells. In addition, our data show that PARP activity regulates the DNA binding activity of TRF2 via both a covalent heteromodification of the dimerization domain of TRF2 and a noncovalent binding of poly(ADP-ribose) to the myb domain of TRF2. PARP-2(-/-) primary cells show normal telomere length as well as normal telomerase activity compared to wild-type cells but display a spontaneously increased frequency of chromosome and chromatid breaks and of ends lacking detectable T(2)AG(3) repeats. Altogether, these results suggest a functional role of PARP-2 activity in the maintenance of telomere integrity.
Collapse
Affiliation(s)
- Françoise Dantzer
- UPR 9003 du Centre National de la Recherche Scientifique, Université Louis Pasteur, Ecole Supérieure de Biotechnologie de Strasbourg, 67412 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Enomoto S, Glowczewski L, Lew-Smith J, Berman JG. Telomere cap components influence the rate of senescence in telomerase-deficient yeast cells. Mol Cell Biol 2004; 24:837-45. [PMID: 14701754 PMCID: PMC343809 DOI: 10.1128/mcb.24.2.837-845.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells lacking telomerase undergo senescence, a progressive reduction in cell division that involves a cell cycle delay and culminates in "crisis," a period when most cells become inviable. In telomerase-deficient Saccharomyces cerevisiae cells lacking components of the nonsense-mediated mRNA decay (NMD) pathway (Upf1,Upf2, or Upf3 proteins), senescence is delayed, with crisis occurring approximately 10 to 25 population doublings later than in Upf+ cells. Delayed senescence is seen in upfDelta cells lacking the telomerase holoenzyme components Est2p and TLC1 RNA, as well as in cells lacking the telomerase regulators Est1p and Est3p. The delay of senescence in upfDelta cells is not due to an increased rate of survivor formation. Rather, it is caused by alterations in the telomere cap, composed of Cdc13p, Stn1p, and Ten1p. In upfDelta mutants, STN1 and TEN1 levels are increased. Increasing the levels of Stn1p and Ten1p in Upf+ cells is sufficient to delay senescence. In addition, cdc13-2 mutants exhibit delayed senescence rates similar to those of upfDelta cells. Thus, changes in the telomere cap structure are sufficient to affect the rate of senescence in the absence of telomerase. Furthermore, the NMD pathway affects the rate of senescence in telomerase-deficient cells by altering the stoichiometry of telomere cap components.
Collapse
Affiliation(s)
- Shinichiro Enomoto
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-170 MCB Building, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
150
|
Vega LR, Mateyak MK, Zakian VA. Getting to the end: telomerase access in yeast and humans. Nat Rev Mol Cell Biol 2004; 4:948-59. [PMID: 14685173 DOI: 10.1038/nrm1256] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Leticia R Vega
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|