101
|
Devos DP. Reconciling Asgardarchaeota Phylogenetic Proximity to Eukaryotes and Planctomycetes Cellular Features in the Evolution of Life. Mol Biol Evol 2021; 38:3531-3542. [PMID: 34229349 PMCID: PMC8382908 DOI: 10.1093/molbev/msab186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The relationship between the three domains of life—Archaea, Bacteria, and Eukarya—is one of Biology’s greatest mysteries. Current favored models imply two ancestral domains, Bacteria and Archaea, with eukaryotes originating within Archaea. This type of models has been supported by the recent description of the Asgardarchaeota, the closest prokaryotic relatives of eukaryotes. However, there are many problems associated with any scenarios implying that eukaryotes originated from within the Archaea, including genome mosaicism, phylogenies, the cellular organization of the Archaea, and their ancestral character. By contrast, all models of eukaryogenesis fail to consider two relevant discoveries: the detection of membrane coat proteins, and of phagocytosis-related processes in Planctomycetes, which are among the bacteria with the most developed endomembrane system. Consideration of these often overlooked features and others found in Planctomycetes and related bacteria suggest an evolutionary model based on a single ancestral domain. In this model, the proximity of Asgard and eukaryotes is not rejected but instead, Asgard are considered as diverging away from a common ancestor instead of on the way toward the eukaryotic ancestor. This model based on a single ancestral domain solves most of the ambiguities associated with the ones based on two ancestral domains. The single-domain model is better suited to explain the origin and evolution of all three domains of life, blurring the distinctions between them. Support for this model as well as the opportunities that it presents not only for reinterpreting previous results, but also for planning future experiments, are explored.
Collapse
Affiliation(s)
- Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD) - CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Seville, 41013, Spain
| |
Collapse
|
102
|
Auxiliary rapid identification of pathogenic and antagonistic microorganisms associated with Coptis chinensis root rot by high-throughput sequencing. Sci Rep 2021; 11:11141. [PMID: 34045546 PMCID: PMC8160328 DOI: 10.1038/s41598-021-90489-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Root rot reduces the yield and medical quality of C. chinensis (Cc). Previous studies of Coptis root rot focused on the identification of pathogens and the rhizosphere microbial community composition. The present study aimed to identify potential pathogenic and antagonistic microorganisms associated with root rot based on a high-throughput sequencing technique to prevent this disease. Healthy and diseased Cc in the endosphere and rhizosphere from the same field were collected to investigate the differences in microbiome composition and function. The results showed that the composition and function of microbes were different. The numbers of animal pathogens, soil saprotrophs, plant saprotrophs, and wood saprotrophs in the endosphere of diseased Cc were higher than those in the healthy endosphere and were dominated by Phaeosphaeriaceae, Cladorrhinum, Fusarium, Exophiala, and Melanommataceae. Fusarium, Volutella, Cladorrhinum, Cylindrocarpon, and Exophiala were significantly enriched in the endosphere of the diseased plants. Co-occurrence network analysis showed that Bacillus was negatively correlated with Fusarium, Volutella, and Cylindrocarpon, indicating that Bacillus may be antagonistic microorganisms. To verify the sequencing results, F. solani and F. avenaceum were isolated and verified as pathogens, and 14 Bacillus strains were isolated, which displayed an apparent suppression effect against the two pathogens on PDA medium and detached roots. The strategy of high-throughput sequencing has the potential for the comprehensive identification of pathogenic and antagonistic microorganisms for plant disease. These results provide research ideas and microbial resources for future studies on mitigating or preventing root rot damage to Cc.
Collapse
|
103
|
Niche specificity and functional diversity of the bacterial communities associated with Ginkgo biloba and Panax quinquefolius. Sci Rep 2021; 11:10803. [PMID: 34031502 PMCID: PMC8144622 DOI: 10.1038/s41598-021-90309-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/10/2021] [Indexed: 01/06/2023] Open
Abstract
Plant-associated bacteria can establish mutualistic relationships with plants to support plant health. Plant tissues represent heterogeneous niches with distinct characteristics and may thus host distinct microbial populations. The objectives of this study are to investigate the bacterial communities associated with two medicinally and commercially important plant species; Ginkgo biloba and Panax quinquefolius using high Throughput Sequencing (HTS) of 16S rRNA gene, and to evaluate the extent of heterogeneity in bacterial communities associated with different plant niches. Alpha diversity showed that number of operational taxonomic units (OTUs) varied significantly by tissue type. Beta diversity revealed that the composition of bacterial communities varied between tissue types. In Ginkgo biloba and Panax quinquefolius, 13% and 49% of OTUs, respectively, were ubiquitous in leaf, stem and root. Proteobacteria, Bacteroidetes, Actinobacteria and Acidobacteria were the most abundant phyla in Ginkgo biloba while Proteobacteria, Bacteroidetes, Actinobacteria, Plantomycetes and Acidobacteria were the most abundant phyla in Panax quinquefolius. Functional prediction of these bacterial communities using MicrobiomeAnalyst revealed 5843 and 6251 KEGG orthologs in Ginkgo biloba and Panax quinquefolius, respectively. A number of these KEGG pathways were predicted at significantly different levels between tissues. These findings demonstrate the heterogeneity, niche specificity and functional diversity of plant-associated bacteria.
Collapse
|
104
|
Hardoim CCP, Ramaglia ACM, Lôbo-Hajdu G, Custódio MR. Community composition and functional prediction of prokaryotes associated with sympatric sponge species of southwestern Atlantic coast. Sci Rep 2021; 11:9576. [PMID: 33953214 PMCID: PMC8100286 DOI: 10.1038/s41598-021-88288-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/07/2021] [Indexed: 02/03/2023] Open
Abstract
Prokaryotes contribute to the health of marine sponges. However, there is lack of data on the assembly rules of sponge-associated prokaryotic communities, especially for those inhabiting biodiversity hotspots, such as ecoregions between tropical and warm temperate southwestern Atlantic waters. The sympatric species Aplysina caissara, Axinella corrugata, and Dragmacidon reticulatum were collected along with environmental samples from the north coast of São Paulo (Brazil). Overall, 64 prokaryotic phyla were detected; 51 were associated with sponge species, and the dominant were Proteobacteria, Bacteria (unclassified), Cyanobacteria, Crenarchaeota, and Chloroflexi. Around 64% and 89% of the unclassified operational taxonomical units (OTUs) associated with Brazilian sponge species showed a sequence similarity below 97%, with sequences in the Silva and NCBI Type Strain databases, respectively, indicating the presence of a large number of unidentified taxa. The prokaryotic communities were species-specific, ranging 56%-80% of the OTUs and distinct from the environmental samples. Fifty-four lineages were responsible for the differences detected among the categories. Functional prediction demonstrated that Ap. caissara was enriched for energy metabolism and biosynthesis of secondary metabolites, whereas D. reticulatum was enhanced for metabolism of terpenoids and polyketides, as well as xenobiotics' biodegradation and metabolism. This survey revealed a high level of novelty associated with Brazilian sponge species and that distinct members responsible from the differences among Brazilian sponge species could be correlated to the predicted functions.
Collapse
Affiliation(s)
- C C P Hardoim
- Institute of Biosciences, São Paulo State University, Coastal Campus of São Vicente, São Paulo, Brazil.
| | - A C M Ramaglia
- Institute of Biosciences, São Paulo State University, Coastal Campus of São Vicente, São Paulo, Brazil
| | - G Lôbo-Hajdu
- Department of Genetic, Biology Institute Roberto Alcântara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - M R Custódio
- Department of Physiology, Center for Marine Biology, Biosciences Institute and NP-Biomar, São Paulo University, São Paulo, Brazil
| |
Collapse
|
105
|
Galachyants AD, Krasnopeev AY, Podlesnaya GV, Potapov SA, Sukhanova EV, Tikhonova IV, Zimens EA, Kabilov MR, Zhuchenko NA, Gorshkova AS, Suslova MY, Belykh OI. Diversity of Aerobic Anoxygenic Phototrophs and Rhodopsin-Containing Bacteria in the Surface Microlayer, Water Column and Epilithic Biofilms of Lake Baikal. Microorganisms 2021; 9:842. [PMID: 33920057 PMCID: PMC8071047 DOI: 10.3390/microorganisms9040842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
The diversity of aerobic anoxygenic phototrophs (AAPs) and rhodopsin-containing bacteria in the surface microlayer, water column, and epilithic biofilms of Lake Baikal was studied for the first time, employing pufM and rhodopsin genes, and compared to 16S rRNA diversity. We detected pufM-containing Alphaproteobacteria (orders Rhodobacterales, Rhizobiales, Rhodospirillales, and Sphingomonadales), Betaproteobacteria (order Burkholderiales), Gemmatimonadetes, and Planctomycetes. Rhodobacterales dominated all the studied biotopes. The diversity of rhodopsin-containing bacteria in neuston and plankton of Lake Baikal was comparable to other studied water bodies. Bacteroidetes along with Proteobacteria were the prevailing phyla, and Verrucomicrobia and Planctomycetes were also detected. The number of rhodopsin sequences unclassified to the phylum level was rather high: 29% in the water microbiomes and 22% in the epilithon. Diversity of rhodopsin-containing bacteria in epilithic biofilms was comparable with that in neuston and plankton at the phyla level. Unweighted pair group method with arithmetic mean (UPGMA) and non-metric multidimensional scaling (NMDS) analysis indicated a distinct discrepancy between epilithon and microbial communities of water (including neuston and plankton) in the 16S rRNA, pufM and rhodopsin genes.
Collapse
Affiliation(s)
- Agnia Dmitrievna Galachyants
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Andrey Yurjevich Krasnopeev
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Galina Vladimirovna Podlesnaya
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Sergey Anatoljevich Potapov
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Elena Viktorovna Sukhanova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Irina Vasiljevna Tikhonova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Ekaterina Andreevna Zimens
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Marsel Rasimovich Kabilov
- Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia;
| | - Natalia Albertovna Zhuchenko
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Anna Sergeevna Gorshkova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Maria Yurjevna Suslova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Olga Ivanovna Belykh
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| |
Collapse
|
106
|
Thompson AW, Ward AC, Sweeney CP, Sutherland KR. Host-specific symbioses and the microbial prey of a pelagic tunicate (Pyrosoma atlanticum). ISME COMMUNICATIONS 2021; 1:11. [PMID: 36721065 PMCID: PMC9723572 DOI: 10.1038/s43705-021-00007-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/03/2023]
Abstract
Pyrosomes are widely distributed pelagic tunicates that have the potential to reshape marine food webs when they bloom. However, their grazing preferences and interactions with the background microbial community are poorly understood. This is the first study of the marine microorganisms associated with pyrosomes undertaken to improve the understanding of pyrosome biology, the impact of pyrosome blooms on marine microbial systems, and microbial symbioses with marine animals. The diversity, relative abundance, and taxonomy of pyrosome-associated microorganisms were compared to seawater during a Pyrosoma atlanticum bloom in the Northern California Current System using high-throughput sequencing of the 16S rRNA gene, microscopy, and flow cytometry. We found that pyrosomes harbor a microbiome distinct from the surrounding seawater, which was dominated by a few novel taxa. In addition to the dominant taxa, numerous more rare pyrosome-specific microbial taxa were recovered. Multiple bioluminescent taxa were present in pyrosomes, which may be a source of the iconic pyrosome luminescence. We also discovered free-living marine microorganisms in association with pyrosomes, suggesting that pyrosome feeding impacts all microbial size classes but preferentially removes larger eukaryotic taxa. This study demonstrates that microbial symbionts and microbial prey are central to pyrosome biology. In addition to pyrosome impacts on higher trophic level marine food webs, the work suggests that pyrosomes also alter marine food webs at the microbial level through feeding and seeding of the marine microbial communities with their symbionts. Future efforts to predict pyrosome blooms, and account for their ecosystem impacts, should consider pyrosome interactions with marine microbial communities.
Collapse
Affiliation(s)
- Anne W Thompson
- Department of Biology, Portland State University, Portland, OR, USA.
| | - Anna C Ward
- Oregon Institute of Marine Biology, University of Oregon, Eugene, OR, USA
| | - Carey P Sweeney
- Department of Biology, Portland State University, Portland, OR, USA
| | - Kelly R Sutherland
- Oregon Institute of Marine Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
107
|
Tong H, Zheng C, Li B, Swanner ED, Liu C, Chen M, Xia Y, Liu Y, Ning Z, Li F, Feng X. Microaerophilic Oxidation of Fe(II) Coupled with Simultaneous Carbon Fixation and As(III) Oxidation and Sequestration in Karstic Paddy Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3634-3644. [PMID: 33411520 DOI: 10.1021/acs.est.0c05791] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microaerophilic Fe(II)-oxidizing bacteria are often chemolithoautotrophs, and the Fe(III) (oxyhydr)oxides they form could immobilize arsenic (As). If such microbes are active in karstic paddy soils, their activity would help increase soil organic carbon and mitigate As contamination. We therefore used gel-stabilized gradient systems to cultivate microaerophilic Fe(II)-oxidizing bacteria from karstic paddy soil to investigate their capacity for Fe(II) oxidation, carbon fixation, and As sequestration. Stable isotope probing demonstrated the assimilation of inorganic carbon at a maximum rate of 8.02 mmol C m-2 d-1. Sequencing revealed that Bradyrhizobium, Cupriavidus, Hyphomicrobium, Kaistobacter, Mesorhizobium, Rhizobium, unclassified Phycisphaerales, and unclassified Opitutaceas were fixing carbon. Fe(II) oxidation produced Fe(III) (oxyhydr)oxides, which can absorb and/or coprecipitate As. Adding As(III) decreased the diversity of functional bacteria involved in carbon fixation, the relative abundance of predicted carbon fixation genes, and the amount of carbon fixed. Although the rate of Fe(II) oxidation was also lower in the presence of As(III), over 90% of the As(III) was sequestered after oxidation. The potential for microbially mediated As(III) oxidation was revealed by the presence of arsenite oxidase gene (aioA), denoting the potential of the Fe(II)-oxidizing and autotrophic microbial community to also oxidize As(III). Thisstudy demonstrates that carbon fixation coupled to Fe(II) oxidation can increase the carbon content in soils by microaerophilic Fe(II)-oxidizing bacteria, as well as accelerate As(III) oxidation and sequester it in association with Fe(III) (oxyhydr)oxides.
Collapse
Affiliation(s)
- Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou510650, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames50011, Iowa, United States
| | - Chunju Zheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, China
| | - Elizabeth D Swanner
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames50011, Iowa, United States
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an710061, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou510650, China
| | - Yafei Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
| | - Yuhui Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou510650, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an710061, China
| |
Collapse
|
108
|
"Candidatus Laterigemmans baculatus" gen. nov. sp. nov., the first representative of rod shaped planctomycetes with lateral budding in the family Pirellulaceae. Syst Appl Microbiol 2021; 44:126188. [PMID: 33647766 DOI: 10.1016/j.syapm.2021.126188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 01/27/2023]
Abstract
Two axenic cultures of Planctomycetes were isolated from distinct geographical regions of the east coast of India. The two closely related strains (JC640 and CH01) showed <93.3% 16S rRNA gene sequence identity with members of the genus Roseimaritima followed by Rhodopirellula (<91%). Both strains displayed non-canonical cell morphology of Planctomycetes, such as rod shaped cells with division by lateral budding. Both strains showed crateriform structures on their surfaces and cells lack fimbriae. The genomes have a size of about 5.76 Mb and DNA G+C content of 63.6mol%. Phylogenetic analysis based on 16S rRNA gene sequence and 92 core genes based RAxML phylogenetic tree place both the strains in the family Pirellulaceae and indicated Roseimaritima sediminicola as their closest relative. The AAI and POCP values differentiate both strains from rest of the members of the family Pirellulaceae. The axenic cultures of both strains were able to grow up to 8-10 passages and subsequently the cells became non-viable with pleomorphic shapes. Supported by genomic, phylogenetic and morphological differences, we conclude that both strains belong to a novel genus. However, since the new isolates lost their viability on passaging, we propose the novel genus as "Candidatus Laterigemmans" gen. nov. and the novel species as "Candidatus Laterigemmans baculatus" sp. nov.
Collapse
|
109
|
Crateriforma spongiae sp. nov., isolated from a marine sponge and emended description of the genus “Crateriforma”. Antonie Van Leeuwenhoek 2021; 114:341-353. [DOI: 10.1007/s10482-020-01515-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
|
110
|
Kallscheuer N, Rast P, Jogler M, Wiegand S, Kohn T, Boedeker C, Jeske O, Heuer A, Quast C, Glöckner FO, Rohde M, Jogler C. Analysis of bacterial communities in a municipal duck pond during a phytoplankton bloom and isolation of Anatilimnocola aggregata gen. nov., sp. nov., Lacipirellula limnantheis sp. nov. and Urbifossiella limnaea gen. nov., sp. nov. belonging to the phylum Planctomycetes. Environ Microbiol 2021; 23:1379-1396. [PMID: 33331109 DOI: 10.1111/1462-2920.15341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/24/2020] [Indexed: 11/26/2022]
Abstract
Waterbodies such as lakes and ponds are fragile environments affected by human influences. Suitable conditions can result in massive growth of phototrophs, commonly referred to as phytoplankton blooms. Such events benefit heterotrophic bacteria able to use compounds secreted by phototrophs or their biomass as major nutrient source. One example of such bacteria are Planctomycetes, which are abundant on the surfaces of marine macroscopic phototrophs; however, less data are available on their ecological roles in limnic environments. In this study, we followed a cultivation-independent deep sequencing approach to study the bacterial community composition during a cyanobacterial bloom event in a municipal duck pond. In addition to cyanobacteria, which caused the bloom event, members of the phylum Planctomycetes were significantly enriched in the cyanobacteria-attached fraction compared to the free-living fraction. Separate datasets based on isolated DNA and RNA point towards considerable differences in the abundance and activity of planctomycetal families, indicating different activity peaks of these families during the cyanobacterial bloom. Motivated by the finding that the sampling location harbours untapped bacterial diversity, we included a complementary cultivation-dependent approach and isolated and characterized three novel limnic strains belonging to the phylum Planctomycetes.
Collapse
Affiliation(s)
| | | | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Sandra Wiegand
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands.,Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Germany
| | - Timo Kohn
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | | | - Olga Jeske
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Christian Quast
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Frank Oliver Glöckner
- Alfred Wegener Institute, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
111
|
Competitive Exclusion and Metabolic Dependency among Microorganisms Structure the Cellulose Economy of an Agricultural Soil. mBio 2021; 12:mBio.03099-20. [PMID: 33402535 PMCID: PMC8545098 DOI: 10.1128/mbio.03099-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms that degrade cellulose utilize extracellular reactions that yield free by-products which can promote interactions with noncellulolytic organisms. We hypothesized that these interactions determine the ecological and physiological traits governing the fate of cellulosic carbon (C) in soil. We performed comparative genomics with genome bins from a shotgun metagenomic-stable isotope probing experiment to characterize the attributes of cellulolytic and noncellulolytic taxa accessing 13C from cellulose. We hypothesized that cellulolytic taxa would exhibit competitive traits that limit access, while noncellulolytic taxa would display greater metabolic dependency, such as signatures of adaptive gene loss. We tested our hypotheses by evaluating genomic traits indicative of competitive exclusion or metabolic dependency, such as antibiotic production, growth rate, surface attachment, biomass degrading potential, and auxotrophy. The most 13C-enriched taxa were cellulolytic Cellvibrio (Gammaproteobacteria) and Chaetomium (Ascomycota), which exhibited a strategy of self-sufficiency (prototrophy), rapid growth, and competitive exclusion via antibiotic production. Auxotrophy was more prevalent in cellulolytic Actinobacteria than in cellulolytic Proteobacteria, demonstrating differences in dependency among cellulose degraders. Noncellulolytic taxa that accessed 13C from cellulose (Planctomycetales, Verrucomicrobia, and Vampirovibrionales) were also more dependent, as indicated by patterns of auxotrophy and 13C labeling (i.e., partial labeling or labeling at later stages). Major 13C-labeled cellulolytic microbes (e.g., Sorangium, Actinomycetales, Rhizobiales, and Caulobacteraceae) possessed adaptations for surface colonization (e.g., gliding motility, hyphae, attachment structures) signifying the importance of surface ecology in decomposing particulate organic matter. Our results demonstrated that access to cellulosic C was accompanied by ecological trade-offs characterized by differing degrees of metabolic dependency and competitive exclusion.
Collapse
|
112
|
van Teeseling MCF, Jogler C. Cultivation of elusive microbes unearthed exciting biology. Nat Commun 2021; 12:75. [PMID: 33398002 PMCID: PMC7782747 DOI: 10.1038/s41467-020-20393-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/20/2020] [Indexed: 11/09/2022] Open
Abstract
Many newly-discovered microbial phyla have been studied solely by cultivation-independent techniques such as metagenomics. Much of their biology thus remains elusive, because the organisms have not yet been isolated and grown in the lab. Katayama et al. lift the curtain on some intriguing biology by cultivating and studying bacteria from the elusive OP9 phylum (Atribacterota).
Collapse
Affiliation(s)
| | - Christian Jogler
- Institute of Microbiology, Department of Microbial Interactions, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
113
|
Bani A, Fernandez FGA, D'Imporzano G, Parati K, Adani F. Influence of photobioreactor set-up on the survival of microalgae inoculum. BIORESOURCE TECHNOLOGY 2021; 320:124408. [PMID: 33246238 DOI: 10.1016/j.biortech.2020.124408] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Cultivation of specific microalgae is still difficult in an industrial setup as contamination and balancing the economic cost are not always possible. Understanding the ecology of cultivation of microalgae is therefore necessary to implement stable production. The aim of the study was to understand how different types of photobioreactors and types of culture medium influenced the survival of a specific microalgae inoculum, S. almeriensis. The bacterial and microalgae community were studied using Illumina sequencing. Only the closed configuration was able to maintain the inoculated species while all the other systems developed a different eukaryotic community due to contamination and the higher fitness of contaminants. Photobioreactor configuration was more important than medium in shaping the eukaryotes community, while the bacterial community was influenced strongly by both. Results showed that even a well-adapted strain is maintained only in the closed reactor while the open reactors are colonized by a multispecies consortium.
Collapse
Affiliation(s)
- Alessia Bani
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy; Istituto Sperimentale Lazzaro Spallanzani, loc La Quercia 2602 Rivolta d'Adda, CR, Italy
| | | | - Giuliana D'Imporzano
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy
| | - Katia Parati
- Istituto Sperimentale Lazzaro Spallanzani, loc La Quercia 2602 Rivolta d'Adda, CR, Italy.
| | - Fabrizio Adani
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy
| |
Collapse
|
114
|
Dedysh SN, Beletsky AV, Ivanova AA, Kulichevskaya IS, Suzina NE, Philippov DA, Rakitin AL, Mardanov AV, Ravin NV. Wide distribution of Phycisphaera-like planctomycetes from WD2101 soil group in peatlands and genome analysis of the first cultivated representative. Environ Microbiol 2020; 23:1510-1526. [PMID: 33325093 DOI: 10.1111/1462-2920.15360] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
Phycisphaera-like WD2101 'soil group' is one of the as-yet-uncultivated phylogenetic clades within the phylum Planctomycetes. Members of this clade are commonly detected in various terrestrial habitats. This study shows that WD2101 represented one of the major planctomycete groups in 10 boreal peatlands, comprising up to 76% and 36% of all Planctomycetes-affiliated 16S rRNA gene reads in raised bogs and eutrophic fens respectively. These types of peatlands displayed clearly distinct intra-group diversity of WD2101-affiliated planctomycetes. The first isolate of this enigmatic planctomycete group, strain M1803, was obtained from a humic lake surrounded by Sphagnum peat bogs. Strain M1803 displayed 89.2% 16S rRNA gene similarity to Tepidisphaera mucosa and was represented by motile cocci that divided by binary fission and grew under micro-oxic conditions. The complete 7.19 Mb genome of strain M1803 contained an array of genes encoding Planctomycetal type bacterial microcompartment organelle likely involved in l-rhamnose metabolism, suggesting participation of M1803-like planctomycetes in polysaccharide degradation in peatlands. The corresponding cellular microcompartments were revealed in ultrathin cell sections. Strain M1803 was classified as a novel genus and species, Humisphaera borealis gen. nov., sp. nov., affiliated with the formerly recognized WD2101 'soil group'.
Collapse
Affiliation(s)
- Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Anastasia A Ivanova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina S Kulichevskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Natalia E Suzina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitriy A Philippov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Andrey L Rakitin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
115
|
Kallscheuer N, Wiegand S, Kohn T, Boedeker C, Jeske O, Rast P, Müller RW, Brümmer F, Heuer A, Jetten MSM, Rohde M, Jogler M, Jogler C. Cultivation-Independent Analysis of the Bacterial Community Associated With the Calcareous Sponge Clathrina clathrus and Isolation of Poriferisphaera corsica Gen. Nov., Sp. Nov., Belonging to the Barely Studied Class Phycisphaerae in the Phylum Planctomycetes. Front Microbiol 2020; 11:602250. [PMID: 33414774 PMCID: PMC7783415 DOI: 10.3389/fmicb.2020.602250] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022] Open
Abstract
Marine ecosystems serve as global carbon sinks and nutrient source or breeding ground for aquatic animals. Sponges are ancient parts of these important ecosystems and can be found in caves, the deep-sea, clear waters, or more turbid environments. Here, we studied the bacterial community composition of the calcareous sponge Clathrina clathrus sampled close to the island Corsica in the Mediterranean Sea with an emphasis on planctomycetes. We show that the phylum Planctomycetes accounts for 9% of the C. clathrus-associated bacterial community, a 5-fold enrichment compared to the surrounding seawater. Indeed, the use of C. clathrus as a yet untapped source of novel planctomycetal strains led to the isolation of strain KS4T. The strain represents a novel genus and species within the class Phycisphaerae in the phylum Planctomycetes and displays interesting cell biological features, such as formation of outer membrane vesicles and an unexpected mode of cell division.
Collapse
Affiliation(s)
| | - Sandra Wiegand
- Department of Microbiology, Radboud University, Nijmegen, Netherlands.,Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Timo Kohn
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Olga Jeske
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Ralph-Walter Müller
- Faculty for Energy-, Process- and Bioengineering, University of Stuttgart, Stuttgart, Germany
| | - Franz Brümmer
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Nijmegen, Netherlands.,Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
116
|
Wu X, Spencer S, Gushgari-Doyle S, Yee MO, Voriskova J, Li Y, Alm EJ, Chakraborty R. Culturing of "Unculturable" Subsurface Microbes: Natural Organic Carbon Source Fuels the Growth of Diverse and Distinct Bacteria From Groundwater. Front Microbiol 2020; 11:610001. [PMID: 33391234 PMCID: PMC7773641 DOI: 10.3389/fmicb.2020.610001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/19/2020] [Indexed: 11/23/2022] Open
Abstract
Recovery and cultivation of diverse environmentally-relevant microorganisms from the terrestrial subsurface remain a challenge despite recent advances in modern molecular technology. Here, we applied complex carbon (C) sources, i.e., sediment dissolved organic matter (DOM) and bacterial cell lysate, to enrich groundwater microbial communities for 30 days. As comparisons, we also included enrichments amended with simple C sources including glucose, acetate, benzoate, oleic acid, cellulose, and mixed vitamins. Our results demonstrate that complex C is far more effective in enriching diverse and distinct microorganisms from groundwater than simple C. Simple C enrichments yield significantly lower biodiversity, and are dominated by few phyla (e.g., Proteobacteria and Bacteroidetes), while microcosms enriched with complex C demonstrate significantly higher biodiversity including phyla that are poorly represented in published culture collections (e.g., Verrucomicrobia, Planctomycetes, and Armatimonadetes). Subsequent isolation from complex C enrichments yielded 228 bacterial isolates representing five phyla, 17 orders, and 56 distinct species, including candidate novel, rarely cultivated, and undescribed organisms. Results from this study will substantially advance cultivation and isolation strategies for recovering diverse and novel subsurface microorganisms. Obtaining axenic representatives of “once-unculturable” microorganisms will enhance our understanding of microbial physiology and function in different biogeochemical niches of terrestrial subsurface ecosystems.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Sarah Spencer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sara Gushgari-Doyle
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mon Oo Yee
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jana Voriskova
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Yifan Li
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Romy Chakraborty
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
117
|
Waqqas M, Salbreiter M, Kallscheuer N, Jogler M, Wiegand S, Heuer A, Rast P, Peeters SH, Boedeker C, Jetten MSM, Rohde M, Jogler C. Rosistilla oblonga gen. nov., sp. nov. and Rosistilla carotiformis sp. nov., isolated from biotic or abiotic surfaces in Northern Germany, Mallorca, Spain and California, USA. Antonie Van Leeuwenhoek 2020; 113:1939-1952. [PMID: 32623658 PMCID: PMC7716947 DOI: 10.1007/s10482-020-01441-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
Planctomycetes are ubiquitous bacteria with fascinating cell biological features. Strains available as axenic cultures in most cases have been isolated from aquatic environments and serve as a basis to study planctomycetal cell biology and interactions in further detail. As a contribution to the current collection of axenic cultures, here we characterise three closely related strains, Poly24T, CA51T and Mal33, which were isolated from the Baltic Sea, the Pacific Ocean and the Mediterranean Sea, respectively. The strains display cell biological features typical for related Planctomycetes, such as division by polar budding, presence of crateriform structures and formation of rosettes. Optimal growth was observed at temperatures of 30-33 °C and at pH 7.5, which led to maximal growth rates of 0.065-0.079 h-1, corresponding to generation times of 9-11 h. The genomes of the novel isolates have a size of 7.3-7.5 Mb and a G + C content of 57.7-58.2%. Phylogenetic analyses place the strains in the family Pirellulaceae and suggest that Roseimaritima ulvae and Roseimaritima sediminicola are the current closest relatives. Analysis of five different phylogenetic markers, however, supports the delineation of the strains from members of the genus Roseimaritima and other characterised genera in the family. Supported by morphological and physiological differences, we conclude that the strains belong to the novel genus Rosistilla gen. nov. and constitute two novel species, for which we propose the names Rosistilla carotiformis sp. nov. and Rosistilla oblonga sp. nov. (the type species). The two novel species are represented by the type strains Poly24T (= DSM 102938T = VKM B-3434T = LMG 31347T = CECT 9848T) and CA51T (= DSM 104080T = LMG 29702T), respectively.
Collapse
Affiliation(s)
- Muhammad Waqqas
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | - Markus Salbreiter
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | | | - Mareike Jogler
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | | | - Stijn H Peeters
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | | | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany.
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
118
|
Peeters SH, Wiegand S, Kallscheuer N, Jogler M, Heuer A, Jetten MSM, Boedeker C, Rohde M, Jogler C. Description of Polystyrenella longa gen. nov., sp. nov., isolated from polystyrene particles incubated in the Baltic Sea. Antonie Van Leeuwenhoek 2020; 113:1851-1862. [PMID: 32239304 PMCID: PMC7716846 DOI: 10.1007/s10482-020-01406-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/15/2020] [Indexed: 11/28/2022]
Abstract
Planctomycetes occur in almost all aquatic ecosystems on earth. They have a remarkable cell biology, and members of the orders Planctomycetales and Pirellulales feature cell division by polar budding, perform a lifestyle switch from sessile to motile cells and have an enlarged periplasmic space. Here, we characterise a novel planctomycetal strain, Pla110T, isolated from the surface of polystyrene particles incubated in the Baltic Sea. After phylogenetic analysis, the strain could be placed in the family Planctomycetaceae. Strain Pla110T performs cell division by budding, has crateriform structures and grows in aggregates or rosettes. The strain is a chemoheterotroph, grows under mesophilic and neutrophilic conditions, and exhibited a doubling time of 21 h. Based on our phylogenetic and morphological characterisation, strain Pla110T (DSM 103387T = LMG 29693T) is concluded to represent a novel species belonging to a novel genus, for which we propose the name Polystyrenella longa gen. nov., sp. nov.
Collapse
Affiliation(s)
- Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Brunswick, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
119
|
Wiegand S, Jogler M, Boedeker C, Heuer A, Peeters SH, Kallscheuer N, Jetten MSM, Kaster AK, Rohde M, Jogler C. Updates to the recently introduced family Lacipirellulaceae in the phylum Planctomycetes: isolation of strains belonging to the novel genera Aeoliella, Botrimarina, Pirellulimonas and Pseudobythopirellula and the novel species Bythopirellula polymerisocia and Posidoniimonas corsicana. Antonie Van Leeuwenhoek 2020; 113:1979-1997. [PMID: 33151460 PMCID: PMC7717034 DOI: 10.1007/s10482-020-01486-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Eight novel strains of the phylum Planctomycetes were isolated from different aquatic habitats. Among these habitats were the hydrothermal vent system close to Panarea Island, a public beach at Mallorca Island, the shore of Costa Brava (Spain), and three sites with brackish water in the Baltic Sea. The genome sizes of the novel strains range from 4.33 to 6.29 Mb with DNA G+C contents between 52.8 and 66.7%. All strains are mesophilic (Topt 24-30 °C) and display generation times between 17 and 94 h. All eight isolates constitute novel species of either already described or novel genera within the family Lacipirellulaceae. Two of the novel species, Posidoniimonas polymericola (type strain Pla123aT = DSM 103020T = LMG 29466T) and Bythopirellula polymerisocia (type strain Pla144T = DSM 104841T = VKM B-3442T), belong to established genera, while the other strains represent the novel genera Aeoliella gen. nov., Botrimarina gen. nov., Pirellulimonas gen. nov. and Pseudobythopirellula gen. nov. Based on our polyphasic analysis, we propose the species Aeoliella mucimassa sp. nov. (type strain Pan181T = DSM 29370T = LMG 31346T = CECT 9840T = VKM B-3426T), Botrimarina colliarenosi sp. nov. (type strain Pla108T = DSM 103355T = LMG 29803T), Botrimarina hoheduenensis sp. nov. (type strain Pla111T = DSM 103485T = STH00945T, Jena Microbial Resource Collection JMRC), Botrimarina mediterranea sp. nov. (type strain Spa11T = DSM 100745T = LMG 31350T = CECT 9852T = VKM B-3431T), Pirellulimonas nuda sp. nov. (type strain Pla175T = DSM 109594T = CECT 9871T = VKM B-3448T) and Pseudobythopirellula maris sp. nov. (type strain Mal64T = DSM 100832T = LMG 29020T).
Collapse
Affiliation(s)
- Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Mareike Jogler
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | | | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
120
|
Peeters SH, Wiegand S, Kallscheuer N, Jogler M, Heuer A, Jetten MSM, Boedeker C, Rohde M, Jogler C. Lignipirellula cremea gen. nov., sp. nov., a planctomycete isolated from wood particles in a brackish river estuary. Antonie Van Leeuwenhoek 2020; 113:1863-1875. [PMID: 32239303 PMCID: PMC7717058 DOI: 10.1007/s10482-020-01407-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023]
Abstract
A novel planctomycetal strain, designated Pla85_3_4T, was isolated from the surface of wood incubated at the discharge of a wastewater treatment plant in the Warnow river near Rostock, Germany. Cells of the novel strain have a cell envelope architecture resembling that of Gram-negative bacteria, are round to pear-shaped (length: 2.2 ± 0.4 µm, width: 1.2 ± 0.3 µm), form aggregates and divide by polar budding. Colonies have a cream colour. Strain Pla85_3_4T grows at ranges of 10-30 °C (optimum 26 °C) and at pH 6.5-10.0 (optimum 7.5), and has a doubling time of 26 h. Phylogenetically, strain Pla85_3_4T (DSM 103796T = LMG 29741T) is concluded to represent a novel species of a novel genus within the family Pirellulaceae, for which we propose the name Lignipirellula cremea gen. nov., sp. nov.
Collapse
Affiliation(s)
- Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Brunswick, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
121
|
Boersma AS, Kallscheuer N, Wiegand S, Rast P, Peeters SH, Mesman RJ, Heuer A, Boedeker C, Jetten MSM, Rohde M, Jogler M, Jogler C. Alienimonas californiensis gen. nov. sp. nov., a novel Planctomycete isolated from the kelp forest in Monterey Bay. Antonie Van Leeuwenhoek 2020; 113:1751-1766. [PMID: 31802338 DOI: 10.1007/s10482-019-01367-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 11/26/2019] [Indexed: 11/26/2022]
Abstract
Planctomycetes are environmentally and biotechnologically important bacteria and are often found in association with nutrient-rich (marine) surfaces. To allow a more comprehensive understanding of planctomycetal lifestyle and physiology we aimed at expanding the collection of axenic cultures with new isolates. Here, we describe the isolation and genomic and physiological characterisation of strain CA12T obtained from giant bladder kelp (Macrocystis pyrifera) in Monterey Bay, California, USA. 16S rRNA gene sequence and whole genome-based phylogenetic analysis showed that strain CA12T clusters within the family Planctomycetaceae and that it has a high 16S rRNA sequence similarity (82.3%) to Planctomicrobium piriforme DSM 26348T. The genome of strain CA12T has a length of 5,475,215 bp and a G+C content of 70.1%. The highest growth rates were observed at 27 °C and pH 7.5. Using different microscopic methods, we could show that CA12T is able to divide by consecutive polar budding, without completing a characteristic planctomycetal lifestyle switch. Based on our data, we suggest that the isolated strain represents a novel species within a novel genus. We thus propose the name Alienimonas gen. nov. with Alienimonas californiensis sp. nov. as type species of the novel genus and CA12T as type strain of the novel species.
Collapse
Affiliation(s)
- Alje S Boersma
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Nicolai Kallscheuer
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Sandra Wiegand
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Patrick Rast
- Leibniz Institute DSMZ Braunschweig, Brunswick, Germany
| | - Stijn H Peeters
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Rob J Mesman
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Anja Heuer
- Leibniz Institute DSMZ Braunschweig, Brunswick, Germany
| | | | - Mike S M Jetten
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Mareike Jogler
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
- Leibniz Institute DSMZ Braunschweig, Brunswick, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
122
|
Wiegand S, Jogler M, Boedeker C, Heuer A, Rast P, Peeters SH, Jetten MSM, Kaster AK, Rohde M, Kallscheuer N, Jogler C. Additions to the genus Gimesia: description of Gimesia alba sp. nov., Gimesia algae sp. nov., Gimesia aquarii sp. nov., Gimesia aquatilis sp. nov., Gimesia fumaroli sp. nov. and Gimesia panareensis sp. nov., isolated from aquatic habitats of the Northern Hemisphere. Antonie Van Leeuwenhoek 2020; 113:1999-2018. [PMID: 33231764 PMCID: PMC7716864 DOI: 10.1007/s10482-020-01489-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
Thirteen novel planctomycetal strains were isolated from five different aquatic sampling locations. These comprise the hydrothermal vent system close to Panarea Island (Italy), a biofilm on the surface of kelp at Monterey Bay (CA, USA), sediment and algae on Mallorca Island (Spain) and Helgoland Island (Germany), as well as a seawater aquarium in Braunschweig, Germany. All strains were shown to belong to the genus Gimesia. Their genomes cover a size range from 7.22 to 8.29 Mb and have a G+C content between 45.1 and 53.7%. All strains are mesophilic (Topt 26-33 °C) with generation times between 12 and 32 h. Analysis of fatty acids yielded palmitic acid (16:0) and a fatty acid with the equivalent chain length of 15.817 as major compounds. While five of the novel strains belong to the already described species Gimesia maris and Gimesia chilikensis, the other strains belong to novel species, for which we propose the names Gimesia alba (type strain Pan241wT = DSM 100744T = LMG 31345T = CECT 9841T = VKM B-3430T), Gimesia algae (type strain Pan161T = CECT 30192T = STH00943T = LMG 29130T), Gimesia aquarii (type strain V144T = DSM 101710T = VKM B-3433T), Gimesia fumaroli (type strain Enr17T = DSM 100710T = VKM B-3429T) and Gimesia panareensis (type strain Enr10T = DSM 100416T = LMG 29082T). STH numbers refer to the Jena Microbial Resource Collection (JMRC).
Collapse
Affiliation(s)
- Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Friedrich-Schiller-University, Jena, Germany
| | | | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | | | - Stijn H Peeters
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | | | - Christian Jogler
- Department of Microbial Interactions, Friedrich-Schiller-University, Jena, Germany.
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
123
|
Jogler C, Wiegand S, Boedeker C, Heuer A, Peeters SH, Jogler M, Jetten MSM, Rohde M, Kallscheuer N. Tautonia plasticadhaerens sp. nov., a novel species in the family Isosphaeraceae isolated from an alga in a hydrothermal area of the Eolian Archipelago. Antonie Van Leeuwenhoek 2020; 113:1889-1900. [PMID: 32399714 PMCID: PMC7716859 DOI: 10.1007/s10482-020-01424-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
A novel planctomycetal strain, designated ElPT, was isolated from an alga in the shallow hydrothermal vent system close to Panarea Island in the Tyrrhenian Sea. Cells of strain ElPT are spherical, form pink colonies and display typical planctomycetal characteristics including division by budding and presence of crateriform structures. Strain ElPT has a mesophilic (optimum at 30 °C) and neutrophilic (optimum at pH 7.5) growth profile, is aerobic and heterotrophic. It reaches a generation time of 29 h (µmax = 0.024 h-1). The strain has a genome size of 9.40 Mb with a G + C content of 71.1% and harbours five plasmids, the highest number observed in the phylum Planctomycetes thus far. Phylogenetically, the strain represents a novel species of the recently described genus Tautonia in the family Isosphaeraceae. A characteristic feature of the strain is its tendency to attach strongly to a range of plastic surfaces. We thus propose the name Tautonia plasticadhaerens sp. nov. for the novel species, represented by the type strain ElPT (DSM 101012T = LMG 29141T).
Collapse
Affiliation(s)
- Christian Jogler
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Stijn H Peeters
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | | |
Collapse
|
124
|
Rivas-Marin E, Wiegand S, Kallscheuer N, Jogler M, Peeters SH, Heuer A, Jetten MSM, Boedeker C, Rohde M, Devos DP, Jogler C. Maioricimonas rarisocia gen. nov., sp. nov., a novel planctomycete isolated from marine sediments close to Mallorca Island. Antonie Van Leeuwenhoek 2020; 113:1901-1913. [PMID: 32583192 PMCID: PMC7716917 DOI: 10.1007/s10482-020-01436-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Planctomycetes are ubiquitous bacteria with environmental and biotechnological relevance. Axenic cultures of planctomycetal strains are the basis to analyse their unusual biology and largely uncharacterised metabolism in more detail. Here, we describe strain Mal4T isolated from marine sediments close to Palma de Mallorca, Spain. Strain Mal4T displays common planctomycetal features, such as division by polar budding and the presence of fimbriae and crateriform structures on the cell surface. Cell growth was observed at ranges of 10-39 °C (optimum at 31 °C) and pH 6.5-9.0 (optimum at 7.5). The novel strain shows as pear-shaped cells of 2.0 ± 0.2 × 1.4 ± 0.1 µm and is one of the rare examples of orange colony-forming Planctomycetes. Its genome has a size of 7.7 Mb with a G+C content of 63.4%. Phylogenetically, we conclude that strain Mal4T (= DSM 100296T = LMG 29133T) is the type strain representing the type species of a novel genus, for which we propose the name Maioricimonas rarisocia gen. nov., sp. nov.
Collapse
Affiliation(s)
- Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Mareike Jogler
- Department of Microbial Interactions, Friedrich-Schiller University, Jena, Germany
| | - Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Friedrich-Schiller University, Jena, Germany.
| |
Collapse
|
125
|
Kallscheuer N, Jogler M, Wiegand S, Peeters SH, Heuer A, Boedeker C, Jetten MSM, Rohde M, Jogler C. Rubinisphaera italica sp. nov. isolated from a hydrothermal area in the Tyrrhenian Sea close to the volcanic island Panarea. Antonie Van Leeuwenhoek 2020; 113:1727-1736. [PMID: 31773447 PMCID: PMC7717053 DOI: 10.1007/s10482-019-01329-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/09/2019] [Indexed: 01/09/2023]
Abstract
Planctomycetes is a fascinating phylum of mostly aquatic bacteria, not only due to the environmental importance in global carbon and nitrogen cycles, but also because of a unique cell biology. Their lifestyle and metabolic capabilities are not well explored, which motivated us to study the role of Planctomycetes in biofilms on marine biotic surfaces. Here, we describe the novel strain Pan54T which was isolated from algae in a hydrothermal area close to the volcanic island Panarea in the Tyrrhenian Sea, north of Sicily in Italy. The strain grew best at pH 9.0 and 26 °C and showed typical characteristics of planctomycetal bacteria, e.g. division by polar budding, formation of aggregates and presence of stalks and crateriform structures. Phylogenetically, the strain belongs to the genus Rubinisphaera. Our analysis suggests that Pan54T represents a novel species of this genus, for which we propose the name Rubinisphaera italica sp. nov. We suggest Pan54T (= DSM 29369 = LMG 29789) as the type strain of the novel species.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Department of Microbiology, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands
| | - Mareike Jogler
- Department of Microbiology, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Sandra Wiegand
- Department of Microbiology, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands
| | - Stijn H Peeters
- Department of Microbiology, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands
| | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Braunschweig, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
126
|
Rivas-Marin E, Wiegand S, Kallscheuer N, Jogler M, Peeters SH, Heuer A, Jetten MSM, Boedeker C, Rohde M, Devos DP, Jogler C. Thalassoglobus polymorphus sp. nov., a novel Planctomycete isolated close to a public beach of Mallorca Island. Antonie Van Leeuwenhoek 2020; 113:1915-1926. [PMID: 32583191 PMCID: PMC7716918 DOI: 10.1007/s10482-020-01437-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Access to axenic cultures is crucial to extend the knowledge of the biology, lifestyle or metabolic capabilities of bacteria from different phyla. The phylum Planctomycetes is an excellent example since its members display an unusual cell biology and complex lifestyles. As a contribution to the current collection of axenic planctomycete cultures, here we describe strain Mal48T isolated from phytoplankton material sampled at the coast of S'Arenal close to Palma de Mallorca (Spain). The isolated strain shows optimal growth at pH 7.0-7.5 and 30 °C and exhibits typical features of Planctomycetes. Cells of the strain are spherical to pear-shaped, divide by polar budding with daughter cells showing the same shape as the mother cell, tend to aggregate, display a stalk and produce matrix or fimbriae. Strain Mal48T showed 95.8% 16S rRNA gene sequence similarity with the recently described Thalassoglobus neptunius KOR42T. The genome sequence of the novel isolate has a size of 6,357,355 bp with a G+C content of 50.3%. A total of 4874 protein-coding genes, 41 tRNA genes and 2 copies of the 16S rRNA gene are encoded in the genome. Based on phylogenetic, morphological and physiological analyses, we conclude that strain Mal48T (= DSM 100737T = LMG 29019T) should be classified as the type strain of a new species in the genus Thalassoglobus, for which the name Thalassoglobus polymorphus sp. nov. is proposed.
Collapse
Affiliation(s)
- Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Mareike Jogler
- Department of Microbial Interactions, Friedrich-Schiller University, Jena, Germany
| | - Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Friedrich-Schiller University, Jena, Germany.
| |
Collapse
|
127
|
Salbreiter M, Waqqas M, Jogler M, Kallscheuer N, Wiegand S, Peeters SH, Heuer A, Jetten MSM, Boedeker C, Rast P, Rohde M, Jogler C. Three Planctomycetes isolated from biotic surfaces in the Mediterranean Sea and the Pacific Ocean constitute the novel species Symmachiella dynata gen. nov., sp. nov. and Symmachiella macrocystis sp. nov. Antonie Van Leeuwenhoek 2020; 113:1965-1977. [PMID: 32833165 PMCID: PMC7716862 DOI: 10.1007/s10482-020-01464-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Planctomycetes is a phylum of environmentally important bacteria, which also receive significant attention due to their fascinating cell biology. Access to axenic Planctomycete cultures is crucial to study cell biological features within this phylum in further detail. In this study, we characterise three novel strains, Mal52T, Pan258 and CA54T, which were isolated close to the coasts of the islands Mallorca (Spain) and Panarea (Italy), and from Monterey Bay, CA, USA. The three isolates show optimal growth at temperatures between 22 and 24 °C and at pH 7.5, divide by polar budding, lack pigmentation and form strong aggregates in liquid culture. Analysis of five phylogenetic markers suggests that the strains constitute two novel species within a novel genus in the family Planctomycetaceae. The strains Mal52T (DSM 101177T = VKM B-3432T) and Pan258 were assigned to the species Symmachiella dynata gen nov., sp. nov., while strain CA54T (DSM 104301T = VKM B-3450T) forms a separate species of the same genus, for which we propose the name Symmachiella macrocystis sp. nov.
Collapse
Affiliation(s)
- Markus Salbreiter
- Department of Microbial Interactions, Friedrich-Schiller-University, Jena, Germany
| | - Muhammad Waqqas
- Department of Microbial Interactions, Friedrich-Schiller-University, Jena, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Friedrich-Schiller-University, Jena, Germany
| | | | - Sandra Wiegand
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein- Leopoldshafen, Germany
| | - Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Friedrich-Schiller-University, Jena, Germany.
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
| |
Collapse
|
128
|
Kaboré OD, Godreuil S, Drancourt M. Planctomycetes as Host-Associated Bacteria: A Perspective That Holds Promise for Their Future Isolations, by Mimicking Their Native Environmental Niches in Clinical Microbiology Laboratories. Front Cell Infect Microbiol 2020; 10:519301. [PMID: 33330115 PMCID: PMC7734314 DOI: 10.3389/fcimb.2020.519301] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023] Open
Abstract
Traditionally recognized as environmental bacteria, Planctomycetes have just been linked recently to human pathology as opportunistic pathogens, arousing a great interest for clinical microbiologists. However, the lack of appropriate culture media limits our future investigations as no Planctomycetes have ever been isolated from patients' specimens despite several attempts. Several Planctomycetes have no cultivable members and are only recognized by 16S rRNA gene sequence detection and analysis. The cultured representatives are slow-growing fastidious bacteria and mostly difficult to culture on synthetic media. Accordingly, the provision of environmental and nutritional conditions like those existing in the natural habitat where yet uncultured/refractory bacteria can be detected might be an option for their potential isolation. Hence, we systematically reviewed the various natural habitats of Planctomycetes, to review their nutritional requirements, the physicochemical characteristics of their natural ecological niches, current methods of cultivation of the Planctomycetes and gaps, from a perspective of collecting data in order to optimize conditions and the protocols of cultivation of these fastidious bacteria. Planctomycetes are widespread in freshwater, seawater, and terrestrial environments, essentially associated to particles or organisms like macroalgae, marine sponges, and lichens, depending on the species and metabolizable polysaccharides by their sulfatases. Most Planctomycetes grow in nutrient-poor oligotrophic environments with pH ranging from 3.4 to 11, but a few strains can also grow in quite nutrient rich media like M600/M14. Also, a seasonality variation of abundance is observed, and bloom occurs in summer-early autumn, correlating with the strong growth of algae in the marine environments. Most Planctomycetes are mesophilic, but with a few Planctomycetes being thermophilic (50°C to 60°C). Commonly added nutrients are N-acetyl-glucosamine, yeast-extracts, peptone, and some oligo and macro-elements. A biphasic host-associated extract (macroalgae, sponge extract) conjugated with a diluted basal medium should provide favorable results for the success of isolation in pure culture.
Collapse
Affiliation(s)
- Odilon D. Kaboré
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Sylvain Godreuil
- Université de Montpellier UMR 1058 UMR MIVEGEC, UMR IRD 224-CNRS Inserm, Montpellier, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
129
|
Bringing the diversity of Planctomycetes into the light: Introduction to papers from the special issue on novel taxa of Planctomycetes. Antonie van Leeuwenhoek 2020; 113:1715-1726. [PMID: 33258053 DOI: 10.1007/s10482-020-01499-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 01/21/2023]
|
130
|
Elcheninov AG, Podosokorskaya OA, Kovaleva OL, Novikov AA, Toshchakov SV, Bonch-Osmolovskaya EA, Kublanov IV. Thermogemmata fonticola gen. nov., sp. nov., the first thermophilic planctomycete of the order Gemmatales from a Kamchatka hot spring. Syst Appl Microbiol 2020; 44:126157. [PMID: 33220635 DOI: 10.1016/j.syapm.2020.126157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023]
Abstract
A novel aerobic moderately thermophilic bacterium, designated strain 2918T, was isolated from a terrestrial hot spring of Kamchatka, Russian Federation. Gram-negative, motile, spherical cells were present singly, in pairs, or aggregates, and reproduced by budding. The strain grew at 25-60°C and within a pH range of 5.0-8.0 with an optimum at 54-60°C and pH 7.5. Strain 2918T did not require sodium chloride or yeast extract for growth. It was a chemoorganoheterotroph, growing on mono-, di- and polysaccharides (starch, lichenan, galactan, arabinan, xanthan gum, beta-glucan). No growth was observed under anaerobic conditions neither in the presence of sulfur, nitrate, or thiosulfate nor without adding any electron acceptor. Major cellular fatty acids were C18:0 and C20:0. The respiratory quinone was MK-6. The size of the genome of strain 2918T was 4.81 Mb. Genomic DNA G+C content was 60.4mol%. According to the 16S rRNA gene sequence and conserved protein sequences phylogenies, strain 2918T represented a distinct lineage of the order Gemmatales within Planctomycetes. Based on phylogenetic analysis and phenotypic features, the novel isolate was assigned to a novel genus in the Gemmatales for which the name Thermogemmata gen. nov. is proposed. Strain 2918T (=KCTC 72012T =VKM B-3161T) represents its first species Thermogemmata fonticola sp. nov.
Collapse
Affiliation(s)
- Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia.
| | - Olga A Podosokorskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Olga L Kovaleva
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Andrei A Novikov
- Gubkin Russian State University of Oil and Gas, Leninskiy Prospect 65, 119991 Moscow, Russia
| | - Stepan V Toshchakov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Elizaveta A Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia; Lomonosov State University, Leninskie Gory 1 Bldg 12, Moscow, Russia
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| |
Collapse
|
131
|
Gonzalez JM, Puerta-Fernández E, Santana MM, Rekadwad B. On a Non-Discrete Concept of Prokaryotic Species. Microorganisms 2020; 8:microorganisms8111723. [PMID: 33158054 PMCID: PMC7692863 DOI: 10.3390/microorganisms8111723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/09/2023] Open
Abstract
The taxonomic concept of species has received continuous attention. A microbial species as a discrete box contains a limited number of highly similar microorganisms assigned to that taxon, following a polyphasic approach. In the 21st Century, with the advancements of sequencing technologies and genomics, the existence of a huge prokaryotic diversity has become well known. At present, the prokaryotic species might no longer have to be understood as discrete values (such as 1 or 2, by homology to Natural numbers); rather, it is expected that some microorganisms could be potentially distributed (according to their genome features and phenotypes) in between others (such as decimal numbers between 1 and 2; real numbers). We propose a continuous species concept for microorganisms, which adapts to the current knowledge on the huge diversity, variability and heterogeneity existing among bacteria and archaea. Likely, this concept could be extended to eukaryotic microorganisms. The continuous species concept considers a species to be delimited by the distance between a range of variable features following a Gaussian-type distribution around a reference organism (i.e., its type strain). Some potential pros and cons of a continuous concept are commented on, offering novel perspectives on our understanding of the highly diversified prokaryotic world, thus promoting discussion and further investigation in the field.
Collapse
Affiliation(s)
- Juan M. Gonzalez
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, Avda. Reina Mercedes 10, 41012 Sevilla, Spain;
- Correspondence: ; Tel.: +34-95-462-4711
| | - Elena Puerta-Fernández
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, Avda. Reina Mercedes 10, 41012 Sevilla, Spain;
| | - Margarida M. Santana
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edifício C2, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Bhagwan Rekadwad
- National Centre for Microbial Resource, National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind Road, Maharashtra State, Pune 411007, India;
| |
Collapse
|
132
|
Kumar G, Radha V, Jagadeeshwari U, Sasikala C, Venkata Ramana C. Bacterial communities of sponges from the wetland ecosystem of Little Rann of Kutch, India with particular reference to Planctomycetes. 3 Biotech 2020; 10:478. [PMID: 33094088 PMCID: PMC7568738 DOI: 10.1007/s13205-020-02449-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022] Open
Abstract
Five sponge specimens belonging to the genera Spongilla and Ciocalypta were collected from Little Rann of Kutch (in Gujarat, India) and analysed for associated microbiomes. Critical analysis was done with respect to members of the phylum Planctomycetes, using two different strategies; 1. Culture-independent metagenomic approach and 2. culture-dependent anaerobic enrichment for anammox-planctomycetes. The 16S rRNA gene (V1-V3 region) amplicon metagenome analysis revealed significant divergence in bacterial diversity, including Planctomycetes among the sponges analysed. Community metagenomics revealed a total of 376 Operational Taxonomic Units (OTUs) belonging to 41 different phyla. OTUs belonging to Proteobacteria was the most abundant (38%) among the sponge analysed. The KEGG annotation predicted a total of 6909 KEGG orthologs (KOs); most of the KOs are associated with membrane transport, xenobiotic degradation, production of secondary metabolites, amino acid metabolism and carbohydrate metabolism. In the culture-dependent study, FISH analysis confirmed the association of anammox-planctomycetes with sponges. Partial 16S rRNA gene sequences of two planctomycetes (JC545, JC543) were cladding with those of uncultured Phycisphaerae class. The other three putative anammox bacteria (JC541, JC542, JC544) formed a different clade with "Candidatus Brocadia anammoxidans". These three putative bacteria believably represent new species/genus related to "Candidatus Brocadia".
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046 India
| | - Vaddavalli Radha
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046 India
| | - Uppadda Jagadeeshwari
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J. N. T. University Hyderabad, Kukatpally, Hyderabad, 500085 India
| | - Chintalapati Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J. N. T. University Hyderabad, Kukatpally, Hyderabad, 500085 India
| | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046 India
| |
Collapse
|
133
|
Descriptions of Roseiconus nitratireducens gen. nov. sp. nov. and Roseiconus lacunae sp. nov. Arch Microbiol 2020; 203:741-754. [PMID: 33047175 DOI: 10.1007/s00203-020-02078-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Two pink-coloured, oxidase-catalase-positive, salt and alkali-tolerant planctomycetal strains (JC635T and JC645T) with pear to spherical-shaped, Gram-stain-negative, motile cells were isolated from Chilika lagoon, India. Both strains share highest 16S rRNA gene sequence identity with members of the genus Rhodopirellula (< 94%) and Roseimaritima (< 94%) of the family Pirellulaceae. The 16S rRNA sequence identity between the strains JC635T and JC645T is 96.1%. Respiratory quinone for both strains is MK6. Major fatty acids are C18:1ω9c and C16:0. Major polar lipids are phosphatidylethanolamine, phosphatidylcholine, unidentified amino lipids and an unidentified lipid. The genomic size of strain JC635T and JC645T are 7.95 Mb and 8.2 Mb with DNA G + C content of 55.1 and 60.0 mol%, respectively. Based on phylogenetic, genomic (ANI, AAI, POCP, dDDH), chemotaxonomic, physiological and biochemical characteristics, we conclude that both strains belong to a novel genus Roseiconus gen. nov. and constitute two novel species for which we propose the names Roseiconus nitratireducens sp. nov. and Roseiconus lacunae sp. nov. The two novel species are represented by the type strains JC645T (= KCTC 72174T = NBRC 113879T) and JC635T (= KCTC 72164T = NBRC 113875T), respectively.
Collapse
|
134
|
Impacts of Extreme Weather Events on Bacterial Community Composition of a Temperate Humic Lake. WATER 2020. [DOI: 10.3390/w12102757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Extreme weather events are projected to increase in frequency and intensity as climate change continues. Heterotrophic bacteria play a critical role in lake ecosystems, yet little research has been done to determine how they are affected by such extremes. The purpose of this study was to use high-throughput sequencing to explore the bacterial community composition of a humic oligotrophic lake on the North Atlantic Irish coast and to assess the impacts on composition dynamics related to extreme weather events. Samples for sequencing were collected from Lough Feeagh on a fortnightly basis from April to November 2018. Filtration was used to separate free-living and particle-associated bacterial communities and amplicon sequencing was performed for the 16S rRNA V4 region. Two named storms, six high discharge events, and one drought period occurred during the sampling period. These events had variable, context-dependent effects on bacterial communities in Lough Feeagh. The particle-associated community was found to be more likely to respond to physical changes, such as mixing, while the free-living population responded to changes in nutrient and carbon concentrations. Generally, however, the high stability of the bacterial community observed in Lough Feeagh suggests that the bacterial community is relatively resilient to extreme weather events.
Collapse
|
135
|
Belova SE, Saltykova VA, Dedysh SN. Antimicrobial Activity of a Novel Freshwater Planctomycete Lacipirellula parvula PX69T. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720050045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
136
|
Kaushik R, Sharma M, Gaurav K, Jagadeeshwari U, Shabbir A, Sasikala C, Ramana CV, Pandit MK. Paludisphaera soli sp. nov., a new member of the family Isosphaeraceae isolated from high altitude soil in the Western Himalaya. Antonie van Leeuwenhoek 2020; 113:1663-1674. [PMID: 32936355 DOI: 10.1007/s10482-020-01471-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/01/2020] [Indexed: 11/28/2022]
Abstract
A novel strain of Planctomycetes, designated JC670T, was isolated from a high altitude (~ 2900 m above sea level) soil sample collected from Garhwal region in the Western Himalaya. Colonies of this strain were observed to be light pink coloured with spherical to oval shaped cells having crateriform structures distributed all over the cell surface. The cells divide by budding. Strain JC670T was found to grow well at pH 7.0 and pH 8.0 and to tolerate up to 2% NaCl (w/v). MK6 was the only respiratory quinone identified. The major fatty acids of strain JC670T were identified as C18:1ω9c, C18:0 and C16:0, and phosphatidylcholine, two unidentified phospholipids and six unidentified lipids are present as the polar lipids. The polyamines putrescine and sym-homospermidine were detected. Strain JC670T shows high 16S rRNA gene sequence identity (95.4%) with Paludisphaera borealis PX4T. The draft genome size of strain JC670T is 7.97 Mb, with G + C content of 70.4 mol%. Based on phylogenetic analyses with the sequences of ninety-two core genes, low dDDH value (20.6%), low gANI (76.8%) and low AAI (69.1%) results, differential chemotaxonomic and physiological properties, strain JC670T (= KCTC 72850T = NBRC 114339T) is recognised as the type strain of a new species of the genus Paludisphaera, for which we propose the name Paludisphaera soli sp. nov.
Collapse
Affiliation(s)
- Rishabh Kaushik
- Department of Environmental Studies, University of Delhi, Delhi, 110007, India
| | - Meesha Sharma
- Department of Environmental Studies, University of Delhi, Delhi, 110007, India
| | - Kumar Gaurav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - U Jagadeeshwari
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J. N. T. University Hyderabad, Kukatpally, Hyderabad, 500085, India
| | - A Shabbir
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - Ch Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J. N. T. University Hyderabad, Kukatpally, Hyderabad, 500085, India
| | - Ch V Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India.
| | - Maharaj K Pandit
- Department of Environmental Studies, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
137
|
Mahajan M, Seeger C, Yee B, Andersson SGE. Evolutionary Remodeling of the Cell Envelope in Bacteria of the Planctomycetes Phylum. Genome Biol Evol 2020; 12:1528-1548. [PMID: 32761170 DOI: 10.1093/gbe/evaa159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 01/09/2023] Open
Abstract
Bacteria of the Planctomycetes phylum have many unique cellular features, such as extensive membrane invaginations and the ability to import macromolecules. These features raise intriguing questions about the composition of their cell envelopes. In this study, we have used microscopy, phylogenomics, and proteomics to examine the composition and evolution of cell envelope proteins in Tuwongella immobilis and other members of the Planctomycetes. Cryo-electron tomography data indicated a distance of 45 nm between the inner and outer membranes in T. immobilis. Consistent with the wide periplasmic space, our bioinformatics studies showed that the periplasmic segments of outer-membrane proteins in type II secretion systems are extended in bacteria of the order Planctomycetales. Homologs of two highly abundant cysteine-rich cell wall proteins in T. immobilis were identified in all members of the Planctomycetales, whereas genes for peptidoglycan biosynthesis and cell elongation have been lost in many members of this bacterial group. The cell wall proteins contain multiple copies of the YTV motif, which is the only domain that is conserved and unique to the Planctomycetales. Earlier diverging taxa in the Planctomycetes phylum contain genes for peptidoglycan biosynthesis but no homologs to the YTV cell wall proteins. The major remodeling of the cell envelope in the ancestor of the Planctomycetales coincided with the emergence of budding and other unique cellular phenotypes. The results have implications for hypotheses about the process whereby complex cellular features evolve in bacteria.
Collapse
Affiliation(s)
- Mayank Mahajan
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| | - Christian Seeger
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| | - Benjamin Yee
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| | - Siv G E Andersson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| |
Collapse
|
138
|
Wang J, Ruan CJ, Song L, Li A, Zhu YX, Zheng XW, Wang L, Lu ZJ, Huang Y, Du W, Zhou Y, Huang L, Dai X. Gimesia benthica sp. nov., a planctomycete isolated from a deep-sea water sample of the Northwest Indian Ocean. Int J Syst Evol Microbiol 2020; 70:4384-4389. [PMID: 32589565 DOI: 10.1099/ijsem.0.004301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, stalked, oval-shaped and budding bacterial strain, designated E7T, was isolated from a deep-sea water sample collected from the Northwest Indian Ocean. The novel strain was strictly aerobic, and catalase- and oxidase-positive. It grew at 6-40 °C (optimum 30 °C) and pH 5.5-8.0 (optimum pH 7.0-7.5). The strain required 0.5-9.0 % (w/v) NaCl (optimum 3.0-5.0 %) for growth. Aesculin, starch, pectin and Tween 20 were hydrolysed. Based on 16S rRNA gene sequence analysis, strain E7T showed the highest similarity with Gimesia maris DSM 8797T (97.5 %). The average nucleotide identity and in silico DNA-DNA hybridization values between strain E7T and G. maris DSM 8797T were 78.0 and 19.3 %, respectively. The predominant cellular fatty acids of strain E7T were C16 : 0 and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c). The major respiratory quinone was menaquinone-6 (MK-6) and the major polar lipids were phosphatidylethanolamine (PE), phosphatidylmonomethylethanolamine (PMME), phosphatidyldimethylethanolamine (PDME), phosphatidylcholine (PC) and diphosphatidylglycerol (DPG). The genomic DNA G+C content of strain E7T was 52.8 mol%. On the basis of phylogenetic inference and phenotypic characteristics, it is proposed that strain E7T represents a novel species of the genus Gimesia, for which the name Gimesia benthica sp. nov. is proposed. The type strain is E7T (=CGMCC 1.16119T=KCTC 72737T).
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Chu-Jin Ruan
- Present address: China Agricultural University, Beijing, PR China.,College of Life Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Lei Song
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ang Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ya-Xin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiao-Wei Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Li Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zu-Jun Lu
- College of Life Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuguang Zhou
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
139
|
Planctomycetes as a Vital Constituent of the Microbial Communities Inhabiting Different Layers of the Meromictic Lake Sælenvannet (Norway). Microorganisms 2020; 8:microorganisms8081150. [PMID: 32751313 PMCID: PMC7464441 DOI: 10.3390/microorganisms8081150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 12/20/2022] Open
Abstract
Meromictic lakes are permanently stratified lakes that display steep gradients in salinity, oxygen and sulphur compounds tightly linked to bacterial community structure and diversity. Lake Sælenvannet is a meromictic lake located south of Bergen, Norway. The 26 m deep lake is connected to the open sea and permanently stratified into two layers separated by a chemocline. The upper water layer is brackish with major input from water runoff from the surroundings. The bottom layer consists of old saline water with low or no oxygen concentrations. Bacteria from phylum Planctomycetes are reported to be ubiquitous in lake environments. They are involved in the degradation of complex carbon sources in aquatic environments and are also linked to anaerobic processes such as fermentation and sulphur reduction. To study Planctomycete distribution along a chemical gradient, we sampled the water column throughout Lake Sælenvannet in 2012 and profiled the microbial community using 16S rRNA amplicon sequencing (metabarcoding) with 454 pyrosequencing. Planctomycetes related 16S rRNA gene sequences were found to be present both in the oxic and anoxic parts of the lake and showed an uneven distribution throughout the water column, with the highest relative abundance of 10% found in the saline anoxic layer at 15 m depth. In a follow-up study in 2014, samples from eight different depths were collected for enrichment and isolation of novel Planctomycetes. This study resulted in successful isolation in pure culture of 10 isolates affiliated to four different genera from the family Planctomycetaceae. One strain closely related to Blastopirellula cremea was isolated from 9 m depth, and two novel strains affiliated to the genera Stieleria and Gimesia were isolated at 7 and 9 m depths, respectively. Furthermore, seven isolates with identical 16S rRNA gene sequences were retrieved from seven different depths which varied greatly in salinity and chemical composition. These isolates likely represent a new species affiliated to Rubinisphaera. The adaptation of this novel Planctomycete to water depths spanning the entire chemical gradient could indicate a high phenotypic plasticity and/or a very efficient survival strategy. Overall, our results show the presence of a diverse group of Planctomycetes in Lake Sælenvannet, with a strong potential for novel adaptations to chemical stress factors.
Collapse
|
140
|
From Ocean to Medicine: Pharmaceutical Applications of Metabolites from Marine Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9080455. [PMID: 32731464 PMCID: PMC7460513 DOI: 10.3390/antibiotics9080455] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/25/2020] [Indexed: 12/21/2022] Open
Abstract
Oceans cover seventy percent of the planet's surface and besides being an immense reservoir of biological life, they serve as vital sources for human sustenance, tourism, transport and commerce. Yet, it is estimated by the National Oceanic and Atmospheric Administration (NOAA) that eighty percent of the oceans remain unexplored. The untapped biological resources present in oceans may be fundamental in solving several of the world's public health crises of the 21st century, which span from the rise of antibiotic resistance in bacteria, pathogenic fungi and parasites, to the rise of cancer incidence and viral infection outbreaks. In this review, health risks as well as how marine bacterial derived natural products may be tools to fight them will be discussed. Moreover, an overview will be made of the research pipeline of novel molecules, from identification of bioactive bacterial crude extracts to the isolation and chemical characterization of the molecules within the framework of the One Health approach. This review highlights information that has been published since 2014, showing the current relevance of marine bacteria for the discovery of novel natural products.
Collapse
|
141
|
Sandargo B, Jeske O, Boedeker C, Wiegand S, Wennrich JP, Kallscheuer N, Jogler M, Rohde M, Jogler C, Surup F. Stieleriacines, N-Acyl Dehydrotyrosines From the Marine Planctomycete Stieleria neptunia sp. nov. Front Microbiol 2020; 11:1408. [PMID: 32765432 PMCID: PMC7378531 DOI: 10.3389/fmicb.2020.01408] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/29/2020] [Indexed: 12/02/2022] Open
Abstract
Bacteria of the phylum Planctomycetes occur ubiquitously in marine environments and play important roles in the marine nitrogen- and carbon cycle, for example as scavengers after phototrophic blooms. Here, we describe the isolation and characterization of the planctomycetal strain Enr13T isolated from a Posidonia sp. biofilm obtained from seawater sediment close to Panarea Island, Italy. Phylogenetic tree reconstruction based on 16S rRNA gene sequences and multi-locus sequence analysis supports the delineation of strain Enr13T from characterized species part of the phylum of Planctomycetes. HPLC-MS analysis of culture broth obtained from strain Enr13T revealed the presence of lipophilic metabolites, of which the major compound was isolated by preparative reversed-phase HPLC. The structure of this compound, named stieleriacine D (1), was elucidated utilizing HRESIMS, 1D- and 2D-NMR data as a new N-acylated dehydrotyrosine derivative. Its biosynthesis was proposed based on an in silico gene cluster analysis. Through analysis of the MS/MS spectrum of 1 and its minor derivative, stieleriacine E (2), it was possible to assign the structure of 2 without isolation. 1 showed antibacterial activity, however, the wide distribution of structurally related compounds indicates a potential role as a signaling molecule.
Collapse
Affiliation(s)
- Birthe Sandargo
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Olga Jeske
- Leibniz Institute DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Christian Boedeker
- Leibniz Institute DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Sandra Wiegand
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Jan-Peer Wennrich
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | | | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Nijmegen, Netherlands.,Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Frank Surup
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
142
|
Kohn T, Rast P, Kallscheuer N, Wiegand S, Boedeker C, Jetten MSM, Jeske O, Vollmers J, Kaster AK, Rohde M, Jogler M, Jogler C. The Microbiome of Posidonia oceanica Seagrass Leaves Can Be Dominated by Planctomycetes. Front Microbiol 2020; 11:1458. [PMID: 32754127 PMCID: PMC7366357 DOI: 10.3389/fmicb.2020.01458] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
Seagrass meadows are ubiquitous, fragile and endangered marine habitats, which serve as fish breeding grounds, stabilize ocean floor substrates, retain nutrients and serve as important carbon sinks, counteracting climate change. In the Mediterranean Sea, seagrass meadows are mostly formed by the slow-growing endemic plant Posidonia oceanica (Neptune grass), which is endangered by global warming and recreational motorboating. Despite its importance, surprisingly little is known about the leaf surface microbiome of P. oceanica. Using amplicon sequencing, we here show that species belonging to the phylum Planctomycetes can dominate the biofilms of young and aged P. oceanica leaves. Application of selective cultivation techniques allowed for the isolation of two novel planctomycetal strains belonging to two yet uncharacterized genera.
Collapse
Affiliation(s)
- Timo Kohn
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Patrick Rast
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | | | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Christian Boedeker
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Mike S. M. Jetten
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Olga Jeske
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - John Vollmers
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
143
|
Diversity of sediment associated Planctomycetes and its related phyla with special reference to anammox bacterial community in a high Arctic fjord. World J Microbiol Biotechnol 2020; 36:107. [PMID: 32638161 DOI: 10.1007/s11274-020-02886-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
The fjords of west Spitsbergen Svalbard, Arctic Norway, are undergoing a transformation as the impact of nutrient rich warmer Atlantic water is significantly altering the primary production and subsequently the carbon pool. Members of the phylum Planctomycetes are ubiquitous in marine systems and are important in the mineralization of organic matter. Hence, the phylogenetic diversity and distribution pattern of Planctomycetes in the surface sediments of a high Arctic fjord, the Kongsfjorden were studied. Further, considering the release of ammonium as a part of mineralization, the diversity of bacterial community involved in anaerobic ammonium oxidation (anammox) was also evaluated. The highly diverse Planctomycetes community, which consisted mainly of uncultivated and uncharacterized Planctomycetes, was observed in the study area with a total of 162 OTUs. The major genera observed were Blastopirellula (13.3%), Gimesia (13%), Rhodopirellula (10%), Planctomicrobium (2%) and Thermogutta (1.6%). Functional prediction revealed the dominance of carbohydrate metabolism genes and the presence of gene clusters for production of secondary metabolites and xenobiotic degradation. Anammox bacterial sequences were detected from all the samples with a total of 52 OTUs. Most of the OTUs belonged to the genus Candidatus Scalindua and three distinct clusters were observed in the phylogenetic tree, (a) Ca. Scalindua brodae (49%), (b) Ca. Scalindua wagneri (31%) and (c) Ca. Scalindua marina (12%) based on their phylogenic distance. Our findings suggest the existence of highly diverse Planctomycetes and anammox bacterial community with regional variants in the sediments of Kongsfjorden.
Collapse
|
144
|
Caulifigura coniformis gen. nov., sp. nov., a novel member of the family Planctomycetaceae isolated from a red biofilm sampled in a hydrothermal area. Antonie van Leeuwenhoek 2020; 113:1927-1937. [PMID: 32583190 PMCID: PMC7717036 DOI: 10.1007/s10482-020-01439-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
Pan44T, a novel strain belonging to the phylum Planctomycetes, was isolated from a red biofilm in a hydrothermal area close to the island Panarea in the Tyrrhenian Sea north of Sicily, Italy. The strain forms white colonies on solid medium and displays the following characteristics: cell division by budding, formation of rosettes, presence of matrix or fimbriae and long stalks. The cell surface has an interesting and characteristic texture made up of triangles and rectangles, which leads to a pine cone-like morphology of the strain. Strain Pan44T is mesophilic (temperature optimum 26 °C), slightly alkaliphilic (pH optimum 8.0), aerobic and heterotrophic. The strain has a genome size of 6.76 Mb with a G + C content of 63.2%. Phylogenetically, the strain is a member of the family Planctomycetaceae, order Planctomycetales, class Planctomycetia. Our analysis supports delineation of strain Pan44T from all known genera in this family, hence, we propose to assign it to a novel species within a novel genus, for which we propose the name Caulifigura coniformis gen. nov., sp. nov., represented by Pan44T (DSM 29405T = LMG 29788T) as the type strain.
Collapse
|
145
|
Kallscheuer N, Jeske O, Sandargo B, Boedeker C, Wiegand S, Bartling P, Jogler M, Rohde M, Petersen J, Medema MH, Surup F, Jogler C. The planctomycete Stieleria maiorica Mal15 T employs stieleriacines to alter the species composition in marine biofilms. Commun Biol 2020; 3:303. [PMID: 32533057 PMCID: PMC7293339 DOI: 10.1038/s42003-020-0993-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Bacterial strains of the phylum Planctomycetes occur ubiquitously, but are often found on surfaces of aquatic phototrophs, e.g. alga. Despite slower growth, planctomycetes are not outcompeted by faster-growing bacteria in biofilms on such surfaces; however, strategies allowing them to compensate for slower growth have not yet been investigated. Here, we identified stieleriacines, a class of N-acylated tyrosines produced by the novel planctomycete Stieleria maiorica Mal15T, and analysed their effects on growth of the producing strain and bacterial species likely co-occurring with strain Mal15T. Stieleriacines reduced the lag phase of Mal15T and either stimulated or inhibited biofilm formation of two bacterial competitors, indicating that Mal15T employs stieleriacines to specifically alter microbial biofilm composition. The genetic organisation of the putative stieleriacine biosynthetic cluster in strain Mal15T points towards a functional link of stieleriacine biosynthesis to exopolysaccharide-associated protein sorting and biofilm formation.
Collapse
Affiliation(s)
| | - Olga Jeske
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands.,Leibniz Institute DSMZ, Braunschweig, Germany
| | - Birthe Sandargo
- Helmholtz Centre for Infection Research, Braunschweig, Germany.,German Centre for Infection Research (DZIF), Braunschweig, Germany
| | | | - Sandra Wiegand
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands.,Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Frank Surup
- Helmholtz Centre for Infection Research, Braunschweig, Germany. .,German Centre for Infection Research (DZIF), Braunschweig, Germany.
| | - Christian Jogler
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands. .,Department of Microbial Interactions, Friedrich-Schiller University, Jena, Germany.
| |
Collapse
|
146
|
Schubert T, Kallscheuer N, Wiegand S, Boedeker C, Peeters SH, Jogler M, Heuer A, Jetten MSM, Rohde M, Jogler C. Calycomorphotria hydatis gen. nov., sp. nov., a novel species in the family Planctomycetaceae with conspicuous subcellular structures. Antonie van Leeuwenhoek 2020; 113:1877-1887. [PMID: 32399715 PMCID: PMC7716856 DOI: 10.1007/s10482-020-01419-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022]
Abstract
A novel strain belonging to the family Planctomycetaceae, designated V22T, was isolated from sediment of a seawater fish tank in Braunschweig, Germany. The isolate forms pink colonies on solid medium and displays common characteristics of planctomycetal strains, such as division by budding, formation of rosettes, a condensed nucleoid and presence of crateriform structures and fimbriae. Unusual invaginations of the cytoplasmic membrane and filamentous putative cytoskeletal elements were observed in thin sections analysed by transmission electron microscopy. Strain V22T is an aerobic heterotroph showing optimal growth at 30 °C and pH 8.5. During laboratory cultivations, strain V22T reached generation times of 10 h (maximal growth rate of 0.069 h-1). Its genome has a size of 5.2 Mb and a G + C content of 54.9%. Phylogenetically, the strain represents a novel genus and species in the family Planctomycetaceae, order Planctomycetales, class Planctomycetia. We propose the name Calycomorphotria hydatis gen. nov., sp. nov. for the novel taxon, represented by the type strain V22T (DSM 29767T = LMG 29080T).
Collapse
Affiliation(s)
- Torsten Schubert
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | | | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Stijn H Peeters
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany. .,Department of Microbiology, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
147
|
Vitorino I, Albuquerque L, Wiegand S, Kallscheuer N, da Costa MS, Lobo-da-Cunha A, Jogler C, Lage OM. Alienimonas chondri sp. nov., a novel planctomycete isolated from the biofilm of the red alga Chondrus crispus. Syst Appl Microbiol 2020; 43:126083. [PMID: 32360272 DOI: 10.1016/j.syapm.2020.126083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 11/26/2022]
Abstract
The phylum Planctomycetes comprises bacteria with peculiar and very unique characteristics among prokaryotes. In marine environments, macroalgae biofilms are well known for harboring planctomycetal diversity. Here, we describe a novel isolate obtained from the biofilm of the red alga Chondrus crispus collected at a rocky beach in Porto, Portugal. The novel strain LzC2T is motile, rosette-forming with spherical- to ovoid-shaped cells. LzC2T forms magenta- to pinkish-colored colonies in M13 and M14 media. Transmission and scanning electron microscopy observations showed a division by polar and lateral budding. Mother cells are connected to the daughter cells by a tubular neck-like structure. The strain requires salt for growth. Vitamins are not required for growth. Optimal growth occurs from 15 to 30°C and within a pH range from 5.5 to 10.0. Major fatty acids are anteiso-C15:0 (54.2%) and iso-C15:0 (19.5%). Phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid represent the main lipids and menaquinone 6 (MK-6) is the only quinone present. 16S rRNA gene-based phylogenetic analysis supports the affiliation to the phylum Planctomycetes and family Planctomycetaceae, with Alienimonas as the closest relative. Strain LzC2T shares 97% 16S rRNA gene sequence similarity with Alienimonas californiensis. LzC2T has a genome size of 5.3 Mb and a G+C content of 68.3%. Genotypic and phenotypic comparison with the closest relatives strongly suggest that LzC2T (=CECT 30038T=LMG XXXT) is a new species of the genus Alienimonas, for which we propose the name Alienimonas chondri sp. nov., represented by LzC2T as type strain. 16S rRNA gene accession number: GenBank=MN757873.1. Genome accession number: GenBank=WTPX00000000.
Collapse
Affiliation(s)
- Inês Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/no., 4169-007 Porto, Portugal; CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Luciana Albuquerque
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517 Coimbra, Portugal
| | - Sandra Wiegand
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Nicolai Kallscheuer
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Milton S da Costa
- Departamento de Ciências da Vida, Apartado 3046, Universidade de Coimbra, 3001-401 Coimbra, Portugal
| | - Alexandre Lobo-da-Cunha
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Christian Jogler
- Institute of Microbiology, Department of Microbial Interactions, Friedrich-Schiller University Jena, Philosophenweg 12, Jena, Germany
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/no., 4169-007 Porto, Portugal; CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
148
|
Aureliella helgolandensis gen. nov., sp. nov., a novel Planctomycete isolated from a jellyfish at the shore of the island Helgoland. Antonie Van Leeuwenhoek 2020; 113:1839-1849. [PMID: 32219667 PMCID: PMC7716919 DOI: 10.1007/s10482-020-01403-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/06/2020] [Indexed: 11/02/2022]
Abstract
A novel planctomycetal strain, designated Q31aT, was isolated from a jellyfish at the shore of the island Helgoland in the North Sea. The strain forms lucid white colonies on solid medium and displays typical characteristics of planctomycetal strains, such as division by budding, formation of rosettes, presence of crateriform structures, extracellular matrix or fibre and a holdfast structure. Q31aT is mesophilic (temperature optimum 27 °C), neutrophilic (pH optimum 7.5), aerobic and heterotrophic. A maximal growth rate of 0.017 h- 1 (generation time of 41 h) was observed. Q31aT has a genome size of 8.44 Mb and a G + C content of 55.3%. Phylogenetically, the strain represents a novel genus and species in the recently introduced family Pirellulaceae, order Pirellulales, class Planctomycetia. We propose the name Aureliella helgolandensis gen. nov., sp. nov. for the novel species, represented by Q31aT (= DSM 103537T = LMG 29700T) as the type strain.
Collapse
|
149
|
McGivney E, Cederholm L, Barth A, Hakkarainen M, Hamacher-Barth E, Ogonowski M, Gorokhova E. Rapid Physicochemical Changes in Microplastic Induced by Biofilm Formation. Front Bioeng Biotechnol 2020; 8:205. [PMID: 32266235 PMCID: PMC7103643 DOI: 10.3389/fbioe.2020.00205] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/02/2020] [Indexed: 11/23/2022] Open
Abstract
Risk assessment of microplastic (MP) pollution requires understanding biodegradation processes and related changes in polymer properties. In the environment, there are two-way interactions between the MP properties and biofilm communities: (i) microorganisms may prefer some surfaces, and (ii) MP surface properties change during the colonization and weathering. In a 2-week experiment, we studied these interactions using three model plastic beads (polyethylene [PE], polypropylene [PP], and polystyrene [PS]) exposed to ambient bacterioplankton assemblage from the Baltic Sea; the control beads were exposed to bacteria-free water. For each polymer, the physicochemical properties (compression, crystallinity, surface chemistry, hydrophobicity, and surface topography) were compared before and after exposure under controlled laboratory conditions. Furthermore, we characterized the bacterial communities on the MP surfaces using 16S rRNA gene sequencing and correlated community diversity to the physicochemical properties of the MP. Significant changes in PE crystallinity, PP stiffness, and PS maximum compression were observed as a result of exposure to bacteria. Moreover, there were significant correlations between bacterial diversity and some physicochemical characteristics (crystallinity, stiffness, and surface roughness). These changes coincided with variation in the relative abundance of unique OTUs, mostly related to the PE samples having significantly higher contribution of Sphingobium, Novosphingobium, and uncultured Planctomycetaceae compared to the other test materials, whereas PP and PS samples had significantly higher abundance of Sphingobacteriales and Alphaproteobacteria, indicating possible involvement of these taxa in the initial biodegradation steps. Our findings demonstrate measurable signs of MP weathering under short-term exposure to environmentally relevant microbial communities at conditions resembling those in the water column. A systematic approach for the characterization of the biodegrading capacity in different systems will improve the risk assessment of plastic litter in aquatic environments.
Collapse
Affiliation(s)
- Eric McGivney
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Linnea Cederholm
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Martin Ogonowski
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Elena Gorokhova
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
150
|
Colpa DI, Zhou W, Wempe JP, Tamis J, Stuart MCA, Krooneman J, Euverink GJW. Thauera aminoaromatica MZ1T Identified as a Polyhydroxyalkanoate-Producing Bacterium within a Mixed Microbial Consortium. Bioengineering (Basel) 2020; 7:E19. [PMID: 32098069 PMCID: PMC7175198 DOI: 10.3390/bioengineering7010019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/04/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) form a highly promising class of bioplastics for the transition from fossil fuel-based plastics to bio-renewable and biodegradable plastics. Mixed microbial consortia (MMC) are known to be able to produce PHAs from organic waste streams. Knowledge of key-microbes and their characteristics in PHA-producing consortia is necessary for further process optimization and direction towards synthesis of specific types of PHAs. In this study, a PHA-producing mixed microbial consortium (MMC) from an industrial pilot plant was characterized and further enriched on acetate in a laboratory-scale selector with a working volume of 5 L, and 16S-rDNA microbiological population analysis of both the industrial pilot plant and the 5 L selector revealed that the most dominant species within the population is Thauera aminoaromatica MZ1T, a Gram-negative beta-proteobacterium belonging to the order of the Rhodocyclales. The relative abundance of this Thauera species increased from 24 to 40% after two months of enrichment in the selector-system, indicating a competitive advantage, possibly due to the storage of a reserve material such as PHA. First experiments with T. aminoaromatica MZ1T showed multiple intracellular granules when grown in pure culture on a growth medium with a C:N ratio of 10:1 and acetate as a carbon source. Nuclear magnetic resonance (NMR) analyses upon extraction of PHA from the pure culture confirmed polyhydroxybutyrate production by T. aminoaromatica MZ1T.
Collapse
Affiliation(s)
- Dana I. Colpa
- Products and Processes for Biotechnology Group, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wen Zhou
- Products and Processes for Biotechnology Group, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jan Pier Wempe
- Products and Processes for Biotechnology Group, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jelmer Tamis
- Paques Technology B.V., Tjalke de Boerstrjitte 24, 8561 EL Balk, The Netherlands
| | - Marc C. A. Stuart
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Janneke Krooneman
- Products and Processes for Biotechnology Group, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gert-Jan W. Euverink
- Products and Processes for Biotechnology Group, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|