101
|
Xu T, Li J, Yu B, Liu L, Zhang X, Liu J, Pan H, Zhang Y. Transcription Factor SsSte12 Was Involved in Mycelium Growth and Development in Sclerotinia sclerotiorum. Front Microbiol 2018; 9:2476. [PMID: 30386319 PMCID: PMC6200020 DOI: 10.3389/fmicb.2018.02476] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
Sclerotinia sclerotiorum is a challenging agricultural pathogen for management, causing large global economic losses annually. The sclerotia and infection cushions are critical for its long-term survival and successful penetration on a wide spectrum of hosts. The mitogen-activated protein kinase (MAPK) cascades serve as central signaling complexes that are involved in various aspects of sclerotia development and infection. In this study, the putative downstream transcription factor of MAPK pathway, SsSte12, was analyzed in S. sclerotiorum. Silencing SsSte12 in S. sclerotiorum resulted in phenotypes of delayed vegetative growth, reduced size of sclerotia, and fewer appressoria formation. Consequently, the SsSte12 RNAi mutants showed attenuated pathogenicity on the host plants due to the defect compound appressorium. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation assays demonstrated that the SsSte12 interacts with SsMcm1. However, the SsMcm1 expression is independent of the regulation of SsSte12 as revealed by qRT-PCR analysis in SsSte12 RNAi mutants. Together with high accumulation of SsSte12 transcripts in the early development of S. sclerotiorum, our results demonstrated that SsSte12 function was essential in the vegetative mycelial growth, sclerotia development, appressoria formation and penetration-dependent pathogenicity. Moreover, the SsSte12-SsMcm1 interaction might play a critical role in the regulation of the genes encoding these traits in S. sclerotiorum.
Collapse
Affiliation(s)
- Tingtao Xu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jingtao Li
- College of Plant Sciences, Jilin University, Changchun, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Baodong Yu
- Department of Emergency of Xinmin, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ling Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
102
|
Rao S, Sharda S, Oddi V, Nandineni MR. The Landscape of Repetitive Elements in the Refined Genome of Chilli Anthracnose Fungus Colletotrichum truncatum. Front Microbiol 2018; 9:2367. [PMID: 30337918 PMCID: PMC6180176 DOI: 10.3389/fmicb.2018.02367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022] Open
Abstract
The ascomycete fungus Colletotrichum truncatum is a major phytopathogen with a broad host range which causes anthracnose disease of chilli. The genome sequencing of this fungus led to the discovery of functional categories of genes that may play important roles in fungal pathogenicity. However, the presence of gaps in C. truncatum draft assembly prevented the accurate prediction of repetitive elements, which are the key players to determine the genome architecture and drive evolution and host adaptation. We re-sequenced its genome using single-molecule real-time (SMRT) sequencing technology to obtain a refined assembly with lesser and smaller gaps and ambiguities. This enabled us to study its genome architecture by characterising the repetitive sequences like transposable elements (TEs) and simple sequence repeats (SSRs), which constituted 4.9 and 0.38% of the assembled genome, respectively. The comparative analysis among different Colletotrichum species revealed the extensive repeat rich regions, dominated by Gypsy superfamily of long terminal repeats (LTRs), and the differential composition of SSRs in their genomes. Our study revealed a recent burst of LTR amplification in C. truncatum, C. higginsianum, and C. scovillei. TEs in C. truncatum were significantly associated with secretome, effectors and genes in secondary metabolism clusters. Some of the TE families in C. truncatum showed cytosine to thymine transitions indicative of repeat-induced point mutation (RIP). C. orbiculare and C. graminicola showed strong signatures of RIP across their genomes and "two-speed" genomes with extensive AT-rich and gene-sparse regions. Comparative genomic analyses of Colletotrichum species provided an insight into the species-specific SSR profiles. The SSRs in the coding and non-coding regions of the genome revealed the composition of trinucleotide repeat motifs in exons with potential to alter the translated protein structure through amino acid repeats. This is the first genome-wide study of TEs and SSRs in C. truncatum and their comparative analysis with six other Colletotrichum species, which would serve as a useful resource for future research to get insights into the potential role of TEs in genome expansion and evolution of Colletotrichum fungi and for development of SSR-based molecular markers for population genomic studies.
Collapse
Affiliation(s)
- Soumya Rao
- Laboratory of Genomics and Profiling Applications, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Saphy Sharda
- Laboratory of Genomics and Profiling Applications, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Vineesha Oddi
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Madhusudan R. Nandineni
- Laboratory of Genomics and Profiling Applications, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Laboratory of DNA Fingerprinting Services, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
103
|
Liang X, Rollins JA. Mechanisms of Broad Host Range Necrotrophic Pathogenesis in Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2018; 108:1128-1140. [PMID: 30048598 DOI: 10.1094/phyto-06-18-0197-rvw] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Among necrotrophic fungi, Sclerotinia sclerotiorum is remarkable for its extremely broad host range and for its aggressive host tissue colonization. With full genome sequencing, transcriptomic analyses and the increasing pace of functional gene characterization, the factors underlying the basis of this broad host range necrotrophic pathogenesis are now being elucidated at a greater pace. Among these, genes have been characterized that are required for infection via compound appressoria in addition to genes associated with colonization that regulate oxalic acid (OA) production and OA catabolism. Moreover, virulence-related secretory proteins have been identified, among which are candidates for manipulating host activities apoplastically and cytoplasmically. Coupled with these mechanistic studies, cytological observations of the colonization process have blurred the heretofore clear-cut biotroph versus necrotroph boundary. In this review, we reexamine the cytology of S. sclerotiorum infection and put more recent molecular and genomic data into the context of this cytology. We propose a two-phase infection model in which the pathogen first evades, counteracts and subverts host basal defense reactions prior to killing and degrading host cells. Spatially, the pathogen may achieve this via the production of compatibility factors/effectors in compound appressoria, bulbous subcuticular hyphae, and primary invasive hyphae. By examining the nuances of this interaction, we hope to illuminate new classes of factors as targets to improve our understanding of broad host range necrotrophic pathogens and provide the basis for understanding corresponding host resistance.
Collapse
Affiliation(s)
- Xiaofei Liang
- First author: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University; and second author: Department of Plant Pathology, University of Florida, P.O. Box 110680, Gainesville 32611-0680
| | - Jeffrey A Rollins
- First author: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University; and second author: Department of Plant Pathology, University of Florida, P.O. Box 110680, Gainesville 32611-0680
| |
Collapse
|
104
|
Rivera Y, Zeller K, Srivastava S, Sutherland J, Galvez M, Nakhla M, Poniatowska A, Schnabel G, Sundin G, Abad ZG. Draft Genome Resources for the Phytopathogenic Fungi Monilinia fructicola, M. fructigena, M. polystroma, and M. laxa, the Causal Agents of Brown Rot. PHYTOPATHOLOGY 2018; 108:1141-1142. [PMID: 29723113 DOI: 10.1094/phyto-12-17-0418-a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fungi in the genus Monilinia cause brown rot disease of stone and pome fruits. Here, we report the draft genome assemblies of four important phytopathogenic species: M. fructicola, M. fructigena, M. polystroma, and M. laxa. The draft genome assemblies were 39 Mb (M. fructigena), 42 Mb (M. laxa), 43 Mb (M. fructicola), and 45 Mb (M. polystroma) with as few as 550 contigs (M. laxa). These are the first draft genome resources publicly available for M. laxa, M. fructigena, and M. polystroma.
Collapse
Affiliation(s)
- Yazmín Rivera
- 1 U.S. Department of Agriculture-Animal and Plant Health Inspection Service-Plant Protection and Quarantine, Center for Plant Health Science and Technology-Beltsville Laboratory, Beltsville, MD 20705
| | - Kurt Zeller
- 1 U.S. Department of Agriculture-Animal and Plant Health Inspection Service-Plant Protection and Quarantine, Center for Plant Health Science and Technology-Beltsville Laboratory, Beltsville, MD 20705
| | - Subodh Srivastava
- 1 U.S. Department of Agriculture-Animal and Plant Health Inspection Service-Plant Protection and Quarantine, Center for Plant Health Science and Technology-Beltsville Laboratory, Beltsville, MD 20705
- 2 Department of Plant Pathology, North Carolina State University, Raleigh 27695
| | - Jeremy Sutherland
- 1 U.S. Department of Agriculture-Animal and Plant Health Inspection Service-Plant Protection and Quarantine, Center for Plant Health Science and Technology-Beltsville Laboratory, Beltsville, MD 20705
- 2 Department of Plant Pathology, North Carolina State University, Raleigh 27695
| | - Marco Galvez
- 1 U.S. Department of Agriculture-Animal and Plant Health Inspection Service-Plant Protection and Quarantine, Center for Plant Health Science and Technology-Beltsville Laboratory, Beltsville, MD 20705
- 2 Department of Plant Pathology, North Carolina State University, Raleigh 27695
| | - Mark Nakhla
- 1 U.S. Department of Agriculture-Animal and Plant Health Inspection Service-Plant Protection and Quarantine, Center for Plant Health Science and Technology-Beltsville Laboratory, Beltsville, MD 20705
| | - Anna Poniatowska
- 3 Department of Phytopathology, Research Institute of Horticulture in Skierniewice, 96-100 Skierniewice, Poland
| | - Guido Schnabel
- 4 School of Agricultural, Forest, and Environmental Sciences, Clemson University, Clemson, SC 29631; and
| | - George Sundin
- 5 Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824
| | - Z Gloria Abad
- 1 U.S. Department of Agriculture-Animal and Plant Health Inspection Service-Plant Protection and Quarantine, Center for Plant Health Science and Technology-Beltsville Laboratory, Beltsville, MD 20705
| |
Collapse
|
105
|
Kusch S, Frantzeskakis L, Thieron H, Panstruga R. Small RNAs from cereal powdery mildew pathogens may target host plant genes. Fungal Biol 2018; 122:1050-1063. [PMID: 30342621 DOI: 10.1016/j.funbio.2018.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022]
Abstract
Small RNAs (sRNAs) play a key role in eukaryotic gene regulation, for example by gene silencing via RNA interference (RNAi). The biogenesis of sRNAs depends on proteins that are generally conserved in all eukaryotic lineages, yet some species that lack part or all the components of the mechanism exist. Here we explored the presence of the RNAi machinery and its expression as well as the occurrence of sRNA candidates and their putative endogenous as well as host targets in phytopathogenic powdery mildew fungi. We focused on the species Blumeria graminis, which occurs in various specialized forms (formae speciales) that each have a strictly limited host range. B. graminis f. sp. hordei and B. graminis f. sp. tritici, colonizing barley and wheat, respectively, have genomes that are characterized by extensive gene loss. Nonetheless, we find that the RNAi machinery appears to be largely complete and expressed during infection. sRNA sequencing data enabled the identification of putative sRNAs in both pathogens. While a considerable part of the sRNA candidates have predicted target sites in endogenous genes and transposable elements, a small proportion appears to have targets in planta, suggesting potential cross-kingdom RNA transfer between powdery mildew fungi and their respective plant hosts.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.
| | - Lamprinos Frantzeskakis
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.
| | - Hannah Thieron
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.
| |
Collapse
|
106
|
Xu L, Li G, Jiang D, Chen W. Sclerotinia sclerotiorum: An Evaluation of Virulence Theories. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:311-338. [PMID: 29958073 DOI: 10.1146/annurev-phyto-080417-050052] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Oxalic acid production in Sclerotinia sclerotiorum has long been associated with virulence. Research involving UV-induced, genetically undefined mutants that concomitantly lost oxalate accumulation, sclerotial formation, and pathogenicity supported the conclusion that oxalate is an essential pathogenicity determinant of S. sclerotiorum. However, recent investigations showed that genetically defined mutants that lost oxalic acid production but accumulated fumaric acid could cause disease on many plants and substantiated the conclusion that acidic pH, not oxalic acid per se, is the necessary condition for disease development. Critical evaluation of available evidence showed that the UV-induced mutants harbored previously unrecognized confounding genetic defects in saprophytic growth and pH responsiveness, warranting reevaluation of the conclusions about virulence based on the UV-induced mutants. Furthermore, analyses of the evidence suggested a hypothesis for the existence of an unrecognized regulator responsive to acidic pH. Identifying the unknown pH regulator would offer a new avenue for investigating pH sensing/regulation in S. sclerotiorum and novel targets for intervention in disease control strategies.
Collapse
Affiliation(s)
- Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Weidong Chen
- Grain Legume Genetics and Physiology Research Unit, US Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, Washington 99164, USA
- Departments of Plant Pathology and Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|
107
|
Liu W, Chen L, Cai Y, Zhang Q, Bian Y. Opposite Polarity Monospore Genome De Novo Sequencing and Comparative Analysis Reveal the Possible Heterothallic Life Cycle of Morchella importuna. Int J Mol Sci 2018; 19:E2525. [PMID: 30149649 PMCID: PMC6164635 DOI: 10.3390/ijms19092525] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 02/04/2023] Open
Abstract
Morchella is a popular edible fungus worldwide due to its rich nutrition and unique flavor. Many research efforts were made on the domestication and cultivation of Morchella all over the world. In recent years, the cultivation of Morchella was successfully commercialized in China. However, the biology is not well understood, which restricts the further development of the morel fungus cultivation industry. In this paper, we performed de novo sequencing and assembly of the genomes of two monospores with a different mating type (M04M24 and M04M26) isolated from the commercially cultivated strain M04. Gene annotation and comparative genome analysis were performed to study differences in CAZyme (Carbohydrate-active enzyme) enzyme content, transcription factors, duplicated sequences, structure of mating type sites, and differences at the gene and functional levels between the two monospore strains of M. importuna. Results showed that the de novo assembled haploid M04M24 and M04M26 genomes were 48.98 and 51.07 Mb, respectively. A complete fine physical map of M. importuna was obtained from genome coverage and gene completeness evaluation. A total of 10,852 and 10,902 common genes and 667 and 868 endemic genes were identified from the two monospore strains, respectively. The Gene Ontology (GO) and KAAS (KEGG Automatic Annotation Serve) enrichment analyses showed that the endemic genes performed different functions. The two monospore strains had 99.22% collinearity with each other, accompanied with certain position and rearrangement events. Analysis of complete mating-type loci revealed that the two monospore M. importuna strains contained an independent mating-type structure and remained conserved in sequence and location. The phylogenetic and divergence time of M. importuna was analyzed at the whole-genome level for the first time. The bifurcation time of morel and tuber was estimated to be 201.14 million years ago (Mya); the two monospore strains with a different mating type represented the evolution of different nuclei, and the single copy homologous genes between them were also different due to a genetic differentiation distance about 0.65 Mya. Compared with truffles, M. importuna had an extension of 28 clusters of orthologous genes (COGs) and a contraction of two COGs. The two different polar nuclei with different degrees of contraction and expansion suggested that they might have undergone different evolutionary processes. The different mating-type structures, together with the functional clustering and enrichment analysis results of the endemic genes of the two different polar nuclei, imply that M. importuna might be a heterothallic fungus and the interaction between the endemic genes may be necessary for its complete life history. Studies on the genome of M. importuna facilitate a better understanding of morel biology and evolution.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - LianFu Chen
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - YingLi Cai
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - QianQian Zhang
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - YinBing Bian
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
108
|
Cys 2His 2 Zinc Finger Transcription Factor BcabaR1 Positively Regulates Abscisic Acid Production in Botrytis cinerea. Appl Environ Microbiol 2018; 84:AEM.00920-18. [PMID: 29959241 DOI: 10.1128/aem.00920-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/11/2018] [Indexed: 01/03/2023] Open
Abstract
Abscisic acid (ABA) is one of the five classical phytohormones involved in increasing the tolerance of plants for various kinds of stresses caused by abiotic or biotic factors, and it also plays important roles in regulating the activation of innate immune cells and glucose homeostasis in mammals. For these reasons, as a "stress hormone," ABA has recently received attention as a candidate drug for agriculture and biomedical applications, prompting significant development of ABA synthesis. Some plant-pathogenic fungi can synthesize natural ABA. The fungus Botrytis cinerea has been used for biotechnological production of ABA. Identification of the transcription factors (TFs) involved in regulation of ABA biosynthesis in B. cinerea would provide new clues to understand how ABA is synthesized and regulated. In this study, we defined a novel Cys2His2 TF, BcabaR1, that regulates the transcriptional levels of ABA synthase genes (bcaba1, bcaba2, bcaba3, and bcaba4) in an ABA-overproducing mutant, B. cinerea TBC-A. Electrophoretic mobility shift assays revealed that recombinant BcabaR1 can bind specifically to both a 14-nucleotide sequence motif and a 39-nucleotide sequence motif in the promoter region of bcaba1 to -4 genes in vitro A decreased transcriptional level of the bcabaR1 gene in B. cinerea led to significantly decreased ABA production and downregulated transcription of bcaba1 to -4 When bcabaR1 was overexpressed in B. cinerea, ABA production was significantly increased, with upregulated transcription of bcaba1 to -4 Thus, in this study, we found that BcabaR1 acts as a positive regulator of ABA biosynthesis in B. cinereaIMPORTANCE Abscisic acid (ABA) could make a potentially important contribution to theoretical research and applications in agriculture and medicine. Botrytis cinerea is a plant-pathogenic fungus that was found to produce ABA. There has been a view that ABA is related to the interaction between pathogenic fungi and plants. Identification of regulatory genes involved in ABA biosynthesis may facilitate an understanding of the underlying molecular mechanisms of ABA biosynthesis and the pathogenesis of B. cinerea Here, we present a positive regulator, BcabaR1, of ABA biosynthesis in B. cinerea that can affect the transcriptional level of the ABA biosynthesis gene cluster, bcaba1 to -4, by directly binding to the conserved sequence elements in the promoter of the bcaba1 to -4 genes. This TF was found to be specifically involved in regulation of ABA biosynthesis. This work provides new clues for finding other ABA biosynthesis genes and improving ABA yield in B. cinerea.
Collapse
|
109
|
Liu L, Wang Q, Sun Y, Zhang Y, Zhang X, Liu J, Yu G, Pan H. Sssfh1, a Gene Encoding a Putative Component of the RSC Chromatin Remodeling Complex, Is Involved in Hyphal Growth, Reactive Oxygen Species Accumulation, and Pathogenicity in Sclerotinia sclerotiorum. Front Microbiol 2018; 9:1828. [PMID: 30131794 PMCID: PMC6090059 DOI: 10.3389/fmicb.2018.01828] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
SFH1 (for Snf5 homolog) protein, comprised in the RSC (Remodels Structure of Chromatin) chromatin remodeling complex, functions as a transcription factor (TF) to specifically regulate gene transcription and chromatin remodeling. As one of the well-conserved TFs in eukaryotic organisms, little is known about the roles of SFH1 protein in the filamentous fungi. In Sclerotinia sclerotiorum, one of the notorious plant fungal pathogens, there are nine proteins predicted to contain GATA-box domain according to GATA family TF classification, among which Sssfh1 (SS1G_01151) encodes a protein including a GATA-box domain and a SNF5 domain. Here, we characterized the roles of Sssfh1 in the developmental process and fungal pathogenicity by using RNA interference (RNAi)-based gene silencing in S. sclerotiorum. RNA-silenced strains with significantly reduced Sssfh1 RNA levels exhibited slower hyphal growth and decreased reactive oxygen species (ROS) accumulation in hyphae compared to the wild-type (WT) strain. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays demonstrated that SsSFH1 interacts with SsMSG5, a MAPK phosphatase in S. sclerotiorum. Furthermore, Sssfh1-silenced strains exhibited enhanced tolerance to NaCl and H2O2. Results of infection assays on soybean and common bean (Phaseolus vulgaris) leaves indicated that Sssfh1 is required for full virulence of S. sclerotiorum during infection in the susceptible host plants. Collectively, our results suggest that the TF SsSFH1 is involved in growth, ROS accumulation and virulence in S. sclerotiorum.
Collapse
Affiliation(s)
- Ling Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Qiaochu Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Ying Sun
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Gang Yu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
110
|
Izquierdo-Bueno I, González-Rodríguez VE, Simon A, Dalmais B, Pradier JM, Le Pêcheur P, Mercier A, Walker AS, Garrido C, Collado IG, Viaud M. Biosynthesis of abscisic acid in fungi: identification of a sesquiterpene cyclase as the key enzyme in Botrytis cinerea. Environ Microbiol 2018; 20:2469-2482. [PMID: 29708647 DOI: 10.1111/1462-2920.14258] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022]
Abstract
While abscisic acid (ABA) is known as a hormone produced by plants through the carotenoid pathway, a small number of phytopathogenic fungi are also able to produce this sesquiterpene but they use a distinct pathway that starts with the cyclization of farnesyl diphosphate (FPP) into 2Z,4E-α-ionylideneethane which is then subjected to several oxidation steps. To identify the sesquiterpene cyclase (STC) responsible for the biosynthesis of ABA in fungi, we conducted a genomic approach in Botrytis cinerea. The genome of the ABA-overproducing strain ATCC58025 was fully sequenced and five STC-coding genes were identified. Among them, Bcstc5 exhibits an expression profile concomitant with ABA production. Gene inactivation, complementation and chemical analysis demonstrated that BcStc5/BcAba5 is the key enzyme responsible for the key step of ABA biosynthesis in fungi. Unlike what is observed for most of the fungal secondary metabolism genes, the key enzyme-coding gene Bcstc5/Bcaba5 is not clustered with the other biosynthetic genes, i.e., Bcaba1 to Bcaba4 that are responsible for the oxidative transformation of 2Z,4E-α-ionylideneethane. Finally, our study revealed that the presence of the Bcaba genes among Botrytis species is rare and that the majority of them do not possess the ability to produce ABA.
Collapse
Affiliation(s)
- Inmaculada Izquierdo-Bueno
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Cádiz, 11510 Puerto Real, Spain
| | - Victoria E González-Rodríguez
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias de Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz 11510, Spain
| | - Adeline Simon
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Bérengère Dalmais
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Jean-Marc Pradier
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Pascal Le Pêcheur
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Alex Mercier
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France.,Université Paris-Sud, 91405 Orsay, France
| | - Anne-Sophie Walker
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Carlos Garrido
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias de Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz 11510, Spain
| | - Isidro González Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Cádiz, 11510 Puerto Real, Spain
| | - Muriel Viaud
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| |
Collapse
|
111
|
Yan Y, Yuan Q, Tang J, Huang J, Hsiang T, Wei Y, Zheng L. Colletotrichum higginsianum as a Model for Understanding Host⁻Pathogen Interactions: A Review. Int J Mol Sci 2018; 19:E2142. [PMID: 30041456 PMCID: PMC6073530 DOI: 10.3390/ijms19072142] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
Colletotrichum higginsianum is a hemibiotrophic ascomycetous fungus that causes economically important anthracnose diseases on numerous monocot and dicot crops worldwide. As a model pathosystem, the Colletotrichum⁻Arabidopsis interaction has the significant advantage that both organisms can be manipulated genetically. The goal of this review is to provide an overview of the system and to point out recent significant studies that update our understanding of the pathogenesis of C. higginsianum and resistance mechanisms of Arabidopsis against this hemibiotrophic fungus. The genome sequence of C. higginsianum has provided insights into how genome structure and pathogen genetic variability has been shaped by transposable elements, and allows systematic approaches to longstanding areas of investigation, including infection structure differentiation and fungal⁻plant interactions. The Arabidopsis-Colletotrichum pathosystem provides an integrated system, with extensive information on the host plant and availability of genomes for both partners, to illustrate many of the important concepts governing fungal⁻plant interactions, and to serve as an excellent starting point for broad perspectives into issues in plant pathology.
Collapse
Affiliation(s)
- Yaqin Yan
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qinfeng Yuan
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jintian Tang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
112
|
Li J, Mu W, Veluchamy S, Liu Y, Zhang Y, Pan H, Rollins JA. The GATA-type IVb zinc-finger transcription factor SsNsd1 regulates asexual-sexual development and appressoria formation in Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2018; 19:1679-1689. [PMID: 29227022 PMCID: PMC6638148 DOI: 10.1111/mpp.12651] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/21/2017] [Accepted: 12/07/2017] [Indexed: 05/18/2023]
Abstract
The sclerotium, a multicellular structure composed of the compact aggregation of vegetative hyphae, is critical for the long-term survival and sexual reproduction of the plant-pathogenic fungus Sclerotinia sclerotiorum. The development and carpogenic germination of sclerotia are regulated by integrating signals from both environmental and endogenous processes. Here, we report the regulatory functions of the S. sclerotiorum GATA-type IVb zinc-finger transcription factor SsNsd1 in these processes. SsNsd1 is orthologous to the Aspergillus nidulans NsdD (never in sexual development) and the Neurospora crassa SUB-1 (submerged protoperithecia-1) proteins. Ssnsd1 gene transcript accumulation remains relatively low, but variable, during vegetative mycelial growth and multicellular development. Ssnsd1 deletion mutants (Δnsd1-KOs) produce phialides and phialospores (spermatia) excessively in vegetative hyphae and promiscuously within the interior medulla of sclerotia. In contrast, phialospore development occurs only on the sclerotium surface in the wild-type. Loss of SsNsd1 function affects sclerotium structural integrity and disrupts ascogonia formation during conditioning for carpogenic germination. As a consequence, apothecium development is abolished. The Ssnsd1 deletion mutants are also defective in the transition from hyphae to compound appressorium formation, resulting in a loss of pathogenicity on unwounded hosts. In sum, our results demonstrate that SsNsd1 functions in a regulatory role similar to its ascomycete orthologues in regulating sexual and asexual development. Further, SsNsd1 appears to have evolved as a regulator of pre-penetration infectious development required for the successful infection of its many hosts.
Collapse
Affiliation(s)
- Jingtao Li
- Department of Plant PathologyUniversity of FloridaGainesvilleFL 32611USA
- College of Plant ScienceJilin UniversityChangchunJilin Province130062China
| | - Wenhui Mu
- Department of Plant PathologyUniversity of FloridaGainesvilleFL 32611USA
- College of Plant ScienceJilin UniversityChangchunJilin Province130062China
| | - Selvakumar Veluchamy
- Department of Plant PathologyUniversity of FloridaGainesvilleFL 32611USA
- Present address:
Mountain Horticultural Crops Research & Extension CenterNorth Carolina State UniversityMills RiverNC 28759USA
| | - Yanzhi Liu
- College of Plant ScienceJilin UniversityChangchunJilin Province130062China
| | - Yanhua Zhang
- Department of Plant PathologyUniversity of FloridaGainesvilleFL 32611USA
- College of Plant ScienceJilin UniversityChangchunJilin Province130062China
| | - Hongyu Pan
- College of Plant ScienceJilin UniversityChangchunJilin Province130062China
| | - Jeffrey A. Rollins
- Department of Plant PathologyUniversity of FloridaGainesvilleFL 32611USA
| |
Collapse
|
113
|
Li J, Zhang Y, Zhang Y, Yu PL, Pan H, Rollins JA. Introduction of Large Sequence Inserts by CRISPR-Cas9 To Create Pathogenicity Mutants in the Multinucleate Filamentous Pathogen Sclerotinia sclerotiorum. mBio 2018; 9:e00567-18. [PMID: 29946044 PMCID: PMC6020291 DOI: 10.1128/mbio.00567-18] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/30/2018] [Indexed: 11/20/2022] Open
Abstract
The necrotrophic fungal plant pathogen Sclerotinia sclerotiorum is responsible for substantial global crop losses annually resulting in localized food insecurity and loss of livelihood. Understanding the basis of this broad-host-range and aggressive pathogenicity is hampered by the quantitative nature of both host resistance and pathogen virulence. To improve this understanding, methods for efficient functional gene characterization that build upon the existing complete S. sclerotiorum genome sequence are needed. Here, we report on the development of a clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (CRISPR-Cas9)-mediated strategy for creating gene disruption mutants and the application of this technique for exploring roles of known and hypothesized virulence factors. A key finding of this research is that transformation with a circular plasmid encoding Cas9, target single guide RNA (sgRNA), and a selectable marker resulted in a high frequency of targeted, insertional gene mutation. We observed that 100% of the mutants integrated large rearranged segments of the transforming plasmid at the target site facilitated by the nonhomologous end joining (NHEJ) repair pathway. This result was confirmed in multiple target sites within the same gene in three independent wild-type isolates of S. sclerotiorum and in a second independent gene. Targeting the previously characterized Ssoah1 gene allowed us to confirm the loss-of-function nature of the CRISPR-Cas9-mediated mutants and explore new aspects of the mutant phenotype. Applying this technology to create mutations in a second previously uncharacterized gene allowed us to determine the requirement for melanin accumulation in infection structure development and function.IMPORTANCE Fungi that cause plant diseases by rotting or blighting host tissue with limited specificity remain among the most difficult to control. This is largely due to the quantitative nature of host resistance and a limited understanding of fungal pathogenicity. A mechanistic understanding of pathogenicity requires the ability to manipulate candidate virulence genes to test hypotheses regarding their roles in disease development. Sclerotinia sclerotiorum is among the most notorious of these so-called broad-host-range necrotrophic plant pathogens. The work described here provides a new method for rapidly constructing gene disruption vectors to create gene mutations with high efficiency compared with existing methods. Applying this method to characterize gene functions in S. sclerotiorum, we confirm the requirement for oxalic acid production as a virulence factor in multiple isolates of the fungus and demonstrate that melanin accumulation is not required for infection. Using this approach, the pace of functional gene characterization and the understanding of pathogenicity and related disease resistance will increase.
Collapse
Affiliation(s)
- Jingtao Li
- College of Plant Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Yucheng Zhang
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Pei-Ling Yu
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
114
|
Chang H, Sang H, Wang J, McPhee KE, Zhuang X, Porter LD, Chilvers MI. Exploring the genetics of lesion and nodal resistance in pea ( Pisum sativum L.) to Sclerotinia sclerotiorum using genome-wide association studies and RNA-Seq. PLANT DIRECT 2018; 2:e00064. [PMID: 31245727 PMCID: PMC6508546 DOI: 10.1002/pld3.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 05/30/2023]
Abstract
The disease white mold caused by the fungus Sclerotinia sclerotiorum is a significant threat to pea production, and improved resistance to this disease is needed. Nodal resistance in plants is a phenomenon where a fungal infection is prevented from passing through a node, and the infection is limited to an internode region. Nodal resistance has been observed in some pathosystems such as the pea (Pisum sativum L.)-S. sclerotiorum pathosystem. In addition to nodal resistance, different pea lines display different levels of stem lesion size restriction, referred to as lesion resistance. It is unclear whether the genetics of lesion resistance and nodal resistance are identical or different. This study applied genome-wide association studies (GWAS) and RNA-Seq to understand the genetic makeup of these two types of resistance. The time series RNA-Seq experiment consisted of two pea lines (the susceptible 'Lifter' and the partially resistant PI 240515), two treatments (mock inoculated samples and S. sclerotiorum-inoculated samples), and three time points (12, 24, and 48 hr post inoculation). Integrated results from GWAS and RNA-Seq analyses identified different redox-related transcripts for lesion and nodal resistances. A transcript encoding a glutathione S-transferase was the only shared resistance variant for both phenotypes. There were more leucine rich-repeat containing transcripts found for lesion resistance, while different candidate resistance transcripts such as a VQ motif-containing protein and a myo-inositol oxygenase were found for nodal resistance. This study demonstrated the robustness of combining GWAS and RNA-Seq for identifying white mold resistance in pea, and results suggest different genetics underlying lesion and nodal resistance.
Collapse
Affiliation(s)
- Hao‐Xun Chang
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichigan
| | - Hyunkyu Sang
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichigan
| | - Jie Wang
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan
| | - Kevin E. McPhee
- Department of Plant Sciences and Plant PathologyMontana State UniversityBozemanMontana
| | - Xiaofeng Zhuang
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOhio
| | | | - Martin I. Chilvers
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichigan
| |
Collapse
|
115
|
McMullan M, Rafiqi M, Kaithakottil G, Clavijo BJ, Bilham L, Orton E, Percival-Alwyn L, Ward BJ, Edwards A, Saunders DGO, Garcia Accinelli G, Wright J, Verweij W, Koutsovoulos G, Yoshida K, Hosoya T, Williamson L, Jennings P, Ioos R, Husson C, Hietala AM, Vivian-Smith A, Solheim H, MaClean D, Fosker C, Hall N, Brown JKM, Swarbreck D, Blaxter M, Downie JA, Clark MD. The ash dieback invasion of Europe was founded by two genetically divergent individuals. Nat Ecol Evol 2018; 2:1000-1008. [PMID: 29686237 PMCID: PMC5969572 DOI: 10.1038/s41559-018-0548-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 03/27/2018] [Indexed: 11/22/2022]
Abstract
Accelerating international trade and climate change make pathogen spread an increasing concern. Hymenoscyphus fraxineus, the causal agent of ash dieback, is a fungal pathogen that has been moving across continents and hosts from Asian to European ash. Most European common ash trees (Fraxinus excelsior) are highly susceptible to H. fraxineus, although a minority (~5%) have partial resistance to dieback. Here, we assemble and annotate a H. fraxineus draft genome which approaches chromosome scale. Pathogen genetic diversity across Europe and in Japan, reveals a strong bottleneck in Europe, though a signal of adaptive diversity remains in key host interaction genes. We find that the European population was founded by two divergent haploid individuals. Divergence between these haplotypes represents the ancestral polymorphism within a large source population. Subsequent introduction from this source would greatly increase adaptive potential of the pathogen. Thus, further introgression of H. fraxineus into Europe represents a potential threat and Europe-wide biological security measures are needed to manage this disease.
Collapse
Affiliation(s)
- Mark McMullan
- The Earlham Institute, Norwich Research Park, Norwich, UK.
| | | | | | | | | | | | | | - Ben J Ward
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | - Anne Edwards
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | | - Walter Verweij
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Kentaro Yoshida
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.,Graduate school of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Tsuyoshi Hosoya
- Department of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| | | | | | - Renaud Ioos
- ANSES Laboratoire de la Santé des Végétaux, Malzéville, France
| | | | - Ari M Hietala
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | | | - Dan MaClean
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | | | - Neil Hall
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | | | | | - Mark Blaxter
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK.,Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Matthew D Clark
- The Earlham Institute, Norwich Research Park, Norwich, UK. .,Department of Life Sciences, Natural History Museum, London, UK.
| |
Collapse
|
116
|
Hou YP, Mao XW, Lin SP, Song XS, Duan YB, Wang JX, Zhou MG. Activity of a novel succinate dehydrogenase inhibitor fungicide pyraziflumid against Sclerotinia sclerotiorum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 145:22-28. [PMID: 29482728 DOI: 10.1016/j.pestbp.2017.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 06/08/2023]
Abstract
Pyraziflumid is a novel member of succinate dehydrogenase inhibitor fungicides (SDHI). In this study, baseline sensitivity of Sclerotinia sclerotiorum (Lib.) de Bary to pyraziflumid was determined using 105 strains collected during 2015 and 2017 from different geographical regions in Jiangsu Province of China, and the average EC50 value was 0.0561 (±0.0263)μg/ml for mycelial growth. There was no cross-resistance between pyraziflumid and the widely used fungicides carbendazim, dimethachlon and the phenylpyrrole fungicide fludioxonil. After pyraziflumid treated, hyphae were contorted with offshoot of top increasing, cell membrane permeability increased markedly, oxalic acid content significantly decreased and mycelial respiration was strongly inhibited. But the number and dry weight of sclerotia did not change significantly. The protective and curative activity test of pyraziflumid suggested that pyraziflumid had great control efficiency against S. sclerotiorum on detached rapeseed leaves, and protective activity was better than curative activity. These results will contribute to us on evaluating the potential of the new SDHI fungicide pyraziflumid for management of diseases caused by S. sclerotiorum and understanding the mode of action of pyraziflumid against S. sclerotiorum.
Collapse
Affiliation(s)
- Yi-Ping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xue-Wei Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shi-Peng Lin
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiu-Shi Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ya-Bing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian-Xin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ming-Guo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
117
|
Reference Assembly and Annotation of the Pyrenophora teres f. teres Isolate 0-1. G3-GENES GENOMES GENETICS 2018; 8:1-8. [PMID: 29167271 PMCID: PMC5765338 DOI: 10.1534/g3.117.300196] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pyrenophora teres f. teres, the causal agent of net form net blotch (NFNB) of barley, is a destructive pathogen in barley-growing regions throughout the world. Typical yield losses due to NFNB range from 10 to 40%; however, complete loss has been observed on highly susceptible barley lines where environmental conditions favor the pathogen. Currently, genomic resources for this economically important pathogen are limited to a fragmented draft genome assembly and annotation, with limited RNA support of the P. teres f. teres isolate 0-1. This research presents an updated 0-1 reference assembly facilitated by long-read sequencing and scaffolding with the assistance of genetic linkage maps. Additionally, genome annotation was mediated by RNAseq analysis using three infection time points and a pure culture sample, resulting in 11,541 high-confidence gene models. The 0-1 genome assembly and annotation presented here now contains the majority of the repetitive content of the genome. Analysis of the 0-1 genome revealed classic characteristics of a “two-speed” genome, being compartmentalized into GC-equilibrated and AT-rich compartments. The assembly of repetitive AT-rich regions will be important for future investigation of genes known as effectors, which often reside in close proximity to repetitive regions. These effectors are responsible for manipulation of the host defense during infection. This updated P. teres f. teres isolate 0-1 reference genome assembly and annotation provides a robust resource for the examination of the barley–P. teres f. teres host–pathogen coevolution.
Collapse
|
118
|
Mao XW, Li JS, Chen YL, Song XS, Duan YB, Wang JX, Chen CJ, Zhou MG, Hou YP. Resistance risk assessment for fluazinam in Sclerotinia sclerotiorum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 144:27-35. [PMID: 29463405 DOI: 10.1016/j.pestbp.2017.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/21/2017] [Accepted: 10/27/2017] [Indexed: 06/08/2023]
Abstract
In the current study, sensitivity distribution of Sclerotinia sclerotiorum populations to fluazinam was determined using 103 strains collected from the fields of Jiangsu Province of China in 2016-2017 and the resistance risk of fluazinam was assessed. The average EC50 (50% effective concentration) values and MIC (minimum inhibitory concentration) values of 103 S. sclerotiorum strains against fluazinam were 0.0073±0.0045μg/ml and <0.3μg/ml for mycelial growth, respectively. Nine mutants with low resistance level were obtained from wild type sensitive strains exposed on PDA medium amended with fluazinam and the resistance was stable after their ten transfers on PDA without the fungicide. Compared with the parental strains, the nine fluazinam-resistant mutants decreased in mycelial growth, sclerotial production, pathogenicity and were more sensitive to 0.7M NaCl. In addition, cell membrane permeability of resistant mutants was higher than that of their parental strains. Cross resistance assay showed that there was no cross-resistance between fluazinam and fludioxonil, dimetachlone, prochloraz, tebuconazole, azoxystrobin, or procymidone in S. sclerotiorum. The above results indicated that there was a low resistance risk for fluazinam in S. sclerotiorum. However, the sensitivity of all fluazinam-resistant mutants to fludioxonil decreased. Sequencing alignment results showed that there were no mutations in the two-component histidine kinase gene (Shk1) of the resistant mutants and the expression levels of Shk1 of three resistant mutants were significantly up-regulated while others were almost the same as their parental strains. These results will contribute to evaluating the resistance risk of fluazinam for management of diseases caused by S. sclerotiorum and further increase our understanding about the mode of action of fluazinam.
Collapse
Affiliation(s)
- Xue-Wei Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiao-Sheng Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ya-Li Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiu-Shi Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ya-Bing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian-Xin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chang-Jun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ming-Guo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi-Ping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
119
|
Kamvar ZN, Amaradasa BS, Jhala R, McCoy S, Steadman JR, Everhart SE. Population structure and phenotypic variation of Sclerotinia sclerotiorum from dry bean ( Phaseolus vulgaris) in the United States. PeerJ 2017; 5:e4152. [PMID: 29230376 PMCID: PMC5723432 DOI: 10.7717/peerj.4152] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/20/2017] [Indexed: 02/03/2023] Open
Abstract
The ascomycete pathogen Sclerotinia sclerotiorum is a necrotrophic pathogen on over 400 known host plants, and is the causal agent of white mold on dry bean. Currently, there are no known cultivars of dry bean with complete resistance to white mold. For more than 20 years, bean breeders have been using white mold screening nurseries (wmn) with natural populations of S. sclerotiorum to screen new cultivars for resistance. It is thus important to know if the genetic diversity in populations of S. sclerotiorum within these nurseries (a) reflect the genetic diversity of the populations in the surrounding region and (b) are stable over time. Furthermore, previous studies have investigated the correlation between mycelial compatibility groups (MCG) and multilocus haplotypes (MLH), but none have formally tested these patterns. We genotyped 366 isolates of S. sclerotiorum from producer fields and wmn surveyed over 10 years in 2003-2012 representing 11 states in the United States of America, Australia, France, and Mexico at 11 microsatellite loci resulting in 165 MLHs. Populations were loosely structured over space and time based on analysis of molecular variance and discriminant analysis of principal components, but not by cultivar, aggressiveness, or field source. Of all the regions tested, only Mexico (n = 18) shared no MLHs with any other region. Using a bipartite network-based approach, we found no evidence that the MCGs accurately represent MLHs. Our study suggests that breeders should continue to test dry bean lines in several wmn across the United States to account for both the phenotypic and genotypic variation that exists across regions.
Collapse
Affiliation(s)
- Zhian N. Kamvar
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - B. Sajeewa Amaradasa
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
- Current affiliation: Plant Pathology Department, University of Florida, Gainsville, FL, USA
| | - Rachana Jhala
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
- Current affiliation: Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Serena McCoy
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - James R. Steadman
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | | |
Collapse
|
120
|
Dallery JF, Lapalu N, Zampounis A, Pigné S, Luyten I, Amselem J, Wittenberg AHJ, Zhou S, de Queiroz MV, Robin GP, Auger A, Hainaut M, Henrissat B, Kim KT, Lee YH, Lespinet O, Schwartz DC, Thon MR, O’Connell RJ. Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters. BMC Genomics 2017; 18:667. [PMID: 28851275 PMCID: PMC5576322 DOI: 10.1186/s12864-017-4083-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/21/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. RESULTS Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications. CONCLUSION The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen.
Collapse
Affiliation(s)
- Jean-Félix Dallery
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Nicolas Lapalu
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Antonios Zampounis
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
- Present Address: Department of Deciduous Fruit Trees, Institute of Plant Breeding and Plant Genetic Resources, Hellenic Agricultural Organization ‘Demeter’, Naoussa, Greece
| | - Sandrine Pigné
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | | | | | | | - Shiguo Zhou
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin USA
| | - Marisa V. de Queiroz
- Laboratório de Genética Molecular de Fungos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Guillaume P. Robin
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Annie Auger
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Matthieu Hainaut
- CNRS UMR 7257, Aix-Marseille University, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
| | - Bernard Henrissat
- CNRS UMR 7257, Aix-Marseille University, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ki-Tae Kim
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Seoul National University, Seoul, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Seoul National University, Seoul, Korea
| | - Olivier Lespinet
- Laboratoire de Recherche en Informatique, CNRS, Université Paris-Sud, Orsay, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Orsay, France
| | - David C. Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin USA
| | - Michael R. Thon
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Richard J. O’Connell
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| |
Collapse
|
121
|
Badet T, Peyraud R, Mbengue M, Navaud O, Derbyshire M, Oliver RP, Barbacci A, Raffaele S. Codon optimization underpins generalist parasitism in fungi. eLife 2017; 6:e22472. [PMID: 28157073 PMCID: PMC5315462 DOI: 10.7554/elife.22472] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/28/2017] [Indexed: 01/04/2023] Open
Abstract
The range of hosts that parasites can infect is a key determinant of the emergence and spread of disease. Yet, the impact of host range variation on the evolution of parasite genomes remains unknown. Here, we show that codon optimization underlies genome adaptation in broad host range parasites. We found that the longer proteins encoded by broad host range fungi likely increase natural selection on codon optimization in these species. Accordingly, codon optimization correlates with host range across the fungal kingdom. At the species level, biased patterns of synonymous substitutions underpin increased codon optimization in a generalist but not a specialist fungal pathogen. Virulence genes were consistently enriched in highly codon-optimized genes of generalist but not specialist species. We conclude that codon optimization is related to the capacity of parasites to colonize multiple hosts. Our results link genome evolution and translational regulation to the long-term persistence of generalist parasitism.
Collapse
Affiliation(s)
- Thomas Badet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Remi Peyraud
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Malick Mbengue
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Olivier Navaud
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Mark Derbyshire
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Perth, Australia
| | - Richard P Oliver
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Perth, Australia
| | - Adelin Barbacci
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Sylvain Raffaele
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|