101
|
Chen YJ, Inbaraj BS, Pu YS, Chen BH. Development of lycopene micelle and lycopene chylomicron and a comparison of bioavailability. NANOTECHNOLOGY 2014; 25:155102. [PMID: 24651082 DOI: 10.1088/0957-4484/25/15/155102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The objectives of this study were to develop lycopene micelles and lycopene chylomicrons from tomato extracts for the enhancement and comparison of bioavailability. Lycopene micelles and chylomicrons were prepared by a microemulsion technique involving tomato extract, soybean oil, water, vitamin E and surfactant Tween 80 or lecithin in different proportions. The encapsulation efficiency of lycopene was 78% in micelles and 80% in chylomicrons, with shape being roughly spherical and mean particle size being 7.5 and 131.5 nm. A bioavailability study was conducted in rats by both gavage and i.v. administration, with oral bioavailability of lycopene, phytoene and phytofluene being 6.8, 4.3 and 3.1% in micelles and 9.5, 9.4 and 7.1% in chylomicrons, respectively. This outcome reveals higher lycopene bioavailability through incorporation into micelle or chylomicron systems. Both size and shape should be considered for oral bioavailability determination. For i.v. injection, lycopene micelles should be more important than lycopene chylomicrons for future clinical applications.
Collapse
Affiliation(s)
- Yi Jyun Chen
- Department of Food Science, Fu Jen University, Taipei 242, Taiwan
| | | | | | | |
Collapse
|
102
|
Manabe Y, Hirata T, Sugawara T. Suppressive Effects of Carotenoids on the Antigen-induced Degranulation in RBL-2H3 Rat Basophilic Leukemia Cells. J Oleo Sci 2014; 63:291-4. [DOI: 10.5650/jos.ess13169] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
103
|
β-Carotene regulates expression of β-carotene 15,15′-monoxygenase in human alveolar epithelial cells. Arch Biochem Biophys 2013; 539:230-8. [DOI: 10.1016/j.abb.2013.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 01/28/2023]
|
104
|
Lakshminarayana R, Baskaran V. Influence of olive oil on the bioavailability of carotenoids. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201200254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Vallikannan Baskaran
- Department of Biochemistry and Nutrition and Department of Molecular NutritionCentral Food Technological Research Institute (CSIR)MysoreIndia
| |
Collapse
|
105
|
Claudie DM, Alexandrine D, Bertrand C, Franck T, Marie-Josephe A. Citrus flavanones enhance carotenoid uptake by intestinal Caco-2 cells. Food Funct 2013; 4:1625-31. [DOI: 10.1039/c3fo60212e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
106
|
Moelants KRN, Lemmens L, Vandebroeck M, Van Buggenhout S, Van Loey AM, Hendrickx ME. Relation between particle size and carotenoid bioaccessibility in carrot- and tomato-derived suspensions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11995-12003. [PMID: 23157717 DOI: 10.1021/jf303502h] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To study the effect of particle size on the relative all-E-β-carotene and all-E-lycopene bioaccessibility in carrot- and tomato-derived suspensions, respectively, an in vitro digestion approach including oil was used. Adding olive oil (2%) during digestion, especially as an oil-in-water emulsion, resulted in a substantial increase in carotenoid uptake in the micellar phase. Carotenoid bioaccessibility decreased with average particle size. Only particles smaller than an individual cell resulted in high bioaccessibility values, pointing out the importance of the cell wall as the main barrier for carotenoid uptake. The relation obtained between particle size and bioaccessibility was used to predict the carotenoid bioaccessibility in carrot- and tomato-derived purées. These predictions indicated that carotenoid bioaccessibility in plant-based food suspensions is not only determined by the cell wall integrity (related with particle size) but is also affected by interactions between the structural compounds of the complex food matrix.
Collapse
Affiliation(s)
- Katlijn R N Moelants
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
107
|
Daily intake of fruit and vegetable soups processed in different ways increases human serum β-carotene and lycopene concentrations and reduces levels of several oxidative stress markers in healthy subjects. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
108
|
Svelander CA, Lopez-Sanchez P, Pudney PDA, Schumm S, Alminger MAG. High pressure homogenization increases the in vitro bioaccessibility of α- and β-carotene in carrot emulsions but not of lycopene in tomato emulsions. J Food Sci 2012; 76:H215-25. [PMID: 22416706 DOI: 10.1111/j.1750-3841.2011.02418.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED The correlation between food microstructure and in vitro bioaccessibility of carotenes was evaluated for tomato and carrot emulsions (5% olive oil) subjected to high pressure homogenization (HPH) at varying degrees of intensity. The aim was to investigate whether additional mechanical disruption of the food matrix could be utilized to further increase the carotene bioaccessibility of an already pre-processed material. The carotene bioaccessibility of the samples was measured after simulated in vitro digestion, carotene release to the oil phase was estimated by Confocal Raman spectroscopy and, to measure active uptake of carotenes, Caco-2 cells were incubated with the digesta of selected samples. HPH did not notably affect the retention of carotenes or ascorbic acid but significantly increased both the release and micellar incorporation of α- and β-carotene in carrot emulsions 1.5- to 1.6-fold. On the other hand, in vitro bioaccessibility of lycopene from tomato was not increased by HPH under any of the conditions investigated. Instead, the results suggested that lycopene bioaccessibility was limited by a combination of the low solubility of lycopene in dietary lipids and entrapment in the cellular network. Carotene uptake by Caco-2 cells appeared to be mainly dependent upon the carotene concentration of the digesta, but cis-trans isomerization had a significant impact on the micellarization efficiency of carotenes. We therefore conclude that HPH is an interesting option for increasing the bioaccessibility of carotenes from fruits and vegetables while maintaining a high nutrient content, but that the results will depend on both food source and type of carotene. PRACTICAL APPLICATION A better understanding of the correlation between the processing of fruits and vegetables, microstructure and nutrient bioaccessibility can be directly applied in the production of food products with an increased nutritional value.
Collapse
Affiliation(s)
- Cecilia A Svelander
- Chalmers Univ. of Technology, Dept. of Chemical and Biological Engineering, Food Science, 412 96 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
109
|
Zhang Z, Huang Y, Gao F, Gao Z, Bu H, Gu W, Li Y. A self-assembled nanodelivery system enhances the oral bioavailability of daidzein: in vitro characteristics and in vivo performance. Nanomedicine (Lond) 2012; 6:1365-79. [PMID: 22026378 DOI: 10.2217/nnm.11.39] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM A self-assembled nano-based delivery system was designed and developed to increase the oral bioavailability of poor hydrophilic and lipophilic daidzein. METHODS Daidzein was firstly combined with lecithin to form the daidzein-lecithin complex, then self-assembled into micelles (DLMs) with lecithin and sodium bile. The physiochemical properties and intestinal absorption of DLMs were characterized, and the pharmacokinetic behavior was evaluated in rats. RESULTS DLMs exhibited nanometer-sized particles. DLMs were mainly distributed in the stomach and proximal intestine after oral administration. The intestinal absorption of DLMs was significantly improved, and DLMs could be absorbed via both endocytosis and passive transport. The AUC(0-t) value of daidzein in rats treated with DLMs was ninefold greater than that of free daidzein suspension. CONCLUSION The presented delivery system could provide a new promising strategy for enhancing the oral bioavailability of drugs with poor hydrophilicity and lipophilicity.
Collapse
Affiliation(s)
- Zhiwen Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | | | |
Collapse
|
110
|
Gorusupudi A, Vallikannan B. Glycolipids improve lutein bioavailability and accumulation in eyes in mice. EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201100183] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
111
|
Patel A, Velikov K. Colloidal delivery systems in foods: A general comparison with oral drug delivery. Lebensm Wiss Technol 2011. [DOI: 10.1016/j.lwt.2011.04.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
112
|
Peng J, Yuan JP, Wu CF, Wang JH. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs 2011; 9:1806-1828. [PMID: 22072997 PMCID: PMC3210606 DOI: 10.3390/md9101806] [Citation(s) in RCA: 371] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/21/2011] [Accepted: 09/21/2011] [Indexed: 01/06/2023] Open
Abstract
The marine carotenoid fucoxanthin can be found in marine brown seaweeds, the macroalgae, and diatoms, the microalgae, and has remarkable biological properties. Numerous studies have shown that fucoxanthin has considerable potential and promising applications in human health. In this article, we review the current available scientific literature regarding the metabolism, safety, and bioactivities of fucoxanthin, including its antioxidant, anti-inflammatory, anticancer, anti-obese, antidiabetic, antiangiogenic and antimalarial activities, and its protective effects on the liver, blood vessels of the brain, bones, skin, and eyes. Although some studies have shown the bioavailability of fucoxanthin in brown seaweeds to be low in humans, many studies have suggested that a dietary combination of fucoxanthin and edible oil or lipid could increase the absorption rate of fucoxanthin, and thus it might be a promising marine drug.
Collapse
Affiliation(s)
| | - Jian-Ping Yuan
- Authors to whom correspondence should be addressed; E-Mails: (J.-P.Y.); (J.-H.W.); Tel.: +86-20-39332212; Fax: +86-20-39332213
| | | | - Jiang-Hai Wang
- Authors to whom correspondence should be addressed; E-Mails: (J.-P.Y.); (J.-H.W.); Tel.: +86-20-39332212; Fax: +86-20-39332213
| |
Collapse
|
113
|
Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog Lipid Res 2011; 50:388-402. [DOI: 10.1016/j.plipres.2011.07.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/24/2011] [Accepted: 06/30/2011] [Indexed: 12/31/2022]
|
114
|
Effect of micellar lipids, dietary fiber and β-carotene on lutein bioavailability in aged rats with lutein deficiency. Nutrition 2011; 27:960-6. [DOI: 10.1016/j.nut.2010.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 11/24/2022]
|
115
|
Absorption and metabolism of xanthophylls. Mar Drugs 2011; 9:1024-1037. [PMID: 21747746 PMCID: PMC3131559 DOI: 10.3390/md9061024] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 11/18/2022] Open
Abstract
Dietary carotenoids, especially xanthophylls, have attracted significant attention because of their characteristic biological activities, including anti-allergic, anti-cancer, and anti-obese actions. Although no less than forty carotenoids are ingested under usual dietary habits, only six carotenoids and their metabolites have been found in human tissues, suggesting selectivity in the intestinal absorption of carotenoids. Recently, facilitated diffusion in addition to simple diffusion has been reported to mediate the intestinal absorption of carotenoids in mammals. The selective absorption of carotenoids may be caused by uptake to the intestinal epithelia by the facilitated diffusion and an unknown excretion to intestinal lumen. It is well known that β-carotene can be metabolized to vitamin A after intestinal absorption of carotenoids, but little is known about the metabolic transformation of non provitamin A xanthophylls. The enzymatic oxidation of the secondary hydroxyl group leading to keto-carotenoids would occur as a common pathway of xanthophyll metabolism in mammals. This paper reviews the absorption and metabolism of xanthophylls by introducing recent advances in this field.
Collapse
|
116
|
Shanmugam S, Park JH, Kim KS, Piao ZZ, Yong CS, Choi HG, Woo JS. Enhanced bioavailability and retinal accumulation of lutein from self-emulsifying phospholipid suspension (SEPS). Int J Pharm 2011; 412:99-105. [DOI: 10.1016/j.ijpharm.2011.04.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/29/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
|
117
|
Siphonaxanthin, a marine carotenoid from green algae, effectively induces apoptosis in human leukemia (HL-60) cells. Biochim Biophys Acta Gen Subj 2011; 1810:497-503. [PMID: 21371530 DOI: 10.1016/j.bbagen.2011.02.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 01/12/2011] [Accepted: 02/23/2011] [Indexed: 11/23/2022]
Abstract
BACKGROUND Bioactive marine molecules have recently received considerable attention for their nutraceutical characteristics. Considering the ever-increasing demand of nutraceuticals for anti-cancer therapy, we investigated the apoptosis-inducing effects of marine carotenoids, including siphonaxanthin, on human leukemia (HL-60) cells. METHODS Apoptotic effects were evaluated by cell viability assay, TUNEL assay, and caspase-3 activity. The expression of apoptosis-inducing death receptor-5 (DR5), Bcl-2 and Bax were assayed by Western blot analysis, and mRNA expression of GADD45α was assayed by quantitative RT-PCR analysis. RESULTS Siphonaxanthin potently inhibited the viability of HL-60 cells compared with the other carotenoids evaluated. In comparison with fucoxanthin, siphonaxanthin at a concentration of 20μM markedly reduced cell viability (p<0.05) as early as within 6h of treatment. The effective apoptotic activity of siphonaxanthin was observed by increases in TUNEL-positive cells, and by increased chromatin condensation in HL-60 cells. This induction of apoptosis was associated with the decreased expression of Bcl-2, and the subsequently increased activation of caspase-3. In addition, siphonaxanthin up-regulated the expression of GADD45α and DR5. CONCLUSIONS These data suggest that the dietary carotenoid siphonaxanthin could be potentially useful as a chemo-preventive and/or chemotherapeutic agent. GENERAL SIGNIFICANCE Our findings demonstrate for the first time the novel functional property of siphonaxanthin as a potent inducer of apoptosis in HL-60 cells.
Collapse
|
118
|
Abstract
A number of carotenoids with diverse structures are present in foods and have beneficial effects on human health due to their common antioxidant activity and their respective biological activities. The major carotenoids found in human tissues, however, are limited to several including such as β-carotene, lycopene, and lutein. We have little knowledge of whether carotenoids are selectively absorbed in intestine and metabolized discriminately in the body. Moreover, the metabolic transformation of carotenoids in mammals other than vitamin A formation has not been fully elucidated. Here, the intestinal absorption and oxidative metabolism of dietary carotenoids are reviewed with a focus on dietary xanthophylls.
Collapse
Affiliation(s)
- Akihiko Nagao
- National Food Research institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
119
|
Sato Y, Kobayashi M, Itagaki S, Hirano T, Noda T, Mizuno S, Sugawara M, Iseki K. Pharmacokinetic properties of lutein emulsion after oral administration to rats and effect of food intake on plasma concentration of lutein. Biopharm Drug Dispos 2011; 32:151-8. [DOI: 10.1002/bdd.746] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 10/29/2010] [Accepted: 12/26/2010] [Indexed: 12/16/2022]
|
120
|
Zhang B, Haitao L, Zhao D, Guo Y, Barri A. Effect of fat type and lysophosphatidylcholine addition to broiler diets on performance, apparent digestibility of fatty acids, and apparent metabolizable energy content. Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2010.10.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
121
|
TAKEDA S, KIMURA M, MARUSHIMA R, TAKEUCHI A, TAKIZAWA K, OGINO Y, MASUDA Y, KUNOU M, HASEGAWA M, MARUYAMA C. Mayonnaise Contributes to Increasing Postprandial Serum β-Carotene Concentration through the Emulsifying Property of Egg Yolk in Rats and Humans. J Nutr Sci Vitaminol (Tokyo) 2011; 57:209-15. [DOI: 10.3177/jnsv.57.209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
122
|
Marisiddaiah R, Rangaswamy L, Vallikannan B. Single oral dose of micellar β-carotene containing phospholipids improves β-carotene metabolism and plasma lipids in vitamin A-deficient rats. Eur J Nutr 2010; 50:531-41. [DOI: 10.1007/s00394-010-0160-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/06/2010] [Indexed: 11/30/2022]
|
123
|
Changes in WPI-Stabilized Emulsion Interfacial Properties in Relation to Lipolysis and ß-Carotene Transfer During Exposure to Simulated Gastric–Duodenal Fluids of Variable Composition. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s13228-010-0002-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
124
|
Yonekura L, Kobayashi M, Terasaki M, Nagao A. Keto-carotenoids are the major metabolites of dietary lutein and fucoxanthin in mouse tissues. J Nutr 2010; 140:1824-31. [PMID: 20739451 DOI: 10.3945/jn.110.126466] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Fucoxanthin, a xanthophyll present in brown algae consumed in Eastern Asia, can suppress carcinogenesis and obesity in rodents. We investigated the metabolism, tissue distribution, and depletion of fucoxanthin in ICR mice by comparison with those of lutein. The experiments comprised 14-d dietary supplementation with lutein esters or fucoxanthin, followed by 41- or 28-d, respectively, depletion periods with carotenoid-free diets. After lutein ester supplementation, 3'-hydroxy-ε,ε-caroten-3-one and lutein were the predominant carotenoids in plasma and tissues, accompanied by ε,ε-carotene-3,3'-dione. The presence of these keto-carotenoids in mouse tissues is reported here for the first time, to our knowledge. Lutein and its metabolites accumulated most in the liver (7.51 μmol/kg), followed by plasma (2.11 μmol/L), adipose tissues (1.01-1.44 μmol/kg), and kidney (0.87 μmol/kg). The half-life of the depletion (t(1/2)) of lutein metabolites varied as follows: plasma (1.16 d) < liver (2.63 d) < kidney (4.44 d) < < < adipose tissues (>41 d). Fucoxanthinol and amarouciaxanthin A were the main metabolites in mice fed fucoxanthin and partitioned more into adipose tissues (3.13-3.64 μmol/kg) than into plasma, liver, and kidney (1.29-1.80 μmol/kg). Fucoxanthin metabolites had shorter t(1/2) in plasma, liver, and kidneys (0.92-1.23 d) compared with those of adipose tissues (2.76-4.81 d). The tissue distribution of lutein and fucoxanthin metabolites was not associated with their lipophilicity, but depletion seemed to be slower for more lipophilic compounds. We concluded that mice actively convert lutein and fucoxanthin to keto-carotenoids by oxidizing the secondary hydroxyl groups and accumulate them in tissues.
Collapse
Affiliation(s)
- Lina Yonekura
- National Food Research Institute, NARO, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | |
Collapse
|
125
|
Lycopene isomerisation takes place within enterocytes during absorption in human subjects. Br J Nutr 2010; 103:1800-7. [PMID: 20211042 DOI: 10.1017/s0007114510000103] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lycopene in fruits and vegetables occurs mostly (80-97 %) in the all-E configuration, whereas a considerable proportion of lycopene in the human body is present as Z-isomers. The Z-isomers offer potentially better health benefits and show improved antioxidant activity in vitro when compared with the all-E-isomer. The absorption of dietary lycopene is a complex process involving transfer of the carotenoid from the food matrix into micelles, uptake by enterocytes, packaging into chylomicrons and finally secretion into plasma. Isomerisation could take place at any of these individual steps. By exploiting in vitro and in vivo models, we traced lycopene isomerisation during absorption using various methods to mimic gastric and duodenal conditions, incorporation into mixed micelles, absorption and metabolism by various Caco-2 cell clones, and performed a postprandial study in human subjects to identify the profile of lycopene isomers in plasma chylomicrons. We demonstrate that all-E-lycopene remains unchanged during its passage in the gastrointestinal tract, including its incorporation into mixed micelles. The key site of lycopene isomerisation is inside the intestinal cells resulting in 29 % of lycopene as Z-isomers. Lycopene isomerisation in the various Caco-2 cell clones is consistent with that observed in human chylomicrons formed in a postprandial state. There is no selection in the release of lycopene isomers from enterocytes. Although there is a huge inter-individual variability of total lycopene absorption reported both in in vitro intestinal cell lines as well as in human chylomicrons, the lycopene isomer profile is quite similar.
Collapse
|
126
|
Effect of glycerophospholipid class on the beta-carotene uptake by human intestinal Caco-2 cells. Biosci Biotechnol Biochem 2010; 74:209-11. [PMID: 20057131 DOI: 10.1271/bbb.90665] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects were evaluated of various glycerophospholipids on the uptake of beta-carotene solubilized in mixed micelles by human intestinal Caco-2 cells. Phosphatidylethanolamine markedly enhanced the transfer of beta-carotene from the micelles to the cells, whereas phosphatidylcholine suppressed it. All the lysoglycerophospholipids enhanced the transfer, irrespective of the polar head group. Glycerophospholipids therefore have the potential to modify the intestinal absorption of carotenoids.
Collapse
|
127
|
Oral Administration of Fucoxanthin Increases Plasma Fucoxanthinol Concentration and Antioxidative Ability and Improves Meat Color in Broiler Chicks. J Poult Sci 2010. [DOI: 10.2141/jpsa.010019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
128
|
Malaki Nik A, Wright AJ, Corredig M. Interfacial design of protein-stabilized emulsions for optimal delivery of nutrients. Food Funct 2010; 1:141-8. [DOI: 10.1039/c0fo00099j] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
129
|
Bengtsson A, Scheers N, Andlid T, Alminger ML, Sandberg AS, Svanberg U. Impaired uptake of β-carotene by Caco-2 human intestinal cells in the presence of iron. Int J Food Sci Nutr 2009; 60 Suppl 5:125-35. [DOI: 10.1080/09637480802641270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
130
|
Sakai S, Sugawara T, Matsubara K, Hirata T. Inhibitory effect of carotenoids on the degranulation of mast cells via suppression of antigen-induced aggregation of high affinity IgE receptors. J Biol Chem 2009; 284:28172-28179. [PMID: 19700409 DOI: 10.1074/jbc.m109.001099] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Carotenoids have been demonstrated to possess antioxidative and anti-inflammatory effects. However, there is no report that the effects of carotenoids on degranulation of mast cell is critical for type I allergy. In this study, we focused on the effect of carotenoids on antigen-induced degranulation of mast cells. Fucoxanthin, astaxanthin, zeaxanthin, and beta-carotene significantly inhibited the antigen-induced release of beta-hexosaminidase in rat basophilic leukemia 2H3 cells and mouse bone marrow-derived mast cells. Those carotenoids also inhibited antigen-induced aggregation of the high affinity IgE receptor (Fc epsilonRI), which is the most upstream of the degranulating signals of mast cells. Furthermore, carotenoids inhibited Fc epsilonRI-mediated intracellular signaling, such as phosphorylation of Lyn kinase and Fyn kinase. It suggests that the inhibitory effect of carotenoids on the degranulation of mast cells were mainly due to suppressing the aggregation of Fc epsilonRI followed by intracellular signaling. In addition, those carotenoids inhibited antigen-induced translocation of Fc epsilonRI to lipid rafts, which are known as platforms of the aggregation of Fc epsilonRI. We assume that carotenoids may modulate the function of lipid rafts and inhibit the translocation of Fc epsilonRI to lipid rafts. This is the first report that focused on the aggregation of Fc epsilonRI to investigate the mechanism of the inhibitory effects on the degranulation of mast cells and evaluated the functional activity of carotenoids associated with lipid rafts.
Collapse
Affiliation(s)
- Shota Sakai
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502.
| | - Kiminori Matsubara
- Department of Human Life Sciences Education, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima 739-8524, Japan
| | - Takashi Hirata
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502
| |
Collapse
|
131
|
Lakshminarayana R, Raju M, Keshava Prakash MN, Baskaran V. Phospholipid, oleic acid micelles and dietary olive oil influence the lutein absorption and activity of antioxidant enzymes in rats. Lipids 2009; 44:799-806. [PMID: 19685091 DOI: 10.1007/s11745-009-3328-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022]
Abstract
This study reports on the results of repeated gavages and dietary feeding of lutein dispersed either in phospholipids or fatty acid micelles or vegetable oils and the effects on lutein bioavailability and antioxidant enzymes in rats. For the gavage study, rats (n = 5/group) were intubated with lutein solubilized either in oleic acid (OLA, 18:1n-9) or linoleic acid (LNA, 18:2n-6) or phosphatidylcholine (PC) or lysophosphatidylcholine (LPC) or no phospholipid (NoPL) micelles for 10 days. For the dietary study, rats (n = 5/group) were fed a diet containing fenugreek leaf (lutein source), either with olive (OO) or sunflower (SFO) or groundnut (GNO, control) oil or L: -alpha-lecithin (PL) for 4 weeks. The gavage study showed that the plasma, liver and eye lutein levels in OLA and LPC groups were higher by 23.9, 20.8 and 25.5% and 16.1, 28.5 and 14.0% than LNA and PC groups, respectively. The dietary study showed the plasma (35.0 and 43.5%) and eye (18.5 and 37.0%) lutein levels in OO were higher than SFO and GNO groups. The plasma and eye lutein levels in the PL group were higher by 20 and 31.3% than in the control. It is evident that OO and PL modulate lutein absorption, which in turn modulates antioxidant enzymes and fatty acids in plasma and tissues compared to SFO. Hence, selection of the fat source may be vital to enhancing the lutein bioavailability.
Collapse
Affiliation(s)
- R Lakshminarayana
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, CSIR, Mysore, 570020, India
| | | | | | | |
Collapse
|
132
|
Marisiddaiah R, Baskaran V. Bioefficacy of β-carotene is improved in rats after solubilized as equimolar dose of β-carotene and lutein in phospholipid-mixed micelles. Nutr Res 2009; 29:588-95. [DOI: 10.1016/j.nutres.2009.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/11/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
|
133
|
Epriliati I, D'Arcy B, Gidley M. Nutriomic analysis of fresh and processed fruit products. 2. During in vitro simultaneous molecular passages using Caco-2 cell monolayers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3377-3388. [PMID: 19290640 DOI: 10.1021/jf802226n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many studies have used Caco-2 cell monolayers as human intestinal absorption models. However, only a few studied digested foods, instead of pure standard compounds. Moreover, beneficial and nutritional molecules (nutriome) have not been investigated simultaneously. The present study explored nutriome passages from digest solution of fresh, dried, and juiced tomato, mango, and papaya using Caco-2 cell monolayers in apical-->basolateral directions. A validation method using complementary TEER and P(app) values or internal standard caffeine is recommended because physiologically passive diffusion is unlikely to happen. Sugars were transported into basolateral sides, resulting in potential glucose equivalent bioavailability of 2.26-75 mg h(-1)/100 g (WB). Using sugar passage rates (DB) of juices as 100% references, the rate order was tomato (49.8% dried; 89.5% fresh) > mango (56.8% dried; 22.8% fresh) > papaya (18.7% dried; 36.7% fresh). Major indications that phytochemical absorption does not occur in the small intestine were obtained from the bioassay condition selected. Apical organic acid levels decreased, which occasionally were transported into basolateral sides, whereas the disappearances of apical carotenoids and phenolics were not. Pectin substances were predicted to be responsible for the disappearances of bioactive compounds in those pectin-rich fruits. Further investigations on the role of pectin substances in intestinal passages are recommended.
Collapse
Affiliation(s)
- Indah Epriliati
- School of Land, Crop and Food Sciences, The University of Queensland, St. Lucia, Australia.
| | | | | |
Collapse
|
134
|
Sugawara T, Yamashita K, Asai A, Nagao A, Shiraishi T, Imai I, Hirata T. Esterification of xanthophylls by human intestinal Caco-2 cells. Arch Biochem Biophys 2009; 483:205-12. [DOI: 10.1016/j.abb.2008.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 09/29/2008] [Accepted: 10/03/2008] [Indexed: 11/26/2022]
|
135
|
Chuah A, Kuroiwa T, Ichikawa S, Kobayashi I, Nakajima M. Formation of Biocompatible Nanoparticles via the Self-Assembly of Chitosan and Modified Lecithin. J Food Sci 2009; 74:N1-8. [DOI: 10.1111/j.1750-3841.2008.00985.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
136
|
Abstract
Epoxyxanthophylls (epoxide-containing xanthophylls), a group of carotenoids, are ubiquitously distributed in edible plants. Among them, neoxanthin in green leafy vegetables and fucoxanthin in brown algae have been reported to exhibit an antiproliferative effect on several human cancer cells in vitro. However, there is little information about the intestinal absorption and metabolic fate of dietary epoxyxanthophylls in humans. To estimate the intestinal absorption of neoxanthin and fucoxanthin in humans, we evaluated the plasma epoxyxanthophyll concentrations before and after 1-week dietary interventions with spinach (Spinacia oleracea) and wakame (Undaria pinnatifida). The epoxyxanthophylls and their metabolites in the plasma extracts were determined by HPLC after partial purification and concentration with solid-phase extraction cartridges. Even after 1 week of spinach intake (3.0 mg neoxanthin/d), the plasma concentrations of neoxanthin and its metabolites (neochrome stereoisomers) remained very low (about 1 nmol/l), whereas those of beta-carotene and lutein were markedly increased. Similarly, the plasma concentration of fucoxanthinol, a gastrointestinal metabolite of fucoxanthin, was < 1 nmol/l after 1 week of wakame intake (6.1 mg fucoxanthin/d). These results indicated that the plasma response to dietary epoxyxanthophylls was very low in humans even after 1-week intake of epoxyxanthophyll-rich diets.
Collapse
Affiliation(s)
- Akira Asai
- National Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | |
Collapse
|
137
|
Loane E, Nolan JM, O'Donovan O, Bhosale P, Bernstein PS, Beatty S. Transport and Retinal Capture of Lutein and Zeaxanthin with Reference to Age-related Macular Degeneration. Surv Ophthalmol 2008; 53:68-81. [DOI: 10.1016/j.survophthal.2007.10.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
138
|
Lind ML, Jacobsen J, Holm R, Müllertz A. Development of simulated intestinal fluids containing nutrients as transport media in the Caco-2 cell culture model: Assessment of cell viability, monolayer integrity and transport of a poorly aqueous soluble drug and a substrate of efflux mechanisms. Eur J Pharm Sci 2007; 32:261-70. [PMID: 17890067 DOI: 10.1016/j.ejps.2007.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Revised: 08/02/2007] [Accepted: 08/04/2007] [Indexed: 10/23/2022]
Abstract
The purpose of this study was to identify simulated intestinal fluids (SIFs) containing nutrients compatible with the Caco-2 cell culture model and to examine the impact of the identified medium on the transport of a poorly aqueous soluble model compound, estradiol, and a substrate of efflux mechanisms, etoposide. Monolayer integrity was evaluated by transepithelial electrical resistance and cellular viability by release of lactate dehydrogenase to the apical compartment and cellular protein content. It was shown that the viability of Caco-2 cells was enhanced by use of the CO(2) independent nutritional medium, Leibovitz's L-15 compared to Hanks' balanced salt solution. SIF containing 5mM sodium taurocholate and 1.25 mM phosphatidylcholine or lysophosphatidylcholine in Leibovitz's L-15 induced less release of lactate dehydrogenase than the traditional transport medium, HBSS. Addition of lipolysis products, 0.5mM oleic acid and 0.25 mM monoolein, did only cause increase in lactate dehydrogenase in 3 of 12 comparisons. The presence of SIFs in the apical compartment was shown to decrease flux of estradiol due to incorporation of estradiol in micelles and hence a decreased fraction of free estradiol. Further, a concentration dependent increase in the apparent permeability of etoposide was observed from apical to basolateral compartment, which indicated that components in the SIFs affects efflux mechanisms.
Collapse
Affiliation(s)
- Marianne L Lind
- Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
139
|
Dhuique-Mayer C, Borel P, Reboul E, Caporiccio B, Besancon P, Amiot MJ. Beta-cryptoxanthin from citrus juices: assessment of bioaccessibility using an in vitro digestion/Caco-2 cell culture model. Br J Nutr 2007; 97:883-90. [PMID: 17381979 DOI: 10.1017/s0007114507670822] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Beta-Cryptoxanthin (beta-CX), a provitaminic carotenoid of potential interest for health, is found principally in Citrus fruit in both free and esterified forms. Little is known about the intestinal absorption of beta-CX especially with regard to the esterified forms. The aim of this study was to evaluate the absorption of free and esterified beta-CX using simulated digestion coupled with the Caco-2 model. Bioaccessibility was investigated by measuring the transfer of carotenoids from different citrus juices into micelles using an in vitro digestion system. Then, carotenoid uptake was evaluated by adding carotenoid-rich micelles (from the in vitro digestion) or synthetic micelles (made from synthetic lipids and carotenoids purified from citrus juice) to human intestinal cells (Caco-2 TC7 clone). Our results showed that beta-cryptoxanthin esters (beta-CXE) were partially hydrolysed during the in vitro digestion. The bioaccessibility of free beta-CX measured was significantly higher (40 (SD 1.05) %) than that of beta-carotene (30 (SD 1.9) %) and beta-CXE (16 (SD 1.5) %). In the same way, the incorporation of free beta-CX (27 (SD 1.01) %) into synthetic micelles exceeded (P<0.05) that of beta-carotene (10 (SD 0.7) %) and beta-CXE (8.8 (SD 0.4) %). In the case of micelles from in vitro digestion, the uptake of beta-carotene, free beta-CX and beta-CXE forms by Caco-2 cells was 14.3 (SD 1.8), 3.9 (SD 1.3), and 0.7 (SD 0.08) % respectively. These results showed a preferential uptake by Caco-2 cells of beta-carotene and free beta-CX compared with the two esters of beta-CX.
Collapse
Affiliation(s)
- Claudie Dhuique-Mayer
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UR 24, Tropical food quality, TA50/04, 34398 Montpellier cedex 5, France.
| | | | | | | | | | | |
Collapse
|
140
|
Granado-Lorencio F, Olmedilla-Alonso B, Herrero-Barbudo C, Pérez-Sacristan B, Blanco-Navarro I, Blazquez-García S. Comparative in vitro bioaccessibility of carotenoids from relevant contributors to carotenoid intake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:6387-94. [PMID: 17595101 DOI: 10.1021/jf070301t] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
To compare the in vitro bioaccessibility of lutein, zeaxanthin, beta-cryptoxanthin, lycopene, and alpha-and beta-carotenes from relevant dietary contributors, a gastrointestinal model was used to assess the stability, isomerization, carotenol ester hydrolysis, and micellarization. Salivar, gastric, duodenal, and micellar phases were extracted, with and without saponification, and analyzed by using a quality-controlled HPLC method. The stability of carotenoids under digestion conditions was >75%, regardless of the food analyzed, whereas micellarization ranged from 5 to 100%, depending on the carotenoid and the food. cis-Isomers were maintained in processed foods, but increased in fresh foods. Xanthophyll ester hydrolysis was incomplete (<40%), and both free and ester forms were incorporated into supernatants, regardless of the xanthophyll involved and the food assessed. In vitro bioaccesibility varies widely both for different carotenoids in a given food and for a given carotenoid in different foods. Although in vitro bioaccesibility may not be enough to predict the in vivo bioavailability, it may be relevant for the food industry and for food-based dietary guidelines.
Collapse
Affiliation(s)
- Fernando Granado-Lorencio
- Unidad de Vitaminas, Servicio de Bioquímica Clínica, Hospital Universitario Puerta de Hierro, 28035 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
141
|
Abstract
The assessment of carotenoid bioavailability has long been hampered by the limited knowledge of their absorption mechanisms. However, recent reports have elucidated important aspects of carotenoid digestion and absorption. Disruption of food matrix and increasing amounts of fat seem to enhance the absorption of carotenes to a larger extent than that of xanthophylls. Comparing different carotenoid species, xanthophylls seem to be more easily released from the food matrix and more efficiently micellized than the carotenes. On the other hand, carotenes are more efficiently taken up by the enterocytes. However, carotenoid emulsification and micellization steps are largely affected by the food matrix and dietary components, being the main determinant of carotenoid bioavailability from foodstuffs. Although the intestinal uptake of carotenoids has been thought to occur by simple diffusion, recent studies reported the existence of receptor-mediated transport of carotenoids in enterocytes. Comparisons between the intestinal absorption of a wide array of carotenoids would be useful to elucidate the absorption mechanism of each carotenoid species, in view of the recent indications that intestinal carotenoid uptake may involve the scavenger receptor class B type I and possibly other epithelial transporters. The unraveling of the whole mechanism underlying the absorption of carotenoids will be the challenge for future studies.
Collapse
Affiliation(s)
- Lina Yonekura
- National Food Research Institute, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
142
|
Reboul E, Thap S, Tourniaire F, André M, Juhel C, Morange S, Amiot MJ, Lairon D, Borel P. Differential effect of dietary antioxidant classes (carotenoids, polyphenols, vitamins C and E) on lutein absorption. Br J Nutr 2007; 97:440-6. [PMID: 17313704 DOI: 10.1017/s0007114507352604] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lutein is assumed to protect the human retina from blue light and oxidative stress and diminish the incidence of age-related macular degeneration. This antioxidant is commonly ingested with other dietary antioxidants. The aim of the present study was to assess whether the main dietary antioxidants, i.e. carotenoids, polyphenols and vitamins C and E, affect lutein absorption. We measured the effect of adding a mixture of antioxidants (500 mg vitamin C, 67 mg (100 IU) vitamin E and 1 g polyphenols) to a lutein-containing meal (18 mg) on the postprandial lutein response in the chylomicron-rich fraction in eight healthy men. Lutein response was weakest ( − 23 %;P = 0·07) after ingestion of the meal containing antioxidants (21·9 (sem4·6)v.28·4 (sem7·2) nmol × h/l). To assess the effect of each class of antioxidants and potential interactions, we subsequently evaluated the effect of various combinations of antioxidants on lutein uptake by human intestinal Caco-2 TC-7 cells. A full factorial design showed that both a mixture of polyphenols (gallic acid, caffeic acid, (+)-catechin and naringenin) and a mixture of carotenoids (lycopene plus β-carotene) significantly (P < 0·05) impaired lutein uptake by ( − 10 to − 30 %), while vitamins C and E had no significant effect. Subsequent experiments showed that the aglycone flavanone naringenin was the only polyphenol responsible for the effect of the polyphenol mixture, and that the carotenoid effect was not carotenoid species-dependent. Taken together, the present results suggest that lutein absorption is not markedly affected by physiological concentrations of vitamins C and E but can be impaired by carotenoids and naringenin.
Collapse
|
143
|
Granado F, Olmedilla B, Herrero C, Pérez-Sacristán B, Blanco I, Blázquez S. Bioavailability of carotenoids and tocopherols from broccoli: in vivo and in vitro assessment. Exp Biol Med (Maywood) 2007; 231:1733-8. [PMID: 17138760 DOI: 10.1177/153537020623101110] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fruits and vegetables are the major sources of biologically active compounds, and carotenoids and tocopherols constitute important groups in human diets. Bioavailability is a critical feature in the assessment of the role of micronutrients in human health, and the approaches to this issue include in vitro and in vivo methods. Our aim was to evaluate the bioavailability of carotenoids and tocopherols present in broccoli and to compare in vitro and in vivo approaches. Fourteen apparently healthy volunteers consumed 200 g broccoli once a day for seven days. Blood samples were drawn at baseline and after intervention to determine changes in lutein, beta-carotene, and alpha- and gamma-tocopherol as relevant phytochemicals provided with this vegetable. Broccoli also was subjected to simulated gastrointestinal digestion to assess changes related to preabsorptive processes. Analytes in serum and at each phase of the digestion were assayed by high-performance liquid chromatography. During the intervention, the amounts supplied daily ranged from 2.4 to 3.1 mg lutein, 1.4 to 1.8 mg beta-carotene, 4.5 to 6.8 mg alpha-tocopherol, and 0.8 to 1.8 mg gamma-tocopherol. Significant changes in serum in both men and women were observed only for lutein, whereas for gamma-tocopherol a significant change was detected in women. No changes were observed for alpha-tocopherol, beta-carotene, retinol, the alpha-tocopherol-to-cholesterol ratio, or serum lipids. Using the in vitro model, more than 75% of lutein, beta-carotene, gamma-tocopherol, and alpha-tocopherol remained at the duodenal phase, whereas incorporation into the supernatants accounted for <20% of the initial content in food. Regular consumption of broccoli at dietary levels increased serum concentrations of lutein and gamma-tocopherol without affecting alpha-tocopherol or beta-carotene status in serum. The behavior of these phytochemicals under in vitro gastrointestinal conditions does not fully explain the changes observed in vivo.
Collapse
Affiliation(s)
- F Granado
- Unidad de Vitaminas, Servicio de Endocrinología y Nutrición, Hospital Universitario Puerta de Hierro, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
144
|
GUNJI S, SANTOSO J, YOSHIE-STARK Y, SUZUKI T. Effects of Extracts from Tropical Seaweeds on DPPH Radicals and Caco-2 Cells Treated with Hydrogen Peroxide. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2007. [DOI: 10.3136/fstr.13.275] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
145
|
Sugawara T, Matsubara K, Akagi R, Mori M, Hirata T. Antiangiogenic activity of brown algae fucoxanthin and its deacetylated product, fucoxanthinol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:9805-10. [PMID: 17177505 DOI: 10.1021/jf062204q] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The antiangiogenic effects of fucoxanthin and a deacetylated product, fucoxanthinol, were examined. Fucoxanthin significantly suppressed HUVEC proliferation and tube formation at more than 10 microM, but it had no significant effect on HUVEC chemotaxis. The formation of blood vessel-like structures from CD31-positive cells was evaluated using embryonic stem cell-derived embryoid bodies. Fucoxanthin effectively suppressed the development of these structures at 10-20 microM, suggesting that it could suppress differentiation of endothelial progenitor cells into endothelial cells involving new blood vessel formation. Fucoxanthin and fucoxanthinol suppressed microvessel outgrowth in an ex vivo angiogenesis assay using a rat aortic ring, in a dose-dependent manner. These results imply that fucoxanthin having antiangiogenic activity might be useful in preventing angiogenesis-related diseases.
Collapse
Affiliation(s)
- Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
146
|
Terasaki M, Asai A, Zhang H, Nagao A. A highly polar xanthophyll of 9'-cis-neoxanthin induces apoptosis in HCT116 human colon cancer cells through mitochondrial dysfunction. Mol Cell Biochem 2006; 300:227-37. [PMID: 17186379 DOI: 10.1007/s11010-006-9387-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Accepted: 11/21/2006] [Indexed: 12/11/2022]
Abstract
Highly polar xanthophylls of 9'-cis-neoxanthin (neoxanthin) and fucoxanthin, which have the characteristic structure of an epoxy group and an allenic bond, were previously found to induce apoptosis in human prostate cancer cells. In the present study, we found apoptosis induction by neoxanthin in HCT116 human colon cancer cells and examined the induction mechanism. The cells exposed to 20 microM neoxanthin clearly showed chromatin condensation, DNA fragmentation, and an increase in hypodiploid cells. Neoxanthin treatment increased the activities of caspase-3, -8 and -9, and the protein levels of their active subunits, except in the case of caspase-8. The treatment also caused the loss of mitochondrial transmembrane potential at an early stage and subsequently the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria to cytosol. The exposure of neoxanthin directly to mitochondria isolated from the cells enhanced the release of cytochrome c and AIF in a dose-dependent manner. Approximately 50% of the neoxanthin taken up into the HCT116 cells accumulated in the mitochondrial fraction. These results suggest that the accumulation of neoxanthin in mitochondria causes the loss of mitochondrial transmembrane potential and thereafter releases cytochrome c and AIF, leading to the execution of apoptosis.
Collapse
Affiliation(s)
- Masaru Terasaki
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| | | | | | | |
Collapse
|
147
|
Yonekura L, Tsuzuki W, Nagao A. Acyl moieties modulate the effects of phospholipids on β-carotene uptake by Caco-2 cells. Lipids 2006; 41:629-36. [PMID: 17069346 DOI: 10.1007/s11745-006-5013-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The intestinal absorption of carotenoids is thought to be mediated by the carotenoid assembly in mixed micelles, followed by its transfer into the enterocytes and subsequent secretion to the lymph as chylomicron particles. In the present study we investigated the effects of phospholipids and lysophospholipids with diverse fatty acyl moieties on the uptake of beta-carotene solubilized in mixed micelles by Caco-2 cells. Compared with phospholipid-free mixed micelles (NoPL), those containing long-chain PC inhibited beta-carotene uptake (16:0,18:1-PC approximately equal to 16:0,18:2-PC < 14:0,14:0-PC approximately equal to 16:0, 14:0-PC < 16:0,16:0-PC < NoPL). However, mixed micelles containing medium-chain PC enhanced beta-carotene uptake (NoPL < 8:0,8:0-PC < 12:0,12:0-PC < 10:0,10:0-PC), and short-chain PC did not affect the uptake. Among the lysophosphatidylcholine (LysoPC) class, a marked increase of beta-carotene uptake by medium-to-long-chain LysoPC was observed (NoPL < 12:0-LysoPC < 14:0-LysoPC < 18:1-LysoPC < 16:0-LysoPC), although short-to-medium-chain LysoPC (6:0-LysoPC to 10:0-LysoPC) did not affect beta-carotene uptake. The long-chain 16:0,18:1-PC increased the beta-carotene efflux from cells and drastically changed the beta-carotene UV-visible absorbance spectrum, compared with those of NoPL micelles. The acyl moieties of long-chain PC may interact with the carotenoid in the micelle interior, shifting the beta-carotene partition toward the micellar phase. Medium-chain PC and long-chain LysoPC, which have nearly equivalent hydrophobicities, may enhance beta-carotene uptake through their interaction with the cell membrane.
Collapse
Affiliation(s)
- Lina Yonekura
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | | | | |
Collapse
|
148
|
German JB, Dillard CJ. Composition, structure and absorption of milk lipids: a source of energy, fat-soluble nutrients and bioactive molecules. Crit Rev Food Sci Nutr 2006; 46:57-92. [PMID: 16403683 DOI: 10.1080/10408690590957098] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Milkfat is a remarkable source of energy, fat-soluble nutrients and bioactive lipids for mammals. The composition and content of lipids in milkfat vary widely among mammalian species. Milkfat is not only a source of bioactive lipid components, it also serves as an important delivery medium for nutrients, including the fat-soluble vitamins. Bioactive lipids in milk include triacylglycerides, diacylglycerides, saturated and polyunsaturated fatty acids, and phospholipids. Beneficial activities of milk lipids include anticancer, antimicrobial, anti-inflammatory, and immunosuppression properties. The major mammalian milk that is consumed by humans as a food commodity is that from bovine whose milkfat composition is distinct due to their diet and the presence of a rumen. As a result of these factors bovine milkfat is lower in polyunsaturated fatty acids and higher in saturated fatty acids than human milk, and the consequences of these differences are still being researched. The physical properties of bovine milkfat that result from its composition including its plasticity, make it a highly desirable commodity (butter) and food ingredient. Among the 12 major milk fatty acids, only three (lauric, myristic, and palmitic) have been associated with raising total cholesterol levels in plasma, but their individual effects are variable-both towards raising low-density lipoproteins and raising the level of beneficial high-density lipoproteins. The cholesterol-modifying response of individuals to consuming saturated fats is also variable, and therefore the composition, functions and biological properties of milkfat will need to be re-evaluated as the food marketplace moves increasingly towards more personalized diets.
Collapse
Affiliation(s)
- J Bruce German
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA.
| | | |
Collapse
|
149
|
Chitchumroonchokchai C, Failla ML. Hydrolysis of zeaxanthin esters by carboxyl ester lipase during digestion facilitates micellarization and uptake of the xanthophyll by Caco-2 human intestinal cells. J Nutr 2006; 136:588-94. [PMID: 16484529 DOI: 10.1093/jn/136.3.588] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zeaxanthin (Zea) and lutein are the only dietary carotenoids that accumulate in the macular region of the retina and lens. It was proposed that these carotenoids protect these tissues against photooxidative damage. Few plant foods are enriched in Zea, and information about the bioavailability of Zea from these foods and its accumulation in ocular tissues is limited. The amounts of free Zea and its mono- and diesters were measured for several plant foods that have relatively high concentrations of this xanthophyll. Wolfberry had the greatest concentration of Zea with a diester that accounts for 95% of the total. Free, mono-, and diesters of Zea were present in orange and red peppers, whereas only Zea monoesters were detected in squash. Zea esters were partially hydrolyzed by carboxyl ester lipase (CEL) during simulated digestion. The efficiency of micellarization was dependent on speciation with combined means of free Zea, Zea monoesters, Zea diesters from the digested foods of 81 +/- 8, 44 +/- 5, and 11 +/- 4%, respectively. When exposed to micelles generated during digestion of the test foods, Zea uptake by Caco-2 cells was proportional to the medium content (11-14%). Free Zea was the most abundant form in Caco-2 cells, although Zea monoesters also were detected (<8 +/- 0.7% vs. free Zea). CEL enhanced Zea uptake from micelles (12.3-fold; P < 0.05) by hydrolyzing Zea esters. After cell uptake, concentrations of free and monoesterified Zea remained relatively stable. These data suggest that dietary Zea esters are hydrolyzed by CEL during the small intestinal phase of digestion and that this conversion enhances Zea bioavailability.
Collapse
|
150
|
Lakshminarayana R, Raju M, Krishnakantha TP, Baskaran V. Enhanced lutein bioavailability by lyso-phosphatidylcholine in rats. Mol Cell Biochem 2006; 281:103-10. [PMID: 16328962 DOI: 10.1007/s11010-006-1337-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 07/07/2005] [Indexed: 10/25/2022]
Abstract
The bioavailability of lutein solubilized in mixed micelles containing either phosphatidylcholine (PC) or lysophosphatidylcholine (lysoPC) was evaluated in male rats. Mixed micelles contained 2.5 mM monooleoylglycerol, 7.5 mM oleic acid, 12 mM sodium taurocholate and 200 microM lutein either with 3 mM PC or lysoPC. To study lutein bioavailability, single and repeated dose experiments were conducted. For single dose study, group of rats (n = 30/group) were fed single dose of lutein solubilized in lysoPC (LPC group), PC (PC group) and no phospholipids (NoPL group) in micellar form. Each group was further divided in to five sub-groups (n = 6/sub group) to measure lutein bioavailability over time up to 9 h. For repeated dose study, group of rats (n = 6/group) were fed daily for 10 days a dose of lutein in mixed micelles with NoPL, PC and LPC. A separate group (n = 6) not fed mixed micelles was considered as zero-time control. In both the experiments, mixed micelles (0.2 ml/rat) were fed to the rat by direct intubation to the stomach. Results of single dose studies showed that the mean lutein levels in the plasma and liver of the PC group was significantly lower (p < 0.05) than those of the other two groups. Moreover, the average lutein level in the plasma and liver was significantly (p < 0.05) different among the groups in the order LPC > NoPL > PC. But, repeated dose experiment followed the order LPC > PC > NoPL. The level of lutein excreted through urine and feces of PC group was significantly higher (p < 0.05) than those of the other two groups. Thus, the results indicate that the PC in the mixed micelles suppressed the intestinal uptake of lutein after single dose but not after repeated dose and that lysoPC enhanced the absorption. In both the experiments, plasma and liver level of lutein was higher in LPC compared with PC group. Results also suggest that the luminal hydrolysis of PC to lysoPC is necessary for intestinal uptake of lutein solubilized in mixed micelles.
Collapse
Affiliation(s)
- R Lakshminarayana
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore 570 020, India
| | | | | | | |
Collapse
|