101
|
Gao P, Liao Z, Wang XX, Bao LF, Fan MH, Li XM, Wu CW, Xia SW. Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell. PLoS One 2015. [PMID: 26218932 PMCID: PMC4517812 DOI: 10.1371/journal.pone.0133913] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bivalve shell is a biomineralized tissue with various layers/microstructures and excellent mechanical properties. Shell matrix proteins (SMPs) pervade and envelop the mineral crystals and play essential roles in biomineralization. Despite that Mytilus is an economically important bivalve, only few proteomic studies have been performed for the shell, and current knowledge of the SMP set responsible for different shell layers of Mytilus remains largely patchy. In this study, we observed that Mytilus galloprovincialis shell contained three layers, including nacre, fibrous prism, and myostracum that is involved in shell-muscle attachment. A parallel proteomic analysis was performed for these three layers. By combining LC-MS/MS analysis with Mytilus EST database interrogations, a whole set of 113 proteins was identified, and the distribution of these proteins in different shell layers followed a mosaic pattern. For each layer, about a half of identified proteins are unique and the others are shared by two or all of three layers. This is the first description of the protein set exclusive to nacre, myostracum, and fibrous prism in Mytilus shell. Moreover, most of identified proteins in the present study are novel SMPs, which greatly extended biomineralization-related protein data of Mytilus. These results are useful, on one hand, for understanding the roles of SMPs in the deposition of different shell layers. On the other hand, the identified protein set of myostracum provides candidates for further exploring the mechanism of adductor muscle-shell attachment.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry and Chemical Engineering, Ocean University of Chinese, Qingdao, China
- Laboratory of Marine Biological Protein Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Zhi Liao
- Laboratory of Marine Biological Protein Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xin-xing Wang
- Laboratory of Marine Biological Protein Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Lin-fei Bao
- Laboratory of Marine Biological Protein Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Mei-hua Fan
- Laboratory of Marine Biological Protein Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xiao-min Li
- Biotechnology Center, Chinese Academy of Fishery Science, Beijing, China
| | - Chang-wen Wu
- Laboratory of Marine Biological Protein Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Shu-wei Xia
- College of Chemistry and Chemical Engineering, Ocean University of Chinese, Qingdao, China
- * E-mail:
| |
Collapse
|
102
|
Dual Roles of the Lysine-Rich Matrix Protein (KRMP)-3 in Shell Formation of Pearl Oyster, Pinctada fucata. PLoS One 2015; 10:e0131868. [PMID: 26161976 PMCID: PMC4498902 DOI: 10.1371/journal.pone.0131868] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
Matrix proteins play important roles in shell formation. Our group firstly isolated three cDNAs encoding lysine-rich matrix protein from Pinctada fucata in 2006. However, the functions of KRMPs are not fully understood. In addition, KRMPs contain two functional domains, the basic domain and the Gly/Tyr domain respectively. Based on the modular organization, the roles of their two domains were poorly characterized. Furthermore, KRMPs were then reported in other two species, P. maxima and P. margaritifera, which indicated that KRMPs might be very important for shell formation. In this study, the characterization and function of KRMP-3 and its two functional domains were studied in vitro through purification of recombinant glutathione S-transferase tagged KRMP-3 and two KRMP-3 deletion mutants. Western blot and immunofluorescence revealed that native KRMP-3 existed in the EDTA-insoluble matrix of the prismatic layer and was located in the organic sheet and the prismatic sheath. Recombinant KRMP-3 (rKRMP-3) bound tightly to chitin and this binding capacity was duo to the Gly/Tyr-rich region. rKRMP-3 inhibited the precipitation of CaCO3, affected the crystal morphology of calcite and inhibited the growth of aragonite in vitro, which was almost entirely attributed to the lysine-rich region. The results present direct evidence of the roles of KRMP-3 in shell biomineralization. The functional rBR region was found to participate in the growth control of crystals and the rGYR region was responsible to bind to chitin.
Collapse
|
103
|
Mao Y, Satchell PG, Luan X, Diekwisch TGH. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization. Ann Anat 2015; 203:38-46. [PMID: 26194158 DOI: 10.1016/j.aanat.2015.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
The two major proteins involved in vertebrate enamel formation and echinoderm sea urchin tooth biomineralization, amelogenin and SM50, are both characterized by elongated polyproline repeat domains in the center of the macromolecule. To determine the role of polyproline repeat polypeptides in basal deuterostome biomineralization, we have mapped the localization of SM50 as it relates to crystal growth, conducted self-assembly studies of SM50 repeat polypeptides, and examined their effect on calcium carbonate and apatite crystal growth. Electron micrographs of the growth zone of Strongylocentrotus purpuratus sea urchin teeth documented a series of successive events from intravesicular mineral nucleation to mineral deposition at the interface between tooth surface and odontoblast syncytium. Using immunohistochemistry, SM50 was detected within the cytoplasm of cells associated with the developing tooth mineral, at the mineral secreting front, and adjacent to initial mineral deposits, but not in muscles and ligaments. Polypeptides derived from the SM50 polyproline alternating hexa- and hepta-peptide repeat region (SM50P6P7) formed highly discrete, donut-shaped self-assembly patterns. In calcium carbonate crystal growth studies, SM50P6P7 repeat peptides triggered the growth of expansive networks of fused calcium carbonate crystals while in apatite growth studies, SM50P6P7 peptides facilitated the growth of needle-shaped and parallel arranged crystals resembling those found in developing vertebrate enamel. In comparison, SM50P6P7 surpassed the PXX24 polypeptide repeat region derived from the vertebrate enamel protein amelogenin in its ability to promote crystal nucleation and appositional crystal growth. Together, these studies establish the SM50P6P7 polyproline repeat region as a potent regulator in the protein-guided appositional crystal growth that occurs during continuous tooth mineralization and eruption. In addition, our studies highlight the role of species-specific polyproline repeat motifs in the formation of discrete self-assembled matrices and the resulting control of mineral growth.
Collapse
Affiliation(s)
- Yelin Mao
- UIC College of Dentistry, Department of Orthodontics, USA
| | | | - Xianghong Luan
- UIC College of Dentistry, Department of Orthodontics, USA; UIC College of Dentistry, Department of Oral Biology, USA
| | - Thomas G H Diekwisch
- UIC College of Dentistry, Department of Oral Biology, USA; Baylor College of Dentistry, Department of Periodontics, USA.
| |
Collapse
|
104
|
Maas AE, Lawson GL, Tarrant AM. Transcriptome-wide analysis of the response of the thecosome pteropod Clio pyramidata to short-term CO2 exposure. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 16:1-9. [PMID: 26143042 DOI: 10.1016/j.cbd.2015.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Thecosome pteropods, a group of calcifying holoplanktonic mollusks, have recently become a research focus due to their potential sensitivity to increased levels of anthropogenic dissolved CO2 in seawater and the accompanying ocean acidification. Some populations, however, already experience high CO2 in their natural distribution during diel vertical migrations. To achieve a better understanding of the mechanisms of pteropod calcification and physiological response to this sort of short duration CO2 exposure, we characterized the gene complement of Clio pyramidata, a cosmopolitan diel migratory thecosome, and investigated its transcriptomic response to experimentally manipulated CO2 conditions. Individuals were sampled from the Northwest Atlantic in the fall of 2011 and exposed to ambient conditions (~380ppm) and elevated CO2 (~800ppm, similar to levels experienced during a diel vertical migration) for ~10h. Following this exposure the respiration rate of the individuals was measured. We then performed RNA-seq analysis, assembled the C. pyramidata transcriptome de novo, annotated the genes, and assessed the differential gene expression patterns in response to exposure to elevated CO2. Within the transcriptome, we identified homologs of genes with known roles in biomineralization in other mollusks, including perlucin, calmodulin, dermatopontin, calponin, and chitin synthases. Respiration rate was not affected by short-term exposure to CO2. Gene expression varied greatly among individuals, and comparison between treatments indicated that C. pyramidata down-regulated a small number of genes associated with aerobic metabolism and up-regulated genes that may be associated with biomineralization, particularly collagens and C-type lectins. These results provide initial insight into the effects of short term CO2 exposure on these important planktonic open-ocean calcifiers, pairing respiration rate and the gene expression level of response, and reveal candidate genes for future ecophysiological, biomaterial and phylogenetic studies.
Collapse
Affiliation(s)
- Amy E Maas
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - Gareth L Lawson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
105
|
Liao Z, Bao LF, Fan MH, Gao P, Wang XX, Qin CL, Li XM. In-depth proteomic analysis of nacre, prism, and myostracum of Mytilus shell. J Proteomics 2015; 122:26-40. [DOI: 10.1016/j.jprot.2015.03.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 11/26/2022]
|
106
|
Jackson DJ, Mann K, Häussermann V, Schilhabel MB, Lüter C, Griesshaber E, Schmahl W, Wörheide G. The Magellania venosa Biomineralizing Proteome: A Window into Brachiopod Shell Evolution. Genome Biol Evol 2015; 7:1349-62. [PMID: 25912046 PMCID: PMC4453069 DOI: 10.1093/gbe/evv074] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 01/25/2023] Open
Abstract
Brachiopods are a lineage of invertebrates well known for the breadth and depth of their fossil record. Although the quality of this fossil record attracts the attention of paleontologists, geochemists, and paleoclimatologists, modern day brachiopods are also of interest to evolutionary biologists due to their potential to address a variety of questions ranging from developmental biology to biomineralization. The brachiopod shell is a composite material primarily composed of either calcite or calcium phosphate in close association with proteins and polysaccharides which give these composite structures their material properties. The information content of these biomolecules, sequestered within the shell during its construction, has the potential to inform hypotheses focused on describing how brachiopod shell formation evolved. Here, using high throughput proteomic approaches and next generation sequencing, we have surveyed and characterized the first shell-proteome and shell-forming transcriptome of any brachiopod, the South American Magellania venosa (Rhynchonelliformea: Terebratulida). We find that the seven most abundant proteins present in the shell are unique to M. venosa, but that these proteins display biochemical features found in other metazoan biomineralization proteins. We can also detect some M. venosa proteins that display significant sequence similarity to other metazoan biomineralization proteins, suggesting that some elements of the brachiopod shell-forming proteome are deeply evolutionarily conserved. We also employed a variety of preparation methods to isolate shell proteins and find that in comparison to the shells of other spiralian invertebrates (such as mollusks) the shell ultrastructure of M. venosa may explain the effects these preparation strategies have on our results.
Collapse
Affiliation(s)
- Daniel J Jackson
- Department of Geobiology, Georg-August University of Göttingen, Germany
| | - Karlheinz Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Munich, Germany
| | - Vreni Häussermann
- Escuela de Ciencias del Mar, Valparaíso, Facultad de Recursos Naturales, Universidad Católica de Valparaíso, Chile
| | - Markus B Schilhabel
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Kiel, Germany
| | - Carsten Lüter
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Erika Griesshaber
- Department of Earth- and Environmental Sciences & GeoBioCenter, Ludwig-Maximilians-Universität München, Germany
| | - Wolfgang Schmahl
- Department of Earth- and Environmental Sciences & GeoBioCenter, Ludwig-Maximilians-Universität München, Germany
| | - Gert Wörheide
- Department of Earth- and Environmental Sciences & GeoBioCenter, Ludwig-Maximilians-Universität München, Germany Bavarian State Collections of Palaeontology & Geology, München, Germany
| |
Collapse
|
107
|
Liu J, Yang D, Liu S, Li S, Xu G, Zheng G, Xie L, Zhang R. Microarray: a global analysis of biomineralization-related gene expression profiles during larval development in the pearl oyster, Pinctada fucata. BMC Genomics 2015; 16:325. [PMID: 25927556 PMCID: PMC4445274 DOI: 10.1186/s12864-015-1524-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The molluscan Pinctada fucata is an important pearl-culturing organism to study biomineralization mechanisms. Several biomineralization-related genes play important roles regulating shell formation, but most previous work has focused only on their functions in adult oysters. Few studies have investigated biomineralization during larval development, when the shell is initially constructed and formed until the juvenile stage in dissoconch shells. Here, we report, for the first time, a global gene analysis during larval development of P. fucata based on a microarray and reveal the relationships between biomineralization-related genes and the shell formation process. RESULTS Based on the P. fucata mantle transcriptome, 58,940 probes (60 nt), representing 58,623 transcripts, were synthesized. The gene expression profiles of the fertilized egg, trochophore, D-shaped, and umbonal stage larvae, as well as juveniles were analyzed by microarray performance. The expression patterns of the biomineralization-related genes changed corresponding to their regulatory function during shell formation. Matrix proteins chitin synthase and PFMG2 were highly expressed at the D-shaped stage, whereas PFMG6, PFMG8 and PfN23 were significantly up-regulated at the umbonal stage, indicating different roles regulating the formation of either periostracum, Prodissoconch I or Prodissoconch II shells. However, the majority of matrix proteins were expressed at high levels at the juvenile stage, and the shells comprised both an aragonitic nacreous layer and a calcitic prismatic layer as adults. We also identified five new genes that were significantly up-regulated in juveniles. These genes were expressed particularly in the mantle and coded for secreted proteins with tandem-arranged repeat units, as most matrix proteins. RNAi knockdown resulted in disrupted nacreous and prismatic shell layers, indicating their potential roles in shell formation. CONCLUSIONS Our results add a global perspective on larval expression patterns of P. fucata genes and propose a mechanism of how biomineralization-related genes regulate the larval shell formation process. These results increase knowledge about biomineralization-related genes and highlight new aspects of shell formation mechanisms.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, 100084, China.
| | - Dong Yang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, 100084, China.
| | - Shiting Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, 100084, China.
| | - Shiguo Li
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, 100084, China.
| | - Guangrui Xu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, 100084, China.
| | - Guilan Zheng
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, 100084, China.
| | - Liping Xie
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, 100084, China.
| | - Rongqing Zhang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
108
|
Characterization of the mantle transcriptome of yesso scallop (Patinopecten yessoensis): identification of genes potentially involved in biomineralization and pigmentation. PLoS One 2015; 10:e0122967. [PMID: 25856556 PMCID: PMC4391921 DOI: 10.1371/journal.pone.0122967] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/16/2015] [Indexed: 12/27/2022] Open
Abstract
The Yesso scallop Patinopecten yessoensis is an economically important marine bivalve species in aquaculture and fishery in Asian countries. However, limited genomic resources are available for this scallop, which hampers investigations into molecular mechanisms underlying their unique biological characteristics, such as shell formation and pigmentation. Mantle is the special tissue of P. yessoensis that secretes biomineralization proteins inducing shell deposition as well as pigmentation on the shells. However, a current deficiency of transcriptome information limits insight into mechanisms of shell formation and pigmentation in this species. In this study, the transcriptome of the mantle of P. yessoensis was deeply sequenced and characterized using Illumina RNA-seq technology. A total of 86,521 unique transcripts are assembled from 55,884,122 reads that passed quality filters, and annotated, using Gene Ontology classification. A total of 259 pathways are identified in the mantle transcriptome, including the calcium signaling and melanogenesis pathways. A total of 237 unigenes that are homologous to 102 reported biomineralization genes are identified, and 121 unigenes that are homologous to 93 known proteins related to melanin biosynthesis are found. Twenty-three annotated unigenes, which are mainly homologous to calmodulin and related proteins, Ca2+/calmodulin-dependent protein kinase, adenylate/guanylate cyclase, and tyrosinase family are potentially involved in both biomineralization and melanin biosynthesis. It is suggested that these genes are probably not limited in function to induce shell deposition by calcium metabolism, but may also be involved in pigmentation of the shells of the scallop. This potentially supports the idea that there might be a link between calcium metabolism and melanin biosynthesis, which was previously found in vertebrates. The findings presented here will notably advance the understanding of the sophisticated processes of shell formation as well as shell pigmentation in P. yessoensis and other bivalve species, and also provide new evidence on gene expression for the understanding of pigmentation and biomineralization not only in invertebrates but also probably in vertebrates.
Collapse
|
109
|
Examination of the skeletal proteome of the brittle star Ophiocoma wendtii reveals overall conservation of proteins but variation in spicule matrix proteins. Proteome Sci 2015; 13:7. [PMID: 25705131 PMCID: PMC4336488 DOI: 10.1186/s12953-015-0064-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/20/2015] [Indexed: 11/21/2022] Open
Abstract
Background While formation of mineralized tissue is characteristic of many animal taxa, the proteins that interact with mineral are diverse and appear in many cases to be of independent origin. Extracellular matrix proteins involved in mineralization do share some common features. They tend to be disordered, secreted proteins with repetitive, low complexity. The genes encoding these proteins are often duplicated and undergo concerted evolution, further diversifying the repetitive domains. This makes it difficult to identify mineralization genes and the proteins they encode using bioinformatics techniques. Here we describe the use of proteomics to identify mineralization genes in an ophiuroid echinoderm, Ophiocoma wendtii (O. wendtii). Results We have isolated the occluded proteins within the mineralized tissue of the brittle star Ophiocoma wendtii. The proteins were analyzed both unfractionated and separated on SDS-PAGE gels. Each slice was analyzed using mass spectroscopy and the amino acid sequence of the most prevalent peptides was obtained. This was compared to both an embryonic transcriptome from the gastrula stage when skeleton is being formed and a tube foot (an adult mineralized tissue) transcriptome. Thirty eight proteins were identified which matched known proteins or protein domains in the NCBI databases. These include C-type lectins, ECM proteins, Kazal-type protease inhibitors, matrix metalloproteases as well as more common cellular proteins. Many of these are similar to those found in the sea urchin Strongylocentrotus purpuratus (S. purpuratus) skeleton. We did not, however, identify clear homologs to the sea urchin spicule matrix proteins, and the number of C-type lectin containing genes was much reduced compared to sea urchins. Also notably absent was MSP-130. Conclusions Our results show an overall conservation of the types of proteins found in the mineralized tissues of two divergent groups of echinoderms, as well as in mineralized tissues in general. However, the extensive gene duplication and concerted evolution seen in the spicule matrix proteins found in the sea urchin skeleton was not observed in the brittle star. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0064-7) contains supplementary material, which is available to authorized users.
Collapse
|
110
|
Vue Z, Kamel BS, Capo TR, Bardales AT, Medina M. Comparative analysis of early ontogeny in Bursatella leachii and Aplysia californica. PeerJ 2014; 2:e700. [PMID: 25538871 PMCID: PMC4266853 DOI: 10.7717/peerj.700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/25/2014] [Indexed: 11/20/2022] Open
Abstract
Opisthobranch molluscs exhibit fascinating body plans associated with the evolution of shell loss in multiple lineages. Sea hares in particular are interesting because Aplysia californica is a well-studied model organism that offers a large suite of genetic tools. Bursatella leachii is a related tropical sea hare that lacks a shell as an adult and therefore lends itself to comparative analysis with A. californica. We have established an enhanced culturing procedure for B. leachii in husbandry that enabled the study of shell formation and loss in this lineage with respect to A. californica life staging.
Collapse
Affiliation(s)
- Zer Vue
- School of Natural Sciences, University of California , Merced, CA , USA ; Program in Developmental Biology, Baylor College of Medicine , Houston, TX , USA ; Department of Genetics, University of Texas M.D. Anderson Cancer Center , Houston, TX , USA
| | - Bishoy S Kamel
- School of Natural Sciences, University of California , Merced, CA , USA ; Department of Biology, Pennsylvania State University , University Park, PA , USA
| | - Thomas R Capo
- Rosenstiel School of Marine and Atmospheric Science, Division of Marine Biology and Fisheries, University of Miami , Miami, FL , USA
| | - Ana T Bardales
- Rosenstiel School of Marine and Atmospheric Science, Division of Marine Biology and Fisheries, University of Miami , Miami, FL , USA
| | - Mónica Medina
- School of Natural Sciences, University of California , Merced, CA , USA ; Department of Biology, Pennsylvania State University , University Park, PA , USA
| |
Collapse
|
111
|
Speiser DI, Pankey MS, Zaharoff AK, Battelle BA, Bracken-Grissom HD, Breinholt JW, Bybee SM, Cronin TW, Garm A, Lindgren AR, Patel NH, Porter ML, Protas ME, Rivera AS, Serb JM, Zigler KS, Crandall KA, Oakley TH. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms. BMC Bioinformatics 2014; 15:350. [PMID: 25407802 PMCID: PMC4255452 DOI: 10.1186/s12859-014-0350-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/09/2014] [Indexed: 11/10/2022] Open
Abstract
Background Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. Results We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository (http://bitbucket.org/osiris_phylogenetics/pia/) and we demonstrate PIA on a publicly-accessible web server (http://galaxy-dev.cnsi.ucsb.edu/pia/). Conclusions Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa. Electronic supplementary material The online version of this article (doi:10.1186/s12859-014-0350-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel I Speiser
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA. .,Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| | - M Sabrina Pankey
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Alexander K Zaharoff
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Barbara A Battelle
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA.
| | - Heather D Bracken-Grissom
- Department of Biological Sciences, Florida International University-Biscayne Bay Campus, North Miami, FL, USA.
| | - Jesse W Breinholt
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
| | - Seth M Bybee
- Department of Biology, Brigham Young University, Provo, UT, USA.
| | - Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA.
| | - Anders Garm
- Department of Biology, Marine Biological Section, University of Copenhagen, Copenhagen, Denmark.
| | - Annie R Lindgren
- Department of Biology, Portland State University, Portland, OR, USA.
| | - Nipam H Patel
- Department of Molecular and Cell Biology & Department of Integrative Biology, University of California, Berkeley, CA, USA.
| | - Megan L Porter
- Department of Biology, University of South Dakota, Vermillion, SD, USA.
| | - Meredith E Protas
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA, USA.
| | - Ajna S Rivera
- Department of Biology, University of the Pacific, Stockton, CA, USA.
| | - Jeanne M Serb
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Kirk S Zigler
- Department of Biology, Sewanee: The University of the South, Sewanee, TN, USA.
| | - Keith A Crandall
- Computational Biology Institute, George Washington University, Ashburn, VA, USA. .,Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
| | - Todd H Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
112
|
Le Roy N, Jackson DJ, Marie B, Ramos-Silva P, Marin F. The evolution of metazoan α-carbonic anhydrases and their roles in calcium carbonate biomineralization. Front Zool 2014. [DOI: 10.1186/s12983-014-0075-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
113
|
Schrödl M, Stöger I. A review on deep molluscan phylogeny: old markers, integrative approaches, persistent problems. J NAT HIST 2014. [DOI: 10.1080/00222933.2014.963184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
114
|
Budd A, McDougall C, Green K, Degnan BM. Control of shell pigmentation by secretory tubules in the abalone mantle. Front Zool 2014. [DOI: 10.1186/s12983-014-0062-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
115
|
Aguilera F, McDougall C, Degnan BM. Evolution of the tyrosinase gene family in bivalve molluscs: independent expansion of the mantle gene repertoire. Acta Biomater 2014; 10:3855-65. [PMID: 24704693 DOI: 10.1016/j.actbio.2014.03.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/08/2014] [Accepted: 03/26/2014] [Indexed: 12/27/2022]
Abstract
Tyrosinase is a copper-containing enzyme that mediates the hydroxylation of monophenols and oxidation of o-diphenols to o-quinones. This enzyme is involved in a variety of biological processes, including pigment production, innate immunity, wound healing, and exoskeleton fabrication and hardening (e.g. arthropod skeleton and mollusc shell). Here we show that the tyrosinase gene family has undergone large expansions in pearl oysters (Pinctada spp.) and the Pacific oyster (Crassostrea gigas). Phylogenetic analysis reveals that pearl oysters possess at least four tyrosinase genes that are not present in the Pacific oyster. Likewise, C. gigas has multiple tyrosinase genes that are not orthologous to the Pinctada genes, indicating that this gene family has expanded independently in these bivalve lineages. Many of the tyrosinase genes in these bivalves are expressed at relatively high levels in the mantle, the organ responsible for shell fabrication. Detailed comparisons of tyrosinase gene expression in different regions of the mantle in two closely related pearl oysters, P. maxima and P. margaritifera, reveals that recently evolved orthologous tyrosinase genes can have markedly different expression profiles. The expansion of tyrosinase genes in these oysters and their co-option into the mantle's gene regulatory network is consistent with mollusc shell formation being underpinned by a rapidly evolving transcriptome.
Collapse
Affiliation(s)
- Felipe Aguilera
- Centre for Marine Sciences, School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Carmel McDougall
- Centre for Marine Sciences, School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Bernard M Degnan
- Centre for Marine Sciences, School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
116
|
Joubert C, Linard C, Le Moullac G, Soyez C, Saulnier D, Teaniniuraitemoana V, Ky CL, Gueguen Y. Temperature and food influence shell growth and mantle gene expression of shell matrix proteins in the pearl oyster Pinctada margaritifera. PLoS One 2014; 9:e103944. [PMID: 25121605 PMCID: PMC4133174 DOI: 10.1371/journal.pone.0103944] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/06/2014] [Indexed: 11/19/2022] Open
Abstract
In this study, we analyzed the combined effect of microalgal concentration and temperature on the shell growth of the bivalve Pinctada margaritifera and the molecular mechanisms underlying this biomineralization process. Shell growth was measured after two months of rearing in experimental conditions, using calcein staining of the calcified structures. Molecular mechanisms were studied though the expression of 11 genes encoding proteins implicated in the biomineralization process, which was assessed in the mantle. We showed that shell growth is influenced by both microalgal concentration and temperature, and that these environmental factors also regulate the expression of most of the genes studied. Gene expression measurement of shell matrix protein thereby appears to be an appropriate indicator for the evaluation of the biomineralization activity in the pearl oyster P. margaritifera under varying environmental conditions. This study provides valuable information on the molecular mechanisms of mollusk shell growth and its environmental control.
Collapse
Affiliation(s)
- Caroline Joubert
- Ifremer, UMR 241 « Ecosystèmes Insulaires Océaniens », Labex Corail, Centre du Pacifique, Taravao, Tahiti, Polynésie Française
| | - Clémentine Linard
- Ifremer, UMR 241 « Ecosystèmes Insulaires Océaniens », Labex Corail, Centre du Pacifique, Taravao, Tahiti, Polynésie Française
- University of French Polynesia, UMR 241 « Ecosystèmes Insulaires Océaniens », Faa'a, Tahiti, Polynésie Française
| | - Gilles Le Moullac
- Ifremer, UMR 241 « Ecosystèmes Insulaires Océaniens », Labex Corail, Centre du Pacifique, Taravao, Tahiti, Polynésie Française
- * E-mail:
| | - Claude Soyez
- Ifremer, UMR 241 « Ecosystèmes Insulaires Océaniens », Labex Corail, Centre du Pacifique, Taravao, Tahiti, Polynésie Française
| | - Denis Saulnier
- Ifremer, UMR 241 « Ecosystèmes Insulaires Océaniens », Labex Corail, Centre du Pacifique, Taravao, Tahiti, Polynésie Française
| | - Vaihiti Teaniniuraitemoana
- Ifremer, UMR 241 « Ecosystèmes Insulaires Océaniens », Labex Corail, Centre du Pacifique, Taravao, Tahiti, Polynésie Française
- University of French Polynesia, UMR 241 « Ecosystèmes Insulaires Océaniens », Faa'a, Tahiti, Polynésie Française
| | - Chin Long Ky
- Ifremer, UMR 241 « Ecosystèmes Insulaires Océaniens », Labex Corail, Centre du Pacifique, Taravao, Tahiti, Polynésie Française
| | - Yannick Gueguen
- Ifremer, UMR 241 « Ecosystèmes Insulaires Océaniens », Labex Corail, Centre du Pacifique, Taravao, Tahiti, Polynésie Française
| |
Collapse
|
117
|
Wang X, Li L, Zhu Y, Song X, Fang X, Huang R, Que H, Zhang G. Aragonite shells are more ancient than calcite ones in bivalves: new evidence based on omics. Mol Biol Rep 2014; 41:7067-71. [PMID: 25063580 DOI: 10.1007/s11033-014-3620-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
Abstract
Two calcium carbonate crystal polymorphs, aragonite and calcite, are the main inorganic components of mollusk shells. Some fossil evidences suggest that aragonite shell is more ancient than calcite shell for the Bivalvia. But, the molecular biology evidence for the above deduction is absent. In this study, we searched for homologs of bivalve aragonite-related and calcite-related shell proteins in the oyster genome, and found that no homologs of calcite-related shell protein but some homologs of aragonite-related shell proteins in the oyster genome. We explained the results as the new evidence to support that aragonite shells are more ancient than calcite shells in bivalves combined the published biogeological and seawater chemistry data.
Collapse
Affiliation(s)
- Xiaotong Wang
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Affiliation(s)
- Carmel McDougall
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | | | | | | | | |
Collapse
|
119
|
Mann K, Jackson DJ. Characterization of the pigmented shell-forming proteome of the common grove snail Cepaea nemoralis. BMC Genomics 2014; 15:249. [PMID: 24684722 PMCID: PMC4023409 DOI: 10.1186/1471-2164-15-249] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/25/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND With a diversity of pigmented shell morphotypes governed by Mendelian patterns of inheritance, the common grove snail, Cepaea nemoralis, has served as a model for evolutionary biologists and population geneticists for decades. Surprisingly, the molecular mechanisms by which C. nemoralis generates this pigmented shelled diversity, and the degree of evolutionary conservation present between molluscan shell-forming proteomes, remain unknown. RESULTS Here, using next generation sequencing and high throughput proteomics, we identify and characterize the major proteinaceous components of the C. nemoralis shell, the first shell-proteome for a pulmonate mollusc. The recent availability of several marine molluscan shell-proteomes, and the dataset we report here, allow us to identify 59 evolutionarily conserved and novel shell-forming proteins. While the C. nemoralis dataset is dominated by proteins that share little to no similarity with proteins in public databases, almost half of it shares similarity with proteins present in other molluscan shells. In addition, we could not find any indication that a protein (or class of proteins) is directly associated with shell pigmentation in C. nemoralis. This is in contrast to the only other partially characterized molluscan-shell pigmentation mechanism employed by the tropical abalone Haliotis asinina. CONCLUSIONS The unique pulmonate shell-forming proteome that we report here reveals an abundance of both mollusc-specific and pulmonate-specific proteins, suggesting that novel coding sequences, and/or the extensive divergence of these sequences from ancestral sequences, supported the innovation of new shell types within the Conchifera. In addition, we report here the first evidence that molluscs use independently evolved mechanisms to pigment their shells. This proteome provides a solid foundation from which further studies aimed at the functional characterization of these shell-forming proteins can be conducted.
Collapse
Affiliation(s)
- Karlheinz Mann
- Max Planck Institute for Biochemistry, Department of Proteomics and Signal Transduction, Am Klopferspitz 18, D-82152 Martinsried, Munich, Germany
| | - Daniel John Jackson
- Courant Research Centre Geobiology, Georg-August University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany
| |
Collapse
|
120
|
Freer A, Bridgett S, Jiang J, Cusack M. Biomineral proteins from Mytilus edulis mantle tissue transcriptome. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:34-45. [PMID: 23828607 PMCID: PMC3896809 DOI: 10.1007/s10126-013-9516-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 06/05/2013] [Indexed: 05/31/2023]
Abstract
The common blue mussel, Mytilus edulis, has a bimineralic shell composed of approximately equal proportions of the two major polymorphs of calcium carbonate: calcite and aragonite. The exquisite biological control of polymorph production is the focus of research interest in terms of understanding the details of biomineralisation and the proteins involved in the process of complex shell formation. Recent advances in ease and availability of pyrosequencing and assembly have resulted in a sharp increase in transcriptome data for invertebrate biominerals. We have applied Roche 454 pyrosequencing technology to profile the transcriptome for the mantle tissue of the bivalve M. edulis. A comparison was made between the results of several assembly programs: Roche Newbler assembler versions 2.3, 2.5.2 and 2.6 and MIRA 3.2.1 and 3.4.0. The Newbler and MIRA assemblies were subsequently merged using the CAP3 assembler to give a higher consensus in alignments and a more accurate estimate of the true size of the M. edulis transcriptome. Comparison sequence searches show that the mantle transcripts for M. edulis encode putative proteins exhibiting sequence similarities with previously characterised shell proteins of other species of Mytilus, the Bivalvia Pinctada and haliotid gastropods. Importantly, this enhanced transcriptome has detected several transcripts that encode proteins with sequence similarity with previously described shell biomineral proteins including Shematrins and lysine-rich matrix proteins (KRMPs) not previously found in Mytilus.
Collapse
Affiliation(s)
- Andy Freer
- School of Chemistry, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Stephen Bridgett
- The GenePool, School of Biological Sciences, University of Edinburgh, EH9 3JT, Edinburgh, Scotland UK
| | - Jiahong Jiang
- School of Chemistry, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Maggie Cusack
- School of Geographical and Earth Sciences, University of Glasgow, G12 8QQ, Glasgow, UK
| |
Collapse
|
121
|
Funabara D, Ohmori F, Kinoshita S, Koyama H, Mizutani S, Ota A, Osakabe Y, Nagai K, Maeyama K, Okamoto K, Kanoh S, Asakawa S, Watabe S. Novel genes participating in the formation of prismatic and nacreous layers in the pearl oyster as revealed by their tissue distribution and RNA interference knockdown. PLoS One 2014; 9:e84706. [PMID: 24454739 PMCID: PMC3893171 DOI: 10.1371/journal.pone.0084706] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/14/2013] [Indexed: 11/22/2022] Open
Abstract
In our previous publication, we identified novel gene candidates involved in shell formation by EST analyses of the nacreous and prismatic layer-forming tissues in the pearl oyster Pinctada fucata. In the present study, 14 of those genes, including two known genes, were selected and further examined for their involvement in shell formation using the RNA interference. Molecular characterization based on the deduced amino acid sequences showed that seven of the novel genes encode secretory proteins. The tissue distribution of the transcripts of the genes, as analyzed by RT-PCR and in situ hybridization, was mostly consistent with those obtained by the EST analysis reported previously. Shells in the pearl oysters injected with dsRNAs targeting genes 000027, 000058, 000081, 000096, 000113 (nacrein), 000118, 000133 and 000411 (MSI60), which showed expression specific to the nacreous layer forming tissues, showed abnormal surface appearance in this layer. Individuals injected with dsRNAs targeting genes 000027, 000113 and 000133 also exhibited abnormal prismatic layers. Individuals injected with dsRNAs targeting genes 000031, 000066, 000098, 000145, 000194 and 000200, which showed expression specific to prismatic layer forming tissues, displayed an abnormal surface appearance in both the nacreous and prismatic layers. Taken together, the results suggest that the genes involved in prismatic layer formation might also be involved in the formation of the nacreous layers.
Collapse
Affiliation(s)
- Daisuke Funabara
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
- * E-mail:
| | - Fumito Ohmori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shigeharu Kinoshita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroki Koyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Saeri Mizutani
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Ayaka Ota
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Yuki Osakabe
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Kiyohito Nagai
- Pearl Research Laboratory, K. Mikimoto & Co., Ltd., Shima, Mie, Japan
| | | | | | - Satoshi Kanoh
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shugo Watabe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
- Kitasato University School of Marine Bioscience, Sagamihara, Kanagawa, Japan
| |
Collapse
|
122
|
Abstract
During the 18th and 19th centuries, studies of how pearls are formed were conducted mainly in Europe. The subsequent pearl culturing experiments conducted worldwide in the early 20th century, however, failed to develop into a pearl industry. In Japan, however, Kokichi Mikimoto succeeded in culturing blister pearls in 1893 under the guidance of Kakichi Mitsukuri, a professor at Tokyo Imperial University (now the University of Tokyo) and the first director of the Misaki Marine Biological Station, Graduate School of Science, University of Tokyo. This success and subsequent developments laid the foundation for the pearl farming industry, developed new demand for cultured pearls in the European jewelry market, and initiated the full-scale industrialization of pearl culturing. In addition, research at the Misaki Marine Biological Station resulted in noteworthy advances in the scientific study of pearl formation. Today, pearls are cultured worldwide, utilizing a variety of pearl oysters. The pearl farming industry, with its unique origins in Japan, has grown into a global industry. Recently, the introduction of genome analysis has allowed cultured pearl research to make rapid progress worldwide in such areas as the dynamics of mother-of-pearl layer formation and biomineralization. This signals another new era in the study of pearls.
Collapse
Affiliation(s)
- Kiyohito Nagai
- Pearl Research Laboratory, K. Mikimoto & Co., Ltd., 923, Hazako, Hamajima-cho, Shima, Mie 517-0403, Japan
| |
Collapse
|
123
|
Chaturvedi R, Singha PK, Dey S. Water soluble bioactives of nacre mediate antioxidant activity and osteoblast differentiation. PLoS One 2013; 8:e84584. [PMID: 24367677 PMCID: PMC3868599 DOI: 10.1371/journal.pone.0084584] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022] Open
Abstract
The water soluble matrix of nacre is a proven osteoinductive material. In spite of the differences in the biomolecular compositions of nacre obtained from multiple species of oysters, the common biochemical properties of those principles substantiate their biological activity. However, the mechanism by which nacre stimulates bone differentiation remains largely unknown. Since the positive impact of antioxidants on bone metabolism is well acknowledged, in this study we investigated the antioxidant potential of a water soluble matrix (WSM) obtained from the nacre of the marine oyster Pinctada fucata, which could regulate its osteoblast differentiation activity. Enhanced levels of ALP activity observed in pre-osteoblast cells upon treatment with WSM, suggested the induction of bone differentiation events. Furthermore, bone nodule formation and up-regulation of bone differentiation marker transcripts, i.e. collagen type-1 and osteocalcin by WSM confirmed its ability to induce differentiation of the pre-osteoblasts into mature osteoblasts. Remarkably, same WSM fraction upon pre-treatment lowered the H2O2 and UV-B induced oxidative damages in keratinocytes, thus indicating the antioxidant potential of WSM. This was further confirmed from the in vitro scavenging of ABTS and DPPH free radicals and inhibition of lipid peroxidation by WSM. Together, these results indicate that WSM poses both antioxidant potential and osteoblast differentiation property. Thus, bioactivities associated with nacre holds potential in the development of therapeutics for bone regeneration and against oxidative stress induced damages in cells.
Collapse
Affiliation(s)
- Ratna Chaturvedi
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
- * E-mail:
| | - Prajjal Kanti Singha
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Satyahari Dey
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
124
|
Abstract
Unlike true Palaeozoic gastropods, but similar to some coeval hyoliths, the cup-like hemispherical embryonic shell of Aldanella attleborensis (Shaler and Foerste, 1888) from the earliest Cambrian (early Tommotian) Erkeket Formation of northern Siberia bears a mucro. Also, the pattern of mortality, with right-skewed distribution and a peak at about 1.0 mm diameter, is not similar to that of early Palaeozoic gastropods; there is no evidence of metamorphosis that would end the pelagic larval stage of ontogeny. Specimens of larger size are rare in samples of phosphatized “small shelly fossils” but are known in related species of the genus, of up to 3–5 mm diameter. A phosphatized soft body is preserved in a few specimens of A. attleborensis, one bearing possible chaetae of about 5 μm diameter. Such bunches of chaetae arming locomotory organs were earlier identified in the genus Pelagiella Matthew, 1895, a more derived member of the same lineage. It shares with the genus Aldanella Vostokova, 1962 also the mucronate embryonic shell and acicular aragonitic shell wall microstructure. The presence of chaetae-bearing organs suggests pelagic mode of life of pelagiellids at maturity. Middle Cambrian Pelagiella shells reached 7 mm in diameter, suggesting evolutionary increase in mature size. Embryonic shell morphology, wall microstructure, and the presence of locomotory organs with a fan of chaetae contradicts gastropod, and even conchiferan affinity of the pelagiellids, but together with the pattern of ontogeny conforms to the enigmatic Palaeozoic hyoliths. They differ in having opercula closing the shell apertures and in lacking evidence of chaetae. The helens, paired apertural appendages of possible locomotory function occurring in apertures of some of them, do not reveal any similarity to chaetae in their development. We propose classifying the order Pelagiellida in the class Hyolitha rather than in the class Gastropoda, until its phylogenetic position is clarified. Such understood hyoliths may represent the earliest stage in evolution of molluscs, immediately following initial diversification of the spiralians (lophotrochozoans) into phyla.
Collapse
Affiliation(s)
- Jerzy Dzik
- Instytut Paleobiologii PAN, Twarda 51/55, 00-818 Warszawa, and Zakład Paleobiologii i Ewolucji Uniwersytetu Warszawskiego, Miecznikowa 1, 02-089 Warszawa, Poland
- Instytut Paleobiologii PAN, Twarda 51/55, 00-818 Warszawa, Poland
| | - Dawid Mazurek
- Instytut Paleobiologii PAN, Twarda 51/55, 00-818 Warszawa, and Zakład Paleobiologii i Ewolucji Uniwersytetu Warszawskiego, Miecznikowa 1, 02-089 Warszawa, Poland
| |
Collapse
|
125
|
Shi M, Lin Y, Xu G, Xie L, Hu X, Bao Z, Zhang R. Characterization of the Zhikong scallop (Chlamys farreri) mantle transcriptome and identification of biomineralization-related genes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:706-715. [PMID: 23860577 DOI: 10.1007/s10126-013-9517-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
Chlamys farreri is a significant species in aquaculture and fishery in East Asia. A deep understanding of its shell formation by studying the transcriptome of the mantle, a key organ in shell formation, could provide important guidance for its culture. Thus, we sequenced and analyzed the mantle transcriptome of C. farreri. The 77,975 unigenes were generated after Illumina sequencing and de novo assembly. The unigenes were annotated using authoritative databases (non-redundant (NR), COG, Gene Ontology (GO), and KEGG) to obtain functional information. BLASTX alignment was performed between unigenes and reported proteins related to biomineralization. The results identified 53 homologous genes representing 17 matrix proteins, most of which are involved in calcite formation, and 171 homologies with 26 proteins related to general processes of biomineralization. The discovery and unusually high expression of MSP-1 suggested its importance in scallops. Homologous unigenes with aragonite-formation-related matrix proteins were much fewer compared with those related to calcite formation. The results implied that, in C. farreri, the number and proportion of matrix proteins related to aragonite formation is much lower than those related to calcite formation, which was consistent with the proportions of aragonite and calcite in C. farreri shells. Thus, the formation of different polymorphs of calcium carbonate (calcite and aragonite) in molluskan shells is regulated by different groups of proteins. Moreover, 17 candidate unigenes, which are probably involved in biomineralization, were predicted by screening for gene products with secreted domains and tandem-arranged repeat units. Our results contribute to the understanding of biomineralization processes and the evolution of shell formation.
Collapse
Affiliation(s)
- Mingjun Shi
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | | | |
Collapse
|
126
|
Miyamoto H, Endo H, Hashimoto N, limura K, Isowa Y, Kinoshita S, Kotaki T, Masaoka T, Miki T, Nakayama S, Nogawa C, Notazawa A, Ohmori F, Sarashina I, Suzuki M, Takagi R, Takahashi J, Takeuchi T, Yokoo N, Satoh N, Toyohara H, Miyashita T, Wada H, Samata T, Endo K, Nagasawa H, Asakawa S, Watabe S. The Diversity of Shell Matrix Proteins: Genome-Wide Investigation of the Pearl Oyster, Pinctada fucata. Zoolog Sci 2013; 30:801-16. [DOI: 10.2108/zsj.30.801] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hiroshi Miyamoto
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Hirotoshi Endo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoki Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kurin limura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukinobu Isowa
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohiro Kotaki
- Laboratory of Cell Biology, The Graduate School of Environmental Health Sciences, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Tetsuji Masaoka
- National Research Institute of Aquaculture, Fisheries Research Agency, 422-1, Hiruta, Tamaki, Mie 519-0423, Japan
| | - Takumi Miki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Seiji Nakayama
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chihiro Nogawa
- Laboratory of Cell Biology, The Graduate School of Environmental Health Sciences, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Atsuto Notazawa
- Laboratory of Cell Biology, The Graduate School of Environmental Health Sciences, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Fumito Ohmori
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Isao Sarashina
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Michio Suzuki
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryousuke Takagi
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Jun Takahashi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Naoki Yokoo
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Haruhiko Toyohara
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomoyuki Miyashita
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tetsuro Samata
- Laboratory of Cell Biology, The Graduate School of Environmental Health Sciences, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shugo Watabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
127
|
Clark MS, Thorne MAS, Amaral A, Vieira F, Batista FM, Reis J, Power DM. Identification of molecular and physiological responses to chronic environmental challenge in an invasive species: the Pacific oyster, Crassostrea gigas. Ecol Evol 2013; 3:3283-97. [PMID: 24223268 PMCID: PMC3797477 DOI: 10.1002/ece3.719] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 11/27/2022] Open
Abstract
Understanding the environmental responses of an invasive species is critical in predicting how ecosystem composition may be transformed in the future, especially under climate change. In this study, Crassostrea gigas, a species well adapted to the highly variable intertidal environment, was exposed to the chronic environmental challenges of temperature (19 and 24°C) and pH (ambient seawater and a reduction of 0.4 pH units) in an extended 3-month laboratory-based study. Physiological parameters were measured (condition index, shell growth, respiration, excretion rates, O:N ratios, and ability to repair shell damage) alongside molecular analyses. Temperature was by far the most important stressor, as demonstrated by reduced condition indexes and shell growth at 24°C, with relatively little effect detected for pH. Transcriptional profiling using candidate genes and SOLiD sequencing of mantle tissue revealed that classical “stress” genes, previously reported to be upregulated under acute temperature challenges, were not significantly expressed in any of the treatments, emphasizing the different response between acute and longer term chronic stress. The transcriptional profiling also elaborated on the cellular responses underpinning the physiological results, including the identification of the PI3K/AKT/mTOR pathway as a potentially novel marker for chronic environmental challenge. This study represents a first attempt to understand the energetic consequences of cumulative thermal stress on the intertidal C. gigas which could significantly impact on coastal ecosystem biodiversity and function in the future.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council High Cross, Madingley Road, Cambridge, CB3 0ET, U.K
| | | | | | | | | | | | | |
Collapse
|
128
|
Cusack M, Guo D, Chung P, Kamenos NA. Biomineral repair of abalone shell apertures. J Struct Biol 2013; 183:165-71. [DOI: 10.1016/j.jsb.2013.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 11/30/2022]
|
129
|
Hohagen J, Jackson DJ. An ancient process in a modern mollusc: early development of the shell in Lymnaea stagnalis. BMC DEVELOPMENTAL BIOLOGY 2013; 13:27. [PMID: 23845038 PMCID: PMC3728215 DOI: 10.1186/1471-213x-13-27] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/08/2013] [Indexed: 11/27/2022]
Abstract
Background The morphological variety displayed by the molluscan shell underlies much of the evolutionary success of this phylum. However, the broad diversity of shell forms, sizes, ornamentations and functions contrasts with a deep conservation of early cell movements associated with the initiation of shell construction. This process begins during early embryogenesis with a thickening of an ectodermal, ‘dorsal’ (opposite the blastopore) population of cells, which then invaginates into the blastocoel to form the shell gland. The shell gland evaginates to form the shell field, which then expands and further differentiates to eventually become the adult shell-secreting organ commonly known as the mantle. Despite the deep conservation of the early shell forming developmental program across molluscan classes, little is known about the fine-scale cellular or molecular processes that underlie molluscan shell development. Results Using modern imaging techniques we provide here a description of the morphogenesis of a gastropod shell gland and shell field using the pulmonate gastropod Lymnaea stagnalis as a model. We find supporting evidence for a hypothesis of molluscan shell gland specification proposed over 60 years ago, and present histochemical assays that can be used to identify a variety of larval shell stages and distinct cell populations in whole mounts. Conclusions By providing a detailed spatial and temporal map of cell movements and differentiation events during early shell development in L. stagnalis we have established a platform for future work aimed at elucidation of the molecular mechanisms and regulatory networks that underlie the evo-devo of the molluscan shell.
Collapse
Affiliation(s)
- Jennifer Hohagen
- Courant Research Centre Geobiology, Georg-August University of Göttingen, Goldschmidtstrasse 3, 37077, Göttingen, Germany.
| | | |
Collapse
|
130
|
Abstract
In nature, mollusk shells have a role in protecting the soft body of the mollusk from predators and from the external environment, and the shells consist mainly of calcium carbonate and small amounts of organic matrices. Organic matrices in mollusk shells are thought to play key roles in shell formation. However, enough information has not been accumulated so far. High toughness and stiffness have been focused on as being adaptable to the development of organic–inorganic hybrid materials. Because mollusks can produce elaborate microstructures containing organic matrices under ambient conditions, the investigation of shell formation is expected to lead to the development of new inorganic–organic hybrid materials for various applications. In this review paper, we summarize the structures of mollusk shells and their process of formation, together with the analysis of various organic matrices related to shell calcification.
Collapse
Affiliation(s)
- Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
131
|
Molecular cloning and characterization of perlucin from the freshwater pearl mussel, Hyriopsis cumingii. Gene 2013; 526:210-6. [PMID: 23732290 DOI: 10.1016/j.gene.2013.05.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/09/2013] [Accepted: 05/15/2013] [Indexed: 12/13/2022]
Abstract
Perlucin is an important functional protein that regulates shell and pearl formation. In this study, we cloned the perlucin gene from the freshwater pearl mussel Hyriopsis cumingii, designated as Hcperlucin. The full-length cDNA transcribed from the Hcperlucin gene was 1460 bp long, encoding a putative signal peptide of 20 amino acids and a mature protein of 141 amino acids. The mature Hcperlucin peptide contained six conserved cysteine residues and a carbohydrate recognition domain, similar to other members of the C-type lectin families. In addition, a "QPS" and an invariant "WND" motif near the C-terminal region were also found, which are extremely important for polysaccharide recognition and calcium binding of lectins. The mRNA of Hcperlucin was constitutively expressed in all tested H. cumingii tissues, with the highest expression levels observed in the mantle, adductor, gill and hemocytes. In situ hybridization was used to detect the presence of Hcperlucin mRNA in the mantle, and the result showed that the mRNA was specifically expressed in the epithelial cells of the dorsal mantle pallial, an area known to express genes involved in the biosynthesis of the nacreous layer of the shell. The significant Hcperlucin mRNA expression was detected on day 14 post shell damage and implantation, suggesting that the Hcperlucin might be an important gene in shell nacreous layer and pearl formation. The change of perlucin expression in pearl sac also confirmed that the mantle transplantation results in a new expression pattern of perlucin genes in pearl sac cells that are required for pearl biomineralization. These findings could help better understanding the function of perlucin in the shell and pearl formation.
Collapse
|
132
|
Weiss IM, Lüke F, Eichner N, Guth C, Clausen-Schaumann H. On the function of chitin synthase extracellular domains in biomineralization. J Struct Biol 2013; 183:216-25. [PMID: 23643908 DOI: 10.1016/j.jsb.2013.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/12/2013] [Accepted: 04/21/2013] [Indexed: 11/30/2022]
Abstract
Molluscs with various shell architectures evolved around 542-525 million years ago, as part of a larger phenomenon related to the diversification of metazoan phyla. Molluscs deposit minerals in a chitin matrix. The mollusc chitin is synthesized by transmembrane enzymes that contain several unique extracellular domains. Here we investigate the assembly mechanism of the chitin synthase Ar-CS1 via its extracellular domain ArCS1_E22. The corresponding transmembrane protein ArCS1_E22TM accumulates in membrane fractions of the expression host Dictyostelium discoideum. Soluble recombinant ArCS1_E22 proteins can be purified as monomers only at basic pH. According to confocal fluorescence microscopy experiments, immunolabeled ArCS1_E22 proteins adsorb preferably to aragonitic nacre platelets at pH 7.75. At pH 8.2 or pH 9.0 the fluorescence signal is less intense, indicating that protein-mineral interaction is reduced with increasing pH. Furthermore, ArCS1_E22 forms regular nanostructures on cationic substrates as revealed by atomic force microscopy (AFM) experiments on modified mica cleavage planes. These experiments suggest that the extracellular domain ArCS1_E22 is involved in regulating the multiple enzyme activities of Ar-CS1 such as chitin synthesis and myosin movements by interaction with mineral surfaces and eventually by protein assembly. The protein complexes could locally probe the status of mineralization according to pH unless ions and pCO2 are balanced with suitable buffer substances. Taking into account that the intact enzyme could act as a force sensor, the results presented here provide further evidence that shell formation is coordinated physiologically with precise adjustment of cellular activities to the structure, topography and stiffness at the mineralizing interface.
Collapse
Affiliation(s)
- Ingrid M Weiss
- INM - Leibniz Institute for New Materials gGmbH, Biomineralization Group, D-66123 Saarbrücken, Germany.
| | | | | | | | | |
Collapse
|
133
|
Shi Y, Yu C, Gu Z, Zhan X, Wang Y, Wang A. Characterization of the pearl oyster (Pinctada martensii) mantle transcriptome unravels biomineralization genes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:175-187. [PMID: 22941536 DOI: 10.1007/s10126-012-9476-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/30/2012] [Indexed: 06/01/2023]
Abstract
Pearl oyster, Pinctada martensii, is a marine bivalve species widely distributed in tropic and subtropic marine coasts. Mantle is the special tissue of P. martensii that secretes biomineralization proteins inducing shell deposition as well as iridescent nacre both in the inner shell and artificial nucleus. The pearl oyster is very efficient for artificial pearl production and is therefore an ideal organism for studies into the processes of biomineralization. However, deficiency of transcriptome information limits the insight into biomineralization mechanisms and pearl formation. In this study, we sequenced and characterized the P. martensii mantle transcriptome using 454 pyrosequencing. A total of 25,723 unique transcripts were assembled from 220,824 quality reads, followed by annotation and Gene Ontology classification analysis. A total of 146 unique transcript segments homologous to 49 reference biomineralization genes were identified, including calcineurin-binding protein, amorphous calcium carbonate binding protein 1, calmodulin, calponin-like protein, carbonic anhydrase 1, glycine-rich shell matrix protein, lysine-rich matrix protein, mantle gene or protein, nacrein, pearlin, PIF, regucalcin, and shematrin. The sequence data enabled the identification of 10,285 potential single nucleotide polymorphism loci and 7,836 putative indels, providing a resource for molecular biomarker, population genetics, and functional genomic studies. A large number of candidate genes for biomineralization were identified, considerably enriching resources for the study of shell formation. These sequence data will notably advance biomineralization and transcriptome study in pearl oyster and other Pinctada species.
Collapse
Affiliation(s)
- Yaohua Shi
- Key Laboratory of Tropic Biological Resources-Ministry of Education, Hainan Key Laboratory of Tropical Hydrobiological Technology, The Ocean College, Hainan University, Haikou 570228, China
| | | | | | | | | | | |
Collapse
|
134
|
Werner GDA, Gemmell P, Grosser S, Hamer R, Shimeld SM. Analysis of a deep transcriptome from the mantle tissue of Patella vulgata Linnaeus (Mollusca: Gastropoda: Patellidae) reveals candidate biomineralising genes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:230-243. [PMID: 22865210 DOI: 10.1007/s10126-012-9481-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/17/2012] [Indexed: 06/01/2023]
Abstract
The gastropod Patella vulgata is abundant on rocky shores in Northern Europe and a significant grazer of intertidal algae. Here we report the application of Illumina sequencing to develop a transcriptome from the adult mantle tissue of P. vulgata. We obtained 47,237,104 paired-end reads of 51 bp, trialled de novo assembly methods and settled on the additive multiple K method followed by redundancy removal as resulting in the most comprehensive assembly. This yielded 29,489 contigs of at least 500 bp in length. We then used three methods to search for candidate genes relevant to biomineralisation: searches via BLAST and Hidden Markov Models for homologues of biomineralising genes from other molluscs, searches for predicted proteins containing tandem repeats and searches for secreted proteins that lacked a transmembrane domain. From the results of these searches we selected 15 contigs for verification by RT-PCR, of which 14 were successfully amplified and cloned. These included homologues of Pif-177/BSMP, Perlustrin, SPARC, AP24, Follistatin-like and Carbonic anhydrase, as well as three containing extensive G-X-Y repeats as found in nacrein. We selected two for further verification by in situ hybridisation, demonstrating expression in the larval shell field. We conclude that de novo assembly of Illumina data offers a cheap and rapid route to a predicted transcriptome that can be used as a resource for further biological study.
Collapse
Affiliation(s)
- Gijsbert D A Werner
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | | | | | | |
Collapse
|
135
|
McDougall C, Aguilera F, Degnan BM. Rapid evolution of pearl oyster shell matrix proteins with repetitive, low-complexity domains. J R Soc Interface 2013; 10:20130041. [PMID: 23427100 DOI: 10.1098/rsif.2013.0041] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The lysine (K)-rich mantle protein (KRMP) and shematrin protein families are unique to the organic matrices of pearl oyster shells. Similar to other proteins that are constituents of tough, extracellular structures, such as spider silk, shematrins and KRMPs, contain repetitive, low-complexity domains (RLCDs). Comprehensive analysis of available gene sequences in three species of pearl oyster using BLAST and hidden Markov models reveal that both gene families have large memberships in these species. The shematrin gene family expanded before the speciation of these oysters, leading to a minimum of eight orthology groups. By contrast, KRMPs expanded primarily after speciation leading to species-specific gene repertoires. Regardless of their evolutionary history, the rapid evolution of shematrins and KRMPs appears to be the result of the intrinsic instability of repetitive sequences encoding the RLCDs, and the gain, loss and shuffling of other motifs. This mode of molecular evolution is likely to contribute to structural characteristics and evolvability of the pearl oyster shell. Based on these observations, we infer that analogous RLCD proteins throughout the animal kingdom also have the capacity to rapidly evolve and as a result change their structural properties.
Collapse
Affiliation(s)
- Carmel McDougall
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
136
|
Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata. Proc Natl Acad Sci U S A 2013; 110:3788-93. [PMID: 23431140 DOI: 10.1073/pnas.1301419110] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has long been recognized that a suite of proteins exists in coral skeletons that is critical for the oriented precipitation of calcium carbonate crystals, yet these proteins remain poorly characterized. Using liquid chromatography-tandem mass spectrometry analysis of proteins extracted from the cell-free skeleton of the hermatypic coral, Stylophora pistillata, combined with a draft genome assembly from the cnidarian host cells of the same species, we identified 36 coral skeletal organic matrix proteins. The proteome of the coral skeleton contains an assemblage of adhesion and structural proteins as well as two highly acidic proteins that may constitute a unique coral skeletal organic matrix protein subfamily. We compared the 36 skeletal organic matrix protein sequences to genome and transcriptome data from three other corals, three additional invertebrates, one vertebrate, and three single-celled organisms. This work represents a unique extensive proteomic analysis of biomineralization-related proteins in corals from which we identify a biomineralization "toolkit," an organic scaffold upon which aragonite crystals can be deposited in specific orientations to form a phenotypically identifiable structure.
Collapse
|
137
|
Comparative analysis of the transcriptome in tissues secreting purple and white nacre in the pearl mussel Hyriopsis cumingii. PLoS One 2013; 8:e53617. [PMID: 23341956 PMCID: PMC3544910 DOI: 10.1371/journal.pone.0053617] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 11/30/2012] [Indexed: 01/28/2023] Open
Abstract
The triangle sail mussel Hyriopsis cumingii (Lea) is the most important mussel species used for commercial freshwater pearl production in China. Mussel color is an important indicator of pearl quality. To identify genes involved in the nacre coloring, we conducted RNA-seq and obtained 541,268 sequences (298 bp average size) and 440,034 sequences (293 bp average size) in secreting purple and white nacre libraries (P- and W-libraries), respectively. The 981,302 Expressed Sequence Tags (ESTs) were assembled into 47,812 contigs and 289,386 singletons. In BLASTP searches of the deduced protein, 22,495 were proteins with functional annotations. Thirty-three genes involved in pearl or shell formation were identified. Digital expression analysis identified a total of 358 differentially expressed genes, and 137 genes in the P-library and 221 genes in the W-library showed significantly higher expression. Furthermore, a set of SSR motifs and SNPs between the two samples was identified from the ESTs, which provided the markers for genetic linkage, QTL analysis and future breeding. These EST sequences provided valuable information to further understand the molecular mechanisms involved in the formation, color determination and evolution of the pearl or shell.
Collapse
|
138
|
|
139
|
Bowsher JH, Ang Y, Ferderer T, Meier R. Deciphering the evolutionary history and developmental mechanisms of a complex sexual ornament: the abdominal appendages of Sepsidae (Diptera). Evolution 2012; 67:1069-80. [PMID: 23550756 DOI: 10.1111/evo.12006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Male abdomen appendages are a novel trait found within Sepsidae (Diptera). Here we demonstrate that they are likely to have evolved once, were lost three times, and then secondarily gained in one lineage. The developmental basis of these appendages was investigated by counting the number of histoblast cells in each abdominal segment in four species: two that represented the initial instance of appendage evolution, one that has secondarily gained appendages, and one species that did not have appendages. Males of all species with appendages have elevated cell counts for the fourth segment, which gives rise to the appendages. In Perochaeta dikowi, which reacquired the trait, the females also have elevated cell count on the fourth segment despite the fact that females do not develop appendages. The species without appendages has similar cell counts in all segments regardless of sex. These results suggest that the basis for appendage development is shared in males across all species, but the sexual dimorphism is regulated differently in P. dikowi.
Collapse
Affiliation(s)
- Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, NDSU Dept 2715, PO Box 6050, Fargo, North Dakota 58108, USA.
| | | | | | | |
Collapse
|
140
|
Marie B, Jackson DJ, Ramos-Silva P, Zanella-Cléon I, Guichard N, Marin F. The shell-forming proteome ofLottia giganteareveals both deep conservations and lineage-specific novelties. FEBS J 2012; 280:214-32. [DOI: 10.1111/febs.12062] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/01/2012] [Accepted: 11/07/2012] [Indexed: 12/31/2022]
Affiliation(s)
- Benjamin Marie
- UMR 6282 (ex 5561) CNRS Biogéosciences; Université de Bourgogne; Dijon; France
| | - Daniel J. Jackson
- Courant Research Centre Geobiology; Georg-August University of Göttingen; Göttingen; Germany
| | | | | | - Nathalie Guichard
- UMR 6282 (ex 5561) CNRS Biogéosciences; Université de Bourgogne; Dijon; France
| | - Frédéric Marin
- UMR 6282 (ex 5561) CNRS Biogéosciences; Université de Bourgogne; Dijon; France
| |
Collapse
|
141
|
Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proc Natl Acad Sci U S A 2012; 109:20986-91. [PMID: 23213212 DOI: 10.1073/pnas.1210552109] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mollusca evolutionary success can be attributed partly to their efficiency to sustain and protect their soft body with an external biomineralized structure, the shell. Current knowledge of the protein set responsible for the formation of the shell microstructural polymorphism and unique properties remains largely patchy. In Pinctada margaritifera and Pinctada maxima, we identified 80 shell matrix proteins, among which 66 are entirely unique. This is the only description of the whole "biomineralization toolkit" of the matrices that, at least in part, is thought to regulate the formation of the prismatic and nacreous shell layers in the pearl oysters. We unambiguously demonstrate that prisms and nacre are assembled from very different protein repertoires. This suggests that these layers do not derive from each other.
Collapse
|
142
|
Abstract
Abstract
The size, morphology and species-specific texture of mollusc shell biominerals is one of the unresolved questions in nature. In search of molecular control principles, chitin has been identified by Weiner and Traub (FEBS Lett. 1980, 111:311–316) as one of the organic compounds with a defined co-organization with mineral phases. Chitin fibers can be aligned with certain mineralogical axes of crystalline calcium carbonate in a species-specific manner. These original observations motivated the functional characterization of chitin forming enzymes in molluscs. The full-length cDNA cloning of mollusc chitin synthases identified unique myosin domains as part of the biological control system. The potential impact of molecular motors and other conserved domains of these complex transmembrane enzymes on the evolution of shell biomineralization is investigated and discussed in this article.
Collapse
|
143
|
LE Roy N, Marie B, Gaume B, Guichard N, Delgado S, Zanella-Cléon I, Becchi M, Auzoux-Bordenave S, Sire JY, Marin F. Identification of two carbonic anhydrases in the mantle of the European Abalone Haliotis tuberculata (Gastropoda, Haliotidae): phylogenetic implications. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:353-67. [PMID: 22711568 DOI: 10.1002/jez.b.22452] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Carbonic anhydrases (CAs) represent a diversified family of metalloenzymes that reversibly catalyze the hydration of carbon dioxide. They are involved in a wide range of functions, among which is the formation of CaCO(3) skeletons in metazoans. In the shell-forming mantle tissues of mollusks, the location of the CA catalytic activity is elusive and gives birth to contradicting views. In the present paper, using the European abalone Haliotis tuberculata, a key model gastropod in biomineralization studies, we identified and characterized two CAs (htCA1 and htCA2) that are specific of the shell-forming mantle tissue. We analyzed them in a phylogenetic context. Combining various approaches, including proteomics, activity tests, and in silico analyses, we showed that htCA1 is secreted but is not incorporated in the organic matrix of the abalone shell and that htCA2 is transmembrane. Together with previous studies dealing with molluskan CAs, our findings suggest two possible modes of action for shell mineralization: the first mode applies to, for example, the bivalves Unio pictorum and Pinctada fucata, and involves a true CA activity in their shell matrix; the second mode corresponds to, for example, the European abalone, and does not include CA activity in the shell matrix. Our work provides new insight on the diversity of the extracellular macromolecular tools used for shell biomineralization study in mollusks.
Collapse
Affiliation(s)
- Nathalie LE Roy
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne, Dijon, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Isowa Y, Sarashina I, Setiamarga DHE, Endo K. A comparative study of the shell matrix protein aspein in pterioid bivalves. J Mol Evol 2012; 75:11-8. [PMID: 22922907 DOI: 10.1007/s00239-012-9514-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 08/03/2012] [Indexed: 12/28/2022]
Abstract
Aspein is one of the unusually acidic shell matrix proteins originally identified from the pearl oyster Pinctada fucata. Aspein is thought to play important roles in the shell formation, especially in calcite precipitation in the prismatic layer. In this study, we identified Aspein homologs from three closely related pterioid species: Pinctada maxima, Isognomon perna, and Pteria penguin. Our immunoassays showed that they are present in the calcitic prismatic layer but not in the aragonitic nacreous layer of the shells. Sequence comparison showed that the Ser-Glu-Pro and the Asp-Ala repeat motifs are conserved among these Aspein homologs, indicating that they are functionally important. All Aspein homologs examined share the Asp-rich D-domain, suggesting that this domain might have a very important function in calcium carbonate formation. However, sequence analyses showed a significantly high level of variation in the arrangement of Asp in the D-domain even among very closely related species. This observation suggests that specific arrangements of Asp are not required for the functions of the D-domain.
Collapse
Affiliation(s)
- Yukinobu Isowa
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
145
|
Bédouet L, Marie A, Berland S, Marie B, Auzoux-Bordenave S, Marin F, Milet C. Proteomic strategy for identifying mollusc shell proteins using mild chemical degradation and trypsin digestion of insoluble organic shell matrix: a pilot study on Haliotis tuberculata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:446-458. [PMID: 22160345 DOI: 10.1007/s10126-011-9425-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 11/26/2011] [Indexed: 05/31/2023]
Abstract
A successful strategy for the identification of shell proteins is based on proteomic analyses where soluble and insoluble fractions isolated from organic shell matrix are digested with trypsin with the aim of generating peptides, which are used to identify novel shell proteins contained in databases. However, using trypsin as a sole degradative agent is limited by the enzyme's cleavage specificity and is dependent upon the occurrence of lysine and arginine in the shell protein sequence. To bypass this limitation, we investigated the ability of trifluoroacetic acid (TFA), a low-specificity chemical degradative agent, to generate clusters of analyzable peptides from organic shell matrix, suitable for database annotation. Acetic acid-insoluble fractions from Haliotis tuberculata shell were processed by trypsin followed by TFA digestion. The hydrolysates were used to annotate an expressed sequence tag library constructed from the mantle tissue of Haliotis asinina, a tropical abalone species. The characterization of sequences with repeat motifs featured in some of the shell matrix proteins benefited from TFA-induced serial cutting, which can result in peptide ladder series. Using the degradative specificities of TFA and trypsin, we were able to identify five novel shell proteins. This pilot study indicates that a mild chemical digestion of organic shell matrix combined with trypsin generates peptides suitable for proteomic analysis for better characterization of mollusc shell matrix proteins.
Collapse
Affiliation(s)
- Laurent Bédouet
- UMR BOREA (Biologie des Organismes et Ecosystèmes Aquatiques), MNHN/CNRS 7208/IRD 207, Muséum National d'Histoire Naturelle CP 26, 43 rue Cuvier, 75231, Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
146
|
Cartwright JHE, Mackay AL. Beyond crystals: the dialectic of materials and information. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:2807-2822. [PMID: 22615461 PMCID: PMC3367679 DOI: 10.1098/rsta.2012.0106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We argue for a convergence of crystallography, materials science and biology, that will come about through asking materials questions about biology and biological questions about materials, illuminated by considerations of information. The complex structures now being studied in biology and produced in nanotechnology have outstripped the framework of classical crystallography, and a variety of organizing concepts are now taking shape into a more modern and dynamic science of structure, form and function. Absolute stability and equilibrium are replaced by metastable structures existing in a flux of energy-carrying information and moving within an energy landscape of complex topology. Structures give place to processes and processes to systems. The fundamental level is that of atoms. As smaller and smaller groups of atoms are used for their physical properties, quantum effects become important; already we see quantum computation taking shape. Concepts move towards those in life with the emergence of specifically informational structures. We now see the possibility of the artificial construction of a synthetic living system, different from biological life, but having many or all of the same properties. Interactions are essentially nonlinear and collective. Structures begin to have an evolutionary history with episodes of symbiosis. Underlying all the structures are constraints of time and space. Through hierarchization, a more general principle than the periodicity of crystals, structures may be found within structures on different scales. We must integrate unifying concepts from dynamical systems and information theory to form a coherent language and science of shape and structure beyond crystals. To this end, we discuss the idea of categorizing structures based on information according to the algorithmic complexity of their assembly.
Collapse
Affiliation(s)
- Julyan H. E. Cartwright
- Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, Campus Fuentenueva, E-18071 Granada, Spain
| | - Alan L. Mackay
- Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
147
|
Mann K, Edsinger-Gonzales E, Mann M. In-depth proteomic analysis of a mollusc shell: acid-soluble and acid-insoluble matrix of the limpet Lottia gigantea. Proteome Sci 2012; 10:28. [PMID: 22540284 PMCID: PMC3374290 DOI: 10.1186/1477-5956-10-28] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/27/2012] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Invertebrate biominerals are characterized by their extraordinary functionality and physical properties, such as strength, stiffness and toughness that by far exceed those of the pure mineral component of such composites. This is attributed to the organic matrix, secreted by specialized cells, which pervades and envelops the mineral crystals. Despite the obvious importance of the protein fraction of the organic matrix, only few in-depth proteomic studies have been performed due to the lack of comprehensive protein sequence databases. The recent public release of the gastropod Lottia gigantea genome sequence and the associated protein sequence database provides for the first time the opportunity to do a state-of-the-art proteomic in-depth analysis of the organic matrix of a mollusc shell. RESULTS Using three different sodium hypochlorite washing protocols before shell demineralization, a total of 569 proteins were identified in Lottia gigantea shell matrix. Of these, 311 were assembled in a consensus proteome comprising identifications contained in all proteomes irrespective of shell cleaning procedure. Some of these proteins were similar in amino acid sequence, amino acid composition, or domain structure to proteins identified previously in different bivalve or gastropod shells, such as BMSP, dermatopontin, nacrein, perlustrin, perlucin, or Pif. In addition there were dozens of previously uncharacterized proteins, many containing repeated short linear motifs or homorepeats. Such proteins may play a role in shell matrix construction or control of mineralization processes. CONCLUSIONS The organic matrix of Lottia gigantea shells is a complex mixture of proteins comprising possible homologs of some previously characterized mollusc shell proteins, but also many novel proteins with a possible function in biomineralization as framework building blocks or as regulatory components. We hope that this data set, the most comprehensive available at present, will provide a platform for the further exploration of biomineralization processes in molluscs.
Collapse
Affiliation(s)
- Karlheinz Mann
- Abteilung Proteomics und Signaltransduktion, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152, Martinsried, Munich, Germany.
| | | | | |
Collapse
|
148
|
York PS, Cummins SF, Degnan SM, Woodcroft BJ, Degnan BM. Marked changes in neuropeptide expression accompany broadcast spawnings in the gastropod Haliotis asinina. Front Zool 2012; 9:9. [PMID: 22571815 PMCID: PMC3434067 DOI: 10.1186/1742-9994-9-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/22/2012] [Indexed: 11/30/2022] Open
Abstract
Introduction A huge diversity of marine species reproduce by synchronously spawning their gametes into the water column. Although this species-specific event typically occurs in a particular season, the precise time and day of spawning often can not be predicted. There is little understanding of how the environment (e.g. water temperature, day length, tidal and lunar cycle) regulates a population’s reproductive physiology to synchronise a spawning event. The Indo-Pacific tropical abalone, Haliotis asinina, has a highly predictable spawning cycle, where individuals release gametes on the evenings of spring high tides on new and full moons during the warmer half of the year. These calculable spawning events uniquely allow for the analysis of the molecular and cellular processes underlying reproduction. Here we characterise neuropeptides produced in H. asinina ganglia that are known in egg-laying molluscs to control vital aspects of reproduction. Results We demonstrate that genes encoding APGWamide, myomodulin, the putative proctolin homologue whitnin, FMRFamide, a schistosomin-like peptide (SLP), a molluscan insulin-related peptide (MIP) and a haliotid growth-associated peptide (HGAP) all are differentially expressed in the anterior ganglia during the two week spawning cycle in both male and female abalone. Each gene has a unique and sex-specific expression profile. Despite these differences, expression levels in most of the genes peak at or within 12 h of the spawning event. In contrast, lowest levels of transcript abundance typically occurs 36 h before and 24 h after spawning, with differences in peak and low expression levels being most pronounced in genes orthologous to known molluscan reproduction neuromodulators. Conclusions Exploiting the predictable semi-lunar spawning cycle of the gastropod H. asinina, we have identified a suite of evolutionarily-conserved, mollusc-specific and rapidly-evolving neuropeptides that appear to contribute to the regulation of spawning. Dramatic increases and decreases in ganglionic neuropeptide expression levels from 36 h before to 24 h after the broadcast spawning event are consistent with these peptides having a regulatory role in translating environmental signals experienced by a population into a synchronous physiological output, in this case, the release of gametes.
Collapse
Affiliation(s)
- Patrick S York
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | | | | | | | | |
Collapse
|
149
|
Ramos-Silva P, Benhamada S, Le Roy N, Marie B, Guichard N, Zanella-Cléon I, Plasseraud L, Corneillat M, Alcaraz G, Kaandorp J, Marin F. Novel Molluskan Biomineralization Proteins Retrieved from Proteomics: A Case Study with Upsalin. Chembiochem 2012; 13:1067-78. [DOI: 10.1002/cbic.201100708] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Indexed: 11/06/2022]
|
150
|
Pavat C, Zanella-Cléon I, Becchi M, Medakovic D, Luquet G, Guichard N, Alcaraz G, Dommergues JL, Serpentini A, Lebel JM, Marin F. The shell matrix of the pulmonate land snail Helix aspersa maxima. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:303-14. [DOI: 10.1016/j.cbpb.2011.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 12/07/2011] [Accepted: 12/10/2011] [Indexed: 10/14/2022]
|