101
|
Sektas M, Specht M. Limited use of the Cre/loxP recombination system in efficient production of loxP-containing minicircles in vivo. Plasmid 2004; 53:148-63. [PMID: 15737402 DOI: 10.1016/j.plasmid.2004.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 04/08/2004] [Accepted: 04/08/2004] [Indexed: 11/26/2022]
Abstract
The Cre/loxP recombination system of bacteriophage P1 is one of the most powerful tools in genome engineering. We report, however, that the activity of the Cre/loxP system interferes with the stability of the multicopy loxP-bearing plasmids in Escherichia coli recA bacteria. Due to the predominantly unidirectional Cre-mediated high-order multimer formation of these plasmids, the number of their copies (overall yield) gradually decreases. Intermolecular recombination reduces the copy number of plasmids and eventually increases their segregational instability. We have found that in the presence of even the slightest amount of Cre activity, loxP-bearing plasmids continuously undergo multimerization, which very rapidly leads to loxP-plasmid free cells. Our results are compatible with the hypothesis of the multimer catastrophe [Cell, 1984 (36), 1097].
Collapse
Affiliation(s)
- Marian Sektas
- Department of Microbiology, University of Gdansk, 80-822 Gdansk, ul.Kladki 24, Poland.
| | | |
Collapse
|
102
|
Carvalho TG, Thiberge S, Sakamoto H, Ménard R. Conditional mutagenesis using site-specific recombination in Plasmodium berghei. Proc Natl Acad Sci U S A 2004; 101:14931-6. [PMID: 15465918 PMCID: PMC522007 DOI: 10.1073/pnas.0404416101] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Indexed: 01/14/2023] Open
Abstract
Reverse genetics in Plasmodium, the genus of parasites that cause malaria, still faces major limitations. Only red blood cell stages of this haploid parasite can be transfected. Consequently, the function of many essential genes in these and subsequent stages, including those encoding vaccine candidates, cannot be addressed genetically. Here, we establish conditional mutagenesis in Plasmodium by using site-specific recombination and the Flp/FRT system of yeast. Site-specific recombination is induced after cross-fertilization in the mosquito vector of two clones containing either the target sequence flanked by two FRT sites or the Flp recombinase. Parasites that have undergone recombination are recognized in the cross progeny through the expression of a fluorescence marker. This approach should permit to dissect the function of any essential gene of Plasmodium during the haploid phase of its life, i.e., during infection of salivary glands in the mosquito and infection of both the liver and red blood cells in the mammal.
Collapse
Affiliation(s)
- Teresa Gil Carvalho
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
103
|
Krönke J, Kittler R, Buchholz F, Windisch MP, Pietschmann T, Bartenschlager R, Frese M. Alternative approaches for efficient inhibition of hepatitis C virus RNA replication by small interfering RNAs. J Virol 2004; 78:3436-46. [PMID: 15016866 PMCID: PMC371081 DOI: 10.1128/jvi.78.7.3436-3446.2004] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Persistent infection with hepatitis C virus (HCV) is a leading cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. It has recently been shown that HCV RNA replication is susceptible to small interfering RNAs (siRNAs), but the antiviral activity of siRNAs depends very much on their complementarity to the target sequence. Thus, the high degree of sequence diversity between different HCV genotypes and the rapid evolution of new quasispecies is a major problem in the development of siRNA-based gene therapies. For this study, we developed two alternative strategies to overcome these obstacles. In one approach, we used endoribonuclease-prepared siRNAs (esiRNAs) to simultaneously target multiple sites of the viral genome. We show that esiRNAs directed against various regions of the HCV coding sequence as well as the 5' nontranslated region (5' NTR) efficiently block the replication of subgenomic and genomic HCV replicons. In an alternative approach, we generated pseudotyped retroviruses encoding short hairpin RNAs (shRNAs). A total of 12 shRNAs, most of them targeting highly conserved sequence motifs within the 5' NTR or the early core coding region, were analyzed for their antiviral activities. After the transduction of Huh-7 cells containing a subgenomic HCV replicon, we found that all shRNAs targeting sequences in domain IV or nearby coding sequences blocked viral replication. In contrast, only one of seven shRNAs targeting sequences in domain II or III had a similar degree of antiviral activity, indicating that large sections of the NTRs are resistant to RNA interference. Moreover, we show that naive Huh-7 cells that stably expressed certain 5' NTR-specific shRNAs were largely resistant to a challenge with HCV replicons. These results demonstrate that the retroviral transduction of HCV-specific shRNAs provides a new possibility for antiviral intervention.
Collapse
Affiliation(s)
- Jan Krönke
- Department of Molecular Virology, Hygiene Institute, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
Sperm maturation occurs during transit through the epididymis. Interactions between the epididymal epithelium and the sperm are crucial for the maturation process. Analyses of existing male-infertile mouse lines have begun to enumerate some of the genes involved. Recent advances in transgenic technologies to generate temporally and spatially restricted targeted gene disruptions show promise for progress in understanding sperm maturation. Gene silencing agents, such as RNAi, to manipulate gene expression may prove useful for the analysis of epididymal genes involved in the maturation process.
Collapse
Affiliation(s)
- R John Lye
- Department of Cell Biology, University of Virginia Health System, School of Medicine, Charlottesville, VA 22908-0732, USA.
| | | |
Collapse
|
105
|
Branda CS, Dymecki SM. Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev Cell 2004; 6:7-28. [PMID: 14723844 DOI: 10.1016/s1534-5807(03)00399-x] [Citation(s) in RCA: 653] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Site-specific recombinase systems (Cre-loxP, Flp-FRT, and phi C31-att) are transforming both forward and reverse genetics in mice. By enabling high-fidelity DNA modifications to be induced in vitro or in vivo, these systems have incited a wave of new biology, advancing our understanding of gene function, genetic relationships, development, and disease.
Collapse
Affiliation(s)
- Catherine S Branda
- Harvard Medical School, Department of Genetics, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
106
|
Chen Y, Rice PA. New insight into site-specific recombination from Flp recombinase-DNA structures. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:135-59. [PMID: 12598365 DOI: 10.1146/annurev.biophys.32.110601.141732] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The lamba integrase, or tyrosine-based family of site-specific recombinases, plays an important role in a variety of biological processes by inserting, excising, and inverting DNA segments. Flp, encoded by the yeast 2-mum plasmid, is the best-characterized eukaryotic member of this family and is responsible for maintaining the copy number of this plasmid. Over the past several years, structural and biochemical studies have shed light on the details of a common catalytic scheme utilized by these enzymes with interesting variations under different biological contexts. The emergence of new Flp structures and solution data provides insights not only into its unique mechanism of active site assembly and activity regulation but also into the specific contributions of certain protein residues to catalysis.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
107
|
Nakamura H, Lu M, Gwack Y, Souvlis J, Zeichner SL, Jung JU. Global changes in Kaposi's sarcoma-associated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J Virol 2003; 77:4205-20. [PMID: 12634378 PMCID: PMC150665 DOI: 10.1128/jvi.77.7.4205-4220.2003] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An important step in the herpesvirus life cycle is the switch from latency to lytic reactivation. In order to study the life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV), we developed a gene expression system in KSHV-infected primary effusion lymphoma cells. This system uses Flp-mediated efficient recombination and tetracycline-inducible expression. The Rta transcriptional activator, which acts as a molecular switch for lytic reactivation of KSHV, was efficiently integrated downstream of the Flp recombination target site, and its expression was tightly controlled by tetracycline. Like stimulation with tetradecanoyl phorbol acetate (TPA), the ectopic expression of Rta efficiently induced a complete cycle of viral replication, including a well-ordered program of KSHV gene expression and production of infectious viral progeny. A striking feature of Rta-mediated lytic gene expression was that Rta induced KSHV gene expression in a more powerful and efficient manner than TPA stimulation, indicating that Rta plays a central, leading role in KSHV lytic gene expression. Thus, our streamlined gene expression system provides a novel means not only to study the effects of viral gene products on overall KSHV gene expression and replication, but also to understand the natural viral reactivation process.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Department of Microbiology and Molecular Genetics, Division of Tumor Virology, New England Regional Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772, USA
| | | | | | | | | | | |
Collapse
|
108
|
Abstract
In the postgenomic era the mouse will be central to the challenge of ascribing a function to the 40,000 or so genes that constitute our genome. In this review, we summarize some of the classic and modern approaches that have fueled the recent dramatic explosion in mouse genetics. Together with the sequencing of the mouse genome, these tools will have a profound effect on our ability to generate new and more accurate mouse models and thus provide a powerful insight into the function of human genes during the processes of both normal development and disease.
Collapse
|
109
|
Abstract
Retinogenesis is a developmental process that is tightly regulated both temporally and spatially and is therefore an excellent model system for studying the molecular and cellular mechanisms of neurogenesis in the central nervous system. Understanding of these events in vivo is greatly facilitated by the availability of mouse mutant models, including those with natural or targeted mutations and those with conditional knockout or forced expression of genes. This article reviews these genetic modifications and their contribution to the study of retinogenesis in mammals, with special emphasis on conditional gene targeting approaches.
Collapse
Affiliation(s)
- Ruth Ashery-Padan
- Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
110
|
Calegari F, Haubensak W, Yang D, Huttner WB, Buchholz F. Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proc Natl Acad Sci U S A 2002; 99:14236-40. [PMID: 12391321 PMCID: PMC137867 DOI: 10.1073/pnas.192559699] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2002] [Accepted: 09/16/2002] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) using double-stranded RNA has been used for the systematic analysis of gene function in invertebrate organisms. Here we have explored the use of short interfering RNA (siRNA) to knock down gene expression during the development of mammalian postimplantation embryos. The developing CNS system of embryonic day 10 mouse embryos was used as a model tissue. siRNA prepared by endoribonuclease digestion (esiRNA) was injected into the lumen of the neural tube at specific regions and delivered into neuroepithelial cells by directed electroporation. Injected and electroporated embryos were grown for 1 day in whole-embryo culture and the effects of RNAi were examined. esiRNA directed against beta-galactosidase (beta-gal), coelectroporated into neuroepithelial cells together with reporter plasmids expressing GFP and beta-gal, abolished expression of beta-gal but not GFP, showing the specificity of the esiRNA-mediated RNAi. To demonstrate RNAi of endogenous gene expression, we used heterozygous embryos of a knock-in mouse line expressing GFP from the Tis21 locus, a gene turned on in neuroepithelial cells that switch from proliferation to neurogenesis. GFP-directed esiRNA electroporated into neuroepithelial cells of such embryos blocked the GFP expression normally occurring on the onset of neurogenesis. Taken together, our data indicate that esiRNA delivered in a tissue-specific manner by topical injection followed by directed electroporation can efficiently silence endogenous gene expression in mammalian postimplantation embryos.
Collapse
Affiliation(s)
- Federico Calegari
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauer Strasse 108, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
111
|
Tornøe J, Kusk P, Johansen TE, Jensen PR. Generation of a synthetic mammalian promoter library by modification of sequences spacing transcription factor binding sites. Gene 2002; 297:21-32. [PMID: 12384282 DOI: 10.1016/s0378-1119(02)00878-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The development of a set of synthetic mammalian promoters with different specific activities is described. The library is based on a synthetic promoter, JeT, constructed as a 200 bp chimeric promoter built from fragments of the viral SV40 early promoter and the human beta-actin and ubiquitin C promoters. The JeT promoter was made by separating the included consensus boxes by the same distances in base pairs as found in the wild-type promoters, thus preserving transcription factor interaction. The resulting promoter was shown to drive reporter expression to high levels in enhanced green fluorescent protein and secreted alkaline phosphatase reporter assays. By replacing sequences separating the transcription factor binding sites with randomized sequences of the same length, sets of new promoters with different strengths, spanning a 10-fold range of transcriptional activity in cell culture, was obtained. The measured activity of each promoter in the library was highly specific and reproducible when tested in HiB5 and ARPE-19 cell culture.
Collapse
Affiliation(s)
- Jens Tornøe
- NsGene A/S, Pederstrupvej 93, DK-2750, Ballerup, Denmark.
| | | | | | | |
Collapse
|
112
|
Mlynárová L, Libantová J, Vrba L, Nap JP. The promiscuity of heterospecific lox sites increases dramatically in the presence of palindromic DNA. Gene 2002; 296:129-37. [PMID: 12383510 DOI: 10.1016/s0378-1119(02)00841-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Heterospecific lox sites are mutated lox sites that in the presence of Cre recombinase recombine with themselves but not or much less with wildtype loxP. We here show that in Escherichia coli both lox511 and lox2272 sites become highly promiscuous with respect to loxP when in the presence of Cre one of the recombination partners is present in a larger stretch of an inverted repeat of non-lox DNA. In such a palindromic DNA configuration, also the occurrence of other DNA repeat-mediated recombination events is somewhat increased in the presence of Cre. The results indicate that in recombinase mediated cassette exchange or other double lox applications based on the exclusivity of heterospecific lox sites, or in research combining Cre-lox approaches with hairpin RNA for gene silencing, the presence of duplicated DNA around lox sites has to be taken into account. It is proposed that the presence of palindromic non-lox DNA interferes with the homology search of the Cre enzyme prior to the actual recombination event.
Collapse
Affiliation(s)
- Ludmila Mlynárová
- Plant Research International, Wageningen University and Research Centre, The Netherlands
| | | | | | | |
Collapse
|
113
|
Takeuchi T, Nomura T, Tsujita M, Suzuki M, Fuse T, Mori H, Mishina M. Flp recombinase transgenic mice of C57BL/6 strain for conditional gene targeting. Biochem Biophys Res Commun 2002; 293:953-7. [PMID: 12051751 DOI: 10.1016/s0006-291x(02)00321-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We constructed an expression vector of Flp recombinase modified by adding a nuclear localization signal. Injection of the expression vector into fertilized eggs of the C57BL/6 strain yielded transgenic mouse lines expressing the Flp recombinase transgene in the testis. We crossed the transgenic mice to reporter mice carrying the neomycin phosphotransferase gene flanked by target sites of Flp recombinase. Examination of the deletion of the neomycin phosphotransferase gene in the progeny showed that Flp-mediated recombination took place efficiently in vivo in FLP66 transgenic mouse line. These results suggest that the Flp recombinase system is effective in mice and in combination with the Cre recombinase system extends the potentials of gene manipulation in mice. One of the useful applications of FLP66 transgenic mouse line is the removal of marker genes from mice manipulated for the conditional gene targeting with the Cre/loxP system in the pure C57BL/6 genetic background.
Collapse
Affiliation(s)
- Tomonori Takeuchi
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
114
|
Shimshek DR, Kim J, Hübner MR, Spergel DJ, Buchholz F, Casanova E, Stewart AF, Seeburg PH, Sprengel R. Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis 2002; 32:19-26. [PMID: 11835670 DOI: 10.1002/gene.10023] [Citation(s) in RCA: 314] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
By applying the mammalian codon usage to Cre recombinase, we improved Cre expression, as determined by immunoblot and functional analysis, in three different mammalian cell lines. The improved Cre (iCre) gene was also designed to reduce the high CpG content of the prokaryotic coding sequence, thereby reducing the chances of epigenetic silencing in mammals. Transgenic iCre expressing mice were obtained with good frequency, and in these mice loxP-mediated DNA recombination was observed in all cells expressing iCre. Moreover, iCre fused to two estrogen receptor hormone binding domains for temporal control of Cre activity could also be expressed in transgenic mice. However, Cre induction after administration of tamoxifen yielded only low Cre activity. Thus, whereas efficient activation of Cre fusion proteins in the brain needs further improvements, our studies indicate that iCre should facilitate genetic experiments in the mouse.
Collapse
Affiliation(s)
- D R Shimshek
- Department of Molecular Neuroscience, Max-Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Buchholz F, Stewart AF. Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat Biotechnol 2001; 19:1047-52. [PMID: 11689850 DOI: 10.1038/nbt1101-1047] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Directed molecular evolution was applied to generate Cre recombinase variants that recognize a new DNA target sequence. Cre was adapted in a three-stage strategy to evolve recombinases to specifically recombine the new site. This complex multicycle task was made feasible by an improved directed-evolution procedure that relies on placing the recombination substrate next to the recombinase coding region. Consequently, those DNA molecules carrying the coding region for a successful recombinase are physically marked by the action of that recombinase on the linked substrate and are easily retrieved from a large background of unsuccessful candidates by PCR amplification. We term this procedure substrate-linked protein evolution (SLiPE). The method should facilitate the development of new recombinases and other DNA-modifying enzymes for applications in genetic engineering, functional genomics, and gene therapy.
Collapse
Affiliation(s)
- F Buchholz
- Hooper Research Foundation, University of California San Francisco (UCSF), 513 Parnassus Ave., San Francisco, CA 94143-0552, USA.
| | | |
Collapse
|
116
|
Abstract
One of the most powerful tools that the molecular biology revolution has given us is the ability to turn genes on and off at our discretion. In the mouse, this has been accomplished by using binary systems in which gene expression is dependent on the interaction of two components, resulting in either transcriptional transactivation or DNA recombination. During recent years, these systems have been used to analyse complex and multi-staged biological processes, such as embryogenesis and cancer, with unprecedented precision. Here, I review these systems and discuss certain studies that exemplify the advantages and limitations of each system.
Collapse
Affiliation(s)
- M Lewandoski
- Section of Genetics of Vertebrate Development, Laboratory of Cancer and Developmental Biology, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA.
| |
Collapse
|
117
|
Baer A, Bode J. Coping with kinetic and thermodynamic barriers: RMCE, an efficient strategy for the targeted integration of transgenes. Curr Opin Biotechnol 2001; 12:473-80. [PMID: 11604323 DOI: 10.1016/s0958-1669(00)00248-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Site-specific recombinases have become powerful tools for the targeted integration of transgenes into defined chromosomal loci. They have been successfully used both to achieve predictable gene expression in cell culture and for the systematic creation of transgenic animals. A recent improvement of this method, the recombinase-mediated cassette exchange procedure (RMCE), permits expression in the absence of any co-expressed selection marker gene.
Collapse
Affiliation(s)
- A Baer
- Gesellschaft für Biotechnologische Forschung mbH (GBF), German Research Institute for Biotechnology, RDIF/Epigenetic Regulation, D-38124 Braunschweig, FRG, Mascheroder Weg 1, Braunschweig, Germany.
| | | |
Collapse
|
118
|
Schaft J, Ashery-Padan R, van der Hoeven F, Gruss P, Stewart AF. Efficient FLP recombination in mouse ES cells and oocytes. Genesis 2001; 31:6-10. [PMID: 11668672 DOI: 10.1002/gene.1076] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report an improved vector, pCAGGS-FLPe, for transient expression of the enhanced FLP recombinase in mouse ES cells and oocytes. In standard transfection experiments, about 6% of total ES colonies showed FLP recombination, albeit with mosaicism within each colony. After microinjection of pCAGGS-FLPe into oocytes, about one-third of heterozygotic mice born showed complete FLP recombination. Thus pCAGGS-FLPe presents two practical options for removal of FRT cassettes in mice.
Collapse
Affiliation(s)
- J Schaft
- Gene Expression Program, EMBL, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
119
|
Bigger BW, Tolmachov O, Collombet JM, Fragkos M, Palaszewski I, Coutelle C. An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J Biol Chem 2001; 276:23018-27. [PMID: 11304530 DOI: 10.1074/jbc.m010873200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of CpG motifs and their associated sequences in bacterial DNA causes an immunotoxic response following the delivery of these plasmid vectors into mammalian hosts. We describe a biotechnological approach to the elimination of this problem by the creation of a bacterial cre recombinase expression system, tightly controlled by the arabinose regulon. This permits the Cre-mediated and -directed excision of the entire bacterial vector sequences from plasmid constructs to create supercoiled gene expression minicircles for gene therapy. Minicircle yields using standard culture volumes are sufficient for most in vitro and in vivo applications whereas minicircle expression in vitro is significantly increased over standard plasmid transfection. By the simple expedient of removing the bacterial DNA complement, we significantly reduce the size and CpG content of these expression vectors, which should also reduce DNA-induced inflammatory responses in a dose-dependent manner. We further describe the generation of minicircle expression vectors for mammalian mitochondrial gene therapy, for which no other vector systems currently exist. The removal of bacterial vector sequences should permit appropriate transcription and correct transcriptional cleavage from the mitochondrial minicircle constructs in a mitochondrial environment and brings the realization of mitochondrial gene therapy a step closer.
Collapse
Affiliation(s)
- B W Bigger
- Cystic Fibrosis Gene Therapy Group, Division of Biomedical Sciences, SAF Bldg., Imperial College of Science, Technology and Medicine, Exhibition Rd., London SW7 2AZ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
120
|
Abstract
The use of the site-specific DNA recombinases FLP and Cre is well-established in a broad range of organisms. Here we investigate the applicability of both recombinases to the Xenopus system where they have not been analyzed yet. We show that injection of FLP mRNA triggers the excision of an FLP recombination target (FRT)-flanked green fluorescent protein (GFP) sequence in a coinjected reporter construct inducing the expression of a downstream beta-galactosidase gene (lacZ). The FLP-mediated gene activation can be controlled in Xenopus embryos by injecting a mRNA encoding a fusion of FLP to the mutant ligand binding domain of the human estrogen receptor whose activity is dependent on 4-hydroxytamoxifen. We also demonstrate that a Cre reporter injected into fertilized eggs is fully recombined by Cre recombinase before zygotic gene transcription initiates. Our results indicate that in Xenopus embryos Cre is more effective than FLP in recombining a given quantity of reporter molecules. Finally, we present FLP-inducible double reporter systems encoding two fluorescence proteins (EYFP, ECFP, DsRed or GFP). These novel gene expression systems enable the continuous analysis of two reporter activities within living embryos and are expected to allow cell-lineage studies based on recombinase-mediated DNA rearrangement in transgenic Xenopus lines.
Collapse
Affiliation(s)
- D Werdien
- Universitätsklinikum Essen, Institut für Zellbiologie (Tumorforschung), Hufelandstrasse 55, D-45122 Essen, Germany
| | | | | |
Collapse
|
121
|
Nakano M, Odaka K, Ishimura M, Kondo S, Tachikawa N, Chiba J, Kanegae Y, Saito I. Efficient gene activation in cultured mammalian cells mediated by FLP recombinase-expressing recombinant adenovirus. Nucleic Acids Res 2001; 29:E40. [PMID: 11266575 PMCID: PMC31301 DOI: 10.1093/nar/29.7.e40] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A recombinant adenovirus (rAd) expressing Cre recombinase derived from bacteriophage P1 has already been extensively used for the conditional gene activation and inactivation strategies in mammalian systems. In this study, we generated AxCAFLP, a rAd expressing FLP recombinase derived from Saccharomyces cerevisiae and carried out quantitative comparisons with Cre-expressing rAd in both in vitro and in cultured cells to provide another efficient gene regulation system in mammalian cells. In the in vitro experiments, the relative recombination efficiency of FLP expressed in 293 cells infected with FLP-expressing rAd was approximately one-thirtieth that of Cre even at 30 degrees C, the optimum temperature for FLP activity, and was approximately one-ninetieth at 37 degrees C. Co-infection experiments in HeLa cells using a target rAd conditionally expressing LacZ under the control of FLP showed that an FLP-expressing rAd, infected at a multiplicity of infection (MOI) of 5, was able to activate the transgene in almost 100% of HeLa cells whereas the Cre-expressing rAd was sufficient at an MOI of 0.2. Since an MOI of 5 is ordinarily used in rAd experiments, these results showed that the FLP-expressing rAd is useful for gene activation strategies and is probably applicable to a sequential gene regulation system in combination with Cre-expressing rAd in mammalian cells.
Collapse
Affiliation(s)
- M Nakano
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
The precerebellar system provides the principal input to the cerebellum and is essential for coordinated motor activity. Using a FLP recombinase-based fate mapping approach, we provide direct evidence in the mouse that this ventral brainstem system derives from dorsally located rhombic neuroepithelium. Moreover, by fate mapping at the resolution of a gene expression pattern, we have uncovered an unexpected subdivision within the precerebellar primordium: embryonic expression of Wnt1 appears to identify the class of precerebellar progenitors that will later project mossy fibers from the brainstem to the cerebellum, as opposed to the class of precerebellar neurons that project climbing fibers. Differential gene expression therefore appears to demarcate two populations within the precerebellar primordium, grouping progenitors by their future type of axonal projection and synaptic partner rather than by final topographical position.
Collapse
Affiliation(s)
- C I Rodriguez
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
123
|
Bode J, Schlake T, Iber M, Schübeler D, Seibler J, Snezhkov E, Nikolaev L. The transgeneticist's toolbox: novel methods for the targeted modification of eukaryotic genomes. Biol Chem 2000; 381:801-13. [PMID: 11076013 DOI: 10.1515/bc.2000.103] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Classical techniques for gene transfer into mammalian cells involve tedious screening procedures to identify transgenic clones or animals with the appropriate level and stability of expression or with the correct developmental patterns. These first generation technologies are clearly inadequate for complex genetic strategies by which gene regulation can be studied in its entire complexity. While site-specific insertions can principally be achieved by homologous recombination or by adapting the recombination apparatus from phages or yeast, these methods usually lack the required efficiency or they perturb expression patterns by the co-insertion of prokaryotic vector parts. Virtually all of these problems can be overcome by recombinase-mediated cassette exchange (RMCE) techniques which cleanly replace a resident cassette that is flanked by two hetero-specific recombination target sites for a second cassette with the analogous design, presented on a targeting vector. After illustrating the fundamentals of site-specific recombination by selected experiments, the authors (arranged in the chronological order of their contribution) will describe their efforts to develop RMCE into a method of wide applicability. Further developments that have been initiated utilizing the particular potential of the RMCE principle will be outlined.
Collapse
Affiliation(s)
- J Bode
- German Center for Biotechnological Research (GBF), RDIF/Epigenetic Regulation, Braunschweig
| | | | | | | | | | | | | |
Collapse
|
124
|
Rodríguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J, Ayala R, Stewart AF, Dymecki SM. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 2000; 25:139-40. [PMID: 10835623 DOI: 10.1038/75973] [Citation(s) in RCA: 968] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
125
|
Utomo AR, Nikitin AY, Lee WH. Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice. Nat Biotechnol 1999; 17:1091-6. [PMID: 10545915 DOI: 10.1038/15073] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have developed a universal system for temporal, spatial, and cell type-specific control of gene expression in mice that (1) integrates the advantages of tetracycline-controlled gene expression and Cre-recombinase-loxP site-mediated gene inactivation, and (2) simplifies schemes of animal crosses by combination of two control elements in a single transgene. Two transgenic strains were generated in which the cell type-specific control was provided by either the retinoblastoma gene promoter or the whey acidic protein promoter. Both promoters drive the expression of the reverse tetracycline-controlled transactivator (rtTA). Placed in cis configuration to the rtTA transcription unit, the rtTA-inducible promoter directs expression of Cre recombinase. In both strains crossed with cActXstopXLacZ reporter mice, which have a loxP-stop of transcription/translation-loxP-LacZ cassette driven by chicken beta-actin promoter, Cre-loxP-mediated DNA recombination leading to LacZ expression was accurately regulated in a temporal, spatial, and cell type-specific manner. This approach can be applied to establishment of analogous mouse strains with virtually any promoter as systems to control gene regulation in a variety of cell types.
Collapse
Affiliation(s)
- A R Utomo
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, 15355 Lambda Dr., San Antonio, TX 78245-3207, USA
| | | | | |
Collapse
|
126
|
Fiering S, Bender MA, Groudine M. Analysis of mammalian cis-regulatory DNA elements by homologous recombination. Methods Enzymol 1999; 306:42-66. [PMID: 10432447 DOI: 10.1016/s0076-6879(99)06005-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of homologous recombination to modify and thereby functionally analyze cis-regulatory DNA elements in mammalian cells has become an important approach in mammalian gene expression research. We have emphasized the necessity of designing a system that allows the removal of selectable markers used in targeting and facilitates the further modification of the region under study. To perform these tasks, we presently favor making an initial HR-mediated replacement of the entire element under study with an active positive selectable marker in combination with either an inactive second positive selectable marker or an active negative selectable marker. The plug and socket system, in which an inactive selectable marker is complemented by HR, is the most dependable and well-characterized option for making secondary modifications. However, the double-replacement system has certain advantages, and the recently developed RMCE approach, which allows replacement of a negative selectable marker by site-specific recombinase-mediated insertion without using a positive selectable marker, will likely prove very valuable in future experiments. Each of the systems, or combinations thereof, should be considered in light of the specifics of any given experiment to select the most appropriate option. Although the emphasis of this article has been the analysis of cis-acting regulatory elements involved in transcription, these same approaches can be used to analyze other regulatory elements (e.g., origins of replication) and to make multiple subtle mutations in polypeptides.
Collapse
Affiliation(s)
- S Fiering
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
127
|
Affiliation(s)
- A D Thall
- BioTransplant, Inc., Charlestown Navy Yard, Massachusetts 02129, USA.
| |
Collapse
|
128
|
Abstract
The recognition of molecular control elements which govern cell and organ function is essential for the development of novel drug therapies and for an understanding of drug actions. Thus, a major interest is focused on methodologies which permit the identification of novel control elements. This is of particular relevance for the identification of drug targets, the distinction of target isoforms, the differentiation of signalling pathways, the generation of disease models and toxicological testing. In this review, we discuss different classes of genetically modified animals and their potential to elucidate biological processes relevant for pharmacological research including functional genomics. Techniques which permit the time- and tissue-specific inducible regulation of gene expression present an important methodological advance.
Collapse
Affiliation(s)
- U Rudolph
- Institute of Pharmacology, Swiss Federal Institute of Technology (ETH), University of Zurich.
| | | |
Collapse
|
129
|
Abstract
Gene targeting, defined as the introduction of site-specific modifications into the genome by homologous recombination, has revolutionarized the field of mouse genetics and allowed the analysis of diverse aspects of gene function in vivo. It is now possible to engineer specific genetic alterations ranging from subtle mutations to chromosomal rearrangements and more recently, even tissue-specific inducible gene targeting with temporo-spatial control has become feasible. This review tries to recapitulate what we have learned in this extremely rapidly expanding field during the past decade. Diverse aspects of the technique will be discussed starting from basic construct design to the analysis of complex phenotypes, including recent advances on inducible expression system. Many examples from different areas of biomedical research are given to illustrate the purpose and limitations of the employed experimental approaches.
Collapse
Affiliation(s)
- U Müller
- Max-Planck-Institute for Brain Research, Deutschordenstr. 46, D-60528, Frankfurt, Germany.
| |
Collapse
|
130
|
Iber M, Schübeler D, Seibler J, Höxter M, Bode J. Efficient FACS selection procedure for cells undergoing Flp-mediated site-specific conversions. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1366-2120(08)70132-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
131
|
Ringrose L, Lounnas V, Ehrlich L, Buchholz F, Wade R, Stewart AF. Comparative kinetic analysis of FLP and cre recombinases: mathematical models for DNA binding and recombination. J Mol Biol 1998; 284:363-84. [PMID: 9813124 DOI: 10.1006/jmbi.1998.2149] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The integrase class site specific recombinases FLP from Saccharomyces cerevisiae, and Cre from bacteriophage P1, have been extensively used to direct DNA rearrangements in heterologous organisms. Although their reaction mechanisms have been relatively well characterised, little comparative analysis of the two enzymes has been published. We present a comparative kinetic analysis of FLP and Cre, which identifies important differences. Gel mobility shift assays show that Cre has a higher affinity for its target, loxP (7. 4x10(10) M-1), than FLP for its target, FRT (8.92x10(8) M-1). We show that both recombinases bind the two halves of their target sites cooperatively, and that Cre shows approximately threefold higher cooperativity than FLP. Using a mathematical model describing the sequential binding of recombinase monomers to DNA, we have determined values for the association and dissociation rate constants for FLP and Cre.FLP and Cre also showed different characteristics in in vitro recombination assays. In particular, approximately tenfold more active FLP was required than Cre to optimally recombine a given quantity of excision substrate. FLP was able to reach maximum excision levels approaching 100%, whilst Cre-mediated excision did not exceed 75%. To investigate possible reasons for these differences a mathematical model describing the excision recombination reaction was established. Using measured DNA binding parameters for FLP and Cre in the model, and comparing simulated and experimental recombination data, the values of the remaining unknown parameters were determined. This analysis indicates that the synaptic complex is more stable for Cre than for FLP.
Collapse
Affiliation(s)
- L Ringrose
- EMBL, Gene Expression Programme, Meyerhofstr. 1, Heidelberg, 69117, Germany
| | | | | | | | | | | |
Collapse
|
132
|
Reik A, Telling A, Zitnik G, Cimbora D, Epner E, Groudine M. The locus control region is necessary for gene expression in the human beta-globin locus but not the maintenance of an open chromatin structure in erythroid cells. Mol Cell Biol 1998; 18:5992-6000. [PMID: 9742116 PMCID: PMC109185 DOI: 10.1128/mcb.18.10.5992] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/1998] [Accepted: 06/30/1998] [Indexed: 11/20/2022] Open
Abstract
Studies in many systems have led to the model that the human beta-globin locus control region (LCR) regulates the transcription, chromatin structure, and replication properties of the beta-globin locus. However the precise mechanisms of this regulation are unknown. We have developed strategies to use homologous recombination in a tissue culture system to examine how the LCR regulates the locus in its natural chromosomal environment. Our results show that when the functional components of the LCR, as defined by transfection and transgenic studies, are deleted from the endogenous beta-globin locus in an erythroid background, transcription of all beta-globin genes is abolished in every cell. However, formation of the remaining hypersensitive site(s) of the LCR and the presence of a DNase I-sensitive structure of the beta-globin locus are not affected by the deletion. In contrast, deletion of 5'HS5 of the LCR, which has been suggested to serve as an insulator, has only a minor effect on beta-globin transcription and does not influence the chromatin structure of the locus. These results show that the LCR as currently defined is not necessary to keep the locus in an "open" conformation in erythroid cells and that even in an erythroid environment an open locus is not sufficient to permit transcription of the beta-like globin genes.
Collapse
Affiliation(s)
- A Reik
- Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | |
Collapse
|
133
|
Zhang Y, Buchholz F, Muyrers JP, Stewart AF. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 1998; 20:123-8. [PMID: 9771703 DOI: 10.1038/2417] [Citation(s) in RCA: 947] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A straightforward way to engineer DNA in E. coli using homologous recombination is described. The homologous recombination reaction uses RecE and RecT and is transferable between E. coli strains. Several target molecules were manipulated, including high copy plasmids, a large episome and the E. coli chromosome. Sequential steps of homologous or site-specific recombination were used to demonstrate a new logic for engineering DNA, unlimited by the disposition of restriction endonuclease cleavage sites or the size of the target DNA.
Collapse
Affiliation(s)
- Y Zhang
- Gene Expression Program, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
134
|
Dymecki SM, Tomasiewicz H. Using Flp-recombinase to characterize expansion of Wnt1-expressing neural progenitors in the mouse. Dev Biol 1998; 201:57-65. [PMID: 9733573 DOI: 10.1006/dbio.1998.8971] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we demonstrate how a Flp recombinase-based tagging system can be used to link temporally distinct developmental events in the mouse. By directly following Flp-mediated DNA rearrangements we have analyzed the adult expansion of embryonic neural progenitors which transiently express the signaling factor Wnt1. We report Wnt1 promoter activity in embryonic cells that give rise to aspects of the adult midbrain, cerebellum, spinal cord, and dorsal root ganglia. These findings show that cells transiently expressing Wnt1 play more than an inductive role during early brain regionalization, giving rise to distinct adult brain regions as well as neural crest derivatives. Moreover, these results reveal two new features of the Flp-FRT system: First, Flp(F70L) can effectively recombine target sites (FRTs) placed in an endogenous locus in a variety of tissues in vivo, despite previous in vitro evidence of thermolability; and second, Flp(F70L) action can be predictably and tightly regulated in the mouse embryo, making it suitable for fate mapping applications. A further advantage of the Flp-FRT system is that marked lineages can ultimately be combined with germline mutations and deficiencies currently being generated using the Cre-loxP recombination system-in this way it should be possible to analyze mutant gene activities directly for their effect on cell fate.
Collapse
Affiliation(s)
- S M Dymecki
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts, 02115-5701, USA.
| | | |
Collapse
|
135
|
Buchholz F, Angrand PO, Stewart AF. Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 1998; 16:657-62. [PMID: 9661200 DOI: 10.1038/nbt0798-657] [Citation(s) in RCA: 297] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The site-specific recombinases FLP and Cre are useful for genomic engineering in many living systems. Manipulation of their enzymatic properties offers a means to improve their applicability in different host organisms. We chose to manipulate the thermolability of FLP recombinase. A lacZ-based recombination assay in Escherichia coli was used for selection in a protein evolution strategy that relied on error-prone PCR and DNA shuffling. Improved FLP recombinases were identified through cycles of increasing stringency imposed by both raising temperature and reducing protein expression, combined with repetitive cycles of screening at the same stringency to enrich for clones with improved fitness. An eighth generation clone (termed FLPe) showed improved properties in E. coli, in vitro, in human 293- and mouse ES-cells.
Collapse
Affiliation(s)
- F Buchholz
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | | |
Collapse
|
136
|
Angrand PO, Woodroofe CP, Buchholz F, Stewart AF. Inducible expression based on regulated recombination: a single vector strategy for stable expression in cultured cells. Nucleic Acids Res 1998; 26:3263-9. [PMID: 9628928 PMCID: PMC147674 DOI: 10.1093/nar/26.13.3263] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
When fused to the ligand binding domain (LBD) of steroid hormone nuclear receptors, site-specific recombinases (SSRs) acquire a ligand-dependent activity. Here, we describe the use of SSR-LBD fusion proteins in an inducible expression system, introduced into cells in a single step. A single transgene contains a constitutively active, bi-directional enhancer/promoter, which directs expression, on one side, of an SSR-LBD fusion protein gene and, on the other, a selectable marker/inducible gene cassette. The selectable marker, the puromycin acetyltransferase (pac) gene, is used for stable genomic integration of the transgene and is flanked by recombination target sites. The inducible gene is not expressed because the pac gene lies between it and the promoter. Activation of the SSR-LBD by a ligand induces recombination and the pac gene is excised. The inducible gene is thus positioned next to the promoter and so is expressed. This describes a ligand-inducible expression strategy that relies on regulated recombination rather than regulated transcription. By inducible expression of diptheria toxin, evidence that this system permits inducible expression of very toxic proteins is presented. The combination of the complete regulatory circuit and inducible gene in one transgene relates expression of the selectable marker gene to expression from the bi-directional enhancer/promoter. We exploit this relationship to show that graded increases in selection pressure can be used to select for clones with different induction properties.
Collapse
Affiliation(s)
- P O Angrand
- Gene Expression Program, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
137
|
Ringrose L, Angrand PO, Stewart AF. The Kw recombinase, an integrase from Kluyveromyces waltii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:903-12. [PMID: 9342245 DOI: 10.1111/j.1432-1033.1997.00903.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Site-specific recombinases of the integrase family share limited amino-acid-sequence similarity, but use a common reaction mechanism to recombine distinct DNA target sites. Here we report the characterisation of the Kw site-specific recombinase, encoded on the 2 mu-like plasmid pKWS1 from the yeast Kluyveromyces waltii. Using in vitro-translated Kw recombinase, we show that the protein is able to bind and to recombine its putative DNA target site. Recombination is conservative and the Kw target site has a spacer of seven base pairs. We show that Kw recombinase is able to mediate recombination in a mammalian cell line, thus, it has potential for use as a tool for genomic manipulation in heterologous systems.
Collapse
Affiliation(s)
- L Ringrose
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
138
|
Feil R, Wagner J, Metzger D, Chambon P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 1997; 237:752-7. [PMID: 9299439 DOI: 10.1006/bbrc.1997.7124] [Citation(s) in RCA: 762] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ligand-dependent chimeric Cre recombinases are powerful tools to induce specific DNA rearrangements in cultured cells and in mice. We report here the construction and characterization of a series of chimeric recombinases, each consisting of Cre fused to a mutated human oestrogen receptor (ER) ligand-binding domain (LBD). Two new ligand-dependent recombinases which contain either the G400V/M543A/L544A or the G400V/L539A/L540A triple mutation of the human ER LBD are efficiently induced by the synthetic ER antagonists 4-hydroxytamoxifen (OHT) and ICI 182,780 (ICI), respectively, but are insensitive to 17 beta-oestradiol (E2). Both chimeric recombinases should be useful for efficient spatio-temporally controlled site-directed somatic mutagenesis.
Collapse
Affiliation(s)
- R Feil
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, Illkirch, C.U. de Strasbourg, France
| | | | | | | |
Collapse
|
139
|
Schindelhauer D, Cooke HJ. Efficient combination of large DNA in vitro: in gel site specific recombination (IGSSR) of PAC fragments containing alpha satellite DNA and the human HPRT gene locus. Nucleic Acids Res 1997; 25:2241-3. [PMID: 9153331 PMCID: PMC146721 DOI: 10.1093/nar/25.11.2241] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In an attempt to combine a cloned genomic copy of a selectable gene with different cloned centromeric sequences to develop mammalian artificial chromosomes (MAC) we used site specific recombination mediated by purified Cre recombinase acting on the loxP sequence in PAC vector DNA. A new method was required to purify highly concentrated, virtually 100% intact PAC DNA which could be stored for a long period. Here we show the efficient linking of linearized PACs containing alpha satellite DNA from chromosomes X and 17 with sizes of 125 and 140 kb, respectively, to a 95 kb restriction fragment derived from a 175 kb PAC containing the intact human HPRT gene locus.
Collapse
Affiliation(s)
- D Schindelhauer
- MRC, Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK.
| | | |
Collapse
|
140
|
Abstract
Gene targeting in embryonic stem cells is commonly used for gene inactivation and the generation of mouse mutants. The combined use of methods for site-specific and homologous DNA recombination expands the potential of gene targeting in embryonic stem cells considerably and offers the opportunity of conditional gene targeting in mice.
Collapse
Affiliation(s)
- R Kühn
- Institute for Genetics, Department for Immunology, Cologne, Germany.
| | | |
Collapse
|