101
|
Hohnjec N, Lenz F, Fehlberg V, Vieweg MF, Baier MC, Hause B, Küster H. The signal peptide of the Medicago truncatula modular nodulin MtNOD25 operates as an address label for the specific targeting of proteins to nitrogen-fixing symbiosomes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:63-72. [PMID: 19061403 DOI: 10.1094/mpmi-22-1-0063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The nodule-specific MtNOD25 gene of the model legume Medicago truncatula encodes a modular nodulin composed of different repetitive modules flanked by distinct N- and C-termini. Although similarities are low with respect to all repetitive modules, both the N-terminal signal peptide (SP) and the C-terminus are highly conserved in modular nodulins from different legumes. On the cellular level, MtNOD25 is only transcribed in the infected cells of root nodules, and this activation is mediated by a 299-bp minimal promoter containing an organ-specific element. By expressing mGFP6 translational fusions in transgenic nodules, we show that MtNOD25 proteins are exclusively translocated to the symbiosomes of infected cells. This specific targeting only requires an N-terminal MtNOD25 SP that is highly conserved across a family of legume-specific symbiosome proteins. Our finding sheds light on one possible mechanism for the delivery of host proteins to the symbiosomes of infected root nodule cells and, in addition, defines a short molecular address label of only 24 amino acids whose N-terminal presence is sufficient to translocate proteins across the peribacteroid membrane.
Collapse
Affiliation(s)
- Natalija Hohnjec
- Institute for Genome Research and Systems Biology (IGS), Bielefeld University, Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
102
|
Flisikowski K, Schwarzenbacher H, Wysocki M, Weigend S, Preisinger R, Kjaer JB, Fries R. Variation in neighbouring genes of the dopaminergic and serotonergic systems affects feather pecking behaviour of laying hens. Anim Genet 2008; 40:192-9. [PMID: 19120086 DOI: 10.1111/j.1365-2052.2008.01821.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Feather pecking is a behavioural disorder of laying hens and has serious animal welfare and economic implications. One of the several aetiological hypotheses proposes that the disorder results from redirected exploratory behaviour. Variation in the gene encoding the dopamine D4 receptor (DRD4) has been shown to be associated with exploratory behaviour in several species, including in a passerine bird species. We therefore considered DRD4 as a candidate gene for feather pecking. We have annotated DRD4 in the chicken genome and have re-sequenced it in 140 animals belonging to: experimental layer lines divergently selected for high and low propensity to feather pecking; the unselected founder population; and two commercial lines with low and high propensity to feather pecking. We have identified two sub-haplotypes of DRD4 that are highly significantly associated with feather pecking behaviour in the experimental (P = 7.30 x 10(-7)) as well as in the commercial lines (P = 2.78 x 10(-6)). Linkage disequilibrium (LD) extends into a neighbouring gene encoding deformed epidermal autoregulatory factor 1 (DEAF1). The product of DEAF1 regulates the transcription of the gene encoding the serotonin (5-hydroxytryptamine) 1A receptor. Thus, DEAF1 represents another candidate gene for feather pecking. Re-sequencing of five animals homozygous for the 'low-pecking' sub-haplotype and of six animals homozygous for the 'high-pecking' sub-haplotype delineated an LD block of 14 833 bases spanning the two genes. None of the variants in the LD block is obviously functional. However, the haplotype information will be useful to select against the propensity to feather pecking in chicken and to elucidate the functional implications of the variants.
Collapse
Affiliation(s)
- K Flisikowski
- Lehrstuhl fuer Tierzucht, Technische Universitaet Muenchen, Hochfeldweg 1, 85354 Freising-Weihenstephan, Germany
| | | | | | | | | | | | | |
Collapse
|
103
|
Scheibye-Alsing K, Hoffmann S, Frankel A, Jensen P, Stadler PF, Mang Y, Tommerup N, Gilchrist MJ, Nygård AB, Cirera S, Jørgensen CB, Fredholm M, Gorodkin J. Sequence assembly. Comput Biol Chem 2008; 33:121-36. [PMID: 19152793 DOI: 10.1016/j.compbiolchem.2008.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 11/28/2008] [Accepted: 11/28/2008] [Indexed: 01/20/2023]
Abstract
Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies and plays an important role in processing the information generated by these methods. Here, we provide a comprehensive overview of the current publicly available sequence assembly programs. We describe the basic principles of computational assembly along with the main concerns, such as repetitive sequences in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html.
Collapse
Affiliation(s)
- K Scheibye-Alsing
- Division of Genetics and Bioinformatics, IBHV, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Fucile G, Falconer S, Christendat D. Evolutionary diversification of plant shikimate kinase gene duplicates. PLoS Genet 2008; 4:e1000292. [PMID: 19057671 PMCID: PMC2593004 DOI: 10.1371/journal.pgen.1000292] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 11/03/2008] [Indexed: 01/03/2023] Open
Abstract
Shikimate kinase (SK; EC 2.7.1.71) catalyzes the fifth reaction of the shikimate pathway, which directs carbon from the central metabolism pool to a broad range of secondary metabolites involved in plant development, growth, and stress responses. In this study, we demonstrate the role of plant SK gene duplicate evolution in the diversification of metabolic regulation and the acquisition of novel and physiologically essential function. Phylogenetic analysis of plant SK homologs resolves an orthologous cluster of plant SKs and two functionally distinct orthologous clusters. These previously undescribed genes, shikimate kinase-like 1 (SKL1) and -2 (SKL2), do not encode SK activity, are present in all major plant lineages, and apparently evolved under positive selection following SK gene duplication over 400 MYA. This is supported by functional assays using recombinant SK, SKL1, and SKL2 from Arabidopsis thaliana (At) and evolutionary analyses of the diversification of SK-catalytic and -substrate binding sites based on theoretical structure models. AtSKL1 mutants yield albino and novel variegated phenotypes, which indicate SKL1 is required for chloroplast biogenesis. Extant SKL2 sequences show a strong genetic signature of positive selection, which is enriched in a protein–protein interaction module not found in other SK homologs. We also report the first kinetic characterization of plant SKs and show that gene expression diversification among the AtSK inparalogs is correlated with developmental processes and stress responses. This study examines the functional diversification of ancient and recent plant SK gene duplicates and highlights the utility of SKs as scaffolds for functional innovation. Gene duplicates provide an opportunity for functional innovation by buffering their ancestral function. Mutations or genomic rearrangements altering when and where the duplicates are expressed, or the structure/function of the products encoded by the genes, can provide a selective advantage to the organism and are subsequently retained. In this study, we demonstrate that duplicates of genes encoding the metabolic enzyme shikimate kinase (SK) in plants have evolved to acquire novel gene product functions and novel gene expression patterns. We introduce two ancient genes, SKL1 and SKL2, present in all higher plant groups that were previously overlooked due to their overall similarity to the ancestral SKs from which they originated. SKL1 mutants in the model plant Arabidopsis indicate this gene is required for chloroplast biogenesis. We show that SKL2 acquired a protein–protein interaction domain that is evolving under positive selection. We also show that SK duplicates that retained their ancestral enzyme function have acquired new expression patterns correlated with developmental processes and stress responses. These findings demonstrate that plant SK evolution has played an important role in both the acquisition of novel gene function as well as the diversification of metabolic regulation.
Collapse
Affiliation(s)
- Geoffrey Fucile
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - Shannon Falconer
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - Dinesh Christendat
- Department of Cell and Systems Biology, University of Toronto, Canada
- * E-mail:
| |
Collapse
|
105
|
Arai Y, Hayashi M, Nishimura M. Proteomic identification and characterization of a novel peroxisomal adenine nucleotide transporter supplying ATP for fatty acid beta-oxidation in soybean and Arabidopsis. THE PLANT CELL 2008; 20:3227-40. [PMID: 19073762 PMCID: PMC2630451 DOI: 10.1105/tpc.108.062877] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/05/2008] [Accepted: 11/18/2008] [Indexed: 05/17/2023]
Abstract
We have identified the novel protein Glycine max PEROXISOMAL ADENINE NUCLEOTIDE CARRIER (Gm PNC1) by proteomic analyses of peroxisomal membrane proteins using a blue native/SDS-PAGE technique combined with peptide mass fingerprinting. Gm PNC1, and the Arabidopsis thaliana orthologs At PNC1 and At PNC2, were targeted to peroxisomes. Functional integration of Gm PNC1 and At PNC2 into the cytoplasmic membranes of intact Escherichia coli cells revealed ATP and ADP import activities. The amount of Gm PNC1 in cotyledons increased until 5 d after germination under constant darkness and then decreased very rapidly in response to illumination. We investigated the physiological functions of PNC1 in peroxisomal metabolism by analyzing a transgenic Arabidopsis plant in which At PNC1 and At PNC2 expression was suppressed using RNA interference. The pnc1/2i mutant required sucrose for germination and suppressed the degradation of storage lipids during postgerminative growth. These results suggest that PNC1 contributes to the transport of adenine nucleotides that are consumed by reactions that generate acyl-CoA for peroxisomal fatty acid beta-oxidation during postgerminative growth.
Collapse
Affiliation(s)
- Yuko Arai
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585 Japan
| | | | | |
Collapse
|
106
|
Koop BF, von Schalburg KR, Leong J, Walker N, Lieph R, Cooper GA, Robb A, Beetz-Sargent M, Holt RA, Moore R, Brahmbhatt S, Rosner J, Rexroad CE, McGowan CR, Davidson WS. A salmonid EST genomic study: genes, duplications, phylogeny and microarrays. BMC Genomics 2008; 9:545. [PMID: 19014685 PMCID: PMC2628678 DOI: 10.1186/1471-2164-9-545] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 11/17/2008] [Indexed: 11/24/2022] Open
Abstract
Background Salmonids are of interest because of their relatively recent genome duplication, and their extensive use in wild fisheries and aquaculture. A comprehensive gene list and a comparison of genes in some of the different species provide valuable genomic information for one of the most widely studied groups of fish. Results 298,304 expressed sequence tags (ESTs) from Atlantic salmon (69% of the total), 11,664 chinook, 10,813 sockeye, 10,051 brook trout, 10,975 grayling, 8,630 lake whitefish, and 3,624 northern pike ESTs were obtained in this study and have been deposited into the public databases. Contigs were built and putative full-length Atlantic salmon clones have been identified. A database containing ESTs, assemblies, consensus sequences, open reading frames, gene predictions and putative annotation is available. The overall similarity between Atlantic salmon ESTs and those of rainbow trout, chinook, sockeye, brook trout, grayling, lake whitefish, northern pike and rainbow smelt is 93.4, 94.2, 94.6, 94.4, 92.5, 91.7, 89.6, and 86.2% respectively. An analysis of 78 transcript sets show Salmo as a sister group to Oncorhynchus and Salvelinus within Salmoninae, and Thymallinae as a sister group to Salmoninae and Coregoninae within Salmonidae. Extensive gene duplication is consistent with a genome duplication in the common ancestor of salmonids. Using all of the available EST data, a new expanded salmonid cDNA microarray of 32,000 features was created. Cross-species hybridizations to this cDNA microarray indicate that this resource will be useful for studies of all 68 salmonid species. Conclusion An extensive collection and analysis of salmonid RNA putative transcripts indicate that Pacific salmon, Atlantic salmon and charr are 94–96% similar while the more distant whitefish, grayling, pike and smelt are 93, 92, 89 and 86% similar to salmon. The salmonid transcriptome reveals a complex history of gene duplication that is consistent with an ancestral salmonid genome duplication hypothesis. Genome resources, including a new 32 K microarray, provide valuable new tools to study salmonids.
Collapse
Affiliation(s)
- Ben F Koop
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W3N5, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
An exceptional salt-tolerant antimicrobial peptide derived from a novel gene family of haemocytes of the marine invertebrate Ciona intestinalis. Biochem J 2008; 416:65-75. [PMID: 18598239 DOI: 10.1042/bj20080398] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel gene family coding for putative antimicrobial peptides was identified in the EST (expressed sequence tag) database of the sea squirt Ciona intestinalis, and one of these genes was molecularly cloned from the Northern European Ciona subspecies. In situ hybridization and immunocytochemical analysis revealed that the natural peptide is synthesized and stored in a distinct haemocyte type, the univacuolar non-refractile granulocytes. By semiquantitative RT-PCR (reverse transcription-PCR) analysis, it was shown that the expression of the gene is markedly up-regulated in haemocytes after immune challenge. To evaluate the antimicrobial potency of the putative defence protein, we synthesized a peptide corresponding to its cationic core region. The peptide was highly effective against Gram-negative and Gram-positive bacteria including several human and marine pathogens as well as the yeast Candida albicans. Notably, the antibacterial activity of the peptide was retained at salt concentrations of up to 450 mM NaCl. Using two different methods we demonstrated that the peptide kills Gram-negative and Gram-positive bacteria by permeabilizing their cytoplasmic membranes. CD spectroscopy revealed that, in the presence of liposomes composed of negatively charged phospholipids, the peptide undergoes a conformational change and adopts an alpha-helical structure. Moreover, the peptide was virtually non-cytolytic for mammalian erythrocytes. Hence, the designed salt-tolerant antimicrobial peptide may represent a valuable template for the development of novel antibiotics.
Collapse
|
108
|
SnSAG5 is an alternative surface antigen of Sarcocystis neurona strains that is mutually exclusive to SnSAG1. Vet Parasitol 2008; 158:36-43. [DOI: 10.1016/j.vetpar.2008.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 08/18/2008] [Accepted: 08/18/2008] [Indexed: 11/20/2022]
|
109
|
Evans H, De Tomaso T, Quail M, Rogers J, Gracey AY, Cossins AR, Berenbrink M. Ancient and modern duplication events and the evolution of stearoyl-CoA desaturases in teleost fishes. Physiol Genomics 2008; 35:18-29. [PMID: 18593860 PMCID: PMC2536826 DOI: 10.1152/physiolgenomics.90266.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 06/26/2008] [Indexed: 11/22/2022] Open
Abstract
Stearoyl-CoA desaturases (SCDs) are key enzymes of fatty acid biosynthesis whose regulation underpins responses to dietary, thermal, and hormonal treatment. Although two isoforms are known to exist in the common carp and human and four in mouse, there is no coherent view on how this gene family evolved to generate functionally diverse members. Here we identify numerous new SCD homologs in teleost fishes, using sequence data from expressed sequence tag (EST) and cDNA collections and genomic model species. Phylogenetic analyses of the deduced coding sequences produced only partially resolved molecular trees. The multiple SCD isoforms were, however, consistent with having arisen by an ancient gene duplication event in teleost fishes together with a more recent duplication in the tetraploid carp and possibly also salmonid lineages. Critical support for this interpretation comes from comparison across all vertebrate groups of the gene order in the genomic environments of the SCD isoforms. Using syntenically aligned chromosomal fragments from large-insert clones of common carp and grass carp together with those from genomically sequenced model species, we show that the ancient and modern SCD duplication events in the carp lineage were each associated with large chromosomal segment duplications, both possibly linked to whole genome duplications. By contrast, the four mouse isoforms likely arose by tandem duplications. Each duplication in the carp lineage gave rise to differentially expressed SCD isoforms, either induced by cold or diet as previously shown for the recent duplicated carp isoforms or tissue specific as demonstrated here for the ancient duplicate zebrafish isoforms.
Collapse
Affiliation(s)
- Helen Evans
- School of Biological Sciences, University of Liverpool, Liverpool, UK
| | | | | | | | | | | | | |
Collapse
|
110
|
Lijoi A, Prünster I, Walker SG. Bayesian nonparametric estimators derived from conditional Gibbs structures. ANN APPL PROBAB 2008. [DOI: 10.1214/07-aap495] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
111
|
Simmons DG, Rawn S, Davies A, Hughes M, Cross JC. Spatial and temporal expression of the 23 murine Prolactin/Placental Lactogen-related genes is not associated with their position in the locus. BMC Genomics 2008; 9:352. [PMID: 18662396 PMCID: PMC2527339 DOI: 10.1186/1471-2164-9-352] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 07/28/2008] [Indexed: 02/06/2023] Open
Abstract
Background The Prolactin (PRL) hormone gene family shows considerable variation among placental mammals. Whereas there is a single PRL gene in humans that is expressed by the pituitary, there are an additional 22 genes in mice including the placental lactogens (PL) and Prolactin-related proteins (PLPs) whose expression is limited to the placenta. To understand the regulation and potential functions of these genes, we conducted a detailed temporal and spatial expression study in the placenta between embryonic days 7.5 and E18.5 in three genetic strains. Results Of the 22 PRL/PL genes examined, only minor differences were observed among strains of mice. We found that not one family member has the same expression pattern as another when both temporal and spatial data were examined. There was also no correlation in expression between genes that were most closely related or between adjacent genes in the PRL/PL locus. Bioinformatic analysis of upstream regulatory regions identified conserved combinations (modules) of putative transcription factor binding sites shared by genes expressed in the same trophoblast subtype, supporting the notion that local regulatory elements, rather than locus control regions, specify subtype-specific expression. Further diversification in expression was also detected as splice variants for several genes. Conclusion In the present study, a detailed temporal and spatial placental expression map was generated for all murine PRL/PL family members from E7.5 to E18.5 of gestation in three genetic strains. This detailed analysis uncovered several new markers for some trophoblast cell types that will be useful for future analysis of placental structure in mutant mice with placental phenotypes. More importantly, several main conclusions about regulation of the locus are apparent. First, no two family members have the same expression pattern when both temporal and spatial data are examined. Second, most genes are expressed in multiple trophoblast cell subtypes though none were detected in the chorion, where trophoblast stem cells reside, or in syncytiotrophoblast of the labyrinth layer. Third, bioinformatic comparisons of upstream regulatory regions identified predicted transcription factor binding site modules that are shared by genes expressed in the same trophoblast subtype. Fourth, further diversification of gene products from the PRL/PL locus occurs through alternative splice isoforms for several genes.
Collapse
Affiliation(s)
- David G Simmons
- Department of Comparative Biology & Experimental Medicine, The University of Calgary, Calgary, Canada.
| | | | | | | | | |
Collapse
|
112
|
Kloosterman B, De Koeyer D, Griffiths R, Flinn B, Steuernagel B, Scholz U, Sonnewald S, Sonnewald U, Bryan GJ, Prat S, Bánfalvi Z, Hammond JP, Geigenberger P, Nielsen KL, Visser RGF, Bachem CWB. Genes driving potato tuber initiation and growth: identification based on transcriptional changes using the POCI array. Funct Integr Genomics 2008; 8:329-40. [PMID: 18504629 DOI: 10.1007/s10142-008-0083-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 04/04/2008] [Accepted: 04/06/2008] [Indexed: 11/28/2022]
Abstract
The increasing amount of available expressed gene sequence data makes whole-transcriptome analysis of certain crop species possible. Potato currently has the second largest number of publicly available expressed sequence tag (EST) sequences among the Solanaceae. Most of these ESTs, plus other proprietary sequences, were combined and used to generate a unigene assembly. The set of 246,182 sequences produced 46,345 unigenes, which were used to design a 44K 60-mer oligo array (Potato Oligo Chip Initiative: POCI). In this study, we attempt to identify genes controlling and driving the process of tuber initiation and growth by implementing large-scale transcriptional changes using the newly developed POCI array. Major gene expression profiles could be identified exhibiting differential expression at key developmental stages. These profiles were associated with functional roles in cell division and growth. A subset of genes involved in the regulation of the cell cycle, based on their Gene Ontology classification, exhibit a clear transient upregulation at tuber onset indicating increased cell division during these stages. The POCI array allows the study of potato gene expression on a much broader level than previously possible and will greatly enhance analysis of transcriptional control mechanisms in a wide range of potato research areas. POCI sequence and annotation data are publicly available through the POCI database ( http://pgrc.ipk-gatersleben.de/poci ).
Collapse
Affiliation(s)
- Bjorn Kloosterman
- Wageningen UR Plant Breeding, Wageningen University and Research Center, P.O. Box 386, 6700, AJ, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Lee Y, Quackenbush J. Using the TIGR gene index databases for biological discovery. ACTA ACUST UNITED AC 2008; Chapter 1:Unit 1.6. [PMID: 18428690 DOI: 10.1002/0471250953.bi0106s03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The TIGR Gene Index web pages provide access to analyses of ESTs and gene sequences for nearly 60 species, as well as a number of resources derived from these. Each species-specific database is presented using a common format with a homepage. A variety of methods exist that allow users to search each species-specific database. Methods implemented currently include nucleotide or protein sequence queries using WU-BLAST, text-based searches using various sequence identifiers, searches by gene, tissue and library name, and searches using functional classes through Gene Ontology assignments. This protocol provides guidance for using the Gene Index Databases to extract information.
Collapse
Affiliation(s)
- Yuandan Lee
- The Institute for Genomic Research, Rockville, Maryland, USA
| | | |
Collapse
|
114
|
Arai Y, Hayashi M, Nishimura M. Proteomic analysis of highly purified peroxisomes from etiolated soybean cotyledons. PLANT & CELL PHYSIOLOGY 2008; 49:526-39. [PMID: 18281324 DOI: 10.1093/pcp/pcn027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To identify previously unknown peroxisomal proteins, we established an optimized method for isolating highly purified peroxisomes from etiolated soybean cotyledons using Percoll density gradient centrifugation followed by iodixanol density gradient centrifugation. Proteins in highly purified peroxisomes were separated by two-dimensional PAGE. We performed peptide mass fingerprinting of proteins separated in the gel with matrix-assisted laser desorption ionization time-of-flight mass spectrometry and used the peptide mass fingerprints to search a non-redundant soybean expressed sequence tag database. We succeeded in assigning 92 proteins to 70 sequences in the database. Among them, proteins encoded by 30 sequences were judged to be located in peroxisomes. These included enzymes for fatty acid beta-oxidation, the glyoxylate cycle, photorespiratory glycolate metabolism, stress response and metabolite transport. We also show experimental evidence that plant peroxisomes contain a short-chain dehydrogenase/reductase family protein, enoyl-CoA hydratase/isomerase family protein, 3-hydroxyacyl-CoA dehydrogenase-like protein and a voltage-dependent anion-selective channel protein.
Collapse
Affiliation(s)
- Yuko Arai
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585 Japan
| | | | | |
Collapse
|
115
|
Replogle K, Arnold AP, Ball GF, Band M, Bensch S, Brenowitz EA, Dong S, Drnevich J, Ferris M, George JM, Gong G, Hasselquist D, Hernandez AG, Kim R, Lewin HA, Liu L, Lovell PV, Mello CV, Naurin S, Rodriguez-Zas S, Thimmapuram J, Wade J, Clayton DF. The Songbird Neurogenomics (SoNG) Initiative: community-based tools and strategies for study of brain gene function and evolution. BMC Genomics 2008; 9:131. [PMID: 18366674 PMCID: PMC2329646 DOI: 10.1186/1471-2164-9-131] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 03/18/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Songbirds hold great promise for biomedical, environmental and evolutionary research. A complete draft sequence of the zebra finch genome is imminent, yet a need remains for application of genomic resources within a research community traditionally focused on ethology and neurobiological methods. In response, we developed a core set of genomic tools and a novel collaborative strategy to probe gene expression in diverse songbird species and natural contexts. RESULTS We end-sequenced cDNAs from zebra finch brain and incorporated additional sequences from community sources into a database of 86,784 high quality reads. These assembled into 31,658 non-redundant contigs and singletons, which we annotated via BLAST search of chicken and human databases. The results are publicly available in the ESTIMA:Songbird database. We produced a spotted cDNA microarray with 20,160 addresses representing 17,214 non-redundant products of an estimated 11,500-15,000 genes, validating it by analysis of immediate-early gene (zenk) gene activation following song exposure and by demonstrating effective cross hybridization to genomic DNAs of other songbird species in the Passerida Parvorder. Our assembly was also used in the design of the "Lund-zfa" Affymetrix array representing approximately 22,000 non-redundant sequences. When the two arrays were hybridized to cDNAs from the same set of male and female zebra finch brain samples, both arrays detected a common set of regulated transcripts with a Pearson correlation coefficient of 0.895. To stimulate use of these resources by the songbird research community and to maintain consistent technical standards, we devised a "Community Collaboration" mechanism whereby individual birdsong researchers develop experiments and provide tissues, but a single individual in the community is responsible for all RNA extractions, labelling and microarray hybridizations. CONCLUSION Immediately, these results set the foundation for a coordinated set of 25 planned experiments by 16 research groups probing fundamental links between genome, brain, evolution and behavior in songbirds. Energetic application of genomic resources to research using songbirds should help illuminate how complex neural and behavioral traits emerge and evolve.
Collapse
Affiliation(s)
- Kirstin Replogle
- Cell & Developmental Biology, Univ. of Illinois, Urbana, IL, USA
- Institute for Genomic Biology, Univ. of Illinois, Urbana, IL, USA
| | | | - Gregory F Ball
- Psychological & Brain Sci., Johns Hopkins Univ., Baltimore, MD, USA
| | - Mark Band
- W.M. Keck Center for Comparative & Functional Genomics, Univ. of Illinois, Urbana, IL, USA
| | | | - Eliot A Brenowitz
- Psychology, Biology, and Bloedel Hearing Research Center, Univ. of Washington, Seattle, WA, USA
| | - Shu Dong
- Cell & Developmental Biology, Univ. of Illinois, Urbana, IL, USA
| | - Jenny Drnevich
- W.M. Keck Center for Comparative & Functional Genomics, Univ. of Illinois, Urbana, IL, USA
| | | | - Julia M George
- Mol. & Integrative Physiology, Univ. of Illinois, Urbana, IL, USA
| | - George Gong
- W.M. Keck Center for Comparative & Functional Genomics, Univ. of Illinois, Urbana, IL, USA
| | | | - Alvaro G Hernandez
- W.M. Keck Center for Comparative & Functional Genomics, Univ. of Illinois, Urbana, IL, USA
| | - Ryan Kim
- W.M. Keck Center for Comparative & Functional Genomics, Univ. of Illinois, Urbana, IL, USA
| | - Harris A Lewin
- Institute for Genomic Biology, Univ. of Illinois, Urbana, IL, USA
- Animal Sciences, Univ. of Illinois, Urbana, IL, USA
| | - Lei Liu
- W.M. Keck Center for Comparative & Functional Genomics, Univ. of Illinois, Urbana, IL, USA
| | - Peter V Lovell
- Neurological Sci. Inst., Oregon Hlth. Sci. Univ., Beaverton, OR, USA
| | - Claudio V Mello
- Neurological Sci. Inst., Oregon Hlth. Sci. Univ., Beaverton, OR, USA
| | - Sara Naurin
- Animal Ecology, Lund University, S-223 62 Lund, Sweden
| | | | - Jyothi Thimmapuram
- W.M. Keck Center for Comparative & Functional Genomics, Univ. of Illinois, Urbana, IL, USA
| | - Juli Wade
- Psychology, Zoology & Neuroscience, Michigan State Univ., East Lansing, MI, USA
| | - David F Clayton
- Cell & Developmental Biology, Univ. of Illinois, Urbana, IL, USA
- Institute for Genomic Biology, Univ. of Illinois, Urbana, IL, USA
- Neuroscience Program, Univ. of Illinois, Urbana, IL, USA
| |
Collapse
|
116
|
Morin RD, Aksay G, Dolgosheina E, Ebhardt HA, Magrini V, Mardis ER, Sahinalp SC, Unrau PJ. Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Res 2008; 18:571-84. [PMID: 18323537 DOI: 10.1101/gr.6897308] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The diversity of microRNAs and small-interfering RNAs has been extensively explored within angiosperms by focusing on a few key organisms such as Oryza sativa and Arabidopsis thaliana. A deeper division of the plants is defined by the radiation of the angiosperms and gymnosperms, with the latter comprising the commercially important conifers. The conifers are expected to provide important information regarding the evolution of highly conserved small regulatory RNAs. Deep sequencing provides the means to characterize and quantitatively profile small RNAs in understudied organisms such as these. Pyrosequencing of small RNAs from O. sativa revealed, as expected, approximately 21- and approximately 24-nt RNAs. The former contained known microRNAs, and the latter largely comprised intergenic-derived sequences likely representing heterochromatin siRNAs. In contrast, sequences from Pinus contorta were dominated by 21-nt small RNAs. Using a novel sequence-based clustering algorithm, we identified sequences belonging to 18 highly conserved microRNA families in P. contorta as well as numerous clusters of conserved small RNAs of unknown function. Using multiple methods, including expressed sequence folding and machine learning algorithms, we found a further 53 candidate novel microRNA families, 51 appearing specific to the P. contorta library. In addition, alignment of small RNA sequences to the O. sativa genome revealed six perfectly conserved classes of small RNA that included chloroplast transcripts and specific types of genomic repeats. The conservation of microRNAs and other small RNAs between the conifers and the angiosperms indicates that important RNA silencing processes were highly developed in the earliest spermatophytes. Genomic mapping of all sequences to the O. sativa genome can be viewed at http://microrna.bcgsc.ca/cgi-bin/gbrowse/rice_build_3/.
Collapse
Affiliation(s)
- Ryan D Morin
- Genome Sciences Centre, BC Cancer Agency, Vancouver V5Z 1L3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Sunter JD, Patel SP, Skilton RA, Githaka N, Knowles DP, Scoles GA, Nene V, de Villiers E, Bishop RP. A novel SINE family occurs frequently in both genomic DNA and transcribed sequences in ixodid ticks of the arthropod sub-phylum Chelicerata. Gene 2008; 415:13-22. [PMID: 18394826 DOI: 10.1016/j.gene.2008.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 01/14/2008] [Accepted: 01/30/2008] [Indexed: 11/18/2022]
Abstract
Reassociation kinetics and flow cytometry data indicate that ixodid tick genomes are large, relative to most arthropods, containing>or=10(9) base pairs. The molecular basis for this is unknown. We have identified a novel small interspersed element with features of a tRNA-derived SINE, designated Ruka, in genomic sequences of Rhipicephalus appendiculatus and Boophilus (Rhipicephalus) microplus ticks. The SINE was also identified in expressed sequence tag (EST) databases derived from several tissues in four species of ixodid ticks, namely R. appendiculatus, B. (R.) microplus, Amblyomma variegatum and also the more distantly related Ixodes scapularis. Secondary structure predictions indicated that Ruka could adopt a tRNA structure that was, atypically, most similar to a serine tRNA. By extrapolation the frequency of occurrence in the randomly selected BAC clone sequences is consistent with approximately 65,000 copies of Ruka in the R. appendiculatus genome. Real time PCR analyses on genomic DNA indicate copy numbers for specific Ruka subsets between 5800 and 38,000. Several putative conserved Ruka insertion sites were identified in EST sequences of three ixodid tick species based on the flanking sequences associated with the SINEs, indicating that some Ruka transpositions probably occurred prior to speciation within the metastriate division of the Ixodidae. The data strongly suggest that Class I transposable elements form a significant component of tick genomes and may partially account for the large genome sizes observed.
Collapse
Affiliation(s)
- Jack D Sunter
- The International Livestock Research Institute (ILRI), PO Box 30709, Nairobi, Kenya
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Natera SHA, Ford KL, Cassin AM, Patterson JH, Newbigin EJ, Bacic A. Analysis of the Oryza sativa Plasma Membrane Proteome Using Combined Protein and Peptide Fractionation Approaches in Conjunction with Mass Spectrometry. J Proteome Res 2008; 7:1159-87. [DOI: 10.1021/pr070255c] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Siria H. A. Natera
- Plant Cell Biology Research Centre and Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, VIC 3010, Australia
| | - Kristina L. Ford
- Plant Cell Biology Research Centre and Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, VIC 3010, Australia
| | - Andrew M. Cassin
- Plant Cell Biology Research Centre and Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, VIC 3010, Australia
| | - John H. Patterson
- Plant Cell Biology Research Centre and Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, VIC 3010, Australia
| | - Edward J. Newbigin
- Plant Cell Biology Research Centre and Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, VIC 3010, Australia
| | - Antony Bacic
- Plant Cell Biology Research Centre and Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
119
|
Ossowski S, Schwab R, Weigel D. Gene silencing in plants using artificial microRNAs and other small RNAs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:674-90. [PMID: 18269576 DOI: 10.1111/j.1365-313x.2007.03328.x] [Citation(s) in RCA: 430] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Comprehensive analysis of gene function requires the detailed examination of mutant alleles. In Arabidopsis thaliana, large collections of sequence-indexed insertion and chemical mutants provide potential loss-of-function alleles for most annotated genes. However, limitations for phenotypic analysis include gametophytic or early sporophytic lethality, and the ability to recombine mutant alleles in closely linked genes, especially those present as tandem duplications. Transgene-mediated gene silencing can overcome some of these shortcomings through tissue-specific, inducible and partial gene inactivation, or simultaneous targeting of several, sequence-related genes. In addition, gene silencing is a convenient approach in species or varieties for which exhaustive mutant collections are not yet available. Typically, gene function is reduced post-transcriptionally, effected by small RNAs that act in a sequence-specific manner by base pairing to complementary mRNA molecules. A recently introduced approach is the use of artificial microRNAs (amiRNAs). Here, we review various strategies for small RNA-based gene silencing, and describe in detail the design and application of amiRNAs in many plant species.
Collapse
Affiliation(s)
- Stephan Ossowski
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | | | |
Collapse
|
120
|
Nagel J, Culley LK, Lu Y, Liu E, Matthews PD, Stevens JF, Page JE. EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. THE PLANT CELL 2008; 20:186-200. [PMID: 18223037 PMCID: PMC2254931 DOI: 10.1105/tpc.107.055178] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 12/05/2007] [Accepted: 01/09/2008] [Indexed: 05/18/2023]
Abstract
The glandular trichomes (lupulin glands) of hop (Humulus lupulus) synthesize essential oils and terpenophenolic resins, including the bioactive prenylflavonoid xanthohumol. To dissect the biosynthetic processes occurring in lupulin glands, we sequenced 10,581 ESTs from four trichome-derived cDNA libraries. ESTs representing enzymes of terpenoid biosynthesis, including all of the steps of the methyl 4-erythritol phosphate pathway, were abundant in the EST data set, as were ESTs for the known type III polyketide synthases of bitter acid and xanthohumol biosynthesis. The xanthohumol biosynthetic pathway involves a key O-methylation step. Four S-adenosyl-l-methionine-dependent O-methyltransferases (OMTs) with similarity to known flavonoid-methylating enzymes were present in the EST data set. OMT1, which was the most highly expressed OMT based on EST abundance and RT-PCR analysis, performs the final reaction in xanthohumol biosynthesis by methylating desmethylxanthohumol to form xanthohumol. OMT2 accepted a broad range of substrates, including desmethylxanthohumol, but did not form xanthohumol. Mass spectrometry and proton nuclear magnetic resonance analysis showed it methylated xanthohumol to 4-O-methylxanthohumol, which is not known from hop. OMT3 was inactive with all substrates tested. The lupulin gland-specific EST data set expands the genomic resources for H. lupulus and provides further insight into the metabolic specialization of glandular trichomes.
Collapse
Affiliation(s)
- Jana Nagel
- National Research Council-Plant Biotechnology Institute, Saskatoon, Saskatchewan, Canada S7N 0W9
| | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
In recent years, genome-wide detection of alternative splicing based on Expressed Sequence Tag (EST) sequence alignments with mRNA and genomic sequences has dramatically expanded our understanding of the role of alternative splicing in functional regulation. This chapter reviews the data, methodology, and technical challenges of these genome-wide analyses of alternative splicing, and briefly surveys some of the uses to which such alternative splicing databases have been put. For example, with proper alternative splicing database schema design, it is possible to query genome-wide for alternative splicing patterns that are specific to particular tissues, disease states (e.g., cancer), gender, or developmental stages. EST alignments can be used to estimate exon inclusion or exclusion level of alternatively spliced exons and evolutionary changes for various species can be inferred from exon inclusion level. Such databases can also help automate design of probes for RT-PCR and microarrays, enabling high throughput experimental measurement of alternative splicing.
Collapse
|
122
|
O'Rourke JA, Charlson DV, Gonzalez DO, Vodkin LO, Graham MA, Cianzio SR, Grusak MA, Shoemaker RC. Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines. BMC Genomics 2007; 8:476. [PMID: 18154662 PMCID: PMC2253546 DOI: 10.1186/1471-2164-8-476] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 12/21/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Iron is one of fourteen mineral elements required for proper plant growth and development of soybean (Glycine max L. Merr.). Soybeans grown on calcareous soils, which are prevalent in the upper Midwest of the United States, often exhibit symptoms indicative of iron deficiency chlorosis (IDC). Yield loss has a positive linear correlation with increasing severity of chlorotic symptoms. As soybean is an important agronomic crop, it is essential to understand the genetics and physiology of traits affecting plant yield. Soybean cultivars vary greatly in their ability to respond successfully to iron deficiency stress. Microarray analyses permit the identification of genes and physiological processes involved in soybean's response to iron stress. RESULTS RNA isolated from the roots of two near isogenic lines, which differ in iron efficiency, PI 548533 (Clark; iron efficient) and PI 547430 (IsoClark; iron inefficient), were compared on a spotted microarray slide containing 9,728 cDNAs from root specific EST libraries. A comparison of RNA transcripts isolated from plants grown under iron limiting hydroponic conditions for two weeks revealed 43 genes as differentially expressed. A single linkage clustering analysis of these 43 genes showed 57% of them possessed high sequence similarity to known stress induced genes. A control experiment comparing plants grown under adequate iron hydroponic conditions showed no differences in gene expression between the two near isogenic lines. Expression levels of a subset of the differentially expressed genes were also compared by real time reverse transcriptase PCR (RT-PCR). The RT-PCR experiments confirmed differential expression between the iron efficient and iron inefficient plants for 9 of 10 randomly chosen genes examined. To gain further insight into the iron physiological status of the plants, the root iron reductase activity was measured in both iron efficient and inefficient genotypes for plants grown under iron sufficient and iron limited conditions. Iron inefficient plants failed to respond to decreased iron availability with increased activity of Fe reductase. CONCLUSION These experiments have identified genes involved in the soybean iron deficiency chlorosis response under iron deficient conditions. Single linkage cluster analysis suggests iron limited soybeans mount a general stress response as well as a specialized iron deficiency stress response. Root membrane bound reductase capacity is often correlated with iron efficiency. Under iron-limited conditions, the iron efficient plant had high root bound membrane reductase capacity while the iron inefficient plants reductase levels remained low, further limiting iron uptake through the root. Many of the genes up-regulated in the iron inefficient NIL are involved in known stress induced pathways. The most striking response of the iron inefficient genotype to iron deficiency stress was the induction of a profusion of signaling and regulatory genes, presumably in an attempt to establish and maintain cellular homeostasis. Genes were up-regulated that point toward an increased transport of molecules through membranes. Genes associated with reactive oxidative species and an ROS-defensive enzyme were also induced. The up-regulation of genes involved in DNA repair and RNA stability reflect the inhospitable cellular environment resulting from iron deficiency stress. Other genes were induced that are involved in protein and lipid catabolism; perhaps as an effort to maintain carbon flow and scavenge energy. The under-expression of a key glycolitic gene may result in the iron-inefficient genotype being energetically challenged to maintain a stable cellular environment. These experiments have identified candidate genes and processes for further experimentation to increase our understanding of soybeans' response to iron deficiency stress.
Collapse
Affiliation(s)
- Jamie A O'Rourke
- Department of Genetics, Developmental and Cellular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Dirk V Charlson
- Department of Crop, Soil, and Environmental Sciences. University of Arkansas, Fayetteville, Arkansas 72704, USA
| | - Delkin O Gonzalez
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Lila O Vodkin
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Michelle A Graham
- USDA-ARS, Corn Insect and Crop Genetics Research Unit, Iowa State University, Ames, Iowa 50011, USA
- Agronomy Department, Iowa State University, Ames, Iowa 50011, USA
| | - Silvia R Cianzio
- Agronomy Department, Iowa State University, Ames, Iowa 50011, USA
| | - Michael A Grusak
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Randy C Shoemaker
- USDA-ARS, Corn Insect and Crop Genetics Research Unit, Iowa State University, Ames, Iowa 50011, USA
- Agronomy Department, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
123
|
Major IT, Constabel CP. Shoot–root defense signaling and activation of root defense by leaf damage in poplarThis article is one of a selection of papers published in the Special Issue on Poplar Research in Canada. ACTA ACUST UNITED AC 2007. [DOI: 10.1139/b07-090] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Shoot–root systemic defense signaling of hybrid poplar (Populus trichocarpa Torr. & A. Gray × Populus deltoides Bartr. ex Marsh.) was investigated with molecular techniques to extend existing knowledge of poplar defense. Treatment of roots with methyl jasmonate demonstrated that transcripts of PtdTI3, a poplar trypsin inhibitor and marker of poplar defense responses, can be induced in poplar roots as well as leaves. Moreover, simulated herbivory of poplar leaves with methyl jasmonate treatment or wounding with pliers also induced PtdTI3 mRNA in roots, which implies downward, or basipetal, systemic signaling from shoots to roots. In addition, the inducible root-defense response comprised both increased PtdTI3 protein levels and trypsin-inhibitor activity. The inducible systemic response was further investigated with comparative macroarray analyses which indicated that in addition to PtdTI3, other genes respond in roots after wounding and methyl jasmonate treatment of leaves. The majority of the 17 genes encode previously identified leaf herbivory defense genes; however, some genes strongly up-regulated in leaves were not induced in roots. The identification of multiple defense genes that are inducible in roots following leaf damage is clear evidence of a systemic defense response in roots and the presence of basipetal shoot–root defense signaling.
Collapse
Affiliation(s)
- Ian T. Major
- Centre for Forest Biology and Biology Department, University of Victoria, P.O. Box 3020, Stn. CSC, Victoria, BC V8W 3N5, Canada
| | - C. Peter Constabel
- Centre for Forest Biology and Biology Department, University of Victoria, P.O. Box 3020, Stn. CSC, Victoria, BC V8W 3N5, Canada
| |
Collapse
|
124
|
Blanding CR, Simmons SJ, Casati P, Walbot V, Stapleton AE. Coordinated regulation of maize genes during increasing exposure to ultraviolet radiation: identification of ultraviolet-responsive genes, functional processes and associated potential promoter motifs. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:677-95. [PMID: 17924934 DOI: 10.1111/j.1467-7652.2007.00282.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Genetic gain in the yield of modern maize reflects increased stress tolerance. The manipulation of genes for deliberate alterations in tolerance relies on an understanding of the regulation and components of stress responses. Transcriptome analysis of an ultraviolet (UV) radiation time course with paired treatment and control measurements yielded groups of coordinately regulated genes and gene ontology processes. A comparison of the patterns of gene expression with patterns of morphological changes allowed the identification of physiologically relevant gene expression regulons. A set of genes significantly affected by UV radiation in maize leaves was selected by linear modelling plus order-restricted inference profile matches. This gene list was used to find upstream sequence motifs that predict the UV regulation of maize gene expression.
Collapse
Affiliation(s)
- Carletha R Blanding
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, 601 S. College, Wilmington, NC 28403, USA
| | | | | | | | | |
Collapse
|
125
|
Wang M, Guerrero FD, Pertea G, Nene VM. Global comparative analysis of ESTs from the southern cattle tick, Rhipicephalus (Boophilus) microplus. BMC Genomics 2007; 8:368. [PMID: 17935616 PMCID: PMC2100071 DOI: 10.1186/1471-2164-8-368] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 10/12/2007] [Indexed: 11/10/2022] Open
Abstract
Background The southern cattle tick, Rhipicephalus (Boophilus) microplus, is an economically important parasite of cattle and can transmit several pathogenic microorganisms to its cattle host during the feeding process. Understanding the biology and genomics of R. microplus is critical to developing novel methods for controlling these ticks. Results We present a global comparative genomic analysis of a gene index of R. microplus comprised of 13,643 unique transcripts assembled from 42,512 expressed sequence tags (ESTs), a significant fraction of the complement of R. microplus genes. The source material for these ESTs consisted of polyA RNA from various tissues, lifestages, and strains of R. microplus, including larvae exposed to heat, cold, host odor, and acaricide. Functional annotation using RPS-Blast analysis identified conserved protein domains in the conceptually translated gene index and assigned GO terms to those database transcripts which had informative BlastX hits. Blast Score Ratio and SimiTri analysis compared the conceptual transcriptome of the R. microplus database to other eukaryotic proteomes and EST databases, including those from 3 ticks. The most abundant protein domains in BmiGI were also analyzed by SimiTri methodology. Conclusion These results indicate that a large fraction of BmiGI entries have no homologs in other sequenced genomes. Analysis with the PartiGene annotation pipeline showed 64% of the members of BmiGI could not be assigned GO annotation, thus minimal information is available about a significant fraction of the tick genome. This highlights the important insights in tick biology which are likely to result from a tick genome sequencing project. Global comparative analysis identified some tick genes with unexpected phylogenetic relationships which detailed analysis attributed to gene losses in some members of the animal kingdom. Some tick genes were identified which had close orthologues to mammalian genes. Members of this group would likely be poor choices as targets for development of novel tick control technology.
Collapse
Affiliation(s)
- Minghua Wang
- Lorus Therapeutics Inc; 2 Meridian Road, Toronto, ON M9W 4Z7, Canada.
| | | | | | | |
Collapse
|
126
|
Kohonen P, Nera KP, Lassila O. Avian model for B-cell immunology--new genomes and phylotranscriptomics. Scand J Immunol 2007; 66:113-21. [PMID: 17635788 DOI: 10.1111/j.1365-3083.2007.01973.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The purpose of this review is to discuss the use of chicken and other model organisms in the study of B-cell development and function as well as to highlight the opportunities afforded by the expanded genome-sequencing efforts. A brief introduction on chicken B-cell biology is followed by discussion of somatic cell reverse genetic approaches using the DT40 cell line. The unique advantages of the DT40 system are emphasized with discussion on B-cell receptor signalling research as well as on DNA repair and mechanisms of immunoglobulin diversification. An attempt is made to compare and contrast the results from chicken with mouse knockouts on the one hand and RNAi with human cell lines on the other. Chicken is also emerging strongly as a platform for gene expression analysis, and avian studies are compared with mammalian studies. Multi-species gene co-expression analysis, which could also be termed phylotranscriptomics, aims to use the evolutionary distance between organisms to its advantage. This approach, still in its infancy, is also reviewed and its applicability to the chicken is discussed.
Collapse
Affiliation(s)
- P Kohonen
- Turku Graduate School of Biomedical Sciences, Department of Medical Microbiology, University of Turku, Turku, Finland.
| | | | | |
Collapse
|
127
|
Jacobi UG, Akkers RC, Pierson ES, Weeks DL, Dagle JM, Veenstra GJC. TBP paralogs accommodate metazoan- and vertebrate-specific developmental gene regulation. EMBO J 2007; 26:3900-9. [PMID: 17703192 PMCID: PMC1994123 DOI: 10.1038/sj.emboj.7601822] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 07/16/2007] [Indexed: 11/08/2022] Open
Abstract
In addition to TATA-binding protein (TBP), a key factor for transcription initiation, the metazoan-specific TBP-like factor TLF/TRF2 and the vertebrate-specific factor TBP2/TRF3 are known to be required for transcription of specific subsets of genes. We have combined an antisense-knockdown approach with transcriptome profiling to determine the significance and biological role of TBP-independent transcription in early gastrula-stage Xenopus laevis embryos. Here, we report that, although each of the TBP family members is essential for embryonic development, relatively few genes depend on TBP in the embryo. Most of the transcripts that depend on TBP in the embryo are also expressed maternally and in adult stages, and show no functional specialization. In contrast, TLF is linked to preferential expression in embryos and shows functional specialization in catabolism. A requirement for TBP2 is linked to vertebrate-specific embryonic genes and ventral-specific expression. Therefore TBP paralogs are essential for the gene-regulatory repertoire that is directly linked to early embryogenesis.
Collapse
Affiliation(s)
- Ulrike G Jacobi
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Robert C Akkers
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Elisabeth S Pierson
- Department of General Instruments, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - John M Dagle
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Gert Jan C Veenstra
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
128
|
McCarthy FM, Bridges SM, Burgess SC. GOing from functional genomics to biological significance. Cytogenet Genome Res 2007; 117:278-87. [PMID: 17675869 DOI: 10.1159/000103189] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 08/16/2006] [Indexed: 11/19/2022] Open
Abstract
The chicken genome is sequenced and this, together with microarray and other functional genomics technologies, makes post-genomic research possible in the chicken. At this time, however, such research is hindered by a lack of genomic structural and functional annotations. Bio-ontologies have been developed for different annotation requirements, as well as to facilitate data sharing and computational analysis, but these are not yet optimally utilized in the chicken. Here we discuss genomic annotation and bio-ontologies. We focus specifically on the Gene Ontology (GO), chicken GO annotations and how these can facilitate functional genomics in the chicken. The GO is the most developed and widely used bio-ontology. It is the de facto standard for functional annotation. Despite its critical importance in analyzing microarray and other functional genomics data, relatively few chicken gene products have any GO annotation. When these are available, the average quality of chicken gene products annotations (defined using evidence code weight and annotation depth) is much less than in mouse. Moreover, tools allowing chicken researchers to easily and rapidly use the GO are either lacking or hard to use. To address all of these problems we developed ChickGO and AgBase. Chicken GO annotations are provided by complementary work at MSU-AgBase and EBI-GOA. The GO tools pipeline at AgBase uses GO to derive functional and biological significance from microarray and other functional genomics data. Not only will improved genomic annotation and tools to use these annotations benefit the chicken research community but they will also facilitate research in other avian species and comparative genomics.
Collapse
Affiliation(s)
- F M McCarthy
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | |
Collapse
|
129
|
Liu R, Vitte C, Ma J, Mahama AA, Dhliwayo T, Lee M, Bennetzen JL. A GeneTrek analysis of the maize genome. Proc Natl Acad Sci U S A 2007; 104:11844-9. [PMID: 17615239 PMCID: PMC1913904 DOI: 10.1073/pnas.0704258104] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Indexed: 11/18/2022] Open
Abstract
Analysis of the sequences of 74 randomly selected BACs demonstrated that the maize nuclear genome contains approximately 37,000 candidate genes with homologues in other plant species. An additional approximately 5,500 predicted genes are severely truncated and probably pseudogenes. The distribution of genes is uneven, with approximately 30% of BACs containing no genes. BAC gene density varies from 0 to 7.9 per 100 kb, whereas most gene islands contain only one gene. The average number of genes per gene island is 1.7. Only 72% of these genes show collinearity with the rice genome. Particular LTR retrotransposon families (e.g., Gyma) are enriched on gene-free BACs, most of which do not come from pericentromeres or other large heterochromatic regions. Gene-containing BACs are relatively enriched in different families of LTR retrotransposons (e.g., Ji). Two major bursts of LTR retrotransposon activity in the last 2 million years are responsible for the large size of the maize genome, but only the more recent of these is well represented in gene-containing BACs, suggesting that LTR retrotransposons are more efficiently removed in these domains. The results demonstrate that sample sequencing and careful annotation of a few randomly selected BACs can provide a robust description of a complex plant genome.
Collapse
Affiliation(s)
- Renyi Liu
- *Department of Genetics, University of Georgia, Athens, GA 30602; and
| | - Clémentine Vitte
- *Department of Genetics, University of Georgia, Athens, GA 30602; and
| | - Jianxin Ma
- *Department of Genetics, University of Georgia, Athens, GA 30602; and
| | | | - Thanda Dhliwayo
- Department of Agronomy, Iowa State University, Ames, IA 50011
| | - Michael Lee
- Department of Agronomy, Iowa State University, Ames, IA 50011
| | | |
Collapse
|
130
|
Silverstein KAT, Moskal WA, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA. Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:262-80. [PMID: 17565583 DOI: 10.1111/j.1365-313x.2007.03136.x] [Citation(s) in RCA: 316] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Multicellular organisms produce small cysteine-rich antimicrobial peptides as an innate defense against pathogens. While defensins, a well-known class of such peptides, are common among eukaryotes, there are other classes restricted to the plant kingdom. These include thionins, lipid transfer proteins and snakins. In earlier work, we identified several divergent classes of small putatively secreted cysteine-rich peptides (CRPs) in legumes [Graham et al. (2004)Plant Physiol. 135, 1179-97]. Here, we built sequence motif models for each of these classes of peptides, and iteratively searched for related sequences within the comprehensive UniProt protein dataset, the Institute for Genomic Research's 33 plant gene indices, and the entire genomes of the model dicot, Arabidopsis thaliana, and the model monocot and crop species, Oryza sativa (rice). Using this search strategy, we identified approximately 13,000 plant genes encoding peptides with common features: (i) an N-terminal signal peptide, (ii) a small divergent charged or polar mature peptide with conserved cysteines, (iii) a similar intron/exon structure, (iv) spatial clustering in the genomes studied, and (v) overrepresentation in expressed sequences from reproductive structures of specific taxa. The identified genes include classes of defensins, thionins, lipid transfer proteins, and snakins, plus other protease inhibitors, pollen allergens, and uncharacterized gene families. We estimate that these classes of genes account for approximately 2-3% of the gene repertoire of each model species. Although 24% of the genes identified were not annotated in the latest Arabidopsis genome releases (TIGR5, TAIR6), we confirmed expression via RT-PCR for 59% of the sequences attempted. These findings highlight limitations in current annotation procedures for small divergent peptide classes.
Collapse
|
131
|
Hernández G, Ramírez M, Valdés-López O, Tesfaye M, Graham MA, Czechowski T, Schlereth A, Wandrey M, Erban A, Cheung F, Wu HC, Lara M, Town CD, Kopka J, Udvardi MK, Vance CP. Phosphorus stress in common bean: root transcript and metabolic responses. PLANT PHYSIOLOGY 2007; 144:752-67. [PMID: 17449651 PMCID: PMC1914166 DOI: 10.1104/pp.107.096958] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 04/09/2007] [Indexed: 05/15/2023]
Abstract
Phosphorus (P) is an essential element for plant growth. Crop production of common bean (Phaseolus vulgaris), the most important legume for human consumption, is often limited by low P in the soil. Functional genomics were used to investigate global gene expression and metabolic responses of bean plants grown under P-deficient and P-sufficient conditions. P-deficient plants showed enhanced root to shoot ratio accompanied by reduced leaf area and net photosynthesis rates. Transcript profiling was performed through hybridization of nylon filter arrays spotted with cDNAs of 2,212 unigenes from a P deficiency root cDNA library. A total of 126 genes, representing different functional categories, showed significant differential expression in response to P: 62% of these were induced in P-deficient roots. A set of 372 bean transcription factor (TF) genes, coding for proteins with Inter-Pro domains characteristic or diagnostic for TF, were identified from The Institute of Genomic Research/Dana Farber Cancer Institute Common Bean Gene Index. Using real-time reverse transcription-polymerase chain reaction analysis, 17 TF genes were differentially expressed in P-deficient roots; four TF genes, including MYB TFs, were induced. Nonbiased metabolite profiling was used to assess the degree to which changes in gene expression in P-deficient roots affect overall metabolism. Stress-related metabolites such as polyols accumulated in P-deficient roots as well as sugars, which are known to be essential for P stress gene induction. Candidate genes have been identified that may contribute to root adaptation to P deficiency and be useful for improvement of common bean.
Collapse
Affiliation(s)
- Georgina Hernández
- Centro de Ciencias Genómicas-Universidad Nacional Autónoma de México, 66210 Cuernavaca, Mor., Mexico.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis. BMC Bioinformatics 2007; 8:164. [PMID: 17518996 PMCID: PMC1892811 DOI: 10.1186/1471-2105-8-164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 05/22/2007] [Indexed: 11/26/2022] Open
Abstract
Background Genome-wide identification of specific oligonucleotides (oligos) is a computationally-intensive task and is a requirement for designing microarray probes, primers, and siRNAs. An artificial neural network (ANN) is a machine learning technique that can effectively process complex and high noise data. Here, ANNs are applied to process the unique subsequence distribution for prediction of specific oligos. Results We present a novel and efficient algorithm, named the integration of ANN and BLAST (IAB) algorithm, to identify specific oligos. We establish the unique marker database for human and rat gene index databases using the hash table algorithm. We then create the input vectors, via the unique marker database, to train and test the ANN. The trained ANN predicted the specific oligos with high efficiency, and these oligos were subsequently verified by BLAST. To improve the prediction performance, the ANN over-fitting issue was avoided by early stopping with the best observed error and a k-fold validation was also applied. The performance of the IAB algorithm was about 5.2, 7.1, and 6.7 times faster than the BLAST search without ANN for experimental results of 70-mer, 50-mer, and 25-mer specific oligos, respectively. In addition, the results of polymerase chain reactions showed that the primers predicted by the IAB algorithm could specifically amplify the corresponding genes. The IAB algorithm has been integrated into a previously published comprehensive web server to support microarray analysis and genome-wide iterative enrichment analysis, through which users can identify a group of desired genes and then discover the specific oligos of these genes. Conclusion The IAB algorithm has been developed to construct SpecificDB, a web server that provides a specific and valid oligo database of the probe, siRNA, and primer design for the human genome. We also demonstrate the ability of the IAB algorithm to predict specific oligos through polymerase chain reaction experiments. SpecificDB provides comprehensive information and a user-friendly interface.
Collapse
|
133
|
Settles AM, Holding DR, Tan BC, Latshaw SP, Liu J, Suzuki M, Li L, O'Brien BA, Fajardo DS, Wroclawska E, Tseung CW, Lai J, Hunter CT, Avigne WT, Baier J, Messing J, Hannah LC, Koch KE, Becraft PW, Larkins BA, McCarty DR. Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics 2007; 8:116. [PMID: 17490480 PMCID: PMC1878487 DOI: 10.1186/1471-2164-8-116] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 05/09/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene knockouts are a critical resource for functional genomics. In Arabidopsis, comprehensive knockout collections were generated by amplifying and sequencing genomic DNA flanking insertion mutants. These Flanking Sequence Tags (FSTs) map each mutant to a specific locus within the genome. In maize, FSTs have been generated using DNA transposons. Transposable elements can generate unstable insertions that are difficult to analyze for simple knockout phenotypes. Transposons can also generate somatic insertions that fail to segregate in subsequent generations. RESULTS Transposon insertion sites from 106 UniformMu FSTs were tested for inheritance by locus-specific PCR. We confirmed 89% of the FSTs to be germinal transposon insertions. We found no evidence for somatic insertions within the 11% of insertion sites that were not confirmed. Instead, this subset of insertion sites had errors in locus-specific primer design due to incomplete or low-quality genomic sequences. The locus-specific PCR assays identified a knockout of a 6-phosphogluconate dehydrogenase gene that co-segregates with a seed mutant phenotype. The mutant phenotype linked to this knockout generates novel hypotheses about the role for the plastid-localized oxidative pentose phosphate pathway during grain-fill. CONCLUSION We show that FSTs from the UniformMu population identify stable, germinal insertion sites in maize. Moreover, we show that these sequence-indexed mutations can be readily used for reverse genetic analysis. We conclude from these data that the current collection of 1,882 non-redundant insertion sites from UniformMu provide a genome-wide resource for reverse genetics.
Collapse
Affiliation(s)
- A Mark Settles
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - David R Holding
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Bao Cai Tan
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Susan P Latshaw
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Juan Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Masaharu Suzuki
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Li Li
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Brent A O'Brien
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Diego S Fajardo
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Ewa Wroclawska
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Chi-Wah Tseung
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Jinsheng Lai
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Charles T Hunter
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Wayne T Avigne
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - John Baier
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Joachim Messing
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - L Curtis Hannah
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Karen E Koch
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Philip W Becraft
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Brian A Larkins
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
134
|
Liang C, Wang G, Liu L, Ji G, Liu Y, Chen J, Webb JS, Reese G, Dean JFD. WebTraceMiner: a web service for processing and mining EST sequence trace files. Nucleic Acids Res 2007; 35:W137-42. [PMID: 17488839 PMCID: PMC1933163 DOI: 10.1093/nar/gkm299] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Expressed sequence tags (ESTs) remain a dominant approach for characterizing the protein-encoding portions of various genomes. Due to inherent deficiencies, they also present serious challenges for data quality control. Before GenBank submission, EST sequences are typically screened and trimmed of vector and adapter/linker sequences, as well as polyA/T tails. Removal of these sequences presents an obstacle for data validation of error-prone ESTs and impedes data mining of certain functional motifs, whose detection relies on accurate annotation of positional information for polyA tails added posttranscriptionally. As raw DNA sequence information is made increasingly available from public repositories, such as NCBI Trace Archive, new tools will be necessary to reanalyze and mine this data for new information. WebTraceMiner (www.conifergdb.org/software/wtm) was designed as a public sequence processing service for raw EST traces, with a focus on detection and mining of sequence features that help characterize 3′ and 5′ termini of cDNA inserts, including vector fragments, adapter/linker sequences, insert-flanking restriction endonuclease recognition sites and polyA or polyT tails. WebTraceMiner complements other public EST resources and should prove to be a unique tool to facilitate data validation and mining of error-prone ESTs (e.g. discovery of new functional motifs).
Collapse
Affiliation(s)
- Chun Liang
- Department of Botany, Miami University, Oxford, Ohio 45056, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
O'Rourke JA, Graham MA, Vodkin L, Gonzalez DO, Cianzio SR, Shoemaker RC. Recovering from iron deficiency chlorosis in near-isogenic soybeans: a microarray study. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:287-92. [PMID: 17466527 DOI: 10.1016/j.plaphy.2007.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Iron deficiency chlorosis (IDC) in soybeans has proven to be a perennial problem in the calcareous soils of the U.S. upper Midwest. A historically difficult trait to study in fields, the use of hydroponics in a controlled greenhouse environment has provided a mechanism to study genetic variation while limiting environmental complications. IDC susceptible plants growing in calcareous soils and in iron-controlled hydroponic experiments often exhibit a characteristic chlorotic phenotype early in the growing season but are able to re-green later in the season. To examine the changes in gene expression of these plants, near-isogenic lines, iron efficient PI548553 (Clark) and iron inefficient PI547430 (IsoClark), developed for their response to iron deficiency stress [USDA, ARS, National Genetic Resources Program, Germplasm Resources Information Network - GRIN. (Online Database) National Germplasm Resources Laboratory, Beltsville, MD, 2004. Available: http://www.ars.grin.gov/cgi-bin/npgs/html/acc_search.pl?accid=PI+547430. [22] were grown in iron-deficient hydroponic conditions for one week, then transferred to iron sufficient conditions for another week. This induced a phenotypic response mimicking the growth of the plants in the field; initial chlorosis followed by re-greening. RNA was isolated from root tissue and transcript profiles were examined between the two near-isogenic lines using publicly available cDNA microarrays. By alleviating the iron deficiency stress our expectation was that plants would return to baseline expression levels. However, the microarray comparison identified four cDNAs that were under-expressed by a two-fold or greater difference in the iron inefficient plant compared to the iron efficient plant. This differential expression was re-examined and confirmed by real time PCR experimentation. Control experiments showed that these genes are not differentially expressed in plants grown continually under iron rich hydroponic conditions. The expression differences suggest potential residual effects of iron deficiency on plant health.
Collapse
Affiliation(s)
- Jamie A O'Rourke
- Department of Genetics, Developmental and Cellular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | |
Collapse
|
136
|
Mohammadi M, Kav NNV, Deyholos MK. Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes. PLANT, CELL & ENVIRONMENT 2007; 30:630-45. [PMID: 17407540 DOI: 10.1111/j.1365-3040.2007.01645.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We used a long-oligonucleotide microarray to identify transcripts that increased or decreased in abundance in roots of dehydration-tolerant hexaploid bread wheat, in response to withholding of water. We observed that the major classes of dehydration-responsive genes (e.g. osmoprotectants, compatible solutes, proteases, glycosyltransferases/hydrolases, signal transducers components, ion transporters) were generally similar to those observed previously in other species and osmotic stresses. More specifically, we highlighted increases in transcript expression for specific genes including those putatively related to the synthesis of asparagine, trehalose, oligopeptide transporters, metal-binding proteins, the gamma-aminobutyric acid (GABA) shunt and transcription factors. Conversely, we noted a decrease in transcript abundance for diverse classes of glutathione and sulphur-related enzymes, specific amino acids, as well as MATE-efflux carrier proteins. From these data, we identified a novel, dehydration-induced putative AP2/ERF transcription factor, which we predict to function as a transcriptional repressor. We also identified a dehydration-induced 'little protein' (LitP; predicted mass: 8 kDa) that is highly conserved across spermatophytes. Using qRT-PCR, we compared the expression patterns of selected genes between two related wheat genotypes that differed in their susceptibility to dehydration, and confirmed that these novel genes were highly inducible by water limitation in both genotypes, although the magnitude of induction differed.
Collapse
Affiliation(s)
- Mohsen Mohammadi
- Department of Biological Sciences, University of Alberta, Edmonton, Canada T6E 2L3
| | | | | |
Collapse
|
137
|
Danley PD, Mullen SP, Liu F, Nene V, Quackenbush J, Shaw KL. A cricket Gene Index: a genomic resource for studying neurobiology, speciation, and molecular evolution. BMC Genomics 2007; 8:109. [PMID: 17459168 PMCID: PMC1878485 DOI: 10.1186/1471-2164-8-109] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 04/25/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As the developmental costs of genomic tools decline, genomic approaches to non-model systems are becoming more feasible. Many of these systems may lack advanced genetic tools but are extremely valuable models in other biological fields. Here we report the development of expressed sequence tags (EST's) in an orthopteroid insect, a model for the study of neurobiology, speciation, and evolution. RESULTS We report the sequencing of 14,502 EST's from clones derived from a nerve cord cDNA library, and the subsequent construction of a Gene Index from these sequences, from the Hawaiian trigonidiine cricket Laupala kohalensis. The Gene Index contains 8607 unique sequences comprised of 2575 tentative consensus (TC) sequences and 6032 singletons. For each of the unique sequences, an attempt was made to assign a provisional annotation and to categorize its function using a Gene Ontology-based classification through a sequence-based comparison to known proteins. In addition, a set of unique 70 base pair oligomers that can be used for DNA microarrays was developed. All Gene Index information is posted at the DFCI Gene Indices web page CONCLUSION Orthopterans are models used to understand the neurophysiological basis of complex motor patterns such as flight and stridulation. The sequences presented in the cricket Gene Index will provide neurophysiologists with many genetic tools that have been largely absent in this field. The cricket Gene Index is one of only two gene indices to be developed in an evolutionary model system. Species within the genus Laupala have speciated recently, rapidly, and extensively. Therefore, the genes identified in the cricket Gene Index can be used to study the genomics of speciation. Furthermore, this gene index represents a significant EST resources for basal insects. As such, this resource is a valuable comparative tool for the understanding of invertebrate molecular evolution. The sequences presented here will provide much needed genomic resources for three distinct but overlapping fields of inquiry: neurobiology, speciation, and molecular evolution.
Collapse
Affiliation(s)
- Patrick D Danley
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Sean P Mullen
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Fenglong Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Vishvanath Nene
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Kerry L Shaw
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
138
|
Longhorn SJ, Foster PG, Vogler AP. The nematode?arthropod clade revisited: phylogenomic analyses from ribosomal protein genes misled by shared evolutionary biases. Cladistics 2007; 23:130-144. [DOI: 10.1111/j.1096-0031.2006.00132.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
139
|
Faccioli P, Ciceri GP, Provero P, Stanca AM, Morcia C, Terzi V. A combined strategy of "in silico" transcriptome analysis and web search engine optimization allows an agile identification of reference genes suitable for normalization in gene expression studies. PLANT MOLECULAR BIOLOGY 2007; 63:679-88. [PMID: 17143578 DOI: 10.1007/s11103-006-9116-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 11/12/2006] [Indexed: 05/12/2023]
Abstract
Traditionally housekeeping genes have been employed as endogenous reference (internal control) genes for normalization in gene expression studies. Since the utilization of single housekeepers cannot assure an unbiased result, new normalization methods involving multiple housekeeping genes and normalizing using their mean expression have been recently proposed. Moreover, since a gold standard gene suitable for every experimental condition does not exist, it is also necessary to validate the expression stability of every putative control gene on the specific requirements of the planned experiment. As a consequence, finding a good set of reference genes is for sure a non-trivial problem requiring quite a lot of lab-based experimental testing. In this work we identified novel candidate barley reference genes suitable for normalization in gene expression studies. An advanced web search approach aimed to collect, from publicly available web resources, the most interesting information regarding the expression profiling of candidate housekeepers on a specific experimental basis has been set up and applied, as an example, on stress conditions. A complementary lab-based analysis has been carried out to verify the expression profile of the selected genes in different tissues and during heat shock response. This combined dry/wet approach can be applied to any species and physiological condition of interest and can be considered very helpful to identify putative reference genes to be shortlisted every time a new experimental design has to be set up.
Collapse
Affiliation(s)
- Primetta Faccioli
- CRA, Experimental Institute for Cereal Research, Via S. Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy.
| | | | | | | | | | | |
Collapse
|
140
|
Sanderson MJ, McMahon MM. Inferring angiosperm phylogeny from EST data with widespread gene duplication. BMC Evol Biol 2007; 7 Suppl 1:S3. [PMID: 17288576 PMCID: PMC1796612 DOI: 10.1186/1471-2148-7-s1-s3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most studies inferring species phylogenies use sequences from single copy genes or sets of orthologs culled from gene families. For taxa such as plants, with very high levels of gene duplication in their nuclear genomes, this has limited the exploitation of nuclear sequences for phylogenetic studies, such as those available in large EST libraries. One rarely used method of inference, gene tree parsimony, can infer species trees from gene families undergoing duplication and loss, but its performance has not been evaluated at a phylogenomic scale for EST data in plants. RESULTS A gene tree parsimony analysis based on EST data was undertaken for six angiosperm model species and Pinus, an outgroup. Although a large fraction of the tentative consensus sequences obtained from the TIGR database of ESTs was assembled into homologous clusters too small to be phylogenetically informative, some 557 clusters contained promising levels of information. Based on maximum likelihood estimates of the gene trees obtained from these clusters, gene tree parsimony correctly inferred the accepted species tree with strong statistical support. A slight variant of this species tree was obtained when maximum parsimony was used to infer the individual gene trees instead. CONCLUSION Despite the complexity of the EST data and the relatively small fraction eventually used in inferring a species tree, the gene tree parsimony method performed well in the face of very high apparent rates of duplication.
Collapse
Affiliation(s)
- Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Michelle M McMahon
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
141
|
Emmersen J, Rudd S, Mewes HW, Tetko IV. Separation of sequences from host-pathogen interface using triplet nucleotide frequencies. Fungal Genet Biol 2007; 44:231-41. [PMID: 17218127 DOI: 10.1016/j.fgb.2006.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 10/22/2006] [Accepted: 11/27/2006] [Indexed: 11/22/2022]
Abstract
The identification of genes involved in host-pathogen interactions is important for the elucidation of mechanisms of disease resistance and host susceptibility. A traditional way to classify the origin of genes sampled from a pool of mixed cDNA is through sequence similarity to known genes from either the pathogen or host organism or other closely related species. This approach does not work when the identified sequence has no close homologues in the sequence databases. In our previous studies, we classified genes using their codon frequencies. This method, however, explicitly required the prediction of CDS regions and thus could not be applied to sequences composed from the non-coding regions of genes. In this study, we show that the use of sliding-window triplet frequencies extends the application of the algorithm to both coding and non-coding sequences and also increases the prediction accuracy of a Support Vector Machine classifier from 95.6+/-0.3 to 96.5+/-0.2. Thus the use of the triplet frequencies increased the prediction accuracy of the new method by more than 20% compared to our previous approach. A functional analysis of sequences detected gene families having significantly higher or lower probability to be correctly classified compared to the average accuracy of the method is described. The server to perform classification of EST sequences using triplet frequencies is available at (URL: http://mips.gsf.de/proj/est3).
Collapse
Affiliation(s)
- Jeppe Emmersen
- Institut for Miljø og Bioteknologi, Aalborg Universitet, Sohngaardsholmsvej 49, 9000 Aalborg, Denmark
| | | | | | | |
Collapse
|
142
|
Espinoza C, Medina C, Somerville S, Arce-Johnson P. Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:3197-212. [PMID: 17761729 DOI: 10.1093/jxb/erm165] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The senescence process is the last stage in leaf development and is characterized by dramatic changes in cellular metabolism and the degeneration of cellular structures. Several reports of senescence-associated genes (SAGs) have appeared, and an overlap in some of the genes induced during senescence and pathogen infections has been observed. For example, the enhanced expression of SAGs in response to diseases caused by fungi, bacteria, and viruses that trigger the hypersensitive response (HR) or during infections induced by virulent fungi and bacteria that elicit necrotic symptoms has been observed. The present work broadens the search for SAGs induced during compatible viral interactions with both the model plant Arabidopsis thaliana and a commercially important grapevine cultivar. The transcript profiles of Arabidopsis ecotype Uk-4 infected with tobacco mosaic virus strain Cg (TMV-Cg) and Vitis vinifera cv. Carménère infected with grapevine leafroll-associated virus strain 3 (GLRaV-3) were analysed using microarray slides of the reference species Arabidopsis. A large number of SAGs exhibited altered expression during these two compatible interactions. Among the SAGs were genes that encode proteins such as proteases, lipases, proteins involved in the mobilization of nutrients and minerals, transporters, transcription factors, proteins related to translation and antioxidant enzymes, among others. Thus, part of the plant's response to virus infection appears to be the activation of the senescence programme. Finally, it was demonstrated that several virus-induced genes are also expressed at elevated levels during natural senescence in healthy plants.
Collapse
Affiliation(s)
- C Espinoza
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago de Chile, Casilla 114-D, Chile
| | | | | | | |
Collapse
|
143
|
Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR. The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 2007. [PMID: 17145706 DOI: 10.1093/nar/gkl.976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
In The Institute for Genomic Research Rice Genome Annotation project (http://rice.tigr.org), we have continued to update the rice genome sequence with new data and improve the quality of the annotation. In our current release of annotation (Release 4.0; January 12, 2006), we have identified 42,653 non-transposable element-related genes encoding 49,472 gene models as a result of the detection of alternative splicing. We have refined our identification methods for transposable element-related genes resulting in 13,237 genes that are related to transposable elements. Through incorporation of multiple transcript and proteomic expression data sets, we have been able to annotate 24 799 genes (31,739 gene models), representing approximately 50% of the total gene models, as expressed in the rice genome. All structural and functional annotation is viewable through our Rice Genome Browser which currently supports 59 tracks. Enhanced data access is available through web interfaces, FTP downloads and a Data Extractor tool developed in order to support discrete dataset downloads.
Collapse
Affiliation(s)
- Shu Ouyang
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Falco G, Stanghellini I, Ko MSH. Use of Chuk as an internal standard suitable for quantitative RT-PCR in mouse preimplantation embryos. Reprod Biomed Online 2006; 13:394-403. [PMID: 16984773 DOI: 10.1016/s1472-6483(10)61445-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Analysis of gene expression changes during preimplantation development by quantitative reverse transcription-polymerase chain reaction (Q-PCR) requires appropriate internal standards. Ideally, such a gene should show a constant level of transcripts per embryo across all preimplantation stages from unfertilized eggs to blastocysts. By analysing the microarray-based gene expression profiles of preimplantation embryos, it was found that a conserved helix-loop-helix ubiquitous kinase gene (Chuk, also known as IkappaB kinase alpha, IKKalpha or IKK1) satisfied this criterion. To test the utility of this gene as an internal standard for Q-PCR, the expression levels of two known genes (Nalp5/Mater, Pou5f1/Oct3/Oct4) were normalized by Chuk and other housekeeping genes (Actb, Gapdh, Eef1a1, and H2afz) and demonstrated that the former was more consistent with the expression patterns obtained by a whole-mount in-situ hybridization than those reported previously with the latter. It is concluded that Chuk, unlike other commonly used normalization controls, is a reliable and suitable internal standard for measuring gene expression levels by Q-PCR in mouse oocytes and preimplantation embryos.
Collapse
Affiliation(s)
- Geppino Falco
- Developmental Genomics and Ageing Section, Laboratory of Genetics, National Institute on Ageing, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
145
|
Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR. The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 2006; 35:D883-7. [PMID: 17145706 PMCID: PMC1751532 DOI: 10.1093/nar/gkl976] [Citation(s) in RCA: 889] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In The Institute for Genomic Research Rice Genome Annotation project (), we have continued to update the rice genome sequence with new data and improve the quality of the annotation. In our current release of annotation (Release 4.0; January 12, 2006), we have identified 42 653 non-transposable element-related genes encoding 49 472 gene models as a result of the detection of alternative splicing. We have refined our identification methods for transposable element-related genes resulting in 13 237 genes that are related to transposable elements. Through incorporation of multiple transcript and proteomic expression data sets, we have been able to annotate 24 799 genes (31 739 gene models), representing ∼50% of the total gene models, as expressed in the rice genome. All structural and functional annotation is viewable through our Rice Genome Browser which currently supports 59 tracks. Enhanced data access is available through web interfaces, FTP downloads and a Data Extractor tool developed in order to support discrete dataset downloads.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - C. Robin Buell
- To whom correspondence should be addressed. Tel: +1 301 795 7558; Fax: +1 301 838 0208;
| |
Collapse
|
146
|
Abstract
Genomics and bioinformatics have great potential to help address numerous topics in ecology and evolution. Expressed sequence tags (ESTs) can bridge genomics and molecular ecology because they can provide a means of accessing the gene space of almost any organism. We review how ESTs have been used in molecular ecology research in the last several years by providing sequence data for the design of molecular markers, genome-wide studies of gene expression and selection, the identification of candidate genes underlying adaptation, and the basis for studies of gene family and genome evolution. Given the tremendous recent advances in inexpensive sequencing technologies, we predict that molecular ecologists will increasingly be developing and using EST collections in the years to come. With this in mind, we close our review by discussing aspects of EST resource development of particular relevance for molecular ecologists.
Collapse
Affiliation(s)
- Amy Bouck
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
147
|
Childs KL, Hamilton JP, Zhu W, Ly E, Cheung F, Wu H, Rabinowicz PD, Town CD, Buell CR, Chan AP. The TIGR Plant Transcript Assemblies database. Nucleic Acids Res 2006; 35:D846-51. [PMID: 17088284 PMCID: PMC1669722 DOI: 10.1093/nar/gkl785] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The TIGR Plant Transcript Assemblies (TA) database () uses expressed sequences collected from the NCBI GenBank Nucleotide database for the construction of transcript assemblies. The sequences collected include expressed sequence tags (ESTs) and full-length and partial cDNAs, but exclude computationally predicted gene sequences. The TA database includes all plant species for which more than 1000 EST or cDNA sequences are publicly available. The EST and cDNA sequences are first clustered based on an all-versus-all pairwise sequence comparison, followed by the generation of consensus sequences (TAs) from individual clusters. The clustering and assembly procedures use the TGICL tool, Megablast and the CAP3 assembler. The UniProt Reference Clusters (UniRef100) protein database is used as the reference database for the functional annotation of the assemblies. The transcription orientation of each TA is determined based on the orientation of the alignment with the best protein hit. The TA sequences and annotation are available via web interfaces and FTP downloads. Assemblies can be retrieved by a text-based keyword search or a sequence-based BLAST search. The current version of the TA database is Release 2 (July 17, 2006) and includes a total of 215 plant species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Agnes P. Chan
- To whom correspondence should be addressed: Tel: +1 301 795 7862; Fax: +1 301 838 0208;
| |
Collapse
|
148
|
Cairney J, Zheng L, Cowels A, Hsiao J, Zismann V, Liu J, Ouyang S, Thibaud-Nissen F, Hamilton J, Childs K, Pullman GS, Zhang Y, Oh T, Buell CR. Expressed sequence tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis. PLANT MOLECULAR BIOLOGY 2006; 62:485-501. [PMID: 17001497 DOI: 10.1007/s11103-006-9035-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 06/15/2006] [Indexed: 05/06/2023]
Abstract
The process of embryogenesis in gymnosperms differs in significant ways from the more widely studied process in angiosperms. To further our understanding of embryogenesis in gymnosperms, we have generated Expressed Sequence Tags (ESTs) from four cDNA libraries constructed from un-normalized, normalized, and subtracted RNA populations of zygotic and somatic embryos of loblolly pine (Pinus taeda L.). A total of 68,721 ESTs were generated from 68,131 cDNA clones. Following clustering and assembly, these sequences collapsed into 5,274 contigs and 6,880 singleton sequences for a total of 12,154 non-redundant sequences. Searches of a non-identical amino acid database revealed a putative homolog for 9,189 sequences, leaving 2,965 sequences with no known function. More extensive searches of additional plant sequence data sets revealed a putative homolog for all but 1,388 (11.4%) of the sequences. Using gene ontologies, a known function could be assigned for 5,495 of the 12,154 total non-redundant sequences with 13,633 associations in total assigned. When compared to approximately 72,000 sequences in a collated P. taeda transcript assembly derived from >245,000 ESTs derived from root, xylem, stem, needles, pollen cone, and shoot ESTs, 3,458 (28.5%) of the non-redundant embryo sequences were unique and thereby provide a valuable addition to development of a complete loblolly pine transcriptome. To assess similarities between angiosperm and gymnosperm embryo development, we examined our EST collection for putative homologs of angiosperm genes implicated in embryogenesis. Out of 108 angiosperm embryogenesis-related genes, homologs were present for 83 of these genes suggesting that pine contains similar genes for embryogenesis and that our RNA sampling methods were successful. We also identified sequences from the pine embryo transcriptome that have no known function and may contribute to the programming of gene expression and embryo development.
Collapse
Affiliation(s)
- John Cairney
- School of Biology and Institute of Paper Science and Technology, Georgia Institute of Technology, 500, 10th Street, NW, Atlanta, GA 30332-0620, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Rampey RA, Woodward AW, Hobbs BN, Tierney MP, Lahner B, Salt DE, Bartel B. An Arabidopsis basic helix-loop-helix leucine zipper protein modulates metal homeostasis and auxin conjugate responsiveness. Genetics 2006; 174:1841-57. [PMID: 17028341 PMCID: PMC1698629 DOI: 10.1534/genetics.106.061044] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plant hormone auxin can be regulated by formation and hydrolysis of amide-linked indole-3-acetic acid (IAA) conjugates. Here, we report the characterization of the dominant Arabidopsis iaa-leucine resistant3 (ilr3-1) mutant, which has reduced sensitivity to IAA-Leu and IAA-Phe, while retaining wild-type responses to free IAA. The gene defective in ilr3-1 encodes a basic helix-loop-helix leucine zipper protein, bHLH105, and the ilr3-1 lesion results in a truncated product. Overexpressing ilr3-1 in wild-type plants recapitulates certain ilr3-1 mutant phenotypes. In contrast, the loss-of-function ilr3-2 allele has increased IAA-Leu sensitivity compared to wild type, indicating that the ilr3-1 allele confers a gain of function. Microarray and quantitative real-time PCR analyses revealed five downregulated genes in ilr3-1, including three encoding putative membrane proteins similar to the yeast iron and manganese transporter Ccc1p. Transcript changes are accompanied by reciprocally misregulated metal accumulation in ilr3-1 and ilr3-2 mutants. Further, ilr3-1 seedlings are less sensitive than wild type to manganese, and auxin conjugate response phenotypes are dependent on exogenous metal concentration in ilr3 mutants. These data suggest a model in which the ILR3/bHLH105 transcription factor regulates expression of metal transporter genes, perhaps indirectly modulating IAA-conjugate hydrolysis by controlling the availability of metals previously shown to influence IAA-amino acid hydrolase protein activity.
Collapse
Affiliation(s)
- Rebekah A Rampey
- Department of Biology, Harding University, Searcy, AR 72149, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Xu P, Zhang Y, Kang L, Roossinck MJ, Mysore KS. Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. PLANT PHYSIOLOGY 2006; 142:429-40. [PMID: 16920874 PMCID: PMC1586062 DOI: 10.1104/pp.106.083295] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 08/07/2006] [Indexed: 05/11/2023]
Abstract
Successful application of posttranscriptional gene silencing (PTGS) for gene function study in both plants and animals depends on high target specificity and silencing efficiency. By computational analysis with genome and/or transcriptome sequences of 25 plant species, we predicted that about 50% to 70% of gene transcripts in plants have potential off-targets when used for PTGS that could obscure experimental results. We have developed a publicly available Web-based computational tool called siRNA Scan to identify potential off-targets during PTGS. Some of the potential off-targets obtained from this tool were tested by measuring the amount of off-target transcripts using quantitative reverse transcription-PCR. Up to 50% of the predicted off-target genes tested in plants were actually silenced when tested experimentally. Our results suggest that a high risk of off-target gene silencing exists during PTGS in plants. Our siRNA Scan tool is useful to design better constructs for PTGS by minimizing off-target gene silencing in both plants and animals.
Collapse
Affiliation(s)
- Ping Xu
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA
| | | | | | | | | |
Collapse
|