101
|
Widespread intronic polyadenylation diversifies immune cell transcriptomes. Nat Commun 2018; 9:1716. [PMID: 29712909 PMCID: PMC5928244 DOI: 10.1038/s41467-018-04112-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 04/05/2018] [Indexed: 01/08/2023] Open
Abstract
Alternative cleavage and polyadenylation (ApA) is known to alter untranslated region (3'UTR) length but can also recognize intronic polyadenylation (IpA) signals to generate transcripts that lose part or all of the coding region. We analyzed 46 3'-seq and RNA-seq profiles from normal human tissues, primary immune cells, and multiple myeloma (MM) samples and created an atlas of 4927 high-confidence IpA events represented in these cell types. IpA isoforms are widely expressed in immune cells, differentially used during B-cell development or in different cellular environments, and can generate truncated proteins lacking C-terminal functional domains. This can mimic ectodomain shedding through loss of transmembrane domains or alter the binding specificity of proteins with DNA-binding or protein-protein interaction domains. MM cells display a striking loss of IpA isoforms expressed in plasma cells, associated with shorter progression-free survival and impacting key genes in MM biology and response to lenalidomide.
Collapse
|
102
|
Dissecting the Contributions of Cooperating Gene Mutations to Cancer Phenotypes and Drug Responses with Patient-Derived iPSCs. Stem Cell Reports 2018; 10:1610-1624. [PMID: 29681544 PMCID: PMC5995368 DOI: 10.1016/j.stemcr.2018.03.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022] Open
Abstract
Connecting specific cancer genotypes with phenotypes and drug responses constitutes the central premise of precision oncology but is hindered by the genetic complexity and heterogeneity of primary cancer cells. Here, we use patient-derived induced pluripotent stem cells (iPSCs) and CRISPR/Cas9 genome editing to dissect the individual contributions of two recurrent genetic lesions, the splicing factor SRSF2 P95L mutation and the chromosome 7q deletion, to the development of myeloid malignancy. Using a comprehensive panel of isogenic iPSCs-with none, one, or both genetic lesions-we characterize their relative phenotypic contributions and identify drug sensitivities specific to each one through a candidate drug approach and an unbiased large-scale small-molecule screen. To facilitate drug testing and discovery, we also derive SRSF2-mutant and isogenic normal expandable hematopoietic progenitor cells. We thus describe here an approach to dissect the individual effects of two cooperating mutations to clinically relevant features of malignant diseases.
Collapse
|
103
|
Park SK, Zhou X, Pendleton KE, Hunter OV, Kohler JJ, O'Donnell KA, Conrad NK. A Conserved Splicing Silencer Dynamically Regulates O-GlcNAc Transferase Intron Retention and O-GlcNAc Homeostasis. Cell Rep 2018; 20:1088-1099. [PMID: 28768194 PMCID: PMC5588854 DOI: 10.1016/j.celrep.2017.07.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/11/2017] [Accepted: 07/10/2017] [Indexed: 11/05/2022] Open
Abstract
Modification of nucleocytoplasmic proteins with O-GlcNAc regulates a wide variety of cellular processes and has been linked to human diseases. The enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) add and remove O-GlcNAc, but the mechanisms regulating their expression remain unclear. Here, we demonstrate that retention of the fourth intron of OGT is regulated in response to O-GlcNAc levels. We further define a conserved intronic splicing silencer (ISS) that is necessary for OGT intron retention. Deletion of the ISS in colon cancer cells leads to increases in OGT, but O-GlcNAc homeostasis is maintained by concomitant increases in OGA protein. However, the ISS-deleted cells are hypersensitive to OGA inhibition in culture and in soft agar. Moreover, growth of xenograft tumors from ISS-deleted cells is compromised in mice treated with an OGA inhibitor. Thus, ISS-mediated regulation of OGT intron retention is a key component in OGT expression and maintaining O-GlcNAc homeostasis.
Collapse
Affiliation(s)
- Sung-Kyun Park
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaorong Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathryn E Pendleton
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Olga V Hunter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathryn A O'Donnell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicholas K Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
104
|
Oghabian A, Greco D, Frilander MJ. IntEREst: intron-exon retention estimator. BMC Bioinformatics 2018; 19:130. [PMID: 29642843 PMCID: PMC5896110 DOI: 10.1186/s12859-018-2122-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In-depth study of the intron retention levels of transcripts provide insights on the mechanisms regulating pre-mRNA splicing efficiency. Additionally, detailed analysis of retained introns can link these introns to post-transcriptional regulation or identify aberrant splicing events in human diseases. RESULTS We present IntEREst, Intron-Exon Retention Estimator, an R package that supports rigorous analysis of non-annotated intron retention events (in addition to the ones annotated by RefSeq or similar databases), and support intra-sample in addition to inter-sample comparisons. It accepts binary sequence alignment/map (.bam) files as input and determines genome-wide estimates of intron retention or exon-exon junction levels. Moreover, it includes functions for comparing subsets of user-defined introns (e.g. U12-type vs U2-type) and its plotting functions allow visualization of the distribution of the retention levels of the introns. Statistical methods are adapted from the DESeq2, edgeR and DEXSeq R packages to extract the significantly more or less retained introns. Analyses can be performed either sequentially (on single core) or in parallel (on multiple cores). We used IntEREst to investigate the U12- and U2-type intron retention in human and plant RNAseq dataset with defects in the U12-dependent spliceosome due to mutations in the ZRSR2 component of this spliceosome. Additionally, we compared the retained introns discovered by IntEREst with that of other methods and studies. CONCLUSION IntEREst is an R package for Intron retention and exon-exon junction levels analysis of RNA-seq data. Both the human and plant analyses show that the U12-type introns are retained at higher level compared to the U2-type introns already in the control samples, but the retention is exacerbated in patient or plant samples carrying a mutated ZRSR2 gene. Intron retention events caused by ZRSR2 mutation that we discovered using IntEREst (DESeq2 based function) show considerable overlap with the retained introns discovered by other methods (e.g. IRFinder and edgeR based function of IntEREst). Our results indicate that increase in both the number of biological replicates and the depth of sequencing library promote the discovery of retained introns, but the effect of library size gradually decreases with more than 35 million reads mapped to the introns.
Collapse
Affiliation(s)
- Ali Oghabian
- Institute of Biotechnology, University of Helsinki, P.O. Box 56 (Viikinkaari 5), FI-00014, Helsinki, Finland
| | - Dario Greco
- Institute of Biotechnology, University of Helsinki, P.O. Box 56 (Viikinkaari 5), FI-00014, Helsinki, Finland.,Faculty of Medicine and Life Sciences, Tampere, Finland.,Institute of Biosciences and Medical Technologies (BioMediTech), Arvo Ylpön Katu 34, FI-33014 University of Tampere, Tampere, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, P.O. Box 56 (Viikinkaari 5), FI-00014, Helsinki, Finland.
| |
Collapse
|
105
|
Trincado JL, Entizne JC, Hysenaj G, Singh B, Skalic M, Elliott DJ, Eyras E. SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biol 2018; 19:40. [PMID: 29571299 PMCID: PMC5866513 DOI: 10.1186/s13059-018-1417-1] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/02/2018] [Indexed: 02/08/2023] Open
Abstract
Despite the many approaches to study differential splicing from RNA-seq, many challenges remain unsolved, including computing capacity and sequencing depth requirements. Here we present SUPPA2, a new method that addresses these challenges, and enables streamlined analysis across multiple conditions taking into account biological variability. Using experimental and simulated data, we show that SUPPA2 achieves higher accuracy compared to other methods, especially at low sequencing depth and short read length. We use SUPPA2 to identify novel Transformer2-regulated exons, novel microexons induced during differentiation of bipolar neurons, and novel intron retention events during erythroblast differentiation.
Collapse
Affiliation(s)
| | | | - Gerald Hysenaj
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle, NE1 3BZ, UK
| | - Babita Singh
- Pompeu Fabra University, E08003, Barcelona, Spain
| | - Miha Skalic
- Pompeu Fabra University, E08003, Barcelona, Spain
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle, NE1 3BZ, UK
| | - Eduardo Eyras
- Pompeu Fabra University, E08003, Barcelona, Spain. .,Catalan Institution for Research and Advanced Studies, E08010, Barcelona, Spain.
| |
Collapse
|
106
|
Rekosh D, Hammarskjold ML. Intron retention in viruses and cellular genes: Detention, border controls and passports. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1470. [PMID: 29508942 DOI: 10.1002/wrna.1470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/04/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Intron retention (IR), where one or more introns remain in the RNA after splicing, was long thought to be rare in mammalian cells, albeit common in plants and some viruses. Largely due to the development of better methods for RNA analysis, it has now been recognized that IR is much more common than previously thought and that this mechanism is likely to play an important role in mammalian gene regulation. To date, most publications and reviews about IR have described the resulting mRNAs as "dead end" products, with no direct consequence for the proteome. However, there are also many reports of mRNAs with retained introns giving rise to alternative protein isoforms. Although this was originally revealed in viral systems, there are now numerous examples of bona fide cellular proteins that are translated from mRNAs with retained introns. These new isoforms have sometimes been shown to have important regulatory functions. In this review, we highlight recent developments in this area and the research on viruses that led the way to the realization of the many ways in which mRNAs with retained introns can be regulated. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA Export and Localization > Nuclear Export/Import RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- David Rekosh
- The Myles H. Thaler Center for AIDS and Human Retrovirus Research and the Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia.,Department of Microbiology, University of Venda, Thohoyandou, South Africa
| | - Marie-Louise Hammarskjold
- The Myles H. Thaler Center for AIDS and Human Retrovirus Research and the Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia.,Department of Microbiology, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
107
|
Splicing dysfunction and disease: The case of granulopoiesis. Semin Cell Dev Biol 2018; 75:23-39. [DOI: 10.1016/j.semcdb.2017.08.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
|
108
|
Vanichkina DP, Schmitz U, Wong JJL, Rasko JE. Challenges in defining the role of intron retention in normal biology and disease. Semin Cell Dev Biol 2018; 75:40-49. [DOI: 10.1016/j.semcdb.2017.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
|
109
|
Wong ACH, Rasko JEJ, Wong JJL. We skip to work: alternative splicing in normal and malignant myelopoiesis. Leukemia 2018; 32:1081-1093. [DOI: 10.1038/s41375-018-0021-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/14/2017] [Accepted: 12/22/2017] [Indexed: 12/15/2022]
|
110
|
The Y Chromosome Modulates Splicing and Sex-Biased Intron Retention Rates in Drosophila. Genetics 2017; 208:1057-1067. [PMID: 29263027 DOI: 10.1534/genetics.117.300637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
The Drosophila Y chromosome is a 40-Mb segment of mostly repetitive DNA; it harbors a handful of protein-coding genes and a disproportionate amount of satellite repeats, transposable elements, and multicopy DNA arrays. Intron retention (IR) is a type of alternative splicing (AS) event by which one or more introns remain within the mature transcript. IR recently emerged as a deliberate cellular mechanism to modulate gene expression levels and has been implicated in multiple biological processes. However, the extent of sex differences in IR and the contribution of the Y chromosome to the modulation of AS and IR rates has not been addressed. Here we showed pervasive IR in the fruit fly Drosophila melanogaster with thousands of novel IR events, hundreds of which displayed extensive sex bias. The data also revealed an unsuspected role for the Y chromosome in the modulation of AS and IR. The majority of sex-biased IR events introduced premature termination codons and the magnitude of sex bias was associated with gene expression differences between the sexes. Surprisingly, an extra Y chromosome in males (X^YY genotype) or the presence of a Y chromosome in females (X^XY genotype) significantly modulated IR and recapitulated natural differences in IR between the sexes. Our results highlight the significance of sex-biased IR in tuning sex differences and the role of the Y chromosome as a source of variable IR rates between the sexes. Modulation of splicing and IR rates across the genome represent new and unexpected outcomes of the Drosophila Y chromosome.
Collapse
|
111
|
Wegener M, Müller-McNicoll M. Nuclear retention of mRNAs - quality control, gene regulation and human disease. Semin Cell Dev Biol 2017; 79:131-142. [PMID: 29102717 DOI: 10.1016/j.semcdb.2017.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022]
Abstract
Nuclear retention of incompletely spliced or mature mRNAs emerges as a novel, previously underappreciated layer of gene regulation, which enables the cell to rapidly respond to stress, viral infection, differentiation cues or changing environmental conditions. Focusing on mammalian cells, we discuss recent insights into the mechanisms and functions of nuclear retention, describe retention-promoting features in protein-coding transcripts and propose mechanisms for their regulated release into the cytoplasm. Moreover, we discuss examples of how aberrant nuclear retention of mRNAs may lead to human diseases.
Collapse
Affiliation(s)
- Marius Wegener
- RNA Regulation Group, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Michaela Müller-McNicoll
- RNA Regulation Group, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany.
| |
Collapse
|
112
|
Schmitz U, Pinello N, Jia F, Alasmari S, Ritchie W, Keightley MC, Shini S, Lieschke GJ, Wong JJL, Rasko JEJ. Intron retention enhances gene regulatory complexity in vertebrates. Genome Biol 2017; 18:216. [PMID: 29141666 PMCID: PMC5688624 DOI: 10.1186/s13059-017-1339-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 01/22/2023] Open
Abstract
Background While intron retention (IR) is now widely accepted as an important mechanism of mammalian gene expression control, it remains the least studied form of alternative splicing. To delineate conserved features of IR, we performed an exhaustive phylogenetic analysis in a highly purified and functionally defined cell type comprising neutrophilic granulocytes from five vertebrate species spanning 430 million years of evolution. Results Our RNA-sequencing-based analysis suggests that IR increases gene regulatory complexity, which is indicated by a strong anti-correlation between the number of genes affected by IR and the number of protein-coding genes in the genome of individual species. Our results confirm that IR affects many orthologous or functionally related genes in granulocytes. Further analysis uncovers new and unanticipated conserved characteristics of intron-retaining transcripts. We find that intron-retaining genes are transcriptionally co-regulated from bidirectional promoters. Intron-retaining genes have significantly longer 3′ UTR sequences, with a corresponding increase in microRNA binding sites, some of which include highly conserved sequence motifs. This suggests that intron-retaining genes are highly regulated post-transcriptionally. Conclusions Our study provides unique insights concerning the role of IR as a robust and evolutionarily conserved mechanism of gene expression regulation. Our findings enhance our understanding of gene regulatory complexity by adding another contributor to evolutionary adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1339-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulf Schmitz
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia
| | - Natalia Pinello
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia.,Gene Regulation in Cancer Laboratory, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia
| | - Fangzhi Jia
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia
| | - Sultan Alasmari
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800, VIC, Australia
| | | | | | - Shaniko Shini
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Justin J-L Wong
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia.,Gene Regulation in Cancer Laboratory, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia. .,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia. .,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2050, NSW, Australia. .,, Locked Bag 6, Newtown, NSW, 2042, Australia.
| |
Collapse
|
113
|
Abstract
PURPOSE OF REVIEW Erythroid progenitors must accurately and efficiently splice thousands of pre-mRNAs as the cells undergo extensive changes in gene expression and cellular remodeling during terminal erythropoiesis. Alternative splicing choices are governed by interactions between RNA binding proteins and cis-regulatory binding motifs in the RNA. This review will focus on recent studies that define the genome-wide scope of splicing in erythroblasts and discuss what is known about its regulation. RECENT FINDINGS RNA-seq analysis of highly purified erythroblast populations has revealed an extensive program of alternative splicing of both exons and introns. During normal erythropoiesis, stage-specific splicing transitions alter the structure and abundance of protein isoforms required for optimized red cell production. Mutation or deficiency of splicing regulators underlies hematopoietic disease in myelopdysplasia syndrome patients via disrupting the splicing program. SUMMARY Erythroid progenitors execute an elaborate alternative splicing program that modulates gene expression posttranscriptionally, ultimately regulating the structure and function of the proteome in a differentiation stage-specific manner during terminal erythropoiesis. This program helps drive differentiation and ensure synthesis of the proper protein isoforms required to produce mechanically stable red cells. Mutation or deficiency of key splicing regulatory proteins disrupts the splicing program to cause disease.
Collapse
|
114
|
Targeting Splicing in the Treatment of Myelodysplastic Syndromes and Other Myeloid Neoplasms. Curr Hematol Malig Rep 2017; 11:408-415. [PMID: 27492253 DOI: 10.1007/s11899-016-0344-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Genome sequencing of primary cells from patients with myelodysplastic syndromes (MDS) led to the identification of recurrent heterozygous mutations in gene encoding components of the spliceosome, the cellular machinery which processes pre-messenger RNA (mRNA) to mature mRNA during gene transcription. Splicing mutations are mutually exclusive with one another and collectively represent the most common mutation class in MDS, occurring in approximately 60 % of patients overall and more than 80 % of those with ring sideroblasts. Evidence from animal models suggests that homozygous splicing mutations are lethal, and that in heterozygously mutated models, any further disruption of splicing triggers apoptosis and cell death. MDS cells with spliceosome mutations are thus uniquely vulnerable to therapies targeting splicing, which may be tolerated by healthy cells. The spliceosome is emerging as a novel therapeutic target in MDS and related myeloid neoplasms, with the first clinical trial of a splicing modulator opening in 2016.
Collapse
|
115
|
Transcriptome analysis of developing lens reveals abundance of novel transcripts and extensive splicing alterations. Sci Rep 2017; 7:11572. [PMID: 28912564 PMCID: PMC5599659 DOI: 10.1038/s41598-017-10615-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/11/2017] [Indexed: 01/22/2023] Open
Abstract
Lens development involves a complex and highly orchestrated regulatory program. Here, we investigate the transcriptomic alterations and splicing events during mouse lens formation using RNA-seq data from multiple developmental stages, and construct a molecular portrait of known and novel transcripts. We show that the extent of novelty of expressed transcripts decreases significantly in post-natal lens compared to embryonic stages. Characterization of novel transcripts into partially novel transcripts (PNTs) and completely novel transcripts (CNTs) (novelty score ≥ 70%) revealed that the PNTs are both highly conserved across vertebrates and highly expressed across multiple stages. Functional analysis of PNTs revealed their widespread role in lens developmental processes while hundreds of CNTs were found to be widely expressed and predicted to encode for proteins. We verified the expression of four CNTs across stages. Examination of splice isoforms revealed skipped exon and retained intron to be the most abundant alternative splicing events during lens development. We validated by RT-PCR and Sanger sequencing, the predicted splice isoforms of several genes Banf1, Cdk4, Cryaa, Eif4g2, Pax6, and Rbm5. Finally, we present a splicing browser Eye Splicer (http://www.iupui.edu/~sysbio/eye-splicer/), to facilitate exploration of developmentally altered splicing events and to improve understanding of post-transcriptional regulatory networks during mouse lens development.
Collapse
|
116
|
Tapial J, Ha KCH, Sterne-Weiler T, Gohr A, Braunschweig U, Hermoso-Pulido A, Quesnel-Vallières M, Permanyer J, Sodaei R, Marquez Y, Cozzuto L, Wang X, Gómez-Velázquez M, Rayon T, Manzanares M, Ponomarenko J, Blencowe BJ, Irimia M. An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Res 2017; 27:1759-1768. [PMID: 28855263 PMCID: PMC5630039 DOI: 10.1101/gr.220962.117] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022]
Abstract
Alternative splicing (AS) generates remarkable regulatory and proteomic complexity in metazoans. However, the functions of most AS events are not known, and programs of regulated splicing remain to be identified. To address these challenges, we describe the Vertebrate Alternative Splicing and Transcription Database (VastDB), the largest resource of genome-wide, quantitative profiles of AS events assembled to date. VastDB provides readily accessible quantitative information on the inclusion levels and functional associations of AS events detected in RNA-seq data from diverse vertebrate cell and tissue types, as well as developmental stages. The VastDB profiles reveal extensive new intergenic and intragenic regulatory relationships among different classes of AS and previously unknown and conserved landscapes of tissue-regulated exons. Contrary to recent reports concluding that nearly all human genes express a single major isoform, VastDB provides evidence that at least 48% of multiexonic protein-coding genes express multiple splice variants that are highly regulated in a cell/tissue-specific manner, and that >18% of genes simultaneously express multiple major isoforms across diverse cell and tissue types. Isoforms encoded by the latter set of genes are generally coexpressed in the same cells and are often engaged by translating ribosomes. Moreover, they are encoded by genes that are significantly enriched in functions associated with transcriptional control, implying they may have an important and wide-ranging role in controlling cellular activities. VastDB thus provides an unprecedented resource for investigations of AS function and regulation.
Collapse
Affiliation(s)
- Javier Tapial
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Kevin C H Ha
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | - André Gohr
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | | | - Antonio Hermoso-Pulido
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Mathieu Quesnel-Vallières
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Jon Permanyer
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Reza Sodaei
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Yamile Marquez
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Luca Cozzuto
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Xinchen Wang
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Melisa Gómez-Velázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Teresa Rayon
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Julia Ponomarenko
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | | | - Manuel Irimia
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|
117
|
Pirnie SP, Osman A, Zhu Y, Carmichael GG. An Ultraconserved Element (UCE) controls homeostatic splicing of ARGLU1 mRNA. Nucleic Acids Res 2017; 45:3473-3486. [PMID: 27899669 PMCID: PMC5389617 DOI: 10.1093/nar/gkw1140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 10/31/2016] [Indexed: 11/13/2022] Open
Abstract
Arginine and Glutamate-Rich protein 1 (ARGLU1) is a protein whose function is poorly understood, but may act in both transcription and pre-mRNA splicing. We demonstrate that the ARGLU1 gene expresses at least three distinct RNA splice isoforms – a fully spliced isoform coding for the protein, an isoform containing a retained intron that is detained in the nucleus, and an isoform containing an alternative exon that targets the transcript for nonsense mediated decay. Furthermore, ARGLU1 contains a long, highly evolutionarily conserved sequence known as an Ultraconserved Element (UCE) that is within the retained intron and overlaps the alternative exon. Manipulation of the UCE, in a reporter minigene or via random mutations in the genomic context using CRISPR/Cas9, changed the splicing pattern. Further, overexpression of the ARGLU1 protein shifted the splicing of endogenous ARGLU1 mRNA, resulting in an increase in the retained intron isoform and nonsense mediated decay susceptible isoform and a decrease in the fully spliced isoform. Taken together with data showing that functional protein knockout shifts splicing toward the fully spliced isoform, our data are consistent with a model in which unproductive splicing complexes assembled at the alternative exon lead to inefficient splicing and intron retention.
Collapse
Affiliation(s)
- Stephan P Pirnie
- Department of Genetics and Genome Sciences, UCONN Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Ahmad Osman
- Department of Genetics and Genome Sciences, UCONN Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Yinzhou Zhu
- Department of Genetics and Genome Sciences, UCONN Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, UCONN Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
118
|
Yanagihara T, Tomino T, Uruno T, Fukui Y. Thymic epithelial cell-specific deletion of Jmjd6 reduces Aire protein expression and exacerbates disease development in a mouse model of autoimmune diabetes. Biochem Biophys Res Commun 2017; 489:8-13. [PMID: 28546003 DOI: 10.1016/j.bbrc.2017.05.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 05/19/2017] [Indexed: 01/09/2023]
Abstract
Thymic epithelial cells (TECs) establish spatially distinct microenvironments in which developing T cells are selected to mature or die. A unique property of medullary TECs is their expression of thousands of tissue-restricted self-antigens that is largely under the control of the transcriptional regulator Aire. We previously showed that Jmjd6, a lysyl hydroxylase for splicing regulatory proteins, is important for Aire protein expression and that transplantation of Jmjd6-deficient thymic stroma into athymic nude mice resulted in multiorgan autoimmunity. Here we report that TEC-specific deletion of Jmjd6 exacerbates development of autoimmune diabetes in a mouse model, which express both ovalbumin (OVA) under the control of the rat insulin gene promoter and OT-I T cell receptor specific for OVA peptide bound to major histocompatibility complex class I Kb molecules. We found that Aire protein expression in mTECs was reduced in the absence of Jmjd6, with retention of intron 2 in Aire transcripts. Our results thus demonstrate the importance of Jmjd6 in establishment of immunological tolerance in a more physiological setting.
Collapse
Affiliation(s)
- Toyoshi Yanagihara
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Takahiro Tomino
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takehito Uruno
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Research Center for Advanced Immunology, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Research Center for Advanced Immunology, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
119
|
Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 2017; 18:437-451. [PMID: 28488700 DOI: 10.1038/nrm.2017.27] [Citation(s) in RCA: 794] [Impact Index Per Article: 113.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alternative splicing of eukaryotic transcripts is a mechanism that enables cells to generate vast protein diversity from a limited number of genes. The mechanisms and outcomes of alternative splicing of individual transcripts are relatively well understood, and recent efforts have been directed towards studying splicing networks. It has become apparent that coordinated splicing networks regulate tissue and organ development, and that alternative splicing has important physiological functions in different developmental processes in humans.
Collapse
|
120
|
Intron retention is regulated by altered MeCP2-mediated splicing factor recruitment. Nat Commun 2017; 8:15134. [PMID: 28480880 PMCID: PMC5424149 DOI: 10.1038/ncomms15134] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/02/2017] [Indexed: 01/07/2023] Open
Abstract
While intron retention (IR) is considered a widely conserved and distinct mechanism of gene expression control, its regulation is poorly understood. Here we show that DNA methylation directly regulates IR. We also find reduced occupancy of MeCP2 near the splice junctions of retained introns, mirroring the reduced DNA methylation at these sites. Accordingly, MeCP2 depletion in tissues and cells enhances IR. By analysing the MeCP2 interactome using mass spectrometry and RNA co-precipitation, we demonstrate that decreased MeCP2 binding near splice junctions facilitates IR via reduced recruitment of splicing factors, including Tra2b, and increased RNA polymerase II stalling. These results suggest an association between IR and a slower rate of transcription elongation, which reflects inefficient splicing factor recruitment. In summary, our results reinforce the interdependency between alternative splicing involving IR and epigenetic controls of gene expression. Intron retention is a conserved mechanism that controls gene expression but its regulation is poorly understood. Here, the authors provide evidence that DNA methylation regulates intron retention and find reduced MeCP2 occupancy and splicing factor recruitment near affected splice junctions.
Collapse
|
121
|
Joshi P, Halene S, Abdel-Wahab O. How do messenger RNA splicing alterations drive myelodysplasia? Blood 2017; 129:2465-2470. [PMID: 28348147 PMCID: PMC5418633 DOI: 10.1182/blood-2017-02-692715] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/23/2017] [Indexed: 12/21/2022] Open
Abstract
Mutations in RNA splicing factors are the single most common class of genetic alterations in myelodysplastic syndrome (MDS) patients. Although much has been learned about how these mutations affect splicing at a global- and transcript-specific level, critical questions about the role of these mutations in MDS development and maintenance remain. Here we present the questions to be addressed in order to understand the unique enrichment of these mutations in MDS.
Collapse
Affiliation(s)
- Poorval Joshi
- Section of Hematology, Yale Comprehensive Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT; and
| | - Stephanie Halene
- Section of Hematology, Yale Comprehensive Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT; and
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
122
|
Jacob AG, Smith CWJ. Intron retention as a component of regulated gene expression programs. Hum Genet 2017; 136:1043-1057. [PMID: 28391524 PMCID: PMC5602073 DOI: 10.1007/s00439-017-1791-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
Intron retention has long been an exemplar of regulated splicing with case studies of individual events serving as models that provided key mechanistic insights into the process of splicing control. In organisms such as plants and budding yeast, intron retention is well understood as a major mechanism of gene expression regulation. In contrast, in mammalian systems, the extent and functional significance of intron retention have, until recently, remained greatly underappreciated. Technical challenges to the global detection and quantitation of transcripts with retained introns have often led to intron retention being overlooked or dismissed as “noise”. Now, however, with the wealth of information available from high-throughput deep sequencing, combined with focused computational and statistical analyses, we are able to distinguish clear intron retention patterns in various physiological and pathological contexts. Several recent studies have demonstrated intron retention as a central component of gene expression programs during normal development as well as in response to stress and disease. Furthermore, these studies revealed various ways in which intron retention regulates protein isoform production, RNA stability and translation efficiency, and rapid induction of expression via post-transcriptional splicing of retained introns. In this review, we highlight critical findings from these transcriptomic studies and discuss commonalties in the patterns prevalent in intron retention networks at the functional and regulatory levels.
Collapse
Affiliation(s)
- Aishwarya G Jacob
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Christopher W J Smith
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
123
|
An Orchestrated Intron Retention Program in Meiosis Controls Timely Usage of Transcripts during Germ Cell Differentiation. Dev Cell 2017; 41:82-93.e4. [PMID: 28366282 PMCID: PMC5392497 DOI: 10.1016/j.devcel.2017.03.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/24/2017] [Accepted: 03/03/2017] [Indexed: 12/11/2022]
Abstract
Global transcriptome reprogramming during spermatogenesis ensures timely expression of factors in each phase of male germ cell differentiation. Spermatocytes and spermatids require particularly extensive reprogramming of gene expression to switch from mitosis to meiosis and to support gamete morphogenesis. Here, we uncovered an extensive alternative splicing program during this transmeiotic differentiation. Notably, intron retention was largely the most enriched pattern, with spermatocytes showing generally higher levels of retention compared with spermatids. Retained introns are characterized by weak splice sites and are enriched in genes with strong relevance for gamete function. Meiotic intron-retaining transcripts (IRTs) were exclusively localized in the nucleus. However, differently from other developmentally regulated IRTs, they are stable RNAs, showing longer half-life than properly spliced transcripts. Strikingly, fate-mapping experiments revealed that IRTs are recruited onto polyribosomes days after synthesis. These studies reveal an unexpected function for regulated intron retention in modulation of the timely expression of select transcripts during spermatogenesis.
Collapse
|
124
|
Middleton R, Gao D, Thomas A, Singh B, Au A, Wong JJL, Bomane A, Cosson B, Eyras E, Rasko JEJ, Ritchie W. IRFinder: assessing the impact of intron retention on mammalian gene expression. Genome Biol 2017; 18:51. [PMID: 28298237 PMCID: PMC5353968 DOI: 10.1186/s13059-017-1184-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 01/05/2023] Open
Abstract
Intron retention (IR) occurs when an intron is transcribed into pre-mRNA and remains in the final mRNA. We have developed a program and database called IRFinder to accurately detect IR from mRNA sequencing data. Analysis of 2573 samples showed that IR occurs in all tissues analyzed, affects over 80% of all coding genes and is associated with cell differentiation and the cell cycle. Frequently retained introns are enriched for specific RNA binding protein sites and are often retained in clusters in the same gene. IR is associated with lower protein levels and intron-retaining transcripts that escape nonsense-mediated decay are not actively translated.
Collapse
Affiliation(s)
- Robert Middleton
- Bioinformatics Laboratory, Centenary Institute, Camperdown, 2050, Australia
| | - Dadi Gao
- Bioinformatics Laboratory, Centenary Institute, Camperdown, 2050, Australia.,Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA.,Boston & Harvard Medical School, Boston, MA, USA.,Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, 2050, Australia
| | | | - Babita Singh
- Pompeu Fabra University, UPF, Dr. Aiguader 88, E08003, Barcelona, Spain
| | - Amy Au
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Justin J-L Wong
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.,Gene Regulation in Cancer Laboratory, Centenary Institute, University of Sydney, Camperdown, 2050, Australia
| | - Alexandra Bomane
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR7216, CNRS, F-75013, Paris, France
| | - Bertrand Cosson
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR7216, CNRS, F-75013, Paris, France
| | - Eduardo Eyras
- Pompeu Fabra University, UPF, Dr. Aiguader 88, E08003, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, E08010, Barcelona, Spain
| | - John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2050, Australia
| | - William Ritchie
- Bioinformatics Laboratory, Centenary Institute, Camperdown, 2050, Australia. .,CNRS, UPR 1142, Montpellier, 34094, France. .,CNRS, UMR 5203, Montpellier, 34094, France.
| |
Collapse
|
125
|
Abstract
Mutations in the genes encoding the mechanosensitive cation channels PIEZO1 and PIEZO2 are responsible for multiple hereditary human diseases. Loss-of-function mutations in the human PIEZO1 gene cause autosomal recessive congenital lymphatic dysplasia. Gain-of-function mutations in the human PIEZO1 gene cause the autosomal dominant hemolytic anemia, hereditary xerocytosis (also known as dehydrated stomatocytosis). Loss-of-function mutations in the human PIEZO2 gene cause an autosomal recessive syndrome of muscular atrophy with perinatal respiratory distress, arthrogryposis, and scoliosis. Gain-of-function mutations in the human PIEZO2 gene cause three clinical types of autosomal dominant distal arthrogryposis. This chapter will review the hereditary diseases caused by mutations in the PIEZO genes and will discuss additional physiological systems in which PIEZO channel dysfunction may contribute to human disease pathophysiology.
Collapse
Affiliation(s)
- S L Alper
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
126
|
Mei W, Liu S, Schnable JC, Yeh CT, Springer NM, Schnable PS, Barbazuk WB. A Comprehensive Analysis of Alternative Splicing in Paleopolyploid Maize. FRONTIERS IN PLANT SCIENCE 2017; 8:694. [PMID: 28539927 PMCID: PMC5423905 DOI: 10.3389/fpls.2017.00694] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/18/2017] [Indexed: 05/19/2023]
Abstract
Identifying and characterizing alternative splicing (AS) enables our understanding of the biological role of transcript isoform diversity. This study describes the use of publicly available RNA-Seq data to identify and characterize the global diversity of AS isoforms in maize using the inbred lines B73 and Mo17, and a related species, sorghum. Identification and characterization of AS within maize tissues revealed that genes expressed in seed exhibit the largest differential AS relative to other tissues examined. Additionally, differences in AS between the two genotypes B73 and Mo17 are greatest within genes expressed in seed. We demonstrate that changes in the level of alternatively spliced transcripts (intron retention and exon skipping) do not solely reflect differences in total transcript abundance, and we present evidence that intron retention may act to fine-tune gene expression across seed development stages. Furthermore, we have identified temperature sensitive AS in maize and demonstrate that drought-induced changes in AS involve distinct sets of genes in reproductive and vegetative tissues. Examining our identified AS isoforms within B73 × Mo17 recombinant inbred lines (RILs) identified splicing QTL (sQTL). The 43.3% of cis-sQTL regulated junctions are actually identified as alternatively spliced junctions in our analysis, while 10 Mb windows on each side of 48.2% of trans-sQTLs overlap with splicing related genes. Using sorghum as an out-group enabled direct examination of loss or conservation of AS between homeologous genes representing the two subgenomes of maize. We identify several instances where AS isoforms that are conserved between one maize homeolog and its sorghum ortholog are absent from the second maize homeolog, suggesting that these AS isoforms may have been lost after the maize whole genome duplication event. This comprehensive analysis provides new insights into the complexity of AS in maize.
Collapse
Affiliation(s)
- Wenbin Mei
- Department of Biology, University of Florida, GainesvilleFL, USA
| | - Sanzhen Liu
- Department of Agronomy, Iowa State University, AmesIA, USA
- Department of Plant Pathology, Kansas State University, ManhattanKS, USA
| | - James C. Schnable
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, LincolnNE, USA
| | - Cheng-Ting Yeh
- Department of Agronomy, Iowa State University, AmesIA, USA
| | - Nathan M. Springer
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint PaulMN, USA
| | - Patrick S. Schnable
- Department of Agronomy, Iowa State University, AmesIA, USA
- Center for Plant Genomics, Iowa State University, AmesIA, USA
| | - William B. Barbazuk
- Department of Biology, University of Florida, GainesvilleFL, USA
- Genetics Institute, University of Florida, GainesvilleFL, USA
- *Correspondence: William B. Barbazuk,
| |
Collapse
|
127
|
Kralovicova J, Moreno PM, Cross NC, Pêgo AP, Vorechovsky I. Antisense Oligonucleotides Modulating Activation of a Nonsense-Mediated RNA Decay Switch Exon in the ATM Gene. Nucleic Acid Ther 2016; 26:392-400. [PMID: 27658045 PMCID: PMC5105335 DOI: 10.1089/nat.2016.0635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/25/2016] [Indexed: 12/28/2022] Open
Abstract
ATM (ataxia-telangiectasia, mutated) is an important cancer susceptibility gene that encodes a key apical kinase in the DNA damage response pathway. ATM mutations in the germ line result in ataxia-telangiectasia (A-T), a rare genetic syndrome associated with hypersensitivity to double-strand DNA breaks and predisposition to lymphoid malignancies. ATM expression is limited by a tightly regulated nonsense-mediated RNA decay (NMD) switch exon (termed NSE) located in intron 28. In this study, we identify antisense oligonucleotides that modulate NSE inclusion in mature transcripts by systematically targeting the entire 3.1-kb-long intron. Their identification was assisted by a segmental deletion analysis of transposed elements, revealing NSE repression upon removal of a distant antisense Alu and NSE activation upon elimination of a long terminal repeat transposon MER51A. Efficient NSE repression was achieved by delivering optimized splice-switching oligonucleotides to embryonic and lymphoblastoid cells using chitosan-based nanoparticles. Together, these results provide a basis for possible sequence-specific radiosensitization of cancer cells, highlight the power of intronic antisense oligonucleotides to modify gene expression, and demonstrate transposon-mediated regulation of NSEs.
Collapse
Affiliation(s)
- Jana Kralovicova
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Pedro M.D. Moreno
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Nicholas C.P. Cross
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Wessex Regional Genetics Laboratory, Salisbury Hospital, Salisbury, United Kingdom
| | - Ana Paula Pêgo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia and Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Igor Vorechovsky
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
128
|
Kanagasabai R, Serdar L, Karmahapatra S, Kientz CA, Ellis J, Ritke MK, Elton TS, Yalowich JC. Alternative RNA Processing of Topoisomerase IIα in Etoposide-Resistant Human Leukemia K562 Cells: Intron Retention Results in a Novel C-Terminal Truncated 90-kDa Isoform. J Pharmacol Exp Ther 2016; 360:152-163. [PMID: 27974648 DOI: 10.1124/jpet.116.237107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/04/2016] [Indexed: 11/22/2022] Open
Abstract
DNA topoisomerase IIα (TOP2α) is a prominent target for anticancer drugs whose clinical efficacy is often limited by chemoresistance. Using antibody specific for the N-terminal of TOP2α, immunoassays indicated the existence of two TOP2α isoforms, 170 and 90 kDa, present in K562 leukemia cells and in an acquired etoposide (VP-16)-resistant clone (K/VP.5). TOP2α/90 expression was dramatically increased in etoposide-resistant K/VP.5 compared with parental K562 cells. We hypothesized that TOP2α/90 was the translation product of novel alternatively processed pre-mRNA, confirmed by 3'-rapid amplification of cDNA ends, polymerase chain reaction, and sequencing. TOP2α/90 mRNA includes retained intron 19, which harbors an in-frame stop codon, and two consensus poly(A) sites. The processed transcript is polyadenylated. TOP2α/90 mRNA encodes a 90,076-Da translation product missing the C-terminal 770 amino acids of TOP2α/170, replaced by 25 unique amino acids through translation of the exon 19/intron 19 read-through. Immunoassays, utilizing antisera raised against these unique amino acids, confirmed that TOP2α/90 is expressed in both cell types, with overexpression in K/VP.5 cells. Immunodetection of complex of enzyme-to-DNA and single-cell gel electrophoresis (Comet) assays demonstrated that K562 cells transfected with a TOP2α/90 expression plasmid exhibited reduced etoposide-mediated TOP2α-DNA covalent complexes and decreased etoposide-induced DNA damage, respectively, compared with similarly treated K562 cells transfected with empty vector. Because TOP2α/90 lacks the active site tyrosine (Tyr805) of full-length TOP2α, these results strongly suggest that TOP2α/90 exhibits dominant-negative properties. Further studies are underway to characterize the mechanism(s) by which TOP2α/90 plays a role in acquired resistance to etoposide and other TOP2α targeting agents.
Collapse
Affiliation(s)
- Ragu Kanagasabai
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Lucas Serdar
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Soumendrakrishna Karmahapatra
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Corey A Kientz
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Justin Ellis
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Mary K Ritke
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Terry S Elton
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Jack C Yalowich
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| |
Collapse
|
129
|
Li Y, Bor YC, Fitzgerald MP, Lee KS, Rekosh D, Hammarskjold ML. An NXF1 mRNA with a retained intron is expressed in hippocampal and neocortical neurons and is translated into a protein that functions as an Nxf1 cofactor. Mol Biol Cell 2016; 27:3903-3912. [PMID: 27708137 PMCID: PMC5170612 DOI: 10.1091/mbc.e16-07-0515] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
A small Nxf1 protein, expressed from an NXF1 mRNA with a retained intron is highly expressed in rodent hippocampal and neocortical neurons, colocalizes with Staufen2 proteins in neuronal RNA granules, is present in polysomes, and replaces Nxt1 as an Nxf1 cofactor in export and expression of mRNA with retained introns. The Nxf1 protein is a major nuclear export receptor for the transport of mRNA, and it also is essential for export of retroviral mRNAs with retained introns. In the latter case, it binds to RNA elements known as constitutive transport elements (CTEs) and functions in conjunction with a cofactor known as Nxt1. The NXF1 gene also regulates expression of its own intron-containing RNA through the use of a functional CTE within intron 10. mRNA containing this intron is exported to the cytoplasm, where it can be translated into the 356–amino acid short Nxf1(sNxf1) protein, despite the fact that it is a prime candidate for nonsense-mediated decay (NMD). Here we demonstrate that sNxf1 is highly expressed in nuclei and dendrites of hippocampal and neocortical neurons in rodent brain. Additionally, we show that sNxf1 localizes in RNA granules in neurites of differentiated N2a mouse neuroblastoma cells, where it shows partial colocalization with Staufen2 isoform SS, a protein known to play a role in dendritic mRNA trafficking. We also show that sNxf1 forms heterodimers in conjunction with the full-length Nxf1 and that sNxf1 can replace Nxt1 to enhance the expression of CTE-containing mRNA and promote its association with polyribosomes.
Collapse
Affiliation(s)
- Ying Li
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Yeou-Cherng Bor
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Mark P Fitzgerald
- Departments of Neuroscience and Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Kevin S Lee
- Departments of Neuroscience and Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
130
|
Rodor J, Pan Q, Blencowe BJ, Eyras E, Cáceres JF. The RNA-binding profile of Acinus, a peripheral component of the exon junction complex, reveals its role in splicing regulation. RNA (NEW YORK, N.Y.) 2016; 22:1411-26. [PMID: 27365209 PMCID: PMC4986896 DOI: 10.1261/rna.057158.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/24/2016] [Indexed: 05/21/2023]
Abstract
Acinus (apoptotic chromatin condensation inducer in the nucleus) is an RNA-binding protein (RBP) originally identified for its role in apoptosis. It was later found to be an auxiliary component of the exon junction complex (EJC), which is deposited at exon junctions as a consequence of pre-mRNA splicing. To uncover the cellular functions of Acinus and investigate its role in splicing, we mapped its endogenous RNA targets using the cross-linking immunoprecipitation protocol (iCLIP). We observed that Acinus binds to pre-mRNAs, associating specifically to a subset of suboptimal introns, but also to spliced mRNAs. We also confirmed the presence of Acinus as a peripheral factor of the EJC. RNA-seq was used to investigate changes in gene expression and alternative splicing following siRNA-mediated depletion of Acinus in HeLa cells. This analysis revealed that Acinus is preferentially required for the inclusion of specific alternative cassette exons and also controls the faithful splicing of a subset of introns. Moreover, a large number of splicing changes can be related to Acinus binding, suggesting a direct role of Acinus in exon and intron definition. In particular, Acinus regulates the splicing of DFFA/ICAD transcript, a major regulator of DNA fragmentation. Globally, the genome-wide identification of RNA targets of Acinus revealed its role in splicing regulation as well as its involvement in other cellular pathways, including cell cycle progression. Altogether, this study uncovers new cellular functions of an RBP transiently associated with the EJC.
Collapse
Affiliation(s)
- Julie Rodor
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Qun Pan
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Eduardo Eyras
- Universitat Pompeu Fabra, E08003, Barcelona, Spain Catalan Institution for Research and Advanced Studies (ICREA), E08010 Barcelona, Spain
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
131
|
Gautier EF, Ducamp S, Leduc M, Salnot V, Guillonneau F, Dussiot M, Hale J, Giarratana MC, Raimbault A, Douay L, Lacombe C, Mohandas N, Verdier F, Zermati Y, Mayeux P. Comprehensive Proteomic Analysis of Human Erythropoiesis. Cell Rep 2016; 16:1470-1484. [PMID: 27452463 PMCID: PMC5274717 DOI: 10.1016/j.celrep.2016.06.085] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/16/2016] [Accepted: 06/22/2016] [Indexed: 01/13/2023] Open
Abstract
Mass spectrometry-based proteomics now enables the absolute quantification of thousands of proteins in individual cell types. We used this technology to analyze the dynamic proteome changes occurring during human erythropoiesis. We quantified the absolute expression of 6,130 proteins during erythroid differentiation from late burst-forming units-erythroid (BFU-Es) to orthochromatic erythroblasts. A modest correlation between mRNA and protein expression was observed. We identified several proteins with unexpected expression patterns in erythroid cells, highlighting a breakpoint in the erythroid differentiation process at the basophilic stage. We also quantified the distribution of proteins between reticulocytes and pyrenocytes after enucleation. These analyses identified proteins that are actively sorted either with the reticulocyte or the pyrenocyte. Our study provides the absolute quantification of protein expression during a complex cellular differentiation process in humans, and it establishes a framework for future studies of disordered erythropoiesis.
Collapse
Affiliation(s)
- Emilie-Fleur Gautier
- INSERM U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Laboratory of Excellence GReX, 75015 Paris, France
| | - Sarah Ducamp
- INSERM U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Laboratory of Excellence GReX, 75015 Paris, France
| | - Marjorie Leduc
- Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Plateforme de Protéomique de l'Université Paris Descartes (3P5), 75014 Paris, France
| | - Virginie Salnot
- Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Plateforme de Protéomique de l'Université Paris Descartes (3P5), 75014 Paris, France
| | - François Guillonneau
- Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Plateforme de Protéomique de l'Université Paris Descartes (3P5), 75014 Paris, France
| | | | - John Hale
- New York Blood Center, New York, NY 10065, USA
| | - Marie-Catherine Giarratana
- Laboratory of Excellence GReX, 75015 Paris, France; UPMC University Paris 06, UMR_S938 CDR Saint-Antoine, INSERM, Prolifération et Différenciation des Cellules Souches, 75012 Paris, France
| | - Anna Raimbault
- INSERM U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Laboratory of Excellence GReX, 75015 Paris, France
| | - Luc Douay
- Laboratory of Excellence GReX, 75015 Paris, France; UPMC University Paris 06, UMR_S938 CDR Saint-Antoine, INSERM, Prolifération et Différenciation des Cellules Souches, 75012 Paris, France
| | - Catherine Lacombe
- INSERM U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Laboratory of Excellence GReX, 75015 Paris, France; Ligue Nationale Contre le Cancer, Equipe Labellisée, 75014 Paris, France
| | | | - Frédérique Verdier
- INSERM U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Laboratory of Excellence GReX, 75015 Paris, France; Ligue Nationale Contre le Cancer, Equipe Labellisée, 75014 Paris, France
| | - Yael Zermati
- INSERM U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Laboratory of Excellence GReX, 75015 Paris, France; Ligue Nationale Contre le Cancer, Equipe Labellisée, 75014 Paris, France
| | - Patrick Mayeux
- INSERM U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Laboratory of Excellence GReX, 75015 Paris, France; Plateforme de Protéomique de l'Université Paris Descartes (3P5), 75014 Paris, France; Ligue Nationale Contre le Cancer, Equipe Labellisée, 75014 Paris, France.
| |
Collapse
|
132
|
Ni T, Yang W, Han M, Zhang Y, Shen T, Nie H, Zhou Z, Dai Y, Yang Y, Liu P, Cui K, Zeng Z, Tian Y, Zhou B, Wei G, Zhao K, Peng W, Zhu J. Global intron retention mediated gene regulation during CD4+ T cell activation. Nucleic Acids Res 2016; 44:6817-29. [PMID: 27369383 PMCID: PMC5001615 DOI: 10.1093/nar/gkw591] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 06/17/2016] [Indexed: 01/02/2023] Open
Abstract
T cell activation is a well-established model for studying cellular responses to exogenous stimulation. Using strand-specific RNA-seq, we observed that intron retention is prevalent in polyadenylated transcripts in resting CD4+ T cells and is significantly reduced upon T cell activation. Several lines of evidence suggest that intron-retained transcripts are less stable than fully spliced transcripts. Strikingly, the decrease in intron retention (IR) levels correlate with the increase in steady-state mRNA levels. Further, the majority of the genes upregulated in activated T cells are accompanied by a significant reduction in IR. Of these 1583 genes, 185 genes are predominantly regulated at the IR level, and highly enriched in the proteasome pathway, which is essential for proper T cell proliferation and cytokine release. These observations were corroborated in both human and mouse CD4+ T cells. Our study revealed a novel post-transcriptional regulatory mechanism that may potentially contribute to coordinated and/or quick cellular responses to extracellular stimuli such as an acute infection.
Collapse
Affiliation(s)
- Ting Ni
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Wenjing Yang
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miao Han
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Yubo Zhang
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ting Shen
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Hongbo Nie
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Zhihui Zhou
- Department of Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yalei Dai
- Department of Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yanqin Yang
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Poching Liu
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhouhao Zeng
- Department of Physics, George Washington University, Washington, DC 20052, USA
| | - Yi Tian
- Department of Physics, George Washington University, Washington, DC 20052, USA Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, P.R. China
| | - Bin Zhou
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Keji Zhao
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weiqun Peng
- Department of Physics, George Washington University, Washington, DC 20052, USA
| | - Jun Zhu
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
133
|
Llorian M, Gooding C, Bellora N, Hallegger M, Buckroyd A, Wang X, Rajgor D, Kayikci M, Feltham J, Ule J, Eyras E, Smith CWJ. The alternative splicing program of differentiated smooth muscle cells involves concerted non-productive splicing of post-transcriptional regulators. Nucleic Acids Res 2016; 44:8933-8950. [PMID: 27317697 PMCID: PMC5062968 DOI: 10.1093/nar/gkw560] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 06/08/2016] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS) is a key component of gene expression programs that drive cellular differentiation. Smooth muscle cells (SMCs) are important in the function of a number of physiological systems; however, investigation of SMC AS has been restricted to a handful of events. We profiled transcriptome changes in mouse de-differentiating SMCs and observed changes in hundreds of AS events. Exons included in differentiated cells were characterized by particularly weak splice sites and by upstream binding sites for Polypyrimidine Tract Binding protein (PTBP1). Consistent with this, knockdown experiments showed that that PTBP1 represses many smooth muscle specific exons. We also observed coordinated splicing changes predicted to downregulate the expression of core components of U1 and U2 snRNPs, splicing regulators and other post-transcriptional factors in differentiated cells. The levels of cognate proteins were lower or similar in differentiated compared to undifferentiated cells. However, levels of snRNAs did not follow the expression of splicing proteins, and in the case of U1 snRNP we saw reciprocal changes in the levels of U1 snRNA and U1 snRNP proteins. Our results suggest that the AS program in differentiated SMCs is orchestrated by the combined influence of auxiliary RNA binding proteins, such as PTBP1, along with altered activity and stoichiometry of the core splicing machinery.
Collapse
Affiliation(s)
- Miriam Llorian
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Clare Gooding
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Nicolas Bellora
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK Catalan Institute for Research and Advanced Studies (ICREA), E08010 Barcelona, Spain
| | - Martina Hallegger
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK Computational Genomics, Universitat Pompeu Fabra, E08003 Barcelona, Spain
| | - Adrian Buckroyd
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Xiao Wang
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Dipen Rajgor
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Melis Kayikci
- INIBIOMA, CONICET-UNComahue, Bariloche 8400 Río Negro, Argentina
| | - Jack Feltham
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Jernej Ule
- Computational Genomics, Universitat Pompeu Fabra, E08003 Barcelona, Spain
| | - Eduardo Eyras
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher W J Smith
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
134
|
De La Garza A, Cameron RC, Nik S, Payne SG, Bowman TV. Spliceosomal component Sf3b1 is essential for hematopoietic differentiation in zebrafish. Exp Hematol 2016; 44:826-837.e4. [PMID: 27260753 DOI: 10.1016/j.exphem.2016.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/29/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
SF3B1 (Splicing factor 3b, subunit 1) is one of the most commonly mutated factors in myelodysplastic syndrome (MDS). Although the genetic correlation between SF3B1 mutations and MDS etiology are quite strong, no in vivo model currently exists to explore how SF3B1 loss alters blood cell development. Using zebrafish mutants, we show here that proper function of Sf3b1 is required for all hematopoietic lineages. As in MDS patients, zebrafish sf3b1 mutants develop a macrocytic-anemia-like phenotype due to a block in maturation at a late progenitor stage. The mutant embryos also develop neutropenia, because their primitive myeloid cells fail to mature and turn on differentiation markers such as l-plastin and myeloperoxidase. In contrast, production of definitive hematopoietic stem and progenitor cells (HSPCs) from hemogenic endothelial cells within the dorsal aorta is greatly diminished, whereas arterial endothelial cells are correctly fated. Notch signaling, imperative for the endothelial-to-hematopoietic transition, is also normal, indicating that HSPC induction is blocked in sf3b1 mutants downstream or independent of Notch signaling. The data demonstrate that Sf3b1 function is necessary during key differentiation fate decisions in multiple blood cell types. Zebrafish sf3b1 mutants offer a novel animal model with which to explore the role of splicing in hematopoietic development and provide an excellent in vivo system with which to delve into the question of why and how Sf3b1 dysfunction is detrimental to hematopoietic differentiation, which could improve MDS diagnosis and treatment.
Collapse
Affiliation(s)
- Adriana De La Garza
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rosannah C Cameron
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sara Nik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sara G Payne
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
135
|
Inoue D, Bradley RK, Abdel-Wahab O. Spliceosomal gene mutations in myelodysplasia: molecular links to clonal abnormalities of hematopoiesis. Genes Dev 2016; 30:989-1001. [PMID: 27151974 PMCID: PMC4863743 DOI: 10.1101/gad.278424.116] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genomic analyses of the myeloid malignancies and clonal disorders of hematopoiesis that may give rise to these disorders have identified that mutations in genes encoding core spliceosomal proteins and accessory regulatory splicing factors are among the most common targets of somatic mutations. These spliceosomal mutations often occur in a mutually exclusive manner with one another and, in aggregate, account for the most frequent class of mutations in patients with myelodysplastic syndromes (MDSs) in particular. Although substantial progress has been made in understanding the effects of several of these mutations on splicing and splice site recognition, functional connections linking the mechanistic changes in splicing induced by these mutations to the phenotypic consequences of clonal and aberrant hematopoiesis are not yet well defined. This review describes our current understanding of the mechanistic and biological effects of spliceosomal gene mutations in MDSs as well as the regulation of splicing throughout normal hematopoiesis.
Collapse
Affiliation(s)
- Daichi Inoue
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
136
|
Song L, Sabunciyan S, Florea L. CLASS2: accurate and efficient splice variant annotation from RNA-seq reads. Nucleic Acids Res 2016; 44:e98. [PMID: 26975657 PMCID: PMC4889935 DOI: 10.1093/nar/gkw158] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/28/2016] [Indexed: 11/29/2022] Open
Abstract
Next generation sequencing of cellular RNA is making it possible to characterize genes and alternative splicing in unprecedented detail. However, designing bioinformatics tools to accurately capture splicing variation has proven difficult. Current programs can find major isoforms of a gene but miss lower abundance variants, or are sensitive but imprecise. CLASS2 is a novel open source tool for accurate genome-guided transcriptome assembly from RNA-seq reads based on the model of splice graph. An extension of our program CLASS, CLASS2 jointly optimizes read patterns and the number of supporting reads to score and prioritize transcripts, implemented in a novel, scalable and efficient dynamic programming algorithm. When compared against reference programs, CLASS2 had the best overall accuracy and could detect up to twice as many splicing events with precision similar to the best reference program. Notably, it was the only tool to produce consistently reliable transcript models for a wide range of applications and sequencing strategies, including ribosomal RNA-depleted samples. Lightweight and multi-threaded, CLASS2 requires <3GB RAM and can analyze a 350 million read set within hours, and can be widely applied to transcriptomics studies ranging from clinical RNA sequencing, to alternative splicing analyses, and to the annotation of new genomes.
Collapse
Affiliation(s)
- Li Song
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sarven Sabunciyan
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Liliana Florea
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
137
|
Abstract
Intron retention (IR) is a form of alternative splicing that can impact mRNA levels through nonsense-mediated decay or by nuclear mRNA detention. A complex, dynamic IR pattern has been described in maturing mammalian granulocytes, but it is unknown whether IR occurs broadly in other hematopoietic lineages. We globally assessed IR in primary maturing mammalian erythroid and megakaryocyte (MK) lineages as well as their common progenitor cells (MEPs). Both lineages exhibit an extensive differential IR program involving hundreds of introns and genes with an overwhelming loss of IR in erythroid cells and MKs compared to MEPs. Moreover, complex IR patterns were seen throughout murine erythroid maturation. Similarly complex patterns were observed in human erythroid differentiation, but not involving the murine orthologous introns or genes. Despite the common origin of erythroid cells and MKs, and overlapping gene expression patterns, the MK IR program is entirely distinct from that of the erythroid lineage with regards to introns, genes, and affected gene ontologies. Importantly, our results suggest that IR serves to broadly regulate mRNA levels. These findings highlight the importance of this understudied form of alternative splicing in gene regulation and provide a useful resource for studies on gene expression in the MK and erythroid lineages.
Collapse
|