101
|
Kondrateva E, Demchenko A, Lavrov A, Smirnikhina S. An overview of currently available molecular Cas-tools for precise genome modification. Gene 2020; 769:145225. [PMID: 33059029 DOI: 10.1016/j.gene.2020.145225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022]
Abstract
CRISPR-Cas system was first mentioned in 1987, and over the years have been studied so active that now it becomes the state-of-the-art tool for genome editing. Its working principle is based on Cas nuclease ability to bind short RNA, which targets it to complementary DNA or RNA sequence for highly precise cleavage. This alone or together with donor DNA allows to modify targeted sequence in different ways. Considering the many limitations of using native CRISPR-Cas systems, scientists around the world are working on creating modified variants to improve their specificity and efficiency in different objects. In addition, the use of the Cas effectors' targeting function in complex systems with other proteins is a promising work direction, as a result of which new tools are created with features such as single base editing, editing DNA without break and donor DNA, activation and repression of transcription, epigenetic regulation, modifying of different repair pathways involvement etc. In this review, we decided to consider in detail exactly this issue of variants of Cas effectors, their modifications and fusion molecules, which improve DNA-targeting and expand the scope of Cas effectors.
Collapse
Affiliation(s)
- Ekaterina Kondrateva
- Research Centre for Medical Genetics, Laboratory of Genome Editing, Moscow 115522, Russia.
| | - Anna Demchenko
- Research Centre for Medical Genetics, Laboratory of Genome Editing, Moscow 115522, Russia
| | - Alexander Lavrov
- Research Centre for Medical Genetics, Laboratory of Genome Editing, Moscow 115522, Russia
| | - Svetlana Smirnikhina
- Research Centre for Medical Genetics, Laboratory of Genome Editing, Moscow 115522, Russia
| |
Collapse
|
102
|
Yu Z, Mersaoui SY, Guitton-Sert L, Coulombe Y, Song J, Masson JY, Richard S. DDX5 resolves R-loops at DNA double-strand breaks to promote DNA repair and avoid chromosomal deletions. NAR Cancer 2020; 2:zcaa028. [PMID: 33015627 PMCID: PMC7520851 DOI: 10.1093/narcan/zcaa028] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
R-loops are three-stranded structures consisting of a DNA/RNA hybrid and a displaced DNA strand. The regulatory factors required to process this fundamental genetic structure near double-strand DNA breaks (DSBs) are not well understood. We previously reported that cellular depletion of the ATP-dependent DEAD box RNA helicase DDX5 increases R-loops genome-wide causing genomic instability. In this study, we define a pivotal role for DDX5 in clearing R-loops at or near DSBs enabling proper DNA repair to avoid aberrations such as chromosomal deletions. Remarkably, using the non-homologous end joining reporter gene (EJ5-GFP), we show that DDX5-deficient U2OS cells exhibited asymmetric end deletions on the side of the DSBs where there is overlap with a transcribed gene. Cross-linking and immunoprecipitation showed that DDX5 bound RNA transcripts near DSBs and required its helicase domain and the presence of DDX5 near DSBs was also shown by chromatin immunoprecipitation. DDX5 was excluded from DSBs in a transcription- and ATM activation-dependent manner. Using DNA/RNA immunoprecipitation, we show DDX5-deficient cells had increased R-loops near DSBs. Finally, DDX5 deficiency led to delayed exonuclease 1 and replication protein A recruitment to laser irradiation-induced DNA damage sites, resulting in homologous recombination repair defects. Our findings define a role for DDX5 in facilitating the clearance of RNA transcripts overlapping DSBs to ensure proper DNA repair.
Collapse
Affiliation(s)
- Zhenbao Yu
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Sofiane Y Mersaoui
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Laure Guitton-Sert
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, 9 McMahon, Québec City, Québec G1R 3S3, Canada
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, 9 McMahon, Québec City, Québec G1R 3S3, Canada
| | - Jingwen Song
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, 9 McMahon, Québec City, Québec G1R 3S3, Canada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| |
Collapse
|
103
|
Yang H, Ren S, Yu S, Pan H, Li T, Ge S, Zhang J, Xia N. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks. Int J Mol Sci 2020; 21:E6461. [PMID: 32899704 PMCID: PMC7555059 DOI: 10.3390/ijms21186461] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
Precise gene editing is-or will soon be-in clinical use for several diseases, and more applications are under development. The programmable nuclease Cas9, directed by a single-guide RNA (sgRNA), can introduce double-strand breaks (DSBs) in target sites of genomic DNA, which constitutes the initial step of gene editing using this novel technology. In mammals, two pathways dominate the repair of the DSBs-nonhomologous end joining (NHEJ) and homology-directed repair (HDR)-and the outcome of gene editing mainly depends on the choice between these two repair pathways. Although HDR is attractive for its high fidelity, the choice of repair pathway is biased in a biological context. Mammalian cells preferentially employ NHEJ over HDR through several mechanisms: NHEJ is active throughout the cell cycle, whereas HDR is restricted to S/G2 phases; NHEJ is faster than HDR; and NHEJ suppresses the HDR process. This suggests that definitive control of outcome of the programmed DNA lesioning could be achieved through manipulating the choice of cellular repair pathway. In this review, we summarize the DSB repair pathways, the mechanisms involved in choice selection based on DNA resection, and make progress in the research investigating strategies that favor Cas9-mediated HDR based on the manipulation of repair pathway choice to increase the frequency of HDR in mammalian cells. The remaining problems in improving HDR efficiency are also discussed. This review should facilitate the development of CRISPR/Cas9 technology to achieve more precise gene editing.
Collapse
Affiliation(s)
| | | | | | | | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Disease, Collaborative Innovation Centers of Biological Products, School of Public Health, Xiamen University, Xiamen 361102, China; (H.Y.); (S.R.); (S.Y.); (H.P.); (J.Z.); (N.X.)
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Disease, Collaborative Innovation Centers of Biological Products, School of Public Health, Xiamen University, Xiamen 361102, China; (H.Y.); (S.R.); (S.Y.); (H.P.); (J.Z.); (N.X.)
| | | | | |
Collapse
|
104
|
Modulation of DNA double-strand break repair as a strategy to improve precise genome editing. Oncogene 2020; 39:6393-6405. [PMID: 32884115 DOI: 10.1038/s41388-020-01445-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
In the present day, it is possible to incorporate targeted mutations or replace a gene using genome editing techniques such as customisable CRISPR/Cas9 system. Although induction of DNA double-strand breaks (DSBs) by genome editing tools can be repaired by both non-homologous end joining (NHEJ) and homologous recombination (HR), the skewness of the former pathway in human and other mammals normally result in imprecise repair. Scientists working at the crossroads of DNA repair and genome editing have devised new strategies for using a specific pathway to their advantage. Refinement in the efficiency of precise gene editing was witnessed upon downregulation of NHEJ by knockdown or using small molecule inhibitors on one hand, and upregulation of HR proteins and addition of HR stimulators, other hand. The exploitation of cell cycle phase differences together with appropriate donor DNA length/sequence and small molecules has provided further improvement in precise genome editing. The present article reviews the mechanisms of improving the efficiency of precise genome editing in several model organisms and in clinics.
Collapse
|
105
|
Ray U, Vartak SV, Raghavan SC. NHEJ inhibitor SCR7 and its different forms: Promising CRISPR tools for genome engineering. Gene 2020; 763:144997. [PMID: 32783992 DOI: 10.1016/j.gene.2020.144997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
The CRISPR-Cas system currently stands as one of the best multifaceted tools for site-specific genome engineering in mammals. An important aspect of research in this field focusses on improving the specificity and efficacy of precise genome editing in multiple model systems. The cornerstone of this mini-review is one of the extensively investigated small molecule inhibitor, SCR7, which abrogates NHEJ, a Ligase IV-dependent DSB repair pathway, thus guiding integration of the foreign DNA fragment via the more precise homology directed repair during genome editing. One of our recent studies sheds light on properties of different forms of SCR7. Here, we give a succinct account on the use of SCR7 and its different forms in CRISPR-Cas system, highlighting their chemical properties and biological relevance as potent efficiency-enhancing CRISPR tools.
Collapse
Affiliation(s)
- Ujjayinee Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Supriya V Vartak
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
106
|
Li G, Zhang X, Wang H, Liu D, Li Z, Wu Z, Yang H. Increasing CRISPR/Cas9-mediated homology-directed DNA repair by histone deacetylase inhibitors. Int J Biochem Cell Biol 2020; 125:105790. [DOI: 10.1016/j.biocel.2020.105790] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
|
107
|
Zhang W, Chen Y, Yang J, Zhang J, Yu J, Wang M, Zhao X, Wei K, Wan X, Xu X, Jiang Y, Chen J, Gao S, Mao Z. A high-throughput small molecule screen identifies farrerol as a potentiator of CRISPR/Cas9-mediated genome editing. eLife 2020; 9:56008. [PMID: 32644042 PMCID: PMC7380943 DOI: 10.7554/elife.56008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Directly modulating the choice between homologous recombination (HR) and non-homologous end joining (NHEJ) - two independent pathways for repairing DNA double-strand breaks (DSBs) - has the potential to improve the efficiency of gene targeting by CRISPR/Cas9. Here, we have developed a rapid and easy-to-score screening approach for identifying small molecules that affect the choice between the two DSB repair pathways. Using this tool, we identified a small molecule, farrerol, that promotes HR but does not affect NHEJ. Further mechanistic studies indicate that farrerol functions through stimulating the recruitment of RAD51 to DSB sites. Importantly, we demonstrated that farrerol effectively promotes precise targeted integration in human cells, mouse cells and mouse embryos at multiple genomic loci. In addition, treating cells with farrerol did not have any obvious negative effect on genomic stability. Moreover, farrerol significantly improved the knock-in efficiency in blastocysts, and the subsequently generated knock-in mice retained the capacity for germline transmission.
Collapse
Affiliation(s)
- Weina Zhang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yu Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiaqing Yang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jing Zhang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiayu Yu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Mengting Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaodong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ke Wei
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaoping Wan
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ying Jiang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, China
| |
Collapse
|
108
|
Lau CH, Tin C. The Synergy between CRISPR and Chemical Engineering. Curr Gene Ther 2020; 19:147-171. [PMID: 31267870 DOI: 10.2174/1566523219666190701100556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 02/06/2023]
Abstract
Gene therapy and transgenic research have advanced quickly in recent years due to the development of CRISPR technology. The rapid development of CRISPR technology has been largely benefited by chemical engineering. Firstly, chemical or synthetic substance enables spatiotemporal and conditional control of Cas9 or dCas9 activities. It prevents the leaky expression of CRISPR components, as well as minimizes toxicity and off-target effects. Multi-input logic operations and complex genetic circuits can also be implemented via multiplexed and orthogonal regulation of target genes. Secondly, rational chemical modifications to the sgRNA enhance gene editing efficiency and specificity by improving sgRNA stability and binding affinity to on-target genomic loci, and hence reducing off-target mismatches and systemic immunogenicity. Chemically-modified Cas9 mRNA is also more active and less immunogenic than the native mRNA. Thirdly, nonviral vehicles can circumvent the challenges associated with viral packaging and production through the delivery of Cas9-sgRNA ribonucleoprotein complex or large Cas9 expression plasmids. Multi-functional nanovectors enhance genome editing in vivo by overcoming multiple physiological barriers, enabling ligand-targeted cellular uptake, and blood-brain barrier crossing. Chemical engineering can also facilitate viral-based delivery by improving vector internalization, allowing tissue-specific transgene expression, and preventing inactivation of the viral vectors in vivo. This review aims to discuss how chemical engineering has helped improve existing CRISPR applications and enable new technologies for biomedical research. The usefulness, advantages, and molecular action for each chemical engineering approach are also highlighted.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Chung Tin
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
109
|
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020; 38:824-844. [PMID: 32572269 DOI: 10.1038/s41587-020-0561-9] [Citation(s) in RCA: 1186] [Impact Index Per Article: 296.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
The development of new CRISPR-Cas genome editing tools continues to drive major advances in the life sciences. Four classes of CRISPR-Cas-derived genome editing agents-nucleases, base editors, transposases/recombinases and prime editors-are currently available for modifying genomes in experimental systems. Some of these agents have also moved rapidly into the clinic. Each tool comes with its own capabilities and limitations, and major efforts have broadened their editing capabilities, expanded their targeting scope and improved editing specificity. We analyze key considerations when choosing genome editing agents and identify opportunities for future improvements and applications in basic research and therapeutics.
Collapse
Affiliation(s)
- Andrew V Anzalone
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
110
|
Chen H, Yang H, Zhu X, Yadav T, Ouyang J, Truesdell SS, Tan J, Wang Y, Duan M, Wei L, Zou L, Levine AS, Vasudevan S, Lan L. m 5C modification of mRNA serves a DNA damage code to promote homologous recombination. Nat Commun 2020; 11:2834. [PMID: 32503981 PMCID: PMC7275041 DOI: 10.1038/s41467-020-16722-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/19/2020] [Indexed: 12/02/2022] Open
Abstract
Recruitment of DNA repair proteins to DNA damage sites is a critical step for DNA repair. Post-translational modifications of proteins at DNA damage sites serve as DNA damage codes to recruit specific DNA repair factors. Here, we show that mRNA is locally modified by m5C at sites of DNA damage. The RNA methyltransferase TRDMT1 is recruited to DNA damage sites to promote m5C induction. Loss of TRDMT1 compromises homologous recombination (HR) and increases cellular sensitivity to DNA double-strand breaks (DSBs). In the absence of TRDMT1, RAD51 and RAD52 fail to localize to sites of reactive oxygen species (ROS)-induced DNA damage. In vitro, RAD52 displays an increased affinity for DNA:RNA hybrids containing m5C-modified RNA. Loss of TRDMT1 in cancer cells confers sensitivity to PARP inhibitors in vitro and in vivo. These results reveal an unexpected TRDMT1-m5C axis that promotes HR, suggesting that post-transcriptional modifications of RNA can also serve as DNA damage codes to regulate DNA repair. Post-translational modifications of proteins at DNA damage sites can facilitate the recruitment of DNA repair factors. Here, the authors show that mRNA is locally modified with m5C at sites of DNA damage by the RNA methyltransferase TRDMT1 to promote homologous recombination repair.
Collapse
Affiliation(s)
- Hao Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave., Pittsburgh, PA, 15213, USA
| | - Haibo Yang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA.,Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Xiaolan Zhu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA
| | - Tribhuwan Yadav
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Samuel S Truesdell
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Jun Tan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA.,Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Yumin Wang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave., Pittsburgh, PA, 15213, USA.,Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA
| | - Meihan Duan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave., Pittsburgh, PA, 15213, USA
| | - Leizhen Wei
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave., Pittsburgh, PA, 15213, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Arthur S Levine
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave., Pittsburgh, PA, 15213, USA
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Li Lan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave., Pittsburgh, PA, 15213, USA. .,Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA. .,Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
| |
Collapse
|
111
|
Jeon IS, Shin JC, Kim SR, Park KS, Yoo HJ, Lee KY, Lee HK, Choi JK. Role of RS-1 derivatives in homology-directed repair at the human genome ATG5 locus. Arch Pharm Res 2020; 43:639-645. [PMID: 32500310 DOI: 10.1007/s12272-020-01226-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
Genome editing is a useful tool in basic and clinical research. Among the several approaches used in genome editing, the CRISPR-Cas9 system using clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) along with a guide RNA has been developed recently. The CRISPR/Cas9 system induces site-specific double-stranded DNA breaks, which result in DNA repair via non-homologous end joining (NHEJ) or homology-directed repair (HDR). However, HDR efficiency is lower than that of NHEJ and accordingly poses a challenge in genome modification studies. Several chemical compounds including RS-1 have been shown to enhance the HDR knock-in process by two- to six-fold in HEK 293 cells and rabbit embryos. Based on this finding, we developed an antibiotic resistance system to screen RS-1 chemical derivatives, which may promote efficient HDR. In this study, we report several chemical compounds with high knock-in efficiency at the ATG5 gene locus, using HeLa cell-based assays.
Collapse
Affiliation(s)
- In-Sook Jeon
- Division of Biochemistry, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Jae-Cheon Shin
- Pohang Center for Evaluation of Biomaterials, 394, Jigok-ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea
| | - Seung Ryul Kim
- Division of Biochemistry, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Kwan Sik Park
- Division of Biochemistry, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Hyun Jung Yoo
- Department of Consumer Science, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju-si, 54896, Jeollabuk-do, Korea.
| | - Joong-Kook Choi
- Division of Biochemistry, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea.
| |
Collapse
|
112
|
Rickman KA, Noonan RJ, Lach FP, Sridhar S, Wang AT, Abhyankar A, Huang A, Kelly M, Auerbach AD, Smogorzewska A. Distinct roles of BRCA2 in replication fork protection in response to hydroxyurea and DNA interstrand cross-links. Genes Dev 2020; 34:832-846. [PMID: 32354836 PMCID: PMC7263144 DOI: 10.1101/gad.336446.120] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
DNA interstrand cross-links (ICLs) are a form of DNA damage that requires the interplay of a number of repair proteins including those of the Fanconi anemia (FA) and the homologous recombination (HR) pathways. Pathogenic variants in the essential gene BRCA2/FANCD1, when monoallelic, predispose to breast and ovarian cancer, and when biallelic, result in a severe subtype of Fanconi anemia. BRCA2 function in the FA pathway is attributed to its role as a mediator of the RAD51 recombinase in HR repair of programmed DNA double-strand breaks (DSB). BRCA2 and RAD51 functions are also required to protect stalled replication forks from nucleolytic degradation during response to hydroxyurea (HU). While RAD51 has been shown to be necessary in the early steps of ICL repair to prevent aberrant nuclease resection, the role of BRCA2 in this process has not been described. Here, based on the analysis of BRCA2 DNA-binding domain (DBD) mutants (c.8488-1G>A and c.8524C>T) discovered in FA patients presenting with atypical FA-like phenotypes, we establish that BRCA2 is necessary for the protection of DNA at ICLs. Cells carrying BRCA2 DBD mutations are sensitive to ICL-inducing agents but resistant to HU treatment consistent with relatively high HR repair in these cells. BRCA2 function at an ICL protects against DNA2-WRN nuclease-helicase complex and not the MRE11 nuclease that is implicated in the resection of HU-induced stalled replication forks. Our results also indicate that unlike the processing at HU-induced stalled forks, the function of the SNF2 translocases (SMARCAL1, ZRANB3, or HLTF), implicated in fork reversal, are not an integral component of the ICL repair, pointing to a different mechanism of fork protection at different DNA lesions.
Collapse
Affiliation(s)
- Kimberly A Rickman
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Raymond J Noonan
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Sunandini Sridhar
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Anderson T Wang
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | | | - Athena Huang
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Michael Kelly
- Tufts Medical Center, Boston, Massachusetts 02111, USA
| | - Arleen D Auerbach
- Human Genetics and Hematology, The Rockefeller University, New York, New York 10065, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
113
|
Improving Precise CRISPR Genome Editing by Small Molecules: Is there a Magic Potion? Cells 2020; 9:cells9051318. [PMID: 32466303 PMCID: PMC7291049 DOI: 10.3390/cells9051318] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) genome editing has become a standard method in molecular biology, for the establishment of genetically modified cellular and animal models, for the identification and validation of drug targets in animals, and is heavily tested for use in gene therapy of humans. While the efficiency of CRISPR mediated gene targeting is much higher than of classical targeted mutagenesis, the efficiency of CRISPR genome editing to introduce defined changes into the genome is still low. Overcoming this problem will have a great impact on the use of CRISPR genome editing in academic and industrial research and the clinic. This review will present efforts to achieve this goal by small molecules, which modify the DNA repair mechanisms to facilitate the precise alteration of the genome.
Collapse
|
114
|
Rodrigue A, Margaillan G, Torres Gomes T, Coulombe Y, Montalban G, da Costa E Silva Carvalho S, Milano L, Ducy M, De-Gregoriis G, Dellaire G, Araújo da Silva W, Monteiro AN, Carvalho MA, Simard J, Masson JY. A global functional analysis of missense mutations reveals two major hotspots in the PALB2 tumor suppressor. Nucleic Acids Res 2020; 47:10662-10677. [PMID: 31586400 PMCID: PMC6847799 DOI: 10.1093/nar/gkz780] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/12/2019] [Accepted: 09/24/2019] [Indexed: 01/01/2023] Open
Abstract
While biallelic mutations in the PALB2 tumor suppressor cause Fanconi anemia subtype FA-N, monoallelic mutations predispose to breast and familial pancreatic cancer. Although hundreds of missense variants in PALB2 have been identified in patients to date, only a few have clear functional and clinical relevance. Herein, we investigate the effects of 44 PALB2 variants of uncertain significance found in breast cancer patients and provide detailed analysis by systematic functional assays. Our comprehensive functional analysis reveals two hotspots for potentially deleterious variations within PALB2, one at each terminus. PALB2 N-terminus variants p.P8L [c.23C>T], p.Y28C [c.83A>G], and p.R37H [c.110G>A] compromised PALB2-mediated homologous recombination. At the C-terminus, PALB2 variants p.L947F [c.2841G>T], p.L947S [c.2840T>C], and most strikingly p.T1030I [c.3089C>T] and p.W1140G [c.3418T>C], stood out with pronounced PARP inhibitor sensitivity and cytoplasmic accumulation in addition to marked defects in recruitment to DNA damage sites, interaction with BRCA2 and homologous recombination. Altogether, our findings show that a combination of functional assays is necessary to assess the impact of germline missense variants on PALB2 function, in order to guide proper classification of their deleteriousness.
Collapse
Affiliation(s)
- Amélie Rodrigue
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Guillaume Margaillan
- CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Thiago Torres Gomes
- Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Instituto Federal do Rio de Janeiro, Laboratório de Genética Molecular, Maracanã, Rio de Janeiro, Brazil
| | - Yan Coulombe
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Gemma Montalban
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada.,CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Simone da Costa E Silva Carvalho
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Department of Genetics at Ribeirão Preto Medical School, University of São Paulo; Center for Cell-Based Therapy (CEPID/FAPESP); National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Ribeirão Preto, SP, Brazil
| | - Larissa Milano
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Mandy Ducy
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada.,CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Giuliana De-Gregoriis
- Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Instituto Federal do Rio de Janeiro, Laboratório de Genética Molecular, Maracanã, Rio de Janeiro, Brazil
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Wilson Araújo da Silva
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo; Center for Cell-Based Therapy (CEPID/FAPESP); National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Ribeirão Preto, SP, Brazil
| | | | - Marcelo A Carvalho
- Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Instituto Federal do Rio de Janeiro, Laboratório de Genética Molecular, Maracanã, Rio de Janeiro, Brazil
| | - Jacques Simard
- CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Jean-Yves Masson
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
115
|
Pinzon-Arteaga C, Snyder MD, Lazzarotto CR, Moreno NF, Juras R, Raudsepp T, Golding MC, Varner DD, Long CR. Efficient correction of a deleterious point mutation in primary horse fibroblasts with CRISPR-Cas9. Sci Rep 2020; 10:7411. [PMID: 32366884 PMCID: PMC7198616 DOI: 10.1038/s41598-020-62723-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/04/2020] [Indexed: 12/26/2022] Open
Abstract
Phenotypic selection during animal domestication has resulted in unwanted incorporation of deleterious mutations. In horses, the autosomal recessive condition known as Glycogen Branching Enzyme Deficiency (GBED) is the result of one of these deleterious mutations (102C > A), in the first exon of the GBE1 gene (GBE1102C>A). With recent advances in genome editing, this type of genetic mutation can be precisely repaired. In this study, we used the RNA-guided nuclease CRISPR-Cas9 (clustered regularly-interspaced short palindromic repeats/CRISPR-associated protein 9) to correct the GBE1102C>A mutation in a primary fibroblast cell line derived from a high genetic merit heterozygous stallion. To correct this mutation by homologous recombination (HR), we designed a series of single guide RNAs (sgRNAs) flanking the mutation and provided different single-stranded donor DNA templates. The distance between the Cas9-mediated double-stranded break (DSB) to the mutation site, rather than DSB efficiency, was the primary determinant for successful HR. This framework can be used for targeting other harmful diseases in animal populations.
Collapse
Affiliation(s)
- Carlos Pinzon-Arteaga
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Matthew D Snyder
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | | | - Nicolas F Moreno
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Michael C Golding
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Dickson D Varner
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
116
|
Lamas‐Toranzo I, Martínez‐Moro A, O´Callaghan E, Millán‐Blanca G, Sánchez J, Lonergan P, Bermejo‐Álvarez P. RS-1 enhances CRISPR-mediated targeted knock-in in bovine embryos. Mol Reprod Dev 2020; 87:542-549. [PMID: 32227559 PMCID: PMC7496720 DOI: 10.1002/mrd.23341] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
Targeted knock-in (KI) can be achieved in embryos by clustered regularly interspaced short palindromic repeats (CRISPR)-assisted homology directed repair (HDR). However, HDR efficiency is constrained by the competition of nonhomologous end joining. The objective of this study was to explore whether CRISPR-assisted targeted KI rates can be improved in bovine embryos by exposure to the HDR enhancer RS-1. In vitro produced zygotes were injected with CRISPR components (300 ng/µl Cas9 messenger RNA and 100 ng/µl single guide RNA against a noncoding region) and a single-stranded DNA (ssDNA) repair template (100 ng/µl). ssDNA template contained a 6 bp XbaI site insert, allowing targeted KI detection by restriction analysis, flanked by 50 bp homology arms. Following microinjection, zygotes were exposed to 0, 3.75, or 7.5 µM RS-1 for 24 hr. No differences were noted between groups in terms of development or genome edition rates. However, targeted KI rates were doubled in the group exposed to 7.5 µM RS-1 compared to the others (52.8% vs. 25% and 23.1%, for 7.5, 0, and 3.75 µM, respectively). In conclusion, transient exposure to 7.5 µM RS-1 enhances targeted KI rates resulting in approximately half of the embryos containing the intended mutation, hence allowing direct KI generation in embryos.
Collapse
Affiliation(s)
| | - A. Martínez‐Moro
- Animal Reproduction DepartmentINIAMadridSpain
- ProcreatecMadridSpain
| | - E. O´Callaghan
- School of Agriculture and Food ScienceUniversity College DublinDublinIreland
| | | | - J.M. Sánchez
- School of Agriculture and Food ScienceUniversity College DublinDublinIreland
| | - P. Lonergan
- School of Agriculture and Food ScienceUniversity College DublinDublinIreland
| | | |
Collapse
|
117
|
Kurihara T, Kouyama-Suzuki E, Satoga M, Li X, Badawi M, Thiha, Baig DN, Yanagawa T, Uemura T, Mori T, Tabuchi K. DNA repair protein RAD51 enhances the CRISPR/Cas9-mediated knock-in efficiency in brain neurons. Biochem Biophys Res Commun 2020; 524:621-628. [PMID: 32029273 DOI: 10.1016/j.bbrc.2020.01.132] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 10/25/2022]
Abstract
Gene knock-in using the CRISPR/Cas9 system can be achieved in a specific population of neurons in the mouse brain, by using in utero electroporation to introduce DNA fragments into neural progenitor cells. Using this strategy, we previously knocked-in the EGFP coding sequence into the N-terminal region of the β-actin gene specifically in the pyramidal neurons in layer 2/3 of the somatosensory cortex. However, the knock-in efficiency was less than 2% of the transfected neurons. In this study, we sought to improve the knock-in efficiency using this system. First, we varied the length of the homology arms of the β-actin donor template DNA, and found that the knock-in efficiency was increased to ∼14% by extending the length of the 5' and 3' homology arms to 1.6 kb and 2.0 kb, respectively. We then tested the effect of the DNA repair protein RAD51 and the knock-in efficiency was increased up to 2.5-fold when co-transfecting with two different β-actin and a camk2a targeting EGFP knock-in modules. The RAD51 overexpression did not alter the migration of developing neurons, density or morphology of the dendritic spines compared to those in neurons not transfected with RAD51. RAD51 expression will be useful for increasing the knock-in efficiency in neurons in vivo by CRISPR/Cas9-mediated homology directed repair (HDR).
Collapse
Affiliation(s)
- Taiga Kurihara
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan
| | - Emi Kouyama-Suzuki
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan
| | - Michiru Satoga
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan
| | - Xue Li
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan
| | - Moataz Badawi
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan
| | - Thiha
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan
| | - Deeba Noreen Baig
- School of Life Sciences Forman Christian College (A Chartared University), Lahore, 54600, Pakistan
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Takeshi Uemura
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, 390-8621, Japan
| | - Takuma Mori
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, 390-8621, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, 390-8621, Japan.
| |
Collapse
|
118
|
Liu B, Chen S, Rose AL, Chen D, Cao F, Zwinderman M, Kiemel D, Aïssi M, Dekker FJ, Haisma HJ. Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing. Nucleic Acids Res 2020; 48:517-532. [PMID: 31799598 PMCID: PMC6954403 DOI: 10.1093/nar/gkz1136] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
Despite the rapid development of CRISPR/Cas9-mediated gene editing technology, the gene editing potential of CRISPR/Cas9 is hampered by low efficiency, especially for clinical applications. One of the major challenges is that chromatin compaction inevitably limits the Cas9 protein access to the target DNA. However, chromatin compaction is precisely regulated by histone acetylation and deacetylation. To overcome these challenges, we have comprehensively assessed the impacts of histone modifiers such as HDAC (1–9) inhibitors and HAT (p300/CBP, Tip60 and MOZ) inhibitors, on CRISPR/Cas9 mediated gene editing efficiency. Our findings demonstrate that attenuation of HDAC1, HDAC2 activity, but not other HDACs, enhances CRISPR/Cas9-mediated gene knockout frequencies by NHEJ as well as gene knock-in by HDR. Conversely, inhibition of HDAC3 decreases gene editing frequencies. Furthermore, our study showed that attenuation of HDAC1, HDAC2 activity leads to an open chromatin state, facilitates Cas9 access and binding to the targeted DNA and increases the gene editing frequencies. This approach can be applied to other nucleases, such as ZFN and TALEN.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Siwei Chen
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Anouk La Rose
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Deng Chen
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Fangyuan Cao
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Martijn Zwinderman
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Dominik Kiemel
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands.,Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, 69120, Germany
| | - Manon Aïssi
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| |
Collapse
|
119
|
TIRR: a potential front runner in HDR race−hypotheses and perspectives. Mol Biol Rep 2020; 47:2371-2379. [DOI: 10.1007/s11033-020-05285-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/27/2020] [Indexed: 01/01/2023]
|
120
|
Broeders M, Herrero-Hernandez P, Ernst MPT, van der Ploeg AT, Pijnappel WWMP. Sharpening the Molecular Scissors: Advances in Gene-Editing Technology. iScience 2020; 23:100789. [PMID: 31901636 PMCID: PMC6941877 DOI: 10.1016/j.isci.2019.100789] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
The ability to precisely modify human genes has been made possible by the development of tools such as meganucleases, zinc finger nucleases, TALENs, and CRISPR/Cas. These now make it possible to generate targeted deletions, insertions, gene knock outs, and point variants; to modulate gene expression by targeting transcription factors or epigenetic machineries to DNA; or to target and modify RNA. Endogenous repair mechanisms are used to make the modifications required in DNA; they include non-homologous end joining, homology-directed repair, homology-independent targeted integration, microhomology-mediated end joining, base-excision repair, and mismatch repair. Off-target effects can be monitored using in silico prediction and sequencing and minimized using Cas proteins with higher accuracy, such as high-fidelity Cas9, enhanced-specificity Cas9, and hyperaccurate Cas9. Alternatives to Cas9 have been identified, including Cpf1, Cas12a, Cas12b, and smaller Cas9 orthologs such as CjCas9. Delivery of gene-editing components is performed ex vivo using standard techniques or in vivo using AAV, lipid nanoparticles, or cell-penetrating peptides. Clinical development of gene-editing technology is progressing in several fields, including immunotherapy in cancer treatment, antiviral therapy for HIV infection, and treatment of genetic disorders such as β-thalassemia, sickle cell disease, lysosomal storage disorders, and retinal dystrophy. Here we review these technological advances and the challenges to their clinical implementation.
Collapse
Affiliation(s)
- Mike Broeders
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Pablo Herrero-Hernandez
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Martijn P T Ernst
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands.
| |
Collapse
|
121
|
Banan M. Recent advances in CRISPR/Cas9-mediated knock-ins in mammalian cells. J Biotechnol 2020; 308:1-9. [DOI: 10.1016/j.jbiotec.2019.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 12/16/2022]
|
122
|
Yan N, Sun Y, Fang Y, Deng J, Mu L, Xu K, Mymryk JS, Zhang Z. A Universal Surrogate Reporter for Efficient Enrichment of CRISPR/Cas9-Mediated Homology-Directed Repair in Mammalian Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:775-789. [PMID: 31955009 PMCID: PMC6970138 DOI: 10.1016/j.omtn.2019.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/30/2022]
Abstract
CRISPR/Cas9-mediated homology-directed repair (HDR) can be leveraged to precisely engineer mammalian genomes. However, the inherently low efficiency of HDR often hampers to identify the desired modified cells. Here, we developed a novel universal surrogate reporter system that efficiently enriches for genetically modified cells arising from CRISPR/Cas9-induced HDR events (namely, the "HDR-USR" system). This episomally based reporter can be self-cleaved and self-repaired via HDR to create a functional puromycin selection cassette without compromising genome integrity. Co-transfection of the HDR-USR system into host cells and transient puromycin selection efficiently achieves enrichment of HDR-modified cells. We tested the system for precision point mutation at 16 loci in different human cell lines and one locus in two rodent cell lines. This system exhibited dramatic improvements in HDR efficiency at a single locus (up to 20.7-fold) and two loci at once (42% editing efficiency compared to zero in the control), as well as greatly improved knockin efficiency (8.9-fold) and biallelic deletion (35.9-fold) at test loci. Further increases were achieved by co-expression of yeast Rad52 and linear single-/double-stranded DNA donors. Taken together, our HDR-USR system provides a simple, robust and efficient surrogate reporter for the enrichment of CRISPR/Cas9-induced HDR-based precision genome editing across various targeting loci in different cell lines.
Collapse
Affiliation(s)
- Nana Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongsen Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingrong Deng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Mu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kun Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Joe S Mymryk
- Department of Microbiology & Immunology, Oncology and Otolaryngology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Zhiying Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
123
|
Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 2019; 21:1468-1478. [PMID: 31792376 DOI: 10.1038/s41556-019-0425-z] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
Eukaryotic cells deploy overlapping repair pathways to resolve DNA damage. Advancements in genome editing take advantage of these pathways to produce permanent genetic changes. Despite recent improvements, genome editing can produce diverse outcomes that can introduce risks in clinical applications. Although homology-directed repair is attractive for its ability to encode precise edits, it is particularly difficult in human cells. Here we discuss the DNA repair pathways that underlie genome editing and strategies to favour various outcomes.
Collapse
|
124
|
Kim JJ, Lee SY, Gong F, Battenhouse AM, Boutz DR, Bashyal A, Refvik ST, Chiang CM, Xhemalce B, Paull TT, Brodbelt JS, Marcotte EM, Miller KM. Systematic bromodomain protein screens identify homologous recombination and R-loop suppression pathways involved in genome integrity. Genes Dev 2019; 33:1751-1774. [PMID: 31753913 PMCID: PMC6942044 DOI: 10.1101/gad.331231.119] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023]
Abstract
Bromodomain proteins (BRD) are key chromatin regulators of genome function and stability as well as therapeutic targets in cancer. Here, we systematically delineate the contribution of human BRD proteins for genome stability and DNA double-strand break (DSB) repair using several cell-based assays and proteomic interaction network analysis. Applying these approaches, we identify 24 of the 42 BRD proteins as promoters of DNA repair and/or genome integrity. We identified a BRD-reader function of PCAF that bound TIP60-mediated histone acetylations at DSBs to recruit a DUB complex to deubiquitylate histone H2BK120, to allowing direct acetylation by PCAF, and repair of DSBs by homologous recombination. We also discovered the bromo-and-extra-terminal (BET) BRD proteins, BRD2 and BRD4, as negative regulators of transcription-associated RNA-DNA hybrids (R-loops) as inhibition of BRD2 or BRD4 increased R-loop formation, which generated DSBs. These breaks were reliant on topoisomerase II, and BRD2 directly bound and activated topoisomerase I, a known restrainer of R-loops. Thus, comprehensive interactome and functional profiling of BRD proteins revealed new homologous recombination and genome stability pathways, providing a framework to understand genome maintenance by BRD proteins and the effects of their pharmacological inhibition.
Collapse
Affiliation(s)
- Jae Jin Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Seo Yun Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Fade Gong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Anna M Battenhouse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Daniel R Boutz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Aarti Bashyal
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Samantha T Refvik
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- The Howard Hughes Medical Institute
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Biochemistry, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Blerta Xhemalce
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- The Howard Hughes Medical Institute
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
125
|
Attwood KM, Salsman J, Chung D, Mathavarajah S, Van Iderstine C, Dellaire G. PML isoform expression and DNA break location relative to PML nuclear bodies impacts the efficiency of homologous recombination. Biochem Cell Biol 2019; 98:314-326. [PMID: 31671275 DOI: 10.1139/bcb-2019-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) are nuclear subdomains that respond to genotoxic stress by increasing in number via changes in chromatin structure. However, the role of the PML protein and PML NBs in specific mechanisms of DNA repair has not been fully characterized. Here, we have directly examined the role of PML in homologous recombination (HR) using I-SceI extrachromosomal and chromosome-based homology-directed repair (HDR) assays, and in HDR by CRISPR/Cas9-mediated gene editing. We determined that PML loss can inhibit HR in an extrachromosomal HDR assay but had less of an effect on CRISPR/Cas9-mediated chromosomal HDR. Overexpression of PML also inhibited both CRISPR HDR and I-SceI-induced HDR using a chromosomal reporter, and in an isoform-specific manner. However, the impact of PML overexpression on the chromosomal HDR reporter was dependent on the intranuclear chromosomal positioning of the reporter. Specifically, HDR at the TAP1 gene locus, which is associated with PML NBs, was reduced compared with a locus not associated with a PML NB; yet, HDR could be reduced at the non-PML NB-associated locus by PML overexpression. Thus, both loss and overexpression of PML isoforms can inhibit HDR, and proximity of a chromosomal break to a PML NB can impact HDR efficiency.
Collapse
Affiliation(s)
- Kathleen M Attwood
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Dudley Chung
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | | | - Graham Dellaire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.,Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
126
|
Parola C, Neumeier D, Friedensohn S, Csepregi L, Di Tacchio M, Mason DM, Reddy ST. Antibody discovery and engineering by enhanced CRISPR-Cas9 integration of variable gene cassette libraries in mammalian cells. MAbs 2019; 11:1367-1380. [PMID: 31478465 PMCID: PMC6816377 DOI: 10.1080/19420862.2019.1662691] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antibody engineering in mammalian cells offers the important advantage of expression and screening of libraries in their native conformation, increasing the likelihood of generating candidates with more favorable molecular properties. Major advances in cellular engineering enabled by CRISPR-Cas9 genome editing have made it possible to expand the use of mammalian cells in biotechnological applications. Here, we describe an antibody engineering and screening approach where complete variable light (VL) and heavy (VH) chain cassette libraries are stably integrated into the genome of hybridoma cells by enhanced Cas9-driven homology-directed repair (HDR), resulting in their surface display and secretion. By developing an improved HDR donor format that utilizes in situ linearization, we are able to achieve >15-fold improvement of genomic integration, resulting in a screening workflow that only requires a simple plasmid electroporation. This proved suitable for different applications in antibody discovery and engineering. By integrating and screening an immune library obtained from the variable gene repertoire of an immunized mouse, we could isolate a diverse panel of >40 unique antigen-binding variants. Additionally, we successfully performed affinity maturation by directed evolution screening of an antibody library based on random mutagenesis, leading to the isolation of several clones with affinities in the picomolar range.
Collapse
Affiliation(s)
- Cristina Parola
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | | | - Derek M Mason
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| |
Collapse
|
127
|
Human papillomavirus E7 oncoprotein targets RNF168 to hijack the host DNA damage response. Proc Natl Acad Sci U S A 2019; 116:19552-19562. [PMID: 31501315 DOI: 10.1073/pnas.1906102116] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-risk human papillomaviruses (HR-HPVs) promote cervical cancer as well as a subset of anogenital and head and neck cancers. Due to their limited coding capacity, HPVs hijack the host cell's DNA replication and repair machineries to replicate their own genomes. How this host-pathogen interaction contributes to genomic instability is unknown. Here, we report that HPV-infected cancer cells express high levels of RNF168, an E3 ubiquitin ligase that is critical for proper DNA repair following DNA double-strand breaks, and accumulate high numbers of 53BP1 nuclear bodies, a marker of genomic instability induced by replication stress. We describe a mechanism by which HPV E7 subverts the function of RNF168 at DNA double-strand breaks, providing a rationale for increased homology-directed recombination in E6/E7-expressing cervical cancer cells. By targeting a new regulatory domain of RNF168, E7 binds directly to the E3 ligase without affecting its enzymatic activity. As RNF168 knockdown impairs viral genome amplification in differentiated keratinocytes, we propose that E7 hijacks the E3 ligase to promote the viral replicative cycle. This study reveals a mechanism by which tumor viruses reshape the cellular response to DNA damage by manipulating RNF168-dependent ubiquitin signaling. Importantly, our findings reveal a pathway by which HPV may promote the genomic instability that drives oncogenesis.
Collapse
|
128
|
Bosshard S, Duroy PO, Mermod N. A role for alternative end-joining factors in homologous recombination and genome editing in Chinese hamster ovary cells. DNA Repair (Amst) 2019; 82:102691. [PMID: 31476574 DOI: 10.1016/j.dnarep.2019.102691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022]
Abstract
CRISPR technologies greatly foster genome editing in mammalian cells through site-directed DNA double strand breaks (DSBs). However, precise editing outcomes, as mediated by homologous recombination (HR) repair, are typically infrequent and outnumbered by undesired genome alterations. By using knockdown and overexpression studies in Chinese hamster ovary (CHO) cells as well as characterizing repaired DNA junctions, we found that efficient HR-mediated genome editing depends on alternative end-joining (alt-EJ) DNA repair activities, a family of incompletely characterized DNA repair pathways traditionally considered to oppose HR. This dependency was influenced by the CRISPR nuclease type and the DSB-to-mutation distance, but not by the DNA sequence surrounding the DSBs or reporter cell line. We also identified elevated Mre11 and Pari, and low Rad51 expression levels as the most rate-limiting factors for HR in CHO cells. Counteracting these three bottlenecks improved precise genome editing by up to 75%. Altogether, our study provides novel insights into the complex interplay of alt-EJ and HR repair pathways, highlighting their relevance for developing improved genome editing strategies.
Collapse
Affiliation(s)
- Sandra Bosshard
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pierre-Olivier Duroy
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Mermod
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
129
|
Abstract
The prokaryote-derived CRISPR-Cas genome editing systems have transformed our ability to manipulate, detect, image and annotate specific DNA and RNA sequences in living cells of diverse species. The ease of use and robustness of this technology have revolutionized genome editing for research ranging from fundamental science to translational medicine. Initial successes have inspired efforts to discover new systems for targeting and manipulating nucleic acids, including those from Cas9, Cas12, Cascade and Cas13 orthologues. Genome editing by CRISPR-Cas can utilize non-homologous end joining and homology-directed repair for DNA repair, as well as single-base editing enzymes. In addition to targeting DNA, CRISPR-Cas-based RNA-targeting tools are being developed for research, medicine and diagnostics. Nuclease-inactive and RNA-targeting Cas proteins have been fused to a plethora of effector proteins to regulate gene expression, epigenetic modifications and chromatin interactions. Collectively, the new advances are considerably improving our understanding of biological processes and are propelling CRISPR-Cas-based tools towards clinical use in gene and cell therapies.
Collapse
Affiliation(s)
- Adrian Pickar-Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
- Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
130
|
Nambiar TS, Billon P, Diedenhofen G, Hayward SB, Taglialatela A, Cai K, Huang JW, Leuzzi G, Cuella-Martin R, Palacios A, Gupta A, Egli D, Ciccia A. Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nat Commun 2019; 10:3395. [PMID: 31363085 PMCID: PMC6667477 DOI: 10.1038/s41467-019-11105-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
Precise editing of genomic DNA can be achieved upon repair of CRISPR-induced DNA double-stranded breaks (DSBs) by homology-directed repair (HDR). However, the efficiency of this process is limited by DSB repair pathways competing with HDR, such as non-homologous end joining (NHEJ). Here we individually express in human cells 204 open reading frames involved in the DNA damage response (DDR) and determine their impact on CRISPR-mediated HDR. From these studies, we identify RAD18 as a stimulator of CRISPR-mediated HDR. By defining the RAD18 domains required to promote HDR, we derive an enhanced RAD18 variant (e18) that stimulates CRISPR-mediated HDR in multiple human cell types, including embryonic stem cells. Mechanistically, e18 induces HDR by suppressing the localization of the NHEJ-promoting factor 53BP1 to DSBs. Altogether, this study identifies e18 as an enhancer of CRISPR-mediated HDR and highlights the promise of engineering DDR factors to augment the efficiency of precision genome editing.
Collapse
Affiliation(s)
- Tarun S Nambiar
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Pierre Billon
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Giacomo Diedenhofen
- Naomi Berrie Diabetes Center and Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Samuel B Hayward
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Kunheng Cai
- Naomi Berrie Diabetes Center and Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jen-Wei Huang
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Raquel Cuella-Martin
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Andrew Palacios
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Anuj Gupta
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dieter Egli
- Naomi Berrie Diabetes Center and Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
131
|
Rozov SM, Permyakova NV, Deineko EV. The Problem of the Low Rates of CRISPR/Cas9-Mediated Knock-ins in Plants: Approaches and Solutions. Int J Mol Sci 2019; 20:E3371. [PMID: 31323994 PMCID: PMC6651222 DOI: 10.3390/ijms20133371] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 11/16/2022] Open
Abstract
The main number of genome editing events in plant objects obtained during the last decade with the help of specific nucleases zinc finger (ZFN), transcription activator-like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas are the microindels causing frameshift and subsequent gene knock-out. The knock-ins of genes or their parts, i.e., the insertion of them into a target genome region, are between one and two orders of magnitude less frequent. First and foremost, this is associated with the specific features of the repair systems of higher eukaryotes and the availability of the donor template in accessible proximity during double-strand break (DSB) repair. This review briefs the main repair pathways in plants according to the aspect of their involvement in genome editing. The main methods for increasing the frequency of knock-ins are summarized both along the homologous recombination pathway and non-homologous end joining, which can be used for plant objects.
Collapse
Affiliation(s)
- Serge M Rozov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Natalya V Permyakova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena V Deineko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Plant Physiology and Biotechnology, Tomsk State University, Tomsk 634050, Russia
| |
Collapse
|
132
|
Puig-Saus C, Ribas A. Gene editing: Towards the third generation of adoptive T-cell transfer therapies. IMMUNO-ONCOLOGY TECHNOLOGY 2019; 1:19-26. [PMID: 35755321 PMCID: PMC9216344 DOI: 10.1016/j.iotech.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
First-generation adoptive T-cell transfer (ACT) administering tumor-infiltrating lymphocytes (TILs), and second-generation ACT using autologous T cells genetically modified to express tumor-specific T-cell receptors (TCRs) or chimeric antigen receptors (CARs) have both shown promise for the treatment of several cancers, including melanoma, leukemia and lymphoma. However, these treatments require labor-intensive manufacturing of the cell product for each patient, frequently utilize lentiviral or retroviral vectors to genetically modify the T cells, and have limited antitumor efficacy in solid tumors. Gene editing is revolutionizing the field of gene therapy, and ACT is at the forefront of this revolution. Gene-editing technologies can be used to re-engineer the phenotype of T cells to increase their antitumor potency, to generate off-the-shelf ACT products, and to replace endogenous TCRs with tumor-specific TCRs or CARs using homology-directed repair (HDR) donor templates. Adeno-associated viral vectors or linear DNA have been used as HDR donor templates. Of note, non-viral delivery substantially reduces the time required to generate clinical-grade reagents for manufacture of T-cell products—a critical step for the translation of personalized T-cell therapies. These technological advances in the field using gene editing open the door to the third generation of ACT therapies. CRISPR-Cas9 allows the generation of tumor-specific T cells for adoptive T-cell transfer (ACT). Gene editing allows generation of off-the-shelf ACT products. Gene editing can tailor T-cell phenotype and increase antitumor potency. Non-viral gene editing is a requirement for personalized ACT. Personalized third-generation ACT: gene-edited neoantigen-specific T cells.
Collapse
Affiliation(s)
- Cristina Puig-Saus
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, USA
| | - Antoni Ribas
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, USA.,Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, USA.,Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, USA
| |
Collapse
|
133
|
Anwar MA, El-Baba C, Elnaggar MH, Elkholy YO, Mottawea M, Johar D, Al Shehabi TS, Kobeissy F, Moussalem C, Massaad E, Omeis I, Darwiche N, Eid AH. Novel therapeutic strategies for spinal osteosarcomas. Semin Cancer Biol 2019; 64:83-92. [PMID: 31152785 DOI: 10.1016/j.semcancer.2019.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
Abstract
At the dawn of the third millennium, cancer has become the bane of twenty-first century man, and remains a predominant public health burden, affecting welfare and life expectancy globally. Spinal osteogenic sarcoma, a primary spinal malignant tumor, is a rare and challenging neoplastic disease to treat. After the conventional therapeutic modalities of chemotherapy, radiation and surgery have been exhausted, there is currently no available alternative therapy in managing cases of spinal osteosarcoma. The defining signatures of tumor survival are characterised by cancer cell ability to stonewall immunogenic attrition and apoptosis by various means. Some of these biomarkers, namely immune-checkpoints, have recently been exploited as druggable targets in osteosarcoma and many other different cancers. These promising strides made by the use of reinvigorated immunotherapeutic approaches may lead to significant reduction in spinal osteosarcoma disease burden and corresponding reciprocity in increase of survival rates. In this review, we provide the background to spinal osteosarcoma, and proceed to elaborate on contribution of the complex ecology within tumor microenvironment giving arise to cancerous immune escape, which is currently receiving considerable attention. We follow this section on the tumor microenvironment by a brief history of cancer immunity. Also, we draw on the current knowledge of treatment gained from incidences of osteosarcoma at other locations of the skeleton (long bones of the extremities in close proximity to the metaphyseal growth plates) to make a case for application of immunity-based tools, such as immune-checkpoint inhibitors and vaccines, and draw attention to adverse upshots of immune-checkpoint blockers as well. Finally, we describe the novel biotechnique of CRISPR/Cas9 that will assist in treatment approaches for personalized medication.
Collapse
Affiliation(s)
- M Akhtar Anwar
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Chirine El-Baba
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Muhammed H Elnaggar
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Yasmeen O Elkholy
- Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed Mottawea
- Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Dina Johar
- Biomedical Sciences Program, Zewail University of Science and Technology, Giza, Egypt
| | | | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Charbel Moussalem
- Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Elie Massaad
- Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ibrahim Omeis
- Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon.
| | - A H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon; Department of Biomedical Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
134
|
Aksoy YA, Nguyen DT, Chow S, Chung RS, Guillemin GJ, Cole NJ, Hesselson D. Chemical reprogramming enhances homology-directed genome editing in zebrafish embryos. Commun Biol 2019; 2:198. [PMID: 31149642 PMCID: PMC6533270 DOI: 10.1038/s42003-019-0444-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/15/2019] [Indexed: 12/26/2022] Open
Abstract
Precise genome editing is limited by the inefficiency of homology-directed repair (HDR) compared to the non-homologous end-joining (NHEJ) of double strand breaks (DSBs). The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 system generates precise, locus-specific DSBs that can serve as substrates for HDR. We developed an in vivo visual reporter assay to quantify HDR-mediated events at single-cell resolution in zebrafish and used this system to identify small-molecule modulators that shift the DNA repair equilibrium in favor of HDR. By further optimizing the reaction environment and repair template, we achieved dramatic enhancement of HDR-mediated repair efficiency in zebrafish. Accordingly, under optimized conditions, inhibition of NHEJ with NU7441 enhanced HDR-mediated repair up to 13.4-fold. Importantly, we demonstrate that the increase in somatic HDR events correlates directly with germline transmission, permitting the efficient recovery of large seamlessly integrated DNA fragments in zebrafish.
Collapse
Affiliation(s)
- Yagiz A. Aksoy
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW Australia
| | - David T. Nguyen
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW Australia
| | - Sharron Chow
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW Australia
| | - Roger S. Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW Australia
| | - Gilles J. Guillemin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW Australia
| | - Nicholas J. Cole
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW Australia
| | - Daniel Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW Australia
- St Vincent’s Clinical School, UNSW Sydney, Sydney, NSW Australia
| |
Collapse
|
135
|
Gourley C, Balmaña J, Ledermann JA, Serra V, Dent R, Loibl S, Pujade-Lauraine E, Boulton SJ. Moving From Poly (ADP-Ribose) Polymerase Inhibition to Targeting DNA Repair and DNA Damage Response in Cancer Therapy. J Clin Oncol 2019; 37:2257-2269. [PMID: 31050911 DOI: 10.1200/jco.18.02050] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The DNA damage response (DDR) pathway coordinates the identification, signaling, and repair of DNA damage caused by endogenous or exogenous factors and regulates cell-cycle progression with DNA repair to minimize DNA damage being permanently passed through cell division. Severe DNA damage that cannot be repaired may trigger apoptosis; as such, the DDR pathway is of crucial importance as a cancer target. Poly (ADP-ribose) polymerase (PARP) is the best-known element of the DDR, and several PARP inhibitors have been licensed. However, there are approximately 450 proteins involved in DDR, and a number of these other targets are being investigated in the laboratory and clinic. We review the most recent evidence for the clinical effect of PARP inhibition in breast and ovarian cancer and explore expansion into the first-line setting and into other tumor types. We critique the evidence for patient selection techniques and summarize what is known about mechanisms of PARP inhibitor resistance. We then discuss what is known about the preclinical rationale for targeting other members of the DDR pathway and the associated tumor cell genetics that may confer sensitivity to these agents. Examples include DNA damage sensors (MLH1), damage signaling molecules (ataxia-telangiectasia mutated; ataxia-telangiectasia mutated-related and Rad3-related; CHK1/2; DNA-dependent protein kinase, catalytic subunit; WEE1; CDC7), or effector proteins for repair (POLQ [also referred to as POLθ], RAD51, poly [ADP-ribose] glycohydrolase). Early-phase clinical trials targeting some of these molecules, either as a single agent or in combination, are discussed. Finally, we outline the challenges that must be addressed to maximize the therapeutic opportunity that targeting DDR provides.
Collapse
Affiliation(s)
- Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, MRC IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Judith Balmaña
- Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Violeta Serra
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Rebecca Dent
- National Cancer Center and Duke - NUS Medical School, Singapore, Singapore
| | | | | | - Simon J Boulton
- The Francis Crick Institute, London, United Kingdom.,Artios Pharma, Cambridge, United Kingdom
| |
Collapse
|
136
|
Deveryshetty J, Peterlini T, Ryzhikov M, Brahiti N, Dellaire G, Masson JY, Korolev S. Novel RNA and DNA strand exchange activity of the PALB2 DNA binding domain and its critical role for DNA repair in cells. eLife 2019; 8:44063. [PMID: 31017574 PMCID: PMC6533086 DOI: 10.7554/elife.44063] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
BReast Cancer Associated proteins 1 and 2 (BRCA1, -2) and Partner and Localizer of BRCA2 (PALB2) protein are tumour suppressors linked to a spectrum of malignancies, including breast cancer and Fanconi anemia. PALB2 coordinates functions of BRCA1 and BRCA2 during homology-directed repair (HDR) and interacts with several chromatin proteins. In addition to protein scaffold function, PALB2 binds DNA. The functional role of this interaction is poorly understood. We identified a major DNA-binding site of PALB2, mutations in which reduce RAD51 foci formation and the overall HDR efficiency in cells by 50%. PALB2 N-terminal DNA-binding domain (N-DBD) stimulates the function of RAD51 recombinase. Surprisingly, it possesses the strand exchange activity without RAD51. Moreover, N-DBD stimulates the inverse strand exchange and can use DNA and RNA substrates. Our data reveal a versatile DNA interaction property of PALB2 and demonstrate a critical role of PALB2 DNA binding for chromosome repair in cells.
Collapse
Affiliation(s)
- Jaigeeth Deveryshetty
- Edward A Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisUnited States
| | - Thibaut Peterlini
- Genome Stability LaboratoryCHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research CenterQuébec CityCanada
| | - Mikhail Ryzhikov
- Edward A Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisUnited States
| | - Nadine Brahiti
- Genome Stability LaboratoryCHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research CenterQuébec CityCanada
| | | | - Jean-Yves Masson
- Genome Stability LaboratoryCHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research CenterQuébec CityCanada
| | - Sergey Korolev
- Edward A Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisUnited States
| |
Collapse
|
137
|
Okamoto S, Amaishi Y, Maki I, Enoki T, Mineno J. Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs. Sci Rep 2019; 9:4811. [PMID: 30886178 PMCID: PMC6423289 DOI: 10.1038/s41598-019-41121-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Target-specific genome editing using engineered nucleases has become widespread in various fields. Long gene knock-in and single-base substitutions can be performed by homologous recombination (HR), but the efficiency is usually very low. To improve the efficiency of knock-in with single-stranded oligo DNA nucleotides (ssODNs), we have investigated optimal design of ssODNs in terms of the blocking mutation, orientation, size, and length of homology arms to explore the optimal parameters of ssODN design using reporter systems for the detection of single-base substitutions. We have also investigated the difference in knock-in efficiency among the delivery forms and methods of Cas9 and sgRNA. The knock-in efficiencies for optimized ssODNs were much higher than those for ssODNs with no blocking mutation. We have also demonstrated that Cas9 protein/sgRNA ribonucleoprotein complexes (Cas9-RNPs) can dramatically reduce the re-cutting of the edited sites.
Collapse
Affiliation(s)
- Sachiko Okamoto
- CDM Center, Takara Bio Inc. Nojihigashi 7-4-38, Kusatsu, Shiga, 525-0058, Japan
| | - Yasunori Amaishi
- CDM Center, Takara Bio Inc. Nojihigashi 7-4-38, Kusatsu, Shiga, 525-0058, Japan
| | - Izumi Maki
- CDM Center, Takara Bio Inc. Nojihigashi 7-4-38, Kusatsu, Shiga, 525-0058, Japan
| | - Tatsuji Enoki
- CDM Center, Takara Bio Inc. Nojihigashi 7-4-38, Kusatsu, Shiga, 525-0058, Japan
| | - Junichi Mineno
- CDM Center, Takara Bio Inc. Nojihigashi 7-4-38, Kusatsu, Shiga, 525-0058, Japan.
| |
Collapse
|
138
|
Evaluation of site-specific homologous recombination activity of BRCA1 by direct quantitation of gene editing efficiency. Sci Rep 2019; 9:1644. [PMID: 30733539 PMCID: PMC6367331 DOI: 10.1038/s41598-018-38311-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/18/2018] [Indexed: 02/03/2023] Open
Abstract
Homologous recombination (HR) contributes to the repair of DNA double-strand breaks (DSBs) and inter-strand crosslinks. The HR activity in cancer cells can be used to predict their sensitivity to DNA-damaging agents that cause these damages. To evaluate HR activity, we developed a system called Assay for Site-specific HR Activity (ASHRA), in which cells are transiently transfected with an expression vector for CRISPR/Cas9 and a HR donor sequence containing a marker gene. DSBs are created by Cas9 and then repaired by HR using donor vector sequences homologous to the target gene. The level of genomic integration of the marker gene is quantified by Western blotting, flowcytometry, or quantitative PCR (qPCR). ASHRA detected HR deficiency caused by BRCA1, BARD1, or RAD51 knockdown or introduction of BRCA1 variants. The influence of BRCA1 variants on HR, as determined by qPCR, was consistent with the chemosensitivities of the transfected cells. The qPCR format of ASHRA could measure HR activity in both transcribed and un-transcribed regions. Knockdown of BRCA1 nor BARD1 did not affect HR activity in a transcriptionally inactive site. ASHRA can evaluate HR activity and will be useful for predicting sensitivity to chemotherapy, screening drugs that affect HR, and investigating the mechanisms of HR.
Collapse
|
139
|
Ducy M, Sesma-Sanz L, Guitton-Sert L, Lashgari A, Gao Y, Brahiti N, Rodrigue A, Margaillan G, Caron MC, Côté J, Simard J, Masson JY. The Tumor Suppressor PALB2: Inside Out. Trends Biochem Sci 2019; 44:226-240. [PMID: 30638972 DOI: 10.1016/j.tibs.2018.10.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 12/26/2022]
Abstract
Partner and Localizer of BRCA2 (PALB2) has emerged as an important and versatile player in genome integrity maintenance. Biallelic mutations in PALB2 cause Fanconi anemia (FA) subtype FA-N, whereas monoallelic mutations predispose to breast, and pancreatic familial cancers. Herein, we review recent developments in our understanding of the mechanisms of regulation of the tumor suppressor PALB2 and its functional domains. Regulation of PALB2 functions in DNA damage response and repair occurs on multiple levels, including homodimerization, phosphorylation, and ubiquitylation. With a molecular emphasis, we present PALB2-associated cancer mutations and their detailed analysis by functional assays.
Collapse
Affiliation(s)
- Mandy Ducy
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Laura Sesma-Sanz
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Laure Guitton-Sert
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Anahita Lashgari
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Yuandi Gao
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Nadine Brahiti
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Guillaume Margaillan
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada
| | - Marie-Christine Caron
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Jacques Côté
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Jacques Simard
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada.
| |
Collapse
|
140
|
Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, Ma W. Methodologies for Improving HDR Efficiency. Front Genet 2019; 9:691. [PMID: 30687381 PMCID: PMC6338032 DOI: 10.3389/fgene.2018.00691] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) is a precise genome manipulating technology that can be programmed to induce double-strand break (DSB) in the genome wherever needed. After nuclease cleavage, DSBs can be repaired by non-homologous end joining (NHEJ) or homology-directed repair (HDR) pathway. For producing targeted gene knock-in or other specific mutations, DSBs should be repaired by the HDR pathway. While NHEJ can cause various length insertions/deletion mutations (indels), which can lead the targeted gene to lose its function by shifting the open reading frame (ORF). Furthermore, HDR has low efficiency compared with the NHEJ pathway. In order to modify the gene precisely, numerous methods arose by inhibiting NHEJ or enhancing HDR, such as chemical modulation, synchronized expression, and overlapping homology arm. Here we focus on the efficiency and other considerations of these methodologies.
Collapse
Affiliation(s)
- Mingjie Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Saad Rehman
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xidian Tang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Kui Gu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Qinlei Fan
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Wentao Ma
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
141
|
Localized protein biotinylation at DNA damage sites identifies ZPET, a repressor of homologous recombination. Genes Dev 2018; 33:75-89. [PMID: 30567999 PMCID: PMC6317314 DOI: 10.1101/gad.315978.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Here, Moquin et al. show that fusion of the promiscuous biotin ligase BirAR118G with RAD18 leads to localized protein biotinylation at DNA damage sites and identify ZPET/ZNF280C as a potential DNA damage response protein. Their findings show that ZPET is an HR repressor and also suggest that localized protein biotinylation at DNA damage sites is a useful strategy to identify DDR proteins. Numerous DNA repair and signaling proteins function at DNA damage sites to protect the genome. Here, we show that fusion of the promiscuous biotin ligase BirAR118G with RAD18 leads to localized protein biotinylation at DNA damage sites, allowing identification of ZPET (zinc finger protein proximal to RAD eighteen)/ZNF280C as a potential DNA damage response (DDR) protein. ZPET binds ssDNA and localizes to DNA double-strand breaks (DSBs) and stalled replication forks. In vitro, ZPET inhibits MRE11 binding to ssDNA. In cells, ZPET delays MRE11 binding to chromatin after DSB formation and slows DNA end resection through binding ssDNA. ZPET hinders resection independently of 53BP1 and HELB. Cells lacking ZPET displayed enhanced homologous recombination (HR), accelerated replication forks under stress, and increased resistance to DSBs and PARP inhibition. These results not only reveal ZPET as an HR repressor but also suggest that localized protein biotinylation at DNA damage sites is a useful strategy to identify DDR proteins.
Collapse
|
142
|
Devkota S. The road less traveled: strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Cas-mediated transgenesis. BMB Rep 2018. [PMID: 30103848 PMCID: PMC6177507 DOI: 10.5483/bmbrep.2018.51.9.187] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Non-homologous end joining (NHEJ), and to a lesser extent, the error-free pathway known as homology-directed repair (HDR) are cellular mechanisms for recovery from double-strand DNA breaks (DSB) induced by RNA-guided programmable nuclease CRISPR/Cas. Since NHEJ is equivalent to using a duck tape to stick two pieces of metals together, the outcome of this repair mechanism is prone to error. Any out-of-frame mutations or premature stop codons resulting from NHEJ repair mechanism are extremely handy for loss-of-function studies. Substitution of a mutation on the genome with the correct exogenous repair DNA requires coordination via an error-free HDR, for targeted transgenesis. However, several practical limitations exist in harnessing the potential of HDR to replace a faulty mutation for therapeutic purposes in all cell types and more so in somatic cells. In germ cells after the DSB, copying occurs from the homologous chromosome, which increases the chances of incorporation of exogenous DNA with some degree of homology into the genome compared with somatic cells where copying from the identical sister chromatid is always preferred. This review summarizes several strategies that have been implemented to increase the frequency of HDR with a focus on somatic cells. It also highlights the limitations of this technology in gene therapy and suggests specific solutions to circumvent those barriers.
Collapse
Affiliation(s)
- Sushil Devkota
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
143
|
Castroviejo-Bermejo M, Cruz C, Llop-Guevara A, Gutiérrez-Enríquez S, Ducy M, Ibrahim YH, Gris-Oliver A, Pellegrino B, Bruna A, Guzmán M, Rodríguez O, Grueso J, Bonache S, Moles-Fernández A, Villacampa G, Viaplana C, Gómez P, Vidal M, Peg V, Serres-Créixams X, Dellaire G, Simard J, Nuciforo P, Rubio IT, Dienstmann R, Barrett JC, Caldas C, Baselga J, Saura C, Cortés J, Déas O, Jonkers J, Masson JY, Cairo S, Judde JG, O'Connor MJ, Díez O, Balmaña J, Serra V. A RAD51 assay feasible in routine tumor samples calls PARP inhibitor response beyond BRCA mutation. EMBO Mol Med 2018; 10:e9172. [PMID: 30377213 PMCID: PMC6284440 DOI: 10.15252/emmm.201809172] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are effective in cancers with defective homologous recombination DNA repair (HRR), including BRCA1/2-related cancers. A test to identify additional HRR-deficient tumors will help to extend their use in new indications. We evaluated the activity of the PARPi olaparib in patient-derived tumor xenografts (PDXs) from breast cancer (BC) patients and investigated mechanisms of sensitivity through exome sequencing, BRCA1 promoter methylation analysis, and immunostaining of HRR proteins, including RAD51 nuclear foci. In an independent BC PDX panel, the predictive capacity of the RAD51 score and the homologous recombination deficiency (HRD) score were compared. To examine the clinical feasibility of the RAD51 assay, we scored archival breast tumor samples, including PALB2-related hereditary cancers. The RAD51 score was highly discriminative of PARPi sensitivity versus PARPi resistance in BC PDXs and outperformed the genomic test. In clinical samples, all PALB2-related tumors were classified as HRR-deficient by the RAD51 score. The functional biomarker RAD51 enables the identification of PARPi-sensitive BC and broadens the population who may benefit from this therapy beyond BRCA1/2-related cancers.
Collapse
Affiliation(s)
| | - Cristina Cruz
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- High Risk and Familial Cancer Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Mandy Ducy
- Genome Stability Laboratory, CHU de Québec Research Center, Québec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, Canada
- CHU de Quebec - Université Laval Research Center, Genomics Center CHUL, Québec City, QC, Canada
| | - Yasir Hussein Ibrahim
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Albert Gris-Oliver
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Benedetta Pellegrino
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, University Hospital of Parma, Parma, Italy
| | - Alejandra Bruna
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Marta Guzmán
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Olga Rodríguez
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Judit Grueso
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Sandra Bonache
- Oncogenetics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Guillermo Villacampa
- Oncology Data Science (OdysSey Group), Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Cristina Viaplana
- Oncology Data Science (OdysSey Group), Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Patricia Gómez
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Maria Vidal
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Vicente Peg
- Pathology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Serres-Créixams
- Department of Radiology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Jacques Simard
- CHU de Quebec - Université Laval Research Center, Genomics Center CHUL, Québec City, QC, Canada
| | - Paolo Nuciforo
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Isabel T Rubio
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Breast Surgical Unit, Breast Cancer Center, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rodrigo Dienstmann
- Oncology Data Science (OdysSey Group), Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Breast Cancer Programme, Cancer Research UK (CRUK) Cambridge Cancer Centre, Cambridge, UK
| | - José Baselga
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cristina Saura
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Javier Cortés
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Department of Oncology, Ramón y Cajal University Hospital, Madrid, Spain
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Jos Jonkers
- Division of Molecular Pathology and Cancer Genomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Québec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, Canada
| | | | | | - Mark J O'Connor
- Oncology Innovative Medicines and Early Clinical Development Biotech Unit, AstraZeneca, Cambridge, UK
| | - Orland Díez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Clinical and Molecular Genetics Area, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Balmaña
- High Risk and Familial Cancer Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
144
|
Lomova A, Clark DN, Campo-Fernandez B, Flores-Bjurström C, Kaufman ML, Fitz-Gibbon S, Wang X, Miyahira EY, Brown D, DeWitt MA, Corn JE, Hollis RP, Romero Z, Kohn DB. Improving Gene Editing Outcomes in Human Hematopoietic Stem and Progenitor Cells by Temporal Control of DNA Repair. Stem Cells 2018; 37:284-294. [PMID: 30372555 DOI: 10.1002/stem.2935] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated system (Cas9)-mediated gene editing of human hematopoietic stem cells (hHSCs) is a promising strategy for the treatment of genetic blood diseases through site-specific correction of identified causal mutations. However, clinical translation is hindered by low ratio of precise gene modification using the corrective donor template (homology-directed repair, HDR) to gene disruption (nonhomologous end joining, NHEJ) in hHSCs. By using a modified version of Cas9 with reduced nuclease activity in G1 phase of cell cycle when HDR cannot occur, and transiently increasing the proportion of cells in HDR-preferred phases (S/G2), we achieved a four-fold improvement in HDR/NHEJ ratio over the control condition in vitro, and a significant improvement after xenotransplantation of edited hHSCs into immunodeficient mice. This strategy for improving gene editing outcomes in hHSCs has important implications for the field of gene therapy, and can be applied to diseases where increased HDR/NHEJ ratio is critical for therapeutic success. Stem Cells 2019;37:284-294.
Collapse
Affiliation(s)
- Anastasia Lomova
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Danielle N Clark
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Beatriz Campo-Fernandez
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Carmen Flores-Bjurström
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Michael L Kaufman
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Sorel Fitz-Gibbon
- Institute of Genomics and Proteomics, UCLA, Los Angeles, California, USA
| | - Xiaoyan Wang
- Department of General Internal Medicine and Health Services Research, UCLA, Los Angeles, California, USA
| | - Eric Y Miyahira
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Devin Brown
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Mark A DeWitt
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Jacob E Corn
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Roger P Hollis
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Zulema Romero
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Donald B Kohn
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA.,Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, UCLA, Los Angeles, California, USA
| |
Collapse
|
145
|
Smirnikhina SA, Anuchina AA, Lavrov AV. Ways of improving precise knock-in by genome-editing technologies. Hum Genet 2018; 138:1-19. [DOI: 10.1007/s00439-018-1953-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
|
146
|
Boel A, De Saffel H, Steyaert W, Callewaert B, De Paepe A, Coucke PJ, Willaert A. CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments. Dis Model Mech 2018; 11:11/10/dmm035352. [PMID: 30355591 PMCID: PMC6215429 DOI: 10.1242/dmm.035352] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/31/2018] [Indexed: 12/30/2022] Open
Abstract
Targeted genome editing by CRISPR/Cas9 is extremely well fitted to generate gene disruptions, although precise sequence replacement by CRISPR/Cas9-mediated homology-directed repair (HDR) suffers from low efficiency, impeding its use for high-throughput knock-in disease modeling. In this study, we used next-generation sequencing (NGS) analysis to determine the efficiency and reliability of CRISPR/Cas9-mediated HDR using several types of single-stranded oligodeoxynucleotide (ssODN) repair templates for the introduction of disease-relevant point mutations in the zebrafish genome. Our results suggest that HDR rates are strongly determined by repair-template composition, with the most influential factor being homology-arm length. However, we found that repair using ssODNs does not only lead to precise sequence replacement but also induces integration of repair-template fragments at the Cas9 cut site. We observed that error-free repair occurs at a relatively constant rate of 1-4% when using different repair templates, which was sufficient for transmission of point mutations to the F1 generation. On the other hand, erroneous repair mainly accounts for the variability in repair rate between the different repair templates. To further improve error-free HDR rates, elucidating the mechanism behind this erroneous repair is essential. We show that the error-prone nature of ssODN-mediated repair, believed to act via synthesis-dependent strand annealing (SDSA), is most likely due to DNA synthesis errors. In conclusion, caution is warranted when using ssODNs for the generation of knock-in models or for therapeutic applications. We recommend the application of in-depth NGS analysis to examine both the efficiency and error-free nature of HDR events. This article has an associated First Person interview with the first author of the paper. Summary: NGS-based analysis reveals that CRISPR/Cas9-induced double-strand-break repair using single-stranded repair templates is error prone in zebrafish, resulting in complex patterns of integrated repair-template fragments.
Collapse
Affiliation(s)
- Annekatrien Boel
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Hanna De Saffel
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Wouter Steyaert
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Anne De Paepe
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Paul J Coucke
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Andy Willaert
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
147
|
Clouaire T, Rocher V, Lashgari A, Arnould C, Aguirrebengoa M, Biernacka A, Skrzypczak M, Aymard F, Fongang B, Dojer N, Iacovoni JS, Rowicka M, Ginalski K, Côté J, Legube G. Comprehensive Mapping of Histone Modifications at DNA Double-Strand Breaks Deciphers Repair Pathway Chromatin Signatures. Mol Cell 2018; 72:250-262.e6. [PMID: 30270107 PMCID: PMC6202423 DOI: 10.1016/j.molcel.2018.08.020] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/13/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
Double-strand breaks (DSBs) are extremely detrimental DNA lesions that can lead to cancer-driving mutations and translocations. Non-homologous end joining (NHEJ) and homologous recombination (HR) represent the two main repair pathways operating in the context of chromatin to ensure genome stability. Despite extensive efforts, our knowledge of DSB-induced chromatin still remains fragmented. Here, we describe the distribution of 20 chromatin features at multiple DSBs spread throughout the human genome using ChIP-seq. We provide the most comprehensive picture of the chromatin landscape set up at DSBs and identify NHEJ- and HR-specific chromatin events. This study revealed the existence of a DSB-induced monoubiquitination-to-acetylation switch on histone H2B lysine 120, likely mediated by the SAGA complex, as well as higher-order signaling at HR-repaired DSBs whereby histone H1 is evicted while ubiquitin and 53BP1 accumulate over the entire γH2AX domains. DSB-chromatin landscape and HR/NHEJ chromatin signatures uncovered by ChIP-seq H2BK120 undergoes a switch from ubiquitination to acetylation at a local scale H1 is removed and ubiquitin accumulates on entire γH2AX domains, mainly at HR DSB 53BP1 spreads over megabase-sized domains, mostly in G1 at HR-prone DSBs
Collapse
Affiliation(s)
- Thomas Clouaire
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse 31062, France.
| | - Vincent Rocher
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse 31062, France
| | - Anahita Lashgari
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Axis-CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Coline Arnould
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse 31062, France
| | - Marion Aguirrebengoa
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse 31062, France
| | - Anna Biernacka
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury Warsaw 93, 02-089, Poland
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury Warsaw 93, 02-089, Poland
| | - François Aymard
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse 31062, France
| | - Bernard Fongang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0615, USA
| | - Norbert Dojer
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0615, USA; Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Jason S Iacovoni
- Bioinformatic Plateau I2MC, INSERM and University of Toulouse, Toulouse 31062, France
| | - Maga Rowicka
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0615, USA
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury Warsaw 93, 02-089, Poland
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Axis-CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse 31062, France.
| |
Collapse
|
148
|
Devkota S. The road less traveled: strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Cas-mediated transgenesis. BMB Rep 2018; 51:437-443. [PMID: 30103848 PMCID: PMC6177507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Indexed: 09/29/2023] Open
Abstract
Non-homologous end joining (NHEJ), and to a lesser extent, the error-free pathway known as homology-directed repair (HDR) are cellular mechanisms for recovery from double-strand DNA breaks (DSB) induced by RNA-guided programmable nuclease CRISPR/Cas. Since NHEJ is equivalent to using a duck tape to stick two pieces of metals together, the outcome of this repair mechanism is prone to error. Any out-of-frame mutations or premature stop codons resulting from NHEJ repair mechanism are extremely handy for loss-of-function studies. Substitution of a mutation on the genome with the correct exogenous repair DNA requires coordination via an error-free HDR, for targeted transgenesis. However, several practical limitations exist in harnessing the potential of HDR to replace a faulty mutation for therapeutic purposes in all cell types and more so in somatic cells. In germ cells after the DSB, copying occurs from the homologous chromosome, which increases the chances of incorporation of exogenous DNA with some degree of homology into the genome compared with somatic cells where copying from the identical sister chromatid is always preferred. This review summarizes several strategies that have been implemented to increase the frequency of HDR with a focus on somatic cells. It also highlights the limitations of this technology in gene therapy and suggests specific solutions to circumvent those barriers. [BMB Reports 2018; 51(9): 437-443].
Collapse
Affiliation(s)
- Sushil Devkota
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093,
USA
| |
Collapse
|
149
|
Gurumurthy CB, Perez-Pinera P. Technological advances in integrating multi-kilobase DNA sequences into genomes. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1016/j.cobme.2018.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
150
|
Moir-Meyer G, Cheong PL, Olijnik AA, Brown J, Knight S, King A, Kurita R, Nakamura Y, Gibbons RJ, Higgs DR, Buckle VJ, Babbs C. Robust CRISPR/Cas9 Genome Editing of the HUDEP-2 Erythroid Precursor Line Using Plasmids and Single-Stranded Oligonucleotide Donors. Methods Protoc 2018; 1:E28. [PMID: 31164570 PMCID: PMC6481050 DOI: 10.3390/mps1030028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 12/23/2022] Open
Abstract
The study of cellular processes and gene regulation in terminal erythroid development has been greatly facilitated by the generation of an immortalised erythroid cell line derived from Human Umbilical Derived Erythroid Precursors, termed HUDEP-2 cells. The ability to efficiently genome edit HUDEP-2 cells and make clonal lines hugely expands their utility as the insertion of clinically relevant mutations allows study of potentially every genetic disease affecting red blood cell development. Additionally, insertion of sequences encoding short protein tags such as Strep, FLAG and Myc permits study of protein behaviour in the normal and disease state. This approach is useful to augment the analysis of patient cells as large cell numbers are obtainable with the additional benefit that the need for specific antibodies may be circumvented. This approach is likely to lead to insights into disease mechanisms and provide reagents to allow drug discovery. HUDEP-2 cells provide a favourable alternative to the existing immortalised erythroleukemia lines as their karyotype is much less abnormal. These cells also provide sufficient material for a broad range of analyses as it is possible to generate in vitro-differentiated erythroblasts in numbers 4-7 fold higher than starting cell numbers within 9-12 days of culture. Here we describe an efficient, robust and reproducible plasmid-based methodology to introduce short (<20 bp) DNA sequences into the genome of HUDEP-2 cells using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 Cas9 system combined with single-stranded oligodeoxynucleotide (ssODN) donors. This protocol produces genetically modified lines in ~30 days and could also be used to generate knock-out and knock-in mutations.
Collapse
Affiliation(s)
- Gemma Moir-Meyer
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Pak Leng Cheong
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Aude-Anais Olijnik
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Jill Brown
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Samantha Knight
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, UK.
| | - Andrew King
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, 1-1-3 Shibadaimon, Minato-ku, Tokyo 105-8521, Japan.
| | - Yukio Nakamura
- RIKEN BioResource Research Center, Koyadai 3-1-1, Tsukuba 305-0074, Japan.
| | - Richard J Gibbons
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Veronica J Buckle
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Christian Babbs
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|