101
|
Ren Z, Harris AJ, Dikow RB, Ma E, Zhong Y, Wen J. Another look at the phylogenetic relationships and intercontinental biogeography of eastern Asian - North American Rhus gall aphids (Hemiptera: Aphididae: Eriosomatinae): Evidence from mitogenome sequences via genome skimming. Mol Phylogenet Evol 2017; 117:102-110. [PMID: 28533083 DOI: 10.1016/j.ympev.2017.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
Abstract
The Rhus gall aphids are sometimes referred to as subtribe Melaphidina (Aphididae: Eriosomatinae: Fordini) and comprise a unique group that forms galls on the primary host plants, Rhus. We examined the evolutionary relationships within the Melaphidina aphids using sequences of the complete mitochondrial genome and with samples of 11 of the 12 recognized species representing all six genera. Bayesian, maximum likelihood and parsimony analyses of the mitochondrial genome data support five well-supported clades within Melaphidina: (1) Nurudea (except N. ibofushi), (2) Schlechtendalia-Nurudea ibofushi, (3) Meitanaphis-Kaburagia, (4) Floraphis, and (5) Melaphis. Nurudea shiraii and N. yanoniella are sister to each other, but N. ibofushi is nested within Schlechtendalia. The Nurudea shiraii-N. yanoniella clade is sister to the large clade of the remaining taxa of Melaphidina aphids. The Bayesian and maximum likelihood analyses support the North American Melaphis rhois as sister to the clade of Floraphis-Kaburagia-Meitanaphis-Schlechtendalia from eastern Asia, whereas the parsimony analysis suggests Melaphis sister to Floraphis with low support (bootstrap support 38%), and the amino acid data weakly place it sister to Schlechtendalia-Nurudea ibofushi. The Melaphis position needs to be further tested with nuclear data. Meitanaphis flavogallis is sister to Kaburagia species instead of grouping with Meitanaphis elongallis. Using the Bayesian method, the North American Melaphis was estimated to have diverged from its closest Asian relatives around 64.6 (95% HPD 59.4-69.8) Ma, which is in the early Paleocene near the Cretaceous and Paleogene boundary (K/Pg boundary). At the K/Pg boundary, mass extinctions caused many types of insect-plant associations to disappear, and these extinctions may explain some of the difficulties in the phylogenetic placement of Melaphis within the analyses.
Collapse
Affiliation(s)
- Zhumei Ren
- School of Life Science, Shanxi University, 92 Wucheng Rd, Taiyuan, Shanxi 030006, China.
| | - A J Harris
- Department of Botany, National Museum of Natural History, MRC-166, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Rebecca B Dikow
- Office of Research Information Services, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, 92 Wucheng Rd, Taiyuan, Shanxi 030006, China
| | - Yang Zhong
- School of Life Sciences, Fudan University, 220 Handan Rd, Shanghai 200433, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC-166, Smithsonian Institution, Washington, DC 20013-7012, USA.
| |
Collapse
|
102
|
Saladin B, Leslie AB, Wüest RO, Litsios G, Conti E, Salamin N, Zimmermann NE. Fossils matter: improved estimates of divergence times in Pinus reveal older diversification. BMC Evol Biol 2017; 17:95. [PMID: 28376717 PMCID: PMC5381128 DOI: 10.1186/s12862-017-0941-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 03/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The taxonomy of pines (genus Pinus) is widely accepted and a robust gene tree based on entire plastome sequences exists. However, there is a large discrepancy in estimated divergence times of major pine clades among existing studies, mainly due to differences in fossil placement and dating methods used. We currently lack a dated molecular phylogeny that makes use of the rich pine fossil record, and this study is the first to estimate the divergence dates of pines based on a large number of fossils (21) evenly distributed across all major clades, in combination with applying both node and tip dating methods. RESULTS We present a range of molecular phylogenetic trees of Pinus generated within a Bayesian framework. We find the origin of crown Pinus is likely up to 30 Myr older (Early Cretaceous) than inferred in most previous studies (Late Cretaceous) and propose generally older divergence times for major clades within Pinus than previously thought. Our age estimates vary significantly between the different dating approaches, but the results generally agree on older divergence times. We present a revised list of 21 fossils that are suitable to use in dating or comparative analyses of pines. CONCLUSIONS Reliable estimates of divergence times in pines are essential if we are to link diversification processes and functional adaptation of this genus to geological events or to changing climates. In addition to older divergence times in Pinus, our results also indicate that node age estimates in pines depend on dating approaches and the specific fossil sets used, reflecting inherent differences in various dating approaches. The sets of dated phylogenetic trees of pines presented here provide a way to account for uncertainties in age estimations when applying comparative phylogenetic methods.
Collapse
Affiliation(s)
- Bianca Saladin
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Andrew B. Leslie
- Department of Ecology and Evolutionary Biology, Brown University, Providence, USA
| | - Rafael O. Wüest
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Glenn Litsios
- Department of Computational Biology, Biophore building, University of Lausanne, Lausanne, Switzerland
- Species, Ecosystems, Landscapes Division, Federal Office for the Environment FOEN, Bern, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany and Botanical Garden, University of Zurich, Zurich, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Biophore building, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
103
|
Vasconcelos TN, Proença CE, Ahmad B, Aguilar DS, Aguilar R, Amorim BS, Campbell K, Costa IR, De-Carvalho PS, Faria JE, Giaretta A, Kooij PW, Lima DF, Mazine FF, Peguero B, Prenner G, Santos MF, Soewarto J, Wingler A, Lucas EJ. Myrteae phylogeny, calibration, biogeography and diversification patterns: Increased understanding in the most species rich tribe of Myrtaceae. Mol Phylogenet Evol 2017; 109:113-137. [DOI: 10.1016/j.ympev.2017.01.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/29/2016] [Accepted: 01/04/2017] [Indexed: 01/21/2023]
|
104
|
A Phylogenetic Perspective on Biogeographical Divergence of the Flora in Yunnan, Southwestern China. Sci Rep 2017; 7:43032. [PMID: 28220864 PMCID: PMC5318862 DOI: 10.1038/srep43032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/18/2017] [Indexed: 11/08/2022] Open
Abstract
In recent years, an increasing number of studies incorporated biogeography with phylogenetic analyses to reveal the origin and evolutionary history of specific floras. In this study, we constructed the mega-phylogeny of the floras of three representative regions across Yunnan, southwestern China. We analyzed the phylogenetic structure and beta diversity based on the presence/absence of species (genus or family) data to investigate the phylogenetic patterns of regional floras. We found conspicuous divergence at the genus and species level in the pattern of phylogenetic structures, which most likely related to historical biogeography. The flora of southern Yunnan was shaped by the strike-slip extrusion of Indochina and the regional climatic stability, while the flora of northwestern Yunnan was shaped by the uplift of the Himalaya-Tibetan Plateau and the oscillations of the glacial-interglacial periods. The flora of central Yunnan had nearly equal proportions of the northern and southern floras that may be derived from a common Tertiary tropical or subtropical flora. Geological events fit well with the floristic and phylogenetic patterns across Yunnan. This study highlighted the importance of linking phylogenetic analyses to biogeographic interpretations to improve our understanding of the origin, evolution and divergence of regional floras.
Collapse
|
105
|
Möller AL, Kaulfuss U, Lee DE, Wappler T. High richness of insect herbivory from the early Miocene Hindon Maar crater, Otago, New Zealand. PeerJ 2017; 5:e2985. [PMID: 28224051 PMCID: PMC5316282 DOI: 10.7717/peerj.2985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/12/2017] [Indexed: 11/25/2022] Open
Abstract
Plants and insects are key components of terrestrial ecosystems and insect herbivory is the most important type of interaction in these ecosystems. This study presents the first analysis of associations between plants and insects for the early Miocene Hindon Maar fossil lagerstätte, Otago, New Zealand. A total of 584 fossil angiosperm leaves representing 24 morphotypes were examined to determine the presence or absence of insect damage types. Of these leaves, 73% show signs of insect damage; they comprise 821 occurrences of damage from 87 damage types representing all eight functional feeding groups. In comparison to other fossil localities, the Hindon leaves display a high abundance of insect damage and a high diversity of damage types. Leaves of Nothofagus(southern beech), the dominant angiosperm in the fossil assemblage, exhibit a similar leaf damage pattern to leaves from the nearby mid to late Miocene Dunedin Volcano Group sites but display a more diverse spectrum and much higher percentage of herbivory damage than a comparable dataset of leaves from Palaeocene and Eocene sites in the Antarctic Peninsula.
Collapse
Affiliation(s)
- Anna Lena Möller
- Steinmann Institute for Geology, Mineralogy and Palaeontology, Division Palaeontology, Rheinische Friedrich-Wilhelms Universität Bonn , Bonn , Germany
| | - Uwe Kaulfuss
- Department of Geology, University of Otago , Dunedin , New Zealand
| | - Daphne E Lee
- Department of Geology, University of Otago , Dunedin , New Zealand
| | - Torsten Wappler
- Steinmann Institute for Geology, Mineralogy and Palaeontology, Division Palaeontology, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn, Germany; Current affiliation: Hessisches Landesmuseum Darmstadt, Darmstadt, Germany
| |
Collapse
|
106
|
Liu LX, Li R, Worth JRP, Li X, Li P, Cameron KM, Fu CX. The Complete Chloroplast Genome of Chinese Bayberry ( Morella rubra, Myricaceae): Implications for Understanding the Evolution of Fagales. FRONTIERS IN PLANT SCIENCE 2017; 8:968. [PMID: 28713393 PMCID: PMC5492642 DOI: 10.3389/fpls.2017.00968] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/23/2017] [Indexed: 05/18/2023]
Abstract
Morella rubra (Myricaceae), also known as Chinese bayberry, is an economically important, subtropical, evergreen fruit tree. The phylogenetic placement of Myricaceae within Fagales and the origin of Chinese bayberry's domestication are still unresolved. In this study, we report the chloroplast (cp) genome of M. rubra and take advantage of several previously reported chloroplast genomes from related taxa to examine patterns of evolution in Fagales. The cp genomes of three M. rubra individuals were 159,478, 159,568, and 159.586 bp in length, respectively, comprising a pair of inverted repeat (IR) regions (26,014-26,069 bp) separated by a large single-copy (LSC) region (88,683-88,809 bp) and a small single-copy (SSC) region (18,676-18,767 bp). Each cp genome encodes the same 111 unique genes, consisting of 77 different protein-coding genes, 30 transfer RNA genes and four ribosomal RNA genes, with 18 duplicated in the IRs. Comparative analysis of chloroplast genomes from four representative Fagales families revealed the loss of infA and the pseudogenization of ycf15 in all analyzed species, and rpl22 has been pseudogenized in M. rubra and Castanea mollissima, but not in Juglans regia or Ostrya rehderiana. The genome size variations are detected mainly due to the length of intergenic spacers rather than gene loss, gene pseudogenization, IR expansion or contraction. The phylogenetic relationships yielded by the complete genome sequences strongly support the placement of Myricaceae as sister to Juglandaceae. Furthermore, seven cpDNA markers (trnH-psbA, psbA-trnK, rps2-rpoC2, ycf4-cemA, petD-rpoA, ndhE-ndhG, and ndhA intron) with relatively high levels of variation and variable cpSSR loci were identified within M. rubra, which will be useful in future research characterizing the population genetics of M. rubra and investigating the origin of domesticated Chinese bayberry.
Collapse
Affiliation(s)
- Lu-Xian Liu
- Laboratory of Plant Germplasm and Genetic Engineering, College of Life Sciences, Henan UniversityKaifeng, China
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang UniversityHangzhou, China
| | - Rui Li
- Food Inspection and Testing Institute of Henan ProvinceZhengzhou, China
| | - James R. P. Worth
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research InstituteIbaraki, Japan
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang UniversityHangzhou, China
| | - Pan Li
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang UniversityHangzhou, China
- *Correspondence: Pan Li,
| | | | - Cheng-Xin Fu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang UniversityHangzhou, China
| |
Collapse
|
107
|
Gao QB, Li Y, Gengji ZM, Gornall RJ, Wang JL, Liu HR, Jia LK, Chen SL. Population Genetic Differentiation and Taxonomy of Three Closely Related Species of Saxifraga (Saxifragaceae) from Southern Tibet and the Hengduan Mountains. FRONTIERS IN PLANT SCIENCE 2017; 8:1325. [PMID: 28804492 PMCID: PMC5532446 DOI: 10.3389/fpls.2017.01325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/14/2017] [Indexed: 05/12/2023]
Abstract
The effects of rapid, recent uplift of the Hengduan Mountains on evolution and diversification of young floristic lineages still remain unclear. Here, we investigate diversification of three closely related Saxifraga species with a distribution restricted to the Hengduan Mountains (HM) and southern Tibet, and comment on their taxonomy based on molecular evidence. Three chloroplast DNA fragments (rbcL, trnL-F, trnS-G) and the nuclear ribosomal DNA internal transcribed spacer (ITS) were employed to study genetic structure across 104 individuals from 12 populations of Saxifraga umbellulata, S. pasumensis, and S. banmaensis. Chloroplast DNA (cpDNA) phylogenies revealed two well supported clades, corresponding to S. umbellulata and S. pasumensis plus S. banmaensis. Topology of the ITS phylogeny was largely congruent with that generated from cpDNA haplotypes, but with minor conflicts which might be caused by incomplete lineage sorting. Analyses of molecular variance of both cpDNA and ITS datasets revealed that most variation was held between S. pasumensis s.l. (with S. banmaensis) and S. umbellulata (92.31% for cpDNA; 69.78% for ITS), suggesting a high degree of genetic divergence between them. Molecular clock analysis based on ITS dataset suggested that the divergence between S. pasumensis s.l. and S. umbellulata can be dated to 8.50 Ma, probably a result of vicariant allopatric diversification associated with the uplift events of the HM. Vicariance associated with HM uplifts may also have been responsible for infraspecific differentiation in S. pasumensis. In contrast, infraspecific differentiation in S. umbellulata was most likely triggered by Quaternary glaciations. The much lower levels of gene diversity within populations of S. pasumensis compared with S. umbellulata could have resulted from both range contractions and human collection on account of its putative medicinal properties. Combining evidence from morphology, geographical distributions and molecular phylogenetic data, we recommend that S. banmaensis should be treated as a synonym of S. pasumensis which in turn, and based on the same sources of evidence, should be treated as a separate species rather than as a variety of S. umbellulata.
Collapse
Affiliation(s)
- Qing-Bo Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
| | - Yan Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
- University of Chinese Academy of SciencesBeijing, China
| | - Zhuo-Ma Gengji
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
- University of Chinese Academy of SciencesBeijing, China
| | - Richard J. Gornall
- Department of Genetics, University of LeicesterLeicester, United Kingdom
| | - Jiu-Li Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
- University of Chinese Academy of SciencesBeijing, China
| | - Hai-Rui Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
- University of Chinese Academy of SciencesBeijing, China
| | - Liu-Kun Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
- University of Chinese Academy of SciencesBeijing, China
| | - Shi-Long Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
- *Correspondence: Shi-Long Chen
| |
Collapse
|
108
|
Diversification in vipers: Phylogenetic relationships, time of divergence and shifts in speciation rates. Mol Phylogenet Evol 2016; 105:50-62. [DOI: 10.1016/j.ympev.2016.07.029] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 04/01/2016] [Accepted: 07/28/2016] [Indexed: 11/17/2022]
|
109
|
A 4000-species dataset provides new insight into the evolution of ferns. Mol Phylogenet Evol 2016; 105:200-211. [DOI: 10.1016/j.ympev.2016.09.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/03/2016] [Accepted: 09/07/2016] [Indexed: 01/17/2023]
|
110
|
Nattier R, Capdevielle-Dulac C, Cassildé C, Couloux A, Cruaud C, Lachaume G, Lamas G, Silvain JF, Blandin P. Phylogeny and diversification of the cloud forest Morpho sulkowskyi
group (Lepidoptera, Nymphalidae) in the evolving Andes. ZOOL SCR 2016. [DOI: 10.1111/zsc.12226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Romain Nattier
- Institut de Systématique, Evolution, Biodiversité; ISYEB UMR 7205 CNRS MNHN UPMC EPHE; Muséum national d'Histoire naturelle; Sorbonne Universités; 57 rue Cuvier CP50 75005 Paris France
- Laboratoire Évolution, génomes, comportement, écologie; CNRS université Paris-Sud UMR 9191 - IRD UMR 247; Gif-sur-Yvette France
| | - Claire Capdevielle-Dulac
- Laboratoire Évolution, génomes, comportement, écologie; CNRS université Paris-Sud UMR 9191 - IRD UMR 247; Gif-sur-Yvette France
| | - Catherine Cassildé
- Institut de Systématique, Evolution, Biodiversité; ISYEB UMR 7205 CNRS MNHN UPMC EPHE; Muséum national d'Histoire naturelle; Sorbonne Universités; 57 rue Cuvier CP50 75005 Paris France
| | - Arnaud Couloux
- Technique; Genoscope. Centre National de Sequençage; Evry Ile-de-France France
| | - Corinne Cruaud
- Technique; Genoscope. Centre National de Sequençage; Evry Ile-de-France France
| | | | - Gerardo Lamas
- Departamento de Entomología; Museo de Historia Natural, Universidad Nacional Mayor de San Marcos; Avenida Arenales 1256 Apartado 14-0434 Lima 14 Peru
| | - Jean-François Silvain
- Laboratoire Évolution, génomes, comportement, écologie; CNRS université Paris-Sud UMR 9191 - IRD UMR 247; Gif-sur-Yvette France
| | - Patrick Blandin
- Institut de Systématique, Evolution, Biodiversité; ISYEB UMR 7205 CNRS MNHN UPMC EPHE; Muséum national d'Histoire naturelle; Sorbonne Universités; 57 rue Cuvier CP50 75005 Paris France
| |
Collapse
|
111
|
Himalayan uplift shaped biomes in Miocene temperate Asia: evidence from leguminous Caragana. Sci Rep 2016; 6:36528. [PMID: 27827446 PMCID: PMC5101512 DOI: 10.1038/srep36528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/18/2016] [Indexed: 11/25/2022] Open
Abstract
Caragana, with distinctive variation in leaf and rachis characters, exhibits three centers of geographic distribution, i.e., Central Asia, the Qinghai-Tibetan Plateau (QTP), and East Asia, corresponding to distinct biomes. Because Caragana species are often ecologically dominant components of the vegetation in these regions, it is regarded as a key taxon for the study of floristic evolution in the dry regions of temperate Asia. Based on an expanded data set of taxa and gene regions from those previously generated, we employed molecular clock and biogeographical analyses to infer the evolutionary history of Caragana and link it to floristic patterns, paleovegetation, and paleoclimate. Results indicate that Caragana is of arid origin from the Junggar steppe. Diversification of crown group Caragana, dated to the early Miocene ca. 18 Ma and onwards, can be linked to the Himalayan Motion stage of QTP uplift. Diversification of the major clades in the genus corresponding to taxonomic sections and morphological variation is inferred to have been driven by the uplift, as well as Asian interior aridification and East Asian monsoon formation, in the middle to late Miocene ca. 12~6 Ma. These findings demonstrate a synchronous evolution among floristics, vegetation and climate change in arid Central Asia, cold arid alpine QTP, and mesophytic East Asia.
Collapse
|
112
|
Rundel PW, Arroyo MT, Cowling RM, Keeley JE, Lamont BB, Vargas P. Mediterranean Biomes: Evolution of Their Vegetation, Floras, and Climate. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032330] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Philip W. Rundel
- Department of Ecology and Evolutionary Biology and Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095;
| | - Mary T.K. Arroyo
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile;
| | - Richard M. Cowling
- Centre for Coastal Palaeosciences, Nelson Mandela Metropolitan University, Port Elizabeth 6031, South Africa;
| | - Jon E. Keeley
- Sequoia Field Station, Western Ecological Research Center, U.S. Geological Survey, Three Rivers, California 93271;
| | - Byron B. Lamont
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6845, Australia;
| | - Pablo Vargas
- Department of Biodiversity and Conservation, Royal Botanical Garden of Madrid, CSIC, 28014 Madrid, Spain;
| |
Collapse
|
113
|
Range size heritability and diversification patterns in the liverwort genus Radula. Mol Phylogenet Evol 2016; 106:73-85. [PMID: 27664347 DOI: 10.1016/j.ympev.2016.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 11/20/2022]
Abstract
Why some species exhibit larger geographical ranges than others, and to what extent does variation in range size affect diversification rates, remains a fundamental, but largely unanswered question in ecology and evolution. Here, we implement phylogenetic comparative analyses and ancestral area estimations in Radula, a liverwort genus of Cretaceous origin, to investigate the mechanisms that explain differences in geographical range size and diversification rates among lineages. Range size was phylogenetically constrained in the two sub-genera characterized by their almost complete Australasian and Neotropical endemicity, respectively. The congruence between the divergence time of these lineages and continental split suggests that plate tectonics could have played a major role in their present distribution, suggesting that a strong imprint of vicariance can still be found in extant distribution patterns in these highly mobile organisms. Amentuloradula, Volutoradula and Metaradula species did not appear to exhibit losses of dispersal capacities in terms of dispersal life-history traits, but evidence for significant phylogenetic signal in macroecological niche traits suggests that niche conservatism accounts for their restricted geographic ranges. Despite their greatly restricted distribution to Australasia and Neotropics respectively, Amentuloradula and Volutoradula did not exhibit significantly lower diversification rates than more widespread lineages, in contrast with the hypothesis that the probability of speciation increases with range size by promoting geographic isolation and increasing the rate at which novel habitats are encountered. We suggest that stochastic long-distance dispersal events may balance allele frequencies across large spatial scales, leading to low genetic structure among geographically distant areas or even continents, ultimately decreasing the diversification rates in highly mobile, widespread lineages.
Collapse
|
114
|
|
115
|
De Baets K, Antonelli A, Donoghue PCJ. Tectonic blocks and molecular clocks. Philos Trans R Soc Lond B Biol Sci 2016; 371:20160098. [PMID: 27325840 PMCID: PMC4920344 DOI: 10.1098/rstb.2016.0098] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 12/03/2022] Open
Abstract
Evolutionary timescales have mainly used fossils for calibrating molecular clocks, though fossils only really provide minimum clade age constraints. In their place, phylogenetic trees can be calibrated by precisely dated geological events that have shaped biogeography. However, tectonic episodes are protracted, their role in vicariance is rarely justified, the biogeography of living clades and their antecedents may differ, and the impact of such events is contingent on ecology. Biogeographic calibrations are no panacea for the shortcomings of fossil calibrations, but their associated uncertainties can be accommodated. We provide examples of how biogeographic calibrations based on geological data can be established for the fragmentation of the Pangaean supercontinent: (i) for the uplift of the Isthmus of Panama, (ii) the separation of New Zealand from Gondwana, and (iii) for the opening of the Atlantic Ocean. Biogeographic and fossil calibrations are complementary, not competing, approaches to constraining molecular clock analyses, providing alternative constraints on the age of clades that are vital to avoiding circularity in investigating the role of biogeographic mechanisms in shaping modern biodiversity.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.
Collapse
Affiliation(s)
- Kenneth De Baets
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden Gothenburg Botanical Garden, Carl Skottsbergs gata 22A, 413 19 Göteborg, Sweden
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
116
|
Franzke A, Koch MA, Mummenhoff K. Turnip Time Travels: Age Estimates in Brassicaceae. TRENDS IN PLANT SCIENCE 2016; 21:554-561. [PMID: 26917156 DOI: 10.1016/j.tplants.2016.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/19/2016] [Accepted: 01/31/2016] [Indexed: 05/07/2023]
Abstract
Results of research in life sciences acquire a deeper meaning if they can also be discussed in temporal contexts of evolution. Despite the importance of the mustard family (Brassicaceae) as a prominent angiosperm model family, a robust, generally accepted hypothesis for a family-wide temporal framework does not yet exist. The main cause for this situation is a poor fossil record of the family. We suggest that the few known fossils require a critical re-evaluation of phylogenetic and temporal assignments as a prerequisite for appropriate molecular dating analyses within the family. In addition, (palaeo)biogeographical calibrations, not explored so far in the family, should be integrated in a synthesis of various dating approaches, with each contributing their specific possibilities and limitations.
Collapse
Affiliation(s)
- Andreas Franzke
- Heidelberg Botanic Garden, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, D-69120 Heidelberg, Germany.
| | - Marcus A Koch
- Heidelberg Botanic Garden, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, D-69120 Heidelberg, Germany; Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, D-69120 Heidelberg, German
| | - Klaus Mummenhoff
- Biology Department, Botany, Osnabrück University, D-49069 Osnabrück, Germany
| |
Collapse
|
117
|
Kittel RN, Austin AD, Klopfstein S. Molecular and morphological phylogenetics of chelonine parasitoid wasps (Hymenoptera: Braconidae), with a critical assessment of divergence time estimations. Mol Phylogenet Evol 2016; 101:224-241. [PMID: 27179700 DOI: 10.1016/j.ympev.2016.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 05/02/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
Parasitoid wasps of the subfamily Cheloninae are both species rich and poorly known. Although the taxonomy of Cheloninae appears to be relatively stable, there is no clear understanding of relationships among higher-level taxa. We here applied molecular phylogenetic analyses using three markers (COI, EF1α, 28S) and 37 morphological characters to elucidate the evolution and systematics of these wasps. Analyses were based on 83 specimens representing 13 genera. All genera except Ascogaster, Phanerotoma, and Pseudophanerotoma formed monophyletic groups; Furcidentia (stat. rev.) is raised to generic rank. Neither Chelonus (Chelonus) nor Chelonus (Microchelonus) were recovered as monophyletic, but together formed a monophyletic lineage. The tribes Chelonini and Odontosphaeropygini formed monophyletic groups, but the Phanerotomini sensu Zettel and Pseudophanerotomini were retrieved as either para- or polyphyletic. The genera comprising the former subfamily Adeliinae were confirmed as being nested within the Cheloninae. To estimate the age of the subfamily, we used 16 fossil taxa. Three approaches were compared: fixed-rate dating, node dating, and total-evidence dating, with age estimates differing greatly between the three methods. Shortcomings of each approach in relation to our dataset are discussed, and none of the age estimates is deemed sufficiently reliable. Given that most dating studies use a single method only, in most cases without presenting analyses on the sensitivity to priors, it is likely that numerous age estimates in the literature suffer from a similar lack of robustness. We argue for a more rigorous approach to dating analyses and for a faithful presentation of uncertainties in divergence time estimates. Given the results of the phylogenetic analysis the following taxonomic changes are proposed: Furcidentia Zettel (stat. rev.), previously treated as a subgenus of Pseudophanerotoma Zettel is raised to generic rank; Microchelonus Szépligeti (syn. nov.), variously treated by previous authors, is proposed as a junior synonym of Chelonus Jurine; the following subgenera of Microchelonus - Baculonus Braet & van Achterberg (syn. nov.), Carinichelonus Tobias (syn. nov.) and Scabrichelonus He, Chen & van Achterberg (syn. nov.), are proposed as junior synonyms of Chelonus; a number of new species names are proposed due to homonyms resulting from the above changes and these are listed in the paper.
Collapse
Affiliation(s)
- Rebecca N Kittel
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Seraina Klopfstein
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; Naturhistorisches Museum der Burgergemeinde Bern, Bernastr. 15, CH-3005 Bern, Switzerland
| |
Collapse
|
118
|
Eguchi S, Tamura MN. Evolutionary timescale of monocots determined by the fossilized birth-death model using a large number of fossil records. Evolution 2016; 70:1136-44. [DOI: 10.1111/evo.12911] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 03/25/2016] [Accepted: 03/27/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Satoshi Eguchi
- Department of Botany, Graduate School of Science; Kyoto University, Kitashirakawa-oiwake-cho; Sakyo-ku Kyoto 606-8502 Japan
| | - Minoru N. Tamura
- Department of Botany, Graduate School of Science; Kyoto University, Kitashirakawa-oiwake-cho; Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
119
|
Chriki-Adeeb R, Chriki A. Estimating Divergence Times and Substitution Rates in Rhizobia. Evol Bioinform Online 2016; 12:87-97. [PMID: 27168719 PMCID: PMC4856229 DOI: 10.4137/ebo.s39070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/22/2016] [Accepted: 03/26/2016] [Indexed: 11/05/2022] Open
Abstract
Accurate estimation of divergence times of soil bacteria that form nitrogen-fixing associations with most leguminous plants is challenging because of a limited fossil record and complexities associated with molecular clocks and phylogenetic diversity of root nodule bacteria, collectively called rhizobia. To overcome the lack of fossil record in bacteria, divergence times of host legumes were used to calibrate molecular clocks and perform phylogenetic analyses in rhizobia. The 16S rRNA gene and intergenic spacer region remain among the favored molecular markers to reconstruct the timescale of rhizobia. We evaluate the performance of the random local clock model and the classical uncorrelated lognormal relaxed clock model, in combination with four tree models (coalescent constant size, birth-death, birth-death incomplete sampling, and Yule processes) on rhizobial divergence time estimates. Bayes factor tests based on the marginal likelihoods estimated from the stepping-stone sampling analyses strongly favored the random local clock model in combination with Yule process. Our results on the divergence time estimation from 16S rRNA gene and intergenic spacer region sequences are compatible with age estimates based on the conserved core genes but significantly older than those obtained from symbiotic genes, such as nodIJ genes. This difference may be due to the accelerated evolutionary rates of symbiotic genes compared to those of other genomic regions not directly implicated in nodulation processes.
Collapse
Affiliation(s)
- Rim Chriki-Adeeb
- Département de Biologie, Laboratoire de Génétique, Faculté des Sciences de Bizerte, Jarzouna, Tunisie
| | - Ali Chriki
- Département de Biologie, Laboratoire de Génétique, Faculté des Sciences de Bizerte, Jarzouna, Tunisie
| |
Collapse
|
120
|
A well-sampled phylogenetic analysis of the polystichoid ferns (Dryopteridaceae) suggests a complex biogeographical history involving both boreotropical migrations and recent transoceanic dispersals. Mol Phylogenet Evol 2016; 98:324-36. [DOI: 10.1016/j.ympev.2016.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/15/2016] [Accepted: 02/20/2016] [Indexed: 11/18/2022]
|
121
|
Up high and down low: Molecular systematics and insight into the diversification of the ground beetle genus Rhadine LeConte. Mol Phylogenet Evol 2016; 98:161-75. [DOI: 10.1016/j.ympev.2016.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/10/2015] [Accepted: 01/14/2016] [Indexed: 11/24/2022]
|
122
|
Goutte S, Dubois A, Howard SD, Marquez R, Rowley JJL, Dehling JM, Grandcolas P, Rongchuan X, Legendre F. Environmental constraints and call evolution in torrent-dwelling frogs. Evolution 2016; 70:811-26. [PMID: 26960074 DOI: 10.1111/evo.12903] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 02/09/2016] [Accepted: 02/16/2016] [Indexed: 02/02/2023]
Abstract
Although acoustic signals are important for communication in many taxa, signal propagation is affected by environmental properties. Strong environmental constraints should drive call evolution, favoring signals with greater transmission distance and content integrity in a given calling habitat. Yet, few empirical studies have verified this prediction, possibly due to a shortcoming in habitat characterization, which is often too broad. Here we assess the potential impact of environmental constraints on the evolution of advertisement call in four groups of torrent-dwelling frogs in the family Ranidae. We reconstruct the evolution of calling site preferences, both broadly categorized and at a finer scale, onto a phylogenetic tree for 148 species with five markers (∼3600 bp). We test models of evolution for six call traits for 79 species with regard to the reconstructed history of calling site preferences and estimate their ancestral states. We find that in spite of existing morphological constraints, vocalizations of torrent-dwelling species are most probably constrained by the acoustic specificities of torrent habitats and particularly their high level of ambient noise. We also show that a fine-scale characterization of calling sites allows a better perception of the impact of environmental constraints on call evolution.
Collapse
Affiliation(s)
- Sandra Goutte
- Muséum National d'Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 CNRS MNHN UPMC EPHE, Sorbonne Universités, 57 rue Cuvier, 75231, Paris Cedex 05, France. .,Laboratório de História Natural de Anfíbios Brasileiros, Instituto de Biologia, Universidade Estadual de Campinas, rua Monteiro Lobato, 255, CEP 13083-862, Campinas, São Paulo, Brazil.
| | - Alain Dubois
- Muséum National d'Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 CNRS MNHN UPMC EPHE, Sorbonne Universités, 57 rue Cuvier, 75231, Paris Cedex 05, France
| | - Samuel D Howard
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Rafael Marquez
- Fonoteca Zoológica, Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), C/José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Jodi J L Rowley
- Australian Museum Research Institute, Australian museum 1 College Street, Sydney, NSW, 2010, Australia
| | - J Maximilian Dehling
- Institut für Integrierte Naturwissenschaften, Abteilung Biologie, Universität Koblenz-Landau, Universitätsstraße 1, 56070, Koblenz, Germany
| | - Philippe Grandcolas
- Muséum National d'Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 CNRS MNHN UPMC EPHE, Sorbonne Universités, 57 rue Cuvier, 75231, Paris Cedex 05, France
| | - Xiong Rongchuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Frédéric Legendre
- Muséum National d'Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 CNRS MNHN UPMC EPHE, Sorbonne Universités, 57 rue Cuvier, 75231, Paris Cedex 05, France
| |
Collapse
|
123
|
Garnica S, Riess K, Schön ME, Oberwinkler F, Setaro SD. Divergence Times and Phylogenetic Patterns of Sebacinales, a Highly Diverse and Widespread Fungal Lineage. PLoS One 2016; 11:e0149531. [PMID: 26938104 PMCID: PMC4795679 DOI: 10.1371/journal.pone.0149531] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/02/2016] [Indexed: 01/03/2023] Open
Abstract
Patterns of geographic distribution and composition of fungal communities are still poorly understood. Widespread occurrence in terrestrial ecosystems and the unique richness of interactions of Sebacinales with plants make them a target group to study evolutionary events in the light of nutritional lifestyle. We inferred diversity patterns, phylogenetic structures and divergence times of Sebacinales with respect to their nutritional lifestyles by integrating data from fossil-calibrated phylogenetic analyses. Relaxed molecular clock analyses indicated that Sebacinales originated late Permian within Basidiomycota, and their split into Sebacinaceae and Serendipitaceae nom. prov. likely occurred during the late Jurassic and the early Cretaceous, coinciding with major diversifications of land plants. In Sebacinaceae, diversification of species with ectomycorrhizal lifestyle presumably started during the Paleocene. Lineage radiations of the core group of ericoid and cavendishioid mycorrhizal Sebacinales started probably in the Eocene, coinciding with diversification events of their hosts. The diversification of Sebacinales with jungermannioid interactions started during the Oligocene, and occurred much later than the diversification of their hosts. Sebacinales communities associated either with ectomycorrhizal plants, achlorophyllous orchids, ericoid and cavendishioid Ericaceae or liverworts were phylogenetically clustered and globally distributed. Major Sebacinales lineage diversifications started after the continents had drifted apart. We also briefly discuss dispersal patterns of extant Sebacinales.
Collapse
Affiliation(s)
- Sigisfredo Garnica
- University of Tübingen, Institute of Evolution and Ecology, Plant Evolutionary Ecology, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Kai Riess
- University of Tübingen, Institute of Evolution and Ecology, Plant Evolutionary Ecology, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Max E. Schön
- University of Tübingen, Institute of Evolution and Ecology, Plant Evolutionary Ecology, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Franz Oberwinkler
- University of Tübingen, Institute of Evolution and Ecology, Plant Evolutionary Ecology, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Sabrina D. Setaro
- Wake Forest University, Department of Biology, 205 Winston Hall, 1834 Wake Forest Road, Winston-Salem, North Carolina, 27106, United States of America
| |
Collapse
|
124
|
Huang JF, Li L, van der Werff H, Li HW, Rohwer JG, Crayn DM, Meng HH, van der Merwe M, Conran JG, Li J. Origins and evolution of cinnamon and camphor: A phylogenetic and historical biogeographical analysis of the Cinnamomum group (Lauraceae). Mol Phylogenet Evol 2016; 96:33-44. [DOI: 10.1016/j.ympev.2015.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
|
125
|
Wang Q, Mao KS. Puzzling rocks and complicated clocks: how to optimize molecular dating approaches in historical phytogeography. THE NEW PHYTOLOGIST 2016; 209:1353-1358. [PMID: 26355284 DOI: 10.1111/nph.13676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Qian Wang
- Key Laboratory for Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Kang-Shan Mao
- Key Laboratory for Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
126
|
Affiliation(s)
- Peter Wilf
- Department of Geosciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ignacio H Escapa
- CONICET, Museo Paleontológico Egidio Feruglio, Avenida Fontana 140, 9100, Trelew, Chubut, Argentina
| |
Collapse
|
127
|
Divergence time estimates and the evolution of major lineages in the florideophyte red algae. Sci Rep 2016; 6:21361. [PMID: 26892537 PMCID: PMC4759575 DOI: 10.1038/srep21361] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 01/19/2016] [Indexed: 11/08/2022] Open
Abstract
The Florideophyceae is the most abundant and taxonomically diverse class of red algae (Rhodophyta). However, many aspects of the systematics and divergence times of the group remain unresolved. Using a seven-gene concatenated dataset (nuclear EF2, LSU and SSU rRNAs, mitochondrial cox1, and plastid rbcL, psaA and psbA genes), we generated a robust phylogeny of red algae to provide an evolutionary timeline for florideophyte diversification. Our relaxed molecular clock analysis suggests that the Florideophyceae diverged approximately 943 (817-1,049) million years ago (Ma). The major divergences in this class involved the emergence of Hildenbrandiophycidae [ca. 781 (681-879) Ma], Nemaliophycidae [ca. 661 (597-736) Ma], Corallinophycidae [ca. 579 (543-617) Ma], and the split of Ahnfeltiophycidae and Rhodymeniophycidae [ca. 508 (442-580) Ma]. Within these clades, extant diversity reflects largely Phanerozoic diversification. Divergences within Florideophyceae were accompanied by evolutionary changes in the carposporophyte stage, leading to a successful strategy for maximizing spore production from each fertilization event. Our research provides robust estimates for the divergence times of major lineages within the Florideophyceae. This timeline was used to interpret the emergence of key morphological innovations that characterize these multicellular red algae.
Collapse
|
128
|
McTaggart AR, Shivas RG, van der Nest MA, Roux J, Wingfield BD, Wingfield MJ. Host jumps shaped the diversity of extant rust fungi (Pucciniales). THE NEW PHYTOLOGIST 2016; 209:1149-1158. [PMID: 26459939 DOI: 10.1111/nph.13686] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/26/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to determine the evolutionary time line for rust fungi and date key speciation events using a molecular clock. Evidence is provided that supports a contemporary view for a recent origin of rust fungi, with a common ancestor on a flowering plant. Divergence times for > 20 genera of rust fungi were studied with Bayesian evolutionary analyses. A relaxed molecular clock was applied to ribosomal and mitochondrial genes, calibrated against estimated divergence times for the hosts of rust fungi, such as Acacia (Fabaceae), angiosperms and the cupressophytes. Results showed that rust fungi shared a most recent common ancestor with a mean age between 113 and 115 million yr. This dates rust fungi to the Cretaceous period, which is much younger than previous estimations. Host jumps, whether taxonomically large or between host genera in the same family, most probably shaped the diversity of rust genera. Likewise, species diversified by host shifts (through coevolution) or via subsequent host jumps. This is in contrast to strict coevolution with their hosts. Puccinia psidii was recovered in Sphaerophragmiaceae, a family distinct from Raveneliaceae, which were regarded as confamilial in previous studies.
Collapse
Affiliation(s)
- Alistair R McTaggart
- Department of Microbiology and Plant Pathology, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Roger G Shivas
- Department of Agriculture and Forestry, Queensland Plant Pathology Herbarium, GPO Box 267, Brisbane, Qld, 4001, Australia
| | - Magriet A van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Jolanda Roux
- Department of Plant Sciences, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Brenda D Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Michael J Wingfield
- Department of Microbiology and Plant Pathology, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
129
|
Schenk JJ. Consequences of Secondary Calibrations on Divergence Time Estimates. PLoS One 2016; 11:e0148228. [PMID: 26824760 PMCID: PMC4732660 DOI: 10.1371/journal.pone.0148228] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/14/2016] [Indexed: 11/19/2022] Open
Abstract
Secondary calibrations (calibrations based on the results of previous molecular dating studies) are commonly applied in divergence time analyses in groups that lack fossil data; however, the consequences of applying secondary calibrations in a relaxed-clock approach are not fully understood. I tested whether applying the posterior estimate from a primary study as a prior distribution in a secondary study results in consistent age and uncertainty estimates. I compared age estimates from simulations with 100 randomly replicated secondary trees. On average, the 95% credible intervals of node ages for secondary estimates were significantly younger and narrower than primary estimates. The primary and secondary age estimates were significantly different in 97% of the replicates after Bonferroni corrections. Greater error in magnitude was associated with deeper than shallower nodes, but the opposite was found when standardized by median node age, and a significant positive relationship was determined between the number of tips/age of secondary trees and the total amount of error. When two secondary calibrated nodes were analyzed, estimates remained significantly different, and although the minimum and median estimates were associated with less error, maximum age estimates and credible interval widths had greater error. The shape of the prior also influenced error, in which applying a normal, rather than uniform, prior distribution resulted in greater error. Secondary calibrations, in summary, lead to a false impression of precision and the distribution of age estimates shift away from those that would be inferred by the primary analysis. These results suggest that secondary calibrations should not be applied as the only source of calibration in divergence time analyses that test time-dependent hypotheses until the additional error associated with secondary calibrations is more properly modeled to take into account increased uncertainty in age estimates.
Collapse
Affiliation(s)
- John J. Schenk
- Department of Biology, Georgia Southern University, Statesboro, Georgia, United States of America
- * E-mail:
| |
Collapse
|
130
|
Multi-locus plastid phylogenetic biogeography supports the Asian hypothesis of the temperate woody bamboos (Poaceae: Bambusoideae). Mol Phylogenet Evol 2015; 96:118-129. [PMID: 26723898 DOI: 10.1016/j.ympev.2015.11.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/22/2015] [Accepted: 11/26/2015] [Indexed: 11/23/2022]
Abstract
In this paper we investigate the biogeography of the temperate woody bamboos (Arundinarieae) using a densely-sampled phylogenetic tree of Bambusoideae based on six plastid DNA loci, which corroborates the previously discovered 12 lineages (I-XII) and places Kuruna as sister to the Chimonocalamus clade. Biogeographic analyses revealed that the Arundinarieae diversified from an estimated 12 to 14Mya, and this was followed by rapid radiation within the lineages, particularly lineages IV, V and VI, starting from c. 7-8Mya. It is suggested that the late Miocene intensification of East Asian monsoon may have contributed to this burst of diversification. The possibilities of the extant Sri Lankan and African temperate bamboo lineages representing 'basal elements' could be excluded, indicating that there is no evidence to support the Indian or African route for migration of temperate bamboo ancestors to Asia. Radiations from eastern Asia to Africa, Sri Lanka, and to North America all are likely to have occurred during the Pliocene, to form the disjunct distribution of Arundinarieae we observe today. The two African lineages are inferred as being derived independently from Asian ancestors, either by overland migrations or long-distance dispersals. Beringian migration may explain the eastern Asian-eastern North American disjunction.
Collapse
|
131
|
Marshall DC, Hill KBR, Moulds M, Vanderpool D, Cooley JR, Mohagan AB, Simon C. Inflation of Molecular Clock Rates and Dates: Molecular Phylogenetics, Biogeography, and Diversification of a Global Cicada Radiation from Australasia (Hemiptera: Cicadidae: Cicadettini). Syst Biol 2015; 65:16-34. [PMID: 26493828 DOI: 10.1093/sysbio/syv069] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/17/2015] [Indexed: 11/13/2022] Open
Abstract
Dated phylogenetic trees are important for studying mechanisms of diversification, and molecular clocks are important tools for studies of organisms lacking good fossil records. However, studies have begun to identify problems in molecular clock dates caused by uncertainty of the modeled molecular substitution process. Here we explore Bayesian relaxed-clock molecular dating while studying the biogeography of ca. 200 species from the global cicada tribe Cicadettini. Because the available fossils are few and uninformative, we calibrate our trees in part with a cytochrome oxidase I (COI) clock prior encompassing a range of literature estimates for arthropods. We show that tribe-level analyses calibrated solely with the COI clock recover extremely old dates that conflict with published estimates for two well-studied New Zealand subclades within Cicadettini. Additional subclade analyses suggest that COI relaxed-clock rates and maximum-likelihood branch lengths become inflated relative to EF-1[Formula: see text] intron and exon rates and branch lengths as clade age increases. We present corrected estimates derived from: (i) an extrapolated EF-1[Formula: see text] exon clock derived from COI-calibrated analysis within the largest New Zealand subclade; (ii) post hoc scaling of the tribe-level chronogram using results from subclade analyses; and (iii) exploitation of a geological calibration point associated with New Caledonia. We caution that considerable uncertainty is generated due to dependence of substitution estimates on both the taxon sample and the choice of model, including gamma category number and the choice of empirical versus estimated base frequencies. Our results suggest that diversification of the tribe Cicadettini commenced in the early- to mid-Cenozoic and continued with the development of open, arid habitats in Australia and worldwide. We find that Cicadettini is a rare example of a global terrestrial animal group with an Australasian origin, with all non-Australasian genera belonging to two distal clades. Within Australia, we show that Cicadettini is more widely distributed than any other cicada tribe, diverse in temperate, arid and monsoonal habitats, and nearly absent from rainforests. We comment on the taxonomic implications of our findings for thirteen cicada genera.
Collapse
Affiliation(s)
- David C Marshall
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., Storrs, CT 06269, USA;
| | - Kathy B R Hill
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., Storrs, CT 06269, USA
| | - Max Moulds
- Entomology Department, Australian Museum, 6 College Street, Sydney NSW 2010, Australia
| | - Dan Vanderpool
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., Storrs, CT 06269, USA; Division of Biological Sciences, Health Sciences 304, U. Montana, Missoula, MT 59812
| | - John R Cooley
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., Storrs, CT 06269, USA
| | - Alma B Mohagan
- Central Mindanao University, Sayre Highway, Bukidnon, Philippines
| | - Chris Simon
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., Storrs, CT 06269, USA
| |
Collapse
|
132
|
Biogeography of the Malagasy Celastraceae: Multiple independent origins followed by widespread dispersal of genera from Madagascar. Mol Phylogenet Evol 2015; 94:365-82. [PMID: 26432393 DOI: 10.1016/j.ympev.2015.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 01/05/2023]
Abstract
Of the 97 currently recognized genera of Celastraceae, 19 are native to Madagascar, including six endemics. In this study we conducted the most thorough phylogenetic analysis of Celastraceae yet completed with respect to both character and taxon sampling, and include representatives of five new endemic genera. Fifty-one new accessions, together with 328 previously used accessions of Celastrales, were sampled for morphological characters, two rDNA gene regions, and two plastid gene regions. The endemic Malagasy genera are resolved in two separate lineages-Xenodrys by itself and all other endemic genera in a clade that also includes four lineages inferred to have dispersed from Madagascar: Brexia madagascariensis (Mascarene Islands, coastal Africa), Elaeodendron (West Indies, Africa to New Caledonia), and Pleurostylia (Africa to New Caledonia). Of the 12 extant Malagasy Celastraceae lineages identified, eight are clearly of African origin. The origins of the remaining four lineages are less clear, but reasonable possibilities include America, Eurasia, Africa, southern India, Malesia, and Australia. Based on 95% credible age intervals from fossil-calibrated molecular dating, all 12 extant Malagasy Celastraceae lineages appear to have arisen following dispersal after the separation of Madagascar from other landmasses within the last 70 million years.
Collapse
|
133
|
Hoffmann V, Verboom GA, Cotterill FPD. Dated Plant Phylogenies Resolve Neogene Climate and Landscape Evolution in the Cape Floristic Region. PLoS One 2015; 10:e0137847. [PMID: 26422465 PMCID: PMC4589284 DOI: 10.1371/journal.pone.0137847] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/22/2015] [Indexed: 11/18/2022] Open
Abstract
In the context of molecularly-dated phylogenies, inferences informed by ancestral habitat reconstruction can yield valuable insights into the origins of biomes, palaeoenvironments and landforms. In this paper, we use dated phylogenies of 12 plant clades from the Cape Floristic Region (CFR) in southern Africa to test hypotheses of Neogene climatic and geomorphic evolution. Our combined dataset for the CFR strengthens and refines previous palaeoenvironmental reconstructions based on a sparse, mostly offshore fossil record. Our reconstructions show remarkable consistency across all 12 clades with regard to both the types of environments identified as ancestral, and the timing of shifts to alternative conditions. They reveal that Early Miocene land surfaces of the CFR were wetter than at present and were dominated by quartzitic substrata. These conditions continue to characterize the higher-elevation settings of the Cape Fold Belt, where they have fostered the persistence of ancient fynbos lineages. The Middle Miocene (13-17 Ma) saw the development of perennial to weakly-seasonal arid conditions, with the strongly seasonal rainfall regime of the west coast arising ~6.5-8 Ma. Although the Late Miocene may have seen some exposure of the underlying shale substrata, the present-day substrate diversity of the CFR lowlands was shaped by Pliocene-Pleistocene events. Particularly important was renewed erosion, following the post-African II uplift episode, and the reworking of sediments on the coastal platform as a consequence of marine transgressions and tectonic uplift. These changes facilitated adaptive radiations in some, but not all, lineages studied.
Collapse
Affiliation(s)
- Vera Hoffmann
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - G. Anthony Verboom
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Fenton P. D. Cotterill
- Africa Earth Observatory Network (AEON), Geoecodynamics Research Hub, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
134
|
Lin L, Tang L, Bai YJ, Tang ZY, Wang W, Chen ZD. Range expansion and habitat shift triggered elevated diversification of the rice genus (Oryza, Poaceae) during the Pleistocene. BMC Evol Biol 2015; 15:182. [PMID: 26334527 PMCID: PMC4559288 DOI: 10.1186/s12862-015-0459-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/19/2015] [Indexed: 12/02/2022] Open
Abstract
Background The rice genus (Oryza) contains many wild genetic resources that are vital to the well-being of humans. However, little is known about the process by which the genus diversified or the factors that drove its speciation. Here, we integrated the phylogenetic, molecular dating and biogeographic methods to investigate the spatial-temporal patterns of Oryza diversification, and used a series of model tests to examine whether intercontinental migrations and/or key innovations were associated with significant changes in diversification rates in the genus. Results Oryza became differentiated in tropical Asia in the Miocene. There were two migrations from the ancestral area into Africa and Australia during the Miocene. We inferred at least 10 migration events out of tropical Asia since the Pleistocene, mainly involving the species adapting open habitat. A rapid increase in diversification rates of the whole Oryza occurred during the Pleistocene. Intercontinental migrations from tropical Asia to other tropical regions were positively correlated with shift in habitat, but not with changes in life history. A habitat preference shift from shade tolerant to open habitat predated the burst in diversification rates. Conclusions Rice species may have been pre-adapted to invade open habitat. Significant increase in diversification rates occurred during the Pleistocene and is associated with range expansion and habitat shift, but not with life history. The rice genus provides an excellent case supporting the idea that range expansion and invasion of novel habitats can drive the diversification of a group. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0459-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Lin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China. .,University of Chinese Academy of Sciences, 52 Sanheli Road, Beijing, 100049, China.
| | - Liang Tang
- College of Horticulture and Landscape Architecture, Southwest University, 2 Tianhe Road, Beipei Distinct, Chongqing, 400715, China.
| | - Yun-Jun Bai
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China. .,University of Chinese Academy of Sciences, 52 Sanheli Road, Beijing, 100049, China.
| | - Zhi-Yao Tang
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes, Peking University, 5 Yiheyuan Road, Haidian Distinct, Beijing, 100871, China.
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China.
| | - Zhi-Duan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China.
| |
Collapse
|
135
|
Zhu Q, Hastriter MW, Whiting MF, Dittmar K. Fleas (Siphonaptera) are Cretaceous, and evolved with Theria. Mol Phylogenet Evol 2015; 90:129-39. [DOI: 10.1016/j.ympev.2015.04.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/16/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
|
136
|
Ren G, Conti E, Salamin N. Phylogeny and biogeography of Primula sect. Armerina: implications for plant evolution under climate change and the uplift of the Qinghai-Tibet Plateau. BMC Evol Biol 2015; 15:161. [PMID: 26275399 PMCID: PMC4537560 DOI: 10.1186/s12862-015-0445-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The historical orogenesis and associated climatic changes of mountain areas have been suggested to partly account for the occurrence of high levels of biodiversity and endemism. However, their effects on dispersal, differentiation and evolution of many groups of plants are still unknown. In this study, we examined the detailed diversification history of Primula sect. Armerina, and used biogeographic analysis and macro-evolutionary modeling to investigate a series of different questions concerning the evolution of the geographical and ecological distribution of the species in this section. RESULTS We sequenced five chloroplast and one nuclear genes for species of Primula sect. Armerina. Neither chloroplast nor nuclear trees support the monophyly of the section. The major incongruences between the two trees occur among closely related species and may be explained by hybridization. Our dating analyses based on the chloroplast dataset suggest that this section began to diverge from its relatives around 3.55 million years ago, largely coinciding with the last major uplift of the Qinghai-Tibet Plateau (QTP). Biogeographic analysis supports the origin of the section in the Himalayan Mountains and dispersal from the Himalayas to Northeastern QTP, Western QTP and Hengduan Mountains. Furthermore, evolutionary models of ecological niches show that the two P. fasciculata clades have significantly different climatic niche optima and rates of niche evolution, indicating niche evolution under climatic changes and further providing evidence for explaining their biogeographic patterns. CONCLUSION Our results support the hypothesis that geologic and climatic events play important roles in driving biological diversification of organisms in the QTP area. The Pliocene uplift of the QTP and following climatic changes most likely promoted both the inter- and intraspecific divergence of Primula sect. Armerina. This study also illustrates how niche evolution under climatic changes influences biogeographic patterns.
Collapse
Affiliation(s)
- Guangpeng Ren
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge, 1015, Lausanne, Switzerland.
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Science, Lanzhou University, Lanzhou, 730000, , Gansu, China.
| | - Elena Conti
- Institute for Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008, ZURICH, Switzerland.
| | - Nicolas Salamin
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge, 1015, Lausanne, Switzerland.
| |
Collapse
|
137
|
Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica. Proc Natl Acad Sci U S A 2015; 112:10989-94. [PMID: 26261324 DOI: 10.1073/pnas.1423653112] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76-66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60-50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general.
Collapse
|
138
|
Gao YD, Harris AJ, He XJ. Morphological and ecological divergence of Lilium and Nomocharis within the Hengduan Mountains and Qinghai-Tibetan Plateau may result from habitat specialization and hybridization. BMC Evol Biol 2015; 15:147. [PMID: 26219287 PMCID: PMC4518642 DOI: 10.1186/s12862-015-0405-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several previous studies have shown that some morphologically distinctive, small genera of vascular plants that are endemic to the Qinghai-Tibetan Plateau and adjacent Hengduan Mountains appear to have unexpected and complex phylogenetic relationships with their putative sisters, which are typically more widespread and more species rich. In particular, the endemic genera may form one or more poorly resolved paraphyletic clades within the sister group despite distinctive morphology. Plausible explanations for this evolutionary and biogeographic pattern include extreme habitat specialization and hybridization. One genus consistent with this pattern is Nomocharis Franchet. Nomocharis comprises 7-15 species bearing showy-flowers that are endemic to the H-D Mountains. Nomocharis has long been treated as sister to Lilium L., which is comprised of more than 120 species distributed throughout the temperate Northern Hemisphere. Although Nomocharis appears morphologically distinctive, recent molecular studies have shown that it is nested within Lilium, from which is exhibits very little sequence divergence. In this study, we have used a dated molecular phylogenetic framework to gain insight into the timing of morphological and ecological divergence in Lilium-Nomocharis and to preliminarily explore possible hybridization events. We accomplished our objectives using dated phylogenies reconstructed from nuclear internal transcribed spacers (ITS) and six chloroplast markers. RESULTS Our phylogenetic reconstruction revealed several Lilium species nested within a clade of Nomocharis, which evolved ca. 12 million years ago and is itself nested within the rest of Lilium. Flat/open and horizon oriented flowers are ancestral in Nomocharis. Species of Lilium nested within Nomocharis diverged from Nomocharis ca. 6.5 million years ago. These Lilium evolved recurved and campanifolium flowers as well as the nodding habit by at least 3.5 million years ago. Nomocharis and the nested Lilium species had relatively low elevation ancestors (<1000 m) and underwent diversification into new, higher elevational habitats 3.5 and 5.5 million years ago, respectively. Our phylogeny reveals signatures of hybridization including incongruence between the plastid and nuclear gene trees, geographic clustering of the maternal (i.e., plastid) lineages, and divergence ages of the nuclear gene trees consistent with speciation and secondary contact, respectively. CONCLUSIONS The timing of speciation and ecological and morphological evolutionary events in Nomocharis are temporally consistent with uplift in the Qinghai-Tibetan Plateau and of the Hengduan Mountains 7 and 3-4 million years ago, respectively. Thus, we speculate that the mountain building may have provided new habitats that led to specialization of morphological and ecological features in Nomocharis and the nested Lilium along ecological gradients. Additionally, we suspect that the mountain building may have led to secondary contact events that enabled hybridization in Lilium-Nomocharis. Both the habitat specialization and hybridization have probably played a role in generating the striking morphological differences between Lilium and Nomocharis.
Collapse
Affiliation(s)
- Yun-Dong Gao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China.
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - A J Harris
- Department of Botany, Oklahoma State University, 301 Physical Sciences, Stillwater, OK, 74078-3013, USA.
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China.
| |
Collapse
|
139
|
Bouchenak-Khelladi Y, Onstein RE, Xing Y, Schwery O, Linder HP. On the complexity of triggering evolutionary radiations. THE NEW PHYTOLOGIST 2015; 207:313-326. [PMID: 25690582 DOI: 10.1111/nph.13331] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/15/2015] [Indexed: 05/02/2023]
Abstract
Recent developments in phylogenetic methods have made it possible to reconstruct evolutionary radiations from extant taxa, but identifying the triggers of radiations is still problematic. Here, we propose a conceptual framework to explore the role of variables that may impact radiations. We classify the variables into extrinsic conditions vs intrinsic traits, whether they provide background conditions, trigger the radiation, or modulate the radiation. We used three clades representing angiosperm phylogenetic and structural diversity (Ericaceae, Fagales and Poales) as test groups. We located radiation events, selected variables potentially associated with diversification, and inferred the temporal sequences of evolution. We found 13 shifts in diversification regimes in the three clades. We classified the associated variables, and determined whether they originated before the relevant radiation (backgrounds), originated simultaneously with the radiations (triggers), or evolved later (modulators). By applying this conceptual framework, we establish that radiations require both extrinsic conditions and intrinsic traits, but that the sequence of these is not important. We also show that diversification drivers can be detected by being more variable within a radiation than conserved traits that only allow occupation of a new habitat. This framework facilitates exploration of the causative factors of evolutionary radiations.
Collapse
Affiliation(s)
- Yanis Bouchenak-Khelladi
- Institute of Systematic Botany, University of Zurich, 107 Zollikerstrasse, Zurich, CH-8008, Switzerland
| | - Renske E Onstein
- Institute of Systematic Botany, University of Zurich, 107 Zollikerstrasse, Zurich, CH-8008, Switzerland
| | - Yaowu Xing
- Institute of Systematic Botany, University of Zurich, 107 Zollikerstrasse, Zurich, CH-8008, Switzerland
| | - Orlando Schwery
- Institute of Systematic Botany, University of Zurich, 107 Zollikerstrasse, Zurich, CH-8008, Switzerland
| | - H Peter Linder
- Institute of Systematic Botany, University of Zurich, 107 Zollikerstrasse, Zurich, CH-8008, Switzerland
| |
Collapse
|
140
|
Wilf P, Escapa IH. Green Web or megabiased clock? Plant fossils from Gondwanan Patagonia speak on evolutionary radiations. THE NEW PHYTOLOGIST 2015; 207:283-290. [PMID: 25441060 DOI: 10.1111/nph.13114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/12/2014] [Indexed: 06/04/2023]
Abstract
Evolutionary divergence-age estimates derived from molecular 'clocks' are frequently correlated with paleogeographic, paleoclimatic and extinction events. One prominent hypothesis based on molecular data states that the dominant pattern of Southern Hemisphere biogeography is post-Gondwanan clade origins and subsequent dispersal across the oceans in a metaphoric 'Green Web'. We tested this idea against well-dated Patagonian fossils of 19 plant lineages, representing organisms that actually lived on Gondwana. Most of these occurrences are substantially older than their respective, often post-Gondwanan molecular dates. The Green Web interpretation probably results from directional bias in molecular results. Gondwanan history remains fundamental to understanding Southern Hemisphere plant radiations, and we urge significantly greater caution when using molecular dating to interpret the biological impacts of geological events.
Collapse
Affiliation(s)
- Peter Wilf
- Department of Geosciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ignacio H Escapa
- CONICET, Museo Paleontológico Egidio Feruglio, Avenida Fontana 140, 9100, Trelew, Chubut, Argentina
| |
Collapse
|
141
|
Silvestro D, Cascales‐Miñana B, Bacon CD, Antonelli A. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record. THE NEW PHYTOLOGIST 2015; 207:425-436. [PMID: 25619401 PMCID: PMC4949670 DOI: 10.1111/nph.13247] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/23/2014] [Indexed: 05/18/2023]
Abstract
Plants have a long evolutionary history, during which mass extinction events dramatically affected Earth's ecosystems and its biodiversity. The fossil record can shed light on the diversification dynamics of plant life and reveal how changes in the origination-extinction balance have contributed to shaping the current flora. We use a novel Bayesian approach to estimate origination and extinction rates in plants throughout their history. We focus on the effect of the 'Big Five' mass extinctions and on estimating the timing of origin of vascular plants, seed plants and angiosperms. Our analyses show that plant diversification is characterized by several shifts in origination and extinction rates, often matching the most important geological boundaries. The estimated origin of major plant clades predates the oldest macrofossils when considering the uncertainties associated with the fossil record and the preservation process. Our findings show that the commonly recognized mass extinctions have affected each plant group differently and that phases of high extinction often coincided with major floral turnovers. For instance, after the Cretaceous-Paleogene boundary we infer negligible shifts in diversification of nonflowering seed plants, but find significantly decreased extinction in spore-bearing plants and increased origination rates in angiosperms, contributing to their current ecological and evolutionary dominance.
Collapse
Affiliation(s)
- Daniele Silvestro
- Department of Biological and Environmental SciencesUniversity of GothenburgCarl Skottsbergs gata 22BSE‐413 19GöteborgSweden
| | - Borja Cascales‐Miñana
- CNRSUMR Botanique et Bioinformatique de l'Architecture des Plantes (AMAP)MontpellierF‐34000France
- Present address: PPPDépartement de GéologieUniversité de LiègeAllée du 6 AoûtB18 Sart TilmanB4000LiègeBelgium
| | - Christine D. Bacon
- Department of Biological and Environmental SciencesUniversity of GothenburgCarl Skottsbergs gata 22BSE‐413 19GöteborgSweden
- Laboratório de Biología Molecular (CINBIN)Department of BiologyUniversidad Industrial de SantanderBucaramangaColombia
| | - Alexandre Antonelli
- Department of Biological and Environmental SciencesUniversity of GothenburgCarl Skottsbergs gata 22BSE‐413 19GöteborgSweden
- Gothenburg Botanical GardenCarl Skottsbergs gata 22ASE‐413 19GöteborgSweden
| |
Collapse
|
142
|
Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. THE NEW PHYTOLOGIST 2015; 207:437-453. [PMID: 25615647 DOI: 10.1111/nph.13264] [Citation(s) in RCA: 496] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/21/2014] [Indexed: 05/03/2023]
Abstract
The establishment of modern terrestrial life is indissociable from angiosperm evolution. While available molecular clock estimates of angiosperm age range from the Paleozoic to the Late Cretaceous, the fossil record is consistent with angiosperm diversification in the Early Cretaceous. The time-frame of angiosperm evolution is here estimated using a sample representing 87% of families and sequences of five plastid and nuclear markers, implementing penalized likelihood and Bayesian relaxed clocks. A literature-based review of the palaeontological record yielded calibrations for 137 phylogenetic nodes. The angiosperm crown age was bound within a confidence interval calculated with a method that considers the fossil record of the group. An Early Cretaceous crown angiosperm age was estimated with high confidence. Magnoliidae, Monocotyledoneae and Eudicotyledoneae diversified synchronously 135-130 million yr ago (Ma); Pentapetalae is 126-121 Ma; and Rosidae (123-115 Ma) preceded Asteridae (119-110 Ma). Family stem ages are continuously distributed between c. 140 and 20 Ma. This time-frame documents an early phylogenetic proliferation that led to the establishment of major angiosperm lineages, and the origin of over half of extant families, in the Cretaceous. While substantial amounts of angiosperm morphological and functional diversity have deep evolutionary roots, extant species richness was probably acquired later.
Collapse
Affiliation(s)
- Susana Magallón
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sandra Gómez-Acevedo
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luna L Sánchez-Reyes
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
143
|
Aiewsakun P, Katzourakis A. Time dependency of foamy virus evolutionary rate estimates. BMC Evol Biol 2015; 15:119. [PMID: 26111824 PMCID: PMC4480597 DOI: 10.1186/s12862-015-0408-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/02/2015] [Indexed: 12/19/2022] Open
Abstract
Background It appears that substitution rate estimates co-vary very strongly with their timescale of measurement; the shorter the timescale, the higher the estimated value. Foamy viruses have a long history of co-speciation with their hosts, and one of the lowest estimated rates of evolution among viruses. However, when their rate of evolution is estimated over short timescales, it is more reminiscent of the rapid rates seen in other RNA viruses. This discrepancy between their short-term and long-term rates could be explained by the time-dependency of substitution rate estimates. Several empirical models have been proposed and used to correct for the time-dependent rate phenomenon (TDRP), such as a vertically-translated exponential rate decay model and a power-law rate decay model. Nevertheless, at present, it is still unclear which model best describes the rate dynamics. Here, we use foamy viruses as a case study to empirically describe the phenomenon and to determine how to correct rate estimates for its effects. Four empirical models were investigated: (i) a vertically-translated exponential rate decay model, (ii) a simple exponential rate decay model, (iii) a vertically-translated power-law rate decay model, and (iv) a simple power-law rate decay model. Results Our results suggest that the TDRP is likely responsible for the large discrepancy observed in foamy virus short-term and long-term rate estimates, and the simple power-law rate decay model is the best model for inferring evolutionary timescales. Furthermore, we demonstrated that, within the Bayesian phylogenetic framework, currently available molecular clocks can severely bias evolutionary date estimates, indicating that they are inadequate for correcting for the TDRP. Our analyses also suggest that different viral lineages may have different TDRP dynamics, and this may bias date estimates if it is unaccounted for. Conclusions As evolutionary rate estimates are dependent on their measurement timescales, their values must be used and interpreted under the context of the timescale of rate estimation. Extrapolating rate estimates across large timescales for evolutionary inferences can severely bias the outcomes. Given that the TDRP is widespread in nature but has been noted only recently the estimated timescales of many viruses may need to be reconsidered and re-estimated. Our models could be used as a guideline to further improve current phylogenetic inference tools. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0408-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pakorn Aiewsakun
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| |
Collapse
|
144
|
Alectorioid Morphologies in Paleogene Lichens: New Evidence and Re-Evaluation of the Fossil Alectoria succini Mägdefrau. PLoS One 2015; 10:e0129526. [PMID: 26053106 PMCID: PMC4460037 DOI: 10.1371/journal.pone.0129526] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 11/19/2022] Open
Abstract
One of the most important issues in molecular dating studies concerns the incorporation of reliable fossil taxa into the phylogenies reconstructed from DNA sequence variation in extant taxa. Lichens are symbiotic associations between fungi and algae and/or cyanobacteria. Several lichen fossils have been used as minimum age constraints in recent studies concerning the diversification of the Ascomycota. Recent evolutionary studies of Lecanoromycetes, an almost exclusively lichen-forming class in the Ascomycota, have utilized the Eocene amber inclusion Alectoria succinic as a minimum age constraint. However, a re-investigation of the type material revealed that this inclusion in fact represents poorly preserved plant remains, most probably of a root. Consequently, this fossil cannot be used as evidence of the presence of the genus Alectoria (Parmeliaceae, Lecanorales) or any other lichens in the Paleogene. However, newly discovered inclusions from Paleogene Baltic and Bitterfeld amber verify that alectorioid morphologies in lichens were in existence by the Paleogene. The new fossils represent either a lineage within the alectorioid group or belong to the genus Oropogon.
Collapse
|
145
|
Garzón-Orduña IJ, Silva-Brandão KL, Willmott KR, Freitas AVL, Brower AVZ. Incompatible Ages for Clearwing Butterflies Based on Alternative Secondary Calibrations. Syst Biol 2015; 64:752-67. [DOI: 10.1093/sysbio/syv032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/20/2015] [Indexed: 11/14/2022] Open
|
146
|
Sauquet H, Carrive L, Poullain N, Sannier J, Damerval C, Nadot S. Zygomorphy evolved from disymmetry in Fumarioideae (Papaveraceae, Ranunculales): new evidence from an expanded molecular phylogenetic framework. ANNALS OF BOTANY 2015; 115:895-914. [PMID: 25814061 PMCID: PMC4407061 DOI: 10.1093/aob/mcv020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/23/2014] [Accepted: 01/22/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND AIMS Fumarioideae (20 genera, 593 species) is a clade of Papaveraceae (Ranunculales) characterized by flowers that are either disymmetric (i.e. two perpendicular planes of bilateral symmetry) or zygomorphic (i.e. one plane of bilateral symmetry). In contrast, the other subfamily of Papaveraceae, Papaveroideae (23 genera, 230 species), has actinomorphic flowers (i.e. more than two planes of symmetry). Understanding of the evolution of floral symmetry in this clade has so far been limited by the lack of a reliable phylogenetic framework. Pteridophyllum (one species) shares similarities with Fumarioideae but has actinomorphic flowers, and the relationships among Pteridophyllum, Papaveroideae and Fumarioideae have remained unclear. This study reassesses the evolution of floral symmetry in Papaveraceae based on new molecular phylogenetic analyses of the family. METHODS Maximum likelihood, Bayesian and maximum parsimony phylogenetic analyses of Papaveraceae were conducted using six plastid markers and one nuclear marker, sampling Pteridophyllum, 18 (90 %) genera and 73 species of Fumarioideae, 11 (48 %) genera and 11 species of Papaveroideae, and a wide selection of outgroup taxa. Floral characters recorded from the literature were then optimized onto phylogenetic trees to reconstruct ancestral states using parsimony, maximum likelihood and reversible-jump Bayesian approaches. KEY RESULTS Pteridophyllum is not nested in Fumarioideae. Fumarioideae are monophyletic and Hypecoum (18 species) is the sister group of the remaining genera. Relationships within the core Fumarioideae are well resolved and supported. Dactylicapnos and all zygomorphic genera form a well-supported clade nested among disymmetric taxa. CONCLUSIONS Disymmetry of the corolla is a synapomorphy of Fumarioideae and is strongly correlated with changes in the androecium and differentiation of middle and inner tepal shape (basal spurs on middle tepals). Zygomorphy subsequently evolved from disymmetry either once (with a reversal in Dactylicapnos) or twice (Capnoides, other zygomorphic Fumarioideae) and appears to be correlated with the loss of one nectar spur.
Collapse
Affiliation(s)
- Hervé Sauquet
- Université Paris-Sud, Laboratoire Écologie, Systématique, Évolution, CNRS UMR 8079, 91405 Orsay, France and CNRS, UMR 0320/UMR 8120 Génétique Quantitative et Evolution - Le Moulon, INRA/Université Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | - Laetitia Carrive
- Université Paris-Sud, Laboratoire Écologie, Systématique, Évolution, CNRS UMR 8079, 91405 Orsay, France and CNRS, UMR 0320/UMR 8120 Génétique Quantitative et Evolution - Le Moulon, INRA/Université Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | - Noëlie Poullain
- Université Paris-Sud, Laboratoire Écologie, Systématique, Évolution, CNRS UMR 8079, 91405 Orsay, France and CNRS, UMR 0320/UMR 8120 Génétique Quantitative et Evolution - Le Moulon, INRA/Université Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | - Julie Sannier
- Université Paris-Sud, Laboratoire Écologie, Systématique, Évolution, CNRS UMR 8079, 91405 Orsay, France and CNRS, UMR 0320/UMR 8120 Génétique Quantitative et Evolution - Le Moulon, INRA/Université Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | - Catherine Damerval
- Université Paris-Sud, Laboratoire Écologie, Systématique, Évolution, CNRS UMR 8079, 91405 Orsay, France and CNRS, UMR 0320/UMR 8120 Génétique Quantitative et Evolution - Le Moulon, INRA/Université Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | - Sophie Nadot
- Université Paris-Sud, Laboratoire Écologie, Systématique, Évolution, CNRS UMR 8079, 91405 Orsay, France and CNRS, UMR 0320/UMR 8120 Génétique Quantitative et Evolution - Le Moulon, INRA/Université Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| |
Collapse
|
147
|
Kozak KM, Wahlberg N, Neild AFE, Dasmahapatra KK, Mallet J, Jiggins CD. Multilocus species trees show the recent adaptive radiation of the mimetic heliconius butterflies. Syst Biol 2015; 64:505-24. [PMID: 25634098 PMCID: PMC4395847 DOI: 10.1093/sysbio/syv007] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 01/23/2015] [Indexed: 11/25/2022] Open
Abstract
Müllerian mimicry among Neotropical Heliconiini butterflies is an excellent example of natural selection, associated with the diversification of a large continental-scale radiation. Some of the processes driving the evolution of mimicry rings are likely to generate incongruent phylogenetic signals across the assemblage, and thus pose a challenge for systematics. We use a data set of 22 mitochondrial and nuclear markers from 92% of species in the tribe, obtained by Sanger sequencing and de novo assembly of short read data, to re-examine the phylogeny of Heliconiini with both supermatrix and multispecies coalescent approaches, characterize the patterns of conflicting signal, and compare the performance of various methodological approaches to reflect the heterogeneity across the data. Despite the large extent of reticulate signal and strong conflict between markers, nearly identical topologies are consistently recovered by most of the analyses, although the supermatrix approach failed to reflect the underlying variation in the history of individual loci. However, the supermatrix represents a useful approximation where multiple rare species represented by short sequences can be incorporated easily. The first comprehensive, time-calibrated phylogeny of this group is used to test the hypotheses of a diversification rate increase driven by the dramatic environmental changes in the Neotropics over the past 23 myr, or changes caused by diversity-dependent effects on the rate of diversification. We find that the rate of diversification has increased on the branch leading to the presently most species-rich genus Heliconius, but the change occurred gradually and cannot be unequivocally attributed to a specific environmental driver. Our study provides comprehensive comparison of philosophically distinct species tree reconstruction methods and provides insights into the diversification of an important insect radiation in the most biodiverse region of the planet.
Collapse
Affiliation(s)
- Krzysztof M Kozak
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK; Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Entomology, The Natural History Museum, London SW7 5BD, UK; Department of Biology, University of York, YO10 5DD Heslington, York, UK; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Niklas Wahlberg
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK; Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Entomology, The Natural History Museum, London SW7 5BD, UK; Department of Biology, University of York, YO10 5DD Heslington, York, UK; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew F E Neild
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK; Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Entomology, The Natural History Museum, London SW7 5BD, UK; Department of Biology, University of York, YO10 5DD Heslington, York, UK; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kanchon K Dasmahapatra
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK; Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Entomology, The Natural History Museum, London SW7 5BD, UK; Department of Biology, University of York, YO10 5DD Heslington, York, UK; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - James Mallet
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK; Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Entomology, The Natural History Museum, London SW7 5BD, UK; Department of Biology, University of York, YO10 5DD Heslington, York, UK; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Chris D Jiggins
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK; Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Entomology, The Natural History Museum, London SW7 5BD, UK; Department of Biology, University of York, YO10 5DD Heslington, York, UK; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
148
|
Kergoat GJ, Le Ru BP, Sadeghi SE, Tuda M, Reid CAM, György Z, Genson G, Ribeiro-Costa CS, Delobel A. Evolution of Spermophagus seed beetles (Coleoptera, Bruchinae, Amblycerini) indicates both synchronous and delayed colonizations of host plants. Mol Phylogenet Evol 2015; 89:91-103. [PMID: 25916187 DOI: 10.1016/j.ympev.2015.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/10/2015] [Accepted: 04/18/2015] [Indexed: 11/26/2022]
Abstract
Seed beetles are a group of specialized chrysomelid beetles, which are mostly associated with plants of the legume family (Fabaceae). In the legume-feeding species, a marked trend of phylogenetic conservatism of host use has been highlighted by several molecular phylogenetics studies. Yet, little is known about the evolutionary patterns of association of species feeding outside the legume family. Here, we investigate the evolution of host use in Spermophagus, a species-rich seed beetle genus that is specialized on two non-legume host-plant groups: morning glories (Convolvulaceae) and mallows (Malvaceae: Malvoideae). Spermophagus species are widespread in the Old World, especially in the Afrotropical, Indomalaya and Palearctic regions. In this study we rely on eight gene regions to provide the first phylogenetic framework for the genus, along with reconstructions of host use evolution, estimates of divergence times and historical biogeography analyses. Like the legume-feeding species, a marked trend toward conservatism of host use is revealed, with one clade specializing on Convolvulaceae and the other on Malvoideae. Comparisons of plants' and insects' estimates of divergence times yield a contrasted pattern: on one hand a quite congruent temporal framework was recovered for morning-glories and their seed-predators; on the other hand the diversification of Spermophagus species associated with mallows apparently lagged far behind the diversification of their hosts. We hypothesize that this delayed colonization of Malvoideae can be accounted for by the respective biogeographic histories of the two groups.
Collapse
Affiliation(s)
- Gael J Kergoat
- INRA, UMR 1062 CBGP (INRA, IRD, CIRAD, Montpellier SupAgro), 755 Avenue du campus Agropolis, 34988 Montferrier/Lez, France.
| | - Bruno P Le Ru
- IRD/CNRS, Laboratoire Evolution Génomes Spéciation, Avenue de la terrasse, BP1, 91198 Gif-sur-Yvette, France; Université Paris-Sud 11, 91405 Orsay, France; Unité de Recherche IRD 072, African Insect Science for Food and Health (ICIPE), PO Box 30772-00100, Nairobi, Kenya.
| | - Seyed E Sadeghi
- Research Institute of Forests and Rangelands of Iran, PO Box 13185-116, Tehran, Iran.
| | - Midori Tuda
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, 812-8581 Fukuoka, Japan; Laboratory of Insect Natural Enemies, Division of Agricultural Bioresource Sciences, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, 812-8581 Fukuoka, Japan.
| | - Chris A M Reid
- Department of Entomology, Australian Museum, 6 College Street, Sydney, NSW 2010, Australia.
| | - Zoltán György
- Department of Zoology, Hungarian Natural History Museum, H-1088 Budapest, Baross u. 13, Hungary.
| | - Gwenaëlle Genson
- INRA, UMR 1062 CBGP (INRA, IRD, CIRAD, Montpellier SupAgro), 755 Avenue du campus Agropolis, 34988 Montferrier/Lez, France
| | - Cibele S Ribeiro-Costa
- Laboratório de Sistemática e Bioecologia de Coleoptera, Departamento de Zoologia, Universidade Federal do Paraná, Caixa Postal 19020, 81531-980 Curitiba, Paraná, Brazil.
| | - Alex Delobel
- Muséum National d'Histoire Naturelle, 45 rue Buffon, 75005 Paris, France.
| |
Collapse
|
149
|
Ksepka DT, Parham JF, Allman JF, Benton MJ, Carrano MT, Cranston KA, Donoghue PCJ, Head JJ, Hermsen EJ, Irmis RB, Joyce WG, Kohli M, Lamm KD, Leehr D, Patané JL, Polly PD, Phillips MJ, Smith NA, Smith ND, Van Tuinen M, Ware JL, Warnock RCM. The Fossil Calibration Database—A New Resource for Divergence Dating. Syst Biol 2015; 64:853-9. [DOI: 10.1093/sysbio/syv025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 04/22/2015] [Indexed: 01/10/2023] Open
|
150
|
Condamine FL, Nagalingum NS, Marshall CR, Morlon H. Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evol Biol 2015; 15:65. [PMID: 25884423 PMCID: PMC4449600 DOI: 10.1186/s12862-015-0347-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/02/2015] [Indexed: 01/21/2023] Open
Abstract
Background Bayesian relaxed-clock dating has significantly influenced our understanding of the timeline of biotic evolution. This approach requires the use of priors on the branching process, yet little is known about their impact on divergence time estimates. We investigated the effect of branching priors using the iconic cycads. We conducted phylogenetic estimations for 237 cycad species using three genes and two calibration strategies incorporating up to six fossil constraints to (i) test the impact of two different branching process priors on age estimates, (ii) assess which branching prior better fits the data, (iii) investigate branching prior impacts on diversification analyses, and (iv) provide insights into the diversification history of cycads. Results Using Bayes factors, we compared divergence time estimates and the inferred dynamics of diversification when using Yule versus birth-death priors. Bayes factors were calculated with marginal likelihood estimated with stepping-stone sampling. We found striking differences in age estimates and diversification dynamics depending on prior choice. Dating with the Yule prior suggested that extant cycad genera diversified in the Paleogene and with two diversification rate shifts. In contrast, dating with the birth-death prior yielded Neogene diversifications, and four rate shifts, one for each of the four richest genera. Nonetheless, dating with the two priors provided similar age estimates for the divergence of cycads from Ginkgo (Carboniferous) and their crown age (Permian). Of these, Bayes factors clearly supported the birth-death prior. Conclusions These results suggest the choice of the branching process prior can have a drastic influence on our understanding of evolutionary radiations. Therefore, all dating analyses must involve a model selection process using Bayes factors to select between a Yule or birth-death prior, in particular on ancient clades with a potential pattern of high extinction. We also provide new insights into the history of cycad diversification because we found (i) periods of extinction along the long branches of the genera consistent with fossil data, and (ii) high diversification rates within the Miocene genus radiations. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0347-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabien L Condamine
- CNRS, UMR 7641 Centre de Mathématiques Appliquées (École Polytechnique), Route de Saclay, 91128, Palaiseau, France. .,Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30, Göteborg, Sweden.
| | - Nathalie S Nagalingum
- National Herbarium of New South Wales, Royal Botanic Gardens & Domain Trust, Mrs Macquaries Road, Sydney, NSW, 2000, Australia.
| | - Charles R Marshall
- Department of Integrative Biology and Museum of Paleontology, University of California, 1101 Valley Life Sciences Building, Berkeley, CA, 94720-4780, USA.
| | - Hélène Morlon
- CNRS, UMR 8197 Institut de Biologie de l'École Normale Supérieure, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|