101
|
Levy A, Zheng JY, Lazarowitz SG. The tobamovirus Turnip Vein Clearing Virus 30-kilodalton movement protein localizes to novel nuclear filaments to enhance virus infection. J Virol 2013; 87:6428-40. [PMID: 23536678 PMCID: PMC3648121 DOI: 10.1128/jvi.03390-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 03/21/2013] [Indexed: 11/20/2022] Open
Abstract
Plant viruses overcome the barrier of the plant cell wall by encoding cell-to-cell movement proteins (MPs), which direct newly replicated viral genomes to, and across, the wall. The paradigm for how a single MP regulates and coordinates these activities is the Tobacco mosaic virus (TMV) 30-kDa protein (MP(TMV)). Detailed studies demonstrate that TMV multiplies exclusively in the cytoplasm and have documented associations of MP(TMV) with endoplasmic reticulum (ER) membrane, microtubules, and plasmodesmata throughout the course of infection. As TMV poorly infects Arabidopsis thaliana, Turnip vein clearing virus (TVCV) is the tobamovirus of choice for studies in this model plant. A key problem, which has contributed to confusion in the field, is the unproven assumption that the TVCV and TMV life cycles are identical. We engineered an infectious TVCV replicon that expressed a functional fluorescence-tagged MP(TVCV) and report here the unexpected discovery that MP(TVCV), beyond localizing to ER membrane and plasmodesmata, targeted to the nucleus in a nuclear localization signal (NLS)-dependent manner, where it localized to novel F-actin-containing filaments that associated with chromatin. The MP(TVCV) NLS appeared to be conserved in the subgroup 3 tobamoviruses, and our mutational analyses showed that nuclear localization of MP(TVCV) was necessary for efficient TVCV cell-to-cell movement and systemic infection in Nicotiana benthamiana and Arabidopsis thaliana. Our studies identify a novel nuclear stage in TVCV infection and suggest that nuclear MP encoded by TVCV and other subgroup 3 tobamoviruses interacts with F-actin and chromatin to modulate host defenses or cellular physiology to favor virus movement and infection.
Collapse
Affiliation(s)
- Amit Levy
- Cornell University, Department of Plant Pathology and Plant-Microbe Biology, Ithaca, New York, USA
| | | | | |
Collapse
|
102
|
Hipper C, Brault V, Ziegler-Graff V, Revers F. Viral and cellular factors involved in Phloem transport of plant viruses. FRONTIERS IN PLANT SCIENCE 2013; 4:154. [PMID: 23745125 PMCID: PMC3662875 DOI: 10.3389/fpls.2013.00154] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 05/05/2013] [Indexed: 05/03/2023]
Abstract
Phloem transport of plant viruses is an essential step in the setting-up of a complete infection of a host plant. After an initial replication step in the first cells, viruses spread from cell-to-cell through mesophyll cells, until they reach the vasculature where they rapidly move to distant sites in order to establish the infection of the whole plant. This last step is referred to as systemic transport, or long-distance movement, and involves virus crossings through several cellular barriers: bundle sheath, vascular parenchyma, and companion cells for virus loading into sieve elements (SE). Viruses are then passively transported within the source-to-sink flow of photoassimilates and are unloaded from SE into sink tissues. However, the molecular mechanisms governing virus long-distance movement are far from being understood. While most viruses seem to move systemically as virus particles, some viruses are transported in SE as viral ribonucleoprotein complexes (RNP). The nature of the cellular and viral factors constituting these RNPs is still poorly known. The topic of this review will mainly focus on the host and viral factors that facilitate or restrict virus long-distance movement.
Collapse
Affiliation(s)
| | | | - Véronique Ziegler-Graff
- Laboratoire Propre du CNRS (UPR 2357), Virologie Végétale, Institut de Biologie Moléculaire des Plantes, Université de StrasbourgStrasbourg, France
| | - Frédéric Revers
- UMR 1332 de Biologie du Fruit et Pathologie, INRA, Université de BordeauxVillenave d’Ornon, France
| |
Collapse
|
103
|
Cheng SF, Tsai MS, Huang CL, Huang YP, Chen IH, Lin NS, Hsu YH, Tsai CH, Cheng CP. Ser/Thr kinase-like protein of Nicotiana benthamiana is involved in the cell-to-cell movement of Bamboo mosaic virus. PLoS One 2013; 8:e62907. [PMID: 23646157 PMCID: PMC3639906 DOI: 10.1371/journal.pone.0062907] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/28/2013] [Indexed: 01/08/2023] Open
Abstract
To investigate the plant genes affected by Bamboo mosaic virus (BaMV) infection, we applied a cDNA-amplified fragment length polymorphism technique to screen genes with differential expression. A serine/threonine kinase-like (NbSTKL) gene of Nicotiana benthamiana is upregulated after BaMV infection. NbSTKL contains the homologous domain of Ser/Thr kinase. Knocking down the expression of NbSTKL by virus-induced gene silencing reduced the accumulation of BaMV in the inoculated leaves but not in the protoplasts. The spread of GFP-expressing BaMV in the inoculated leaves is also impeded by a reduced expression of NbSTKL. These data imply that NbSTKL facilitates the cell-to-cell movement of BaMV. The subcellular localization of NbSTKL is mainly on the cell membrane, which has been confirmed by mutagenesis and fractionation experiments. Combined with the results showing that active site mutation of NbSTKL does not change its subcellular localization but significantly affects BaMV accumulation, we conclude that NbSTKL may regulate BaMV movement on the cell membrane by its kinase-like activity. Moreover, the transient expression of NbSTKL does not significantly affect the accumulation of Cucumber mosaic virus (CMV) and Potato virus X (PVX); thus, NbSTKL might be a specific protein facilitating BaMV movement.
Collapse
Affiliation(s)
- Shun-Fang Cheng
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Meng-Shan Tsai
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Chia-Lin Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang Taipei, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Ping Cheng
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
104
|
Makarov VV, Skurat EV, Semenyuk PI, Abashkin DA, Kalinina NO, Arutyunyan AM, Solovyev AG, Dobrov EN. Structural lability of Barley stripe mosaic virus virions. PLoS One 2013; 8:e60942. [PMID: 23613760 PMCID: PMC3629216 DOI: 10.1371/journal.pone.0060942] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/04/2013] [Indexed: 11/29/2022] Open
Abstract
Virions of Barley stripe mosaic virus (BSMV) were neglected for more than thirty years after their basic properties were determined. In this paper, the physicochemical characteristics of BSMV virions and virion-derived viral capsid protein (CP) were analyzed, namely, the absorption and intrinsic fluorescence spectra, circular dichroism spectra, differential scanning calorimetry curves, and size distributions by dynamic laser light scattering. The structural properties of BSMV virions proved to be intermediate between those of Tobacco mosaic virus (TMV), a well-characterized virus with rigid rod-shaped virions, and flexuous filamentous plant viruses. The BSMV virions were found to be considerably more labile than expected from their rod-like morphology and a distant sequence relation of the BSMV and TMV CPs. The circular dichroism spectra of BSMV CP subunits incorporated into the virions, but not subunits of free CP, demonstrated a significant proportion of beta-structure elements, which were proposed to be localized mostly in the protein regions exposed on the virion outer surface. These beta-structure elements likely formed during virion assembly can comprise the N- and C-terminal protein regions unstructured in the non-virion CP and can mediate inter-subunit interactions. Based on computer-assisted structure modeling, a model for BSMV CP subunit structural fold compliant with the available experimental data was proposed.
Collapse
Affiliation(s)
- Valentin V. Makarov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Biology Department, Lomonosov Moscow State University, Moscow, Russia
| | - Eugeny V. Skurat
- Biology Department, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel I. Semenyuk
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry A. Abashkin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Natalya O. Kalinina
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexsandr M. Arutyunyan
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Eugeny N. Dobrov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| |
Collapse
|
105
|
Sun L, Andika IB, Kondo H, Chen J. Identification of the amino acid residues and domains in the cysteine-rich protein of Chinese wheat mosaic virus that are important for RNA silencing suppression and subcellular localization. MOLECULAR PLANT PATHOLOGY 2013; 14:265-78. [PMID: 23458485 PMCID: PMC6638639 DOI: 10.1111/mpp.12002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cysteine-rich proteins (CRPs) encoded by some plant viruses in diverse genera function as RNA silencing suppressors. Within the N-terminal portion of CRPs encoded by furoviruses, there are six conserved cysteine residues and a Cys-Gly-X-X-His motif (Cys, cysteine; Gly, glycine; His, histidine; X, any amino acid residue) with unknown function. The central domains contain coiled-coil heptad amino acid repeats that usually mediate protein dimerization. Here, we present evidence that the conserved cysteine residues and Cys-Gly-X-X-His motif in the CRP of Chinese wheat mosaic virus (CWMV) are critical for protein stability and silencing suppression activity. Mutation of a leucine residue in the third coiled-coil heptad impaired CWMV CRP activity for suppression of local silencing, but not for the promotion of cell-to-cell movement of Potato virus X (PVX). In planta and in vitro analysis of wild-type and mutant proteins indicated that the ability of the CRP to self-interact was correlated with its suppression activity. Deletion of up to 40 amino acids at the C-terminus did not abolish suppression activity, but disrupted the association of CRP with endoplasmic reticulum (ER), and reduced its activity in the enhancement of PVX symptom severity. Interestingly, a short region in the C-terminal domain, predicted to form an amphipathic α-helical structure, was responsible for the association of CWMV CRP with ER. Overall, our results demonstrate that the N-terminal and central regions are the functional domains for suppression activity, whereas the C-terminal region primarily functions to target CWMV CRP to the ER.
Collapse
Affiliation(s)
- Liying Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | | | | |
Collapse
|
106
|
Samuilova O, Santala J, Valkonen JPT. Tyrosine phosphorylation of the triple gene block protein 3 regulates cell-to-cell movement and protein interactions of Potato mop-top virus. J Virol 2013; 87:4313-21. [PMID: 23365450 PMCID: PMC3624400 DOI: 10.1128/jvi.03388-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/25/2013] [Indexed: 12/26/2022] Open
Abstract
Functions of viral proteins can be regulated through phosphorylation by serine/threonine kinases in plants, but little is known about the involvement of tyrosine kinases in plant virus infection. In this study, TGBp3, one of the three movement proteins encoded by a triple gene block (TGB) of Potato mop-top virus (PMTV), was detected for the first time in PMTV-infected plants and found to be tyrosine phosphorylated. Phosphorylation sites (Tyr(87-89) and Tyr(120)) were located in two amino acid motifs conserved in the TGB-containing, rod-shaped plant viruses. Substitution of these tyrosine residues in both motifs was needed to abolish tyrosine phosphorylation of TGBp3. Substitution of Tyr(87-89) with alanine residues enhanced the interaction between TGBp3 and TGBp2 and inhibited cell-to-cell movement of PMTV. On the other hand, substitution of Tyr(120) with alanine resulted in no alteration in the interaction of TGBp3 with TGBp2, but the mutant virus was not infectious. The results suggest that tyrosine phosphorylation is a mechanism regulating the functions of plant virus movement proteins.
Collapse
Affiliation(s)
- Olga Samuilova
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
107
|
Lim HS, Lee MY, Moon JS, Moon JK, Yu YM, Cho IS, Bae H, deBoer M, Ju H, Hammond J, Jackson AO. Actin Cytoskeleton and Golgi Involvement in Barley stripe mosaic virus Movement and Cell Wall Localization of Triple Gene Block Proteins. THE PLANT PATHOLOGY JOURNAL 2013; 29:17-30. [PMID: 25288925 PMCID: PMC4174794 DOI: 10.5423/ppj.oa.09.2012.0144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 05/29/2023]
Abstract
Barley stripe mosaic virus (BSMV) induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB) proteins were coexpressed in cells with the actin marker DsRed: Talin. TGB ectopic expression experiments revealed that TGB3 is a major elicitor of filament thickening, that TGB2 resulted in formation of intermediate DsRed:Talin filaments, and that TGB1 alone had no obvious effects on actin filament structure. Latrunculin B (LatB) treatments retarded BSMV cell-to-cell movement, disrupted actin filament organization, and dramatically decreased the proportion of paired TGB3 foci appearing at the cell wall (CW). BSMV infection of transgenic plants tagged with GFP-KDEL exhibited membrane proliferation and vesicle formation that were especially evident around the nucleus. Similar membrane proliferation occurred in plants expressing TGB2 and/or TGB3, and DsRed: Talin fluorescence in these plants colocalized with the ER vesicles. TGB3 also associated with the Golgi apparatus and overlapped with cortical vesicles appearing at the cell periphery. Brefeldin A treatments disrupted Golgi and also altered vesicles at the CW, but failed to interfere with TGB CW localization. Our results indicate that actin cytoskeleton interactions are important in BSMV cell-to-cell movement and for CW localization of TGB3.
Collapse
Affiliation(s)
- Hyoun-Sub Lim
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Mi Yeon Lee
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Jae Sun Moon
- Green Bio Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-333, Korea
| | - Jung-Kyung Moon
- National Institute of Crop Science, Suwon, Rural Development Administration, 441-707, Korea
| | - Yong-Man Yu
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Korea
| | - In Sook Cho
- National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon 441-440, Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan, Korea
| | - Matt deBoer
- Virology Department, Wageningen University, 6709 PD Wageningen, The Netherlands
| | - Hojong Ju
- Department of Agricultural Biology, Chonbuk National University, Jeonju 561-756, Korea
| | - John Hammond
- USDA-ARS, US National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, MD 20705 USA
| | - Andrew O. Jackson
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
108
|
Andika IB, Zheng S, Tan Z, Sun L, Kondo H, Zhou X, Chen J. Endoplasmic reticulum export and vesicle formation of the movement protein of Chinese wheat mosaic virus are regulated by two transmembrane domains and depend on the secretory pathway. Virology 2013; 435:493-503. [PMID: 23137810 DOI: 10.1016/j.virol.2012.10.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/10/2012] [Accepted: 10/15/2012] [Indexed: 12/15/2022]
Abstract
The 37K protein of Chinese wheat mosaic virus (CWMV) belongs to the 30K superfamily of plant virus movement proteins. CWMV 37K trans-complemented the cell-to-cell spread of a movement-defective Potato virus X. CWMV 37K fused to enhanced green fluorescent protein localized to plasmodesmata and formed endoplasmic reticulum (ER)-derived vesicular and large aggregate structures. CWMV 37K has two putative N-terminal transmembrane domains (TMDs). Mutations disrupting TMD1 or TMD2 impaired 37K movement function; those mutants were unable to form ER-derived structures but instead accumulated in the ER. Treatment with Brefeldin A or overexpression of the dominant negative mutant of Sar1 retained 37K in the ER, indicating that ER export of 37K is dependent on the secretory pathway. Moreover, CWMV 37K interacted with pectin methylesterases and mutations in TMD1 or TMD2 impaired this interaction in planta. The results suggest that the two TMDs regulate the movement function and intracellular transport of 37K.
Collapse
Affiliation(s)
- Ida Bagus Andika
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | | | | | | | | | | | | |
Collapse
|
109
|
Jada B, Soitamo AJ, Lehto K. Organ-specific alterations in tobacco transcriptome caused by the PVX-derived P25 silencing suppressor transgene. BMC PLANT BIOLOGY 2013; 13:8. [PMID: 23297695 PMCID: PMC3562197 DOI: 10.1186/1471-2229-13-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND RNA silencing affects a broad range of regulatory processes in all eukaryotes ranging from chromatin structure maintenance to transcriptional and translational regulation and longevity of the mRNAs. Particularly in plants, it functions as the major defense mechanism against viruses. To counter-act this defense, plant viruses produce suppressors of RNA silencing (Viral suppressors of RNA silencing, VSRSs), which are essential for viruses to invade their specific host plants. Interactions of these VSRSs with the hosts' silencing pathways, and their direct and indirect interference with different cellular regulatory networks constitute one of the main lines of the molecular virus-host interactions. Here we have used a microarray approach to study the effects of the Potato virus X Potexvirus (PVX)-specific P25 VSRS protein on the transcript profile of tobacco plants, when expressed as a transgene in these plants. RESULTS The expression of the PVX-specific P25 silencing suppressor in transgenic tobacco plants caused significant up-regulation of 1350 transcripts, but down-regulation of only five transcripts in the leaves, and up- and down-regulation of 51 and 13 transcripts, respectively, in the flowers of these plants, as compared to the wild type control plants. Most of the changes occurred in the transcripts related to biotic and abiotic stresses, transcription regulation, signaling, metabolic pathways and cell wall modifications, and many of them appeared to be induced through up-regulation of the signaling pathways regulated by ethylene, jasmonic acid and salicylic acid. Correlations of these alterations with the protein profile and related biological functions were analyzed. Surprisingly, they did not cause significant alterations in the protein profile, and caused only very mild alteration in the phenotype of the P25-expressing transgenic plants. CONCLUSION Expression of the PVX-specific P25 VSRS protein causes major alterations in the transcriptome of the leaves of transgenic tobacco plants, but very little of any effects in the young flowers of the same plants. The fairly stable protein profile in the leaves and lack of any major changes in the plant phenotype indicate that the complicated interplay and interactions between different regulatory levels are able to maintain homeostasis in the plants.
Collapse
Affiliation(s)
- Balaji Jada
- Department of Biochemistry and Food Chemistry, Laboratory of Molecular Plant Biology, University of Turku, Itäinen pitkäkatu 4B, 6. floor, PharmaCity, FI-20520, Finland
| | - Arto J Soitamo
- Department of Biochemistry and Food Chemistry, Laboratory of Molecular Plant Biology, University of Turku, Itäinen pitkäkatu 4B, 6. floor, PharmaCity, FI-20520, Finland
| | - Kirsi Lehto
- Department of Biochemistry and Food Chemistry, Laboratory of Molecular Plant Biology, University of Turku, Itäinen pitkäkatu 4B, 6. floor, PharmaCity, FI-20520, Finland
| |
Collapse
|
110
|
Bhat S, Folimonova SY, Cole AB, Ballard KD, Lei Z, Watson BS, Sumner LW, Nelson RS. Influence of host chloroplast proteins on Tobacco mosaic virus accumulation and intercellular movement. PLANT PHYSIOLOGY 2013; 161:134-47. [PMID: 23096159 PMCID: PMC3532247 DOI: 10.1104/pp.112.207860] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 10/22/2012] [Indexed: 05/18/2023]
Abstract
Tobacco mosaic virus (TMV) forms dense cytoplasmic bodies containing replication-associated proteins (virus replication complexes [VRCs]) upon infection. To identify host proteins that interact with individual viral components of VRCs or VRCs in toto, we isolated viral replicase- and VRC-enriched fractions from TMV-infected Nicotiana tabacum plants. Two host proteins in enriched fractions, ATP-synthase γ-subunit (AtpC) and Rubisco activase (RCA) were identified by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry or liquid chromatography-tandem mass spectrometry. Through pull-down analysis, RCA bound predominantly to the region between the methyltransferase and helicase domains of the TMV replicase. Tobamovirus, but not Cucumber mosaic virus or Potato virus X, infection of N. tabacum plants resulted in 50% reductions in Rca and AtpC messenger RNA levels. To investigate the role of these host proteins in TMV accumulation and plant defense, we used a Tobacco rattle virus vector to silence these genes in Nicotiana benthamiana plants prior to challenge with TMV expressing green fluorescent protein. TMV-induced fluorescent lesions on Rca- or AtpC-silenced leaves were, respectively, similar or twice the size of those on leaves expressing these genes. Silencing Rca and AtpC did not influence the spread of Tomato bushy stunt virus and Potato virus X. In AtpC- and Rca-silenced leaves TMV accumulation and pathogenicity were greatly enhanced, suggesting a role of both host-encoded proteins in a defense response against TMV. In addition, silencing these host genes altered the phenotype of the TMV infection foci and VRCs, yielding foci with concentric fluorescent rings and dramatically more but smaller VRCs. The concentric rings occurred through renewed virus accumulation internal to the infection front.
Collapse
Affiliation(s)
- Sumana Bhat
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401
| | | | | | - Kimberly D. Ballard
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401
| | - Zhentian Lei
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401
| | - Bonnie S. Watson
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401
| | - Lloyd W. Sumner
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401
| | - Richard S. Nelson
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401
| |
Collapse
|
111
|
Linnik O, Liesche J, Tilsner J, Oparka KJ. Unraveling the structure of viral replication complexes at super-resolution. FRONTIERS IN PLANT SCIENCE 2013; 4:6. [PMID: 23386855 PMCID: PMC3560349 DOI: 10.3389/fpls.2013.00006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/09/2013] [Indexed: 05/20/2023]
Abstract
During infection, many RNA viruses produce characteristic inclusion bodies that contain both viral and host components. These structures were first described over a century ago and originally termed "X-bodies," as their function was not immediately appreciated. Whilst some inclusion bodies may represent cytopathic by-products of viral protein over-accumulation, X-bodies have emerged as virus "factories," quasi-organelles that coordinate diverse viral infection processes such as replication, protein expression, evasion of host defenses, virion assembly, and intercellular transport. Accordingly, they are now generally referred to as viral replication complexes (VRCs). We previously used confocal fluorescence microscopy to unravel the complex structure of X-bodies produced by Potato virus X (PVX). Here we used 3D-structured illumination (3D-SIM) super-resolution microscopy to map the PVX X-body at a finer scale. We identify a previously unrecognized membrane structure induced by the PVX "triple gene block" (TGB) proteins, providing new insights into the complex interplay between virus and host within the X-body.
Collapse
Affiliation(s)
- Olga Linnik
- Institute of Molecular Plant Sciences, University of EdinburghEdinburgh, UK
| | - Johannes Liesche
- Faculty of Life Sciences, University of CopenhagenFrederiksberg C, Denmark
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St AndrewsFife, UK
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Karl J. Oparka
- Institute of Molecular Plant Sciences, University of EdinburghEdinburgh, UK
- *Correspondence: Karl J. Oparka, Institute of Molecular Plant Sciences, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK. e-mail:
| |
Collapse
|
112
|
Cowan GH, Roberts AG, Chapman SN, Ziegler A, Savenkov EI, Torrance L. The potato mop-top virus TGB2 protein and viral RNA associate with chloroplasts and viral infection induces inclusions in the plastids. FRONTIERS IN PLANT SCIENCE 2012; 3:290. [PMID: 23269927 PMCID: PMC3529358 DOI: 10.3389/fpls.2012.00290] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/05/2012] [Indexed: 05/27/2023]
Abstract
The potato mop-top virus (PMTV) triple gene block 2 (TGB2) movement proteins fused to monomeric red fluorescent protein (mRFP-TGB2) was expressed under the control of the PMTV subgenomic promoter from a PMTV vector. The subcellular localizations and interactions of mRFP-TGB2 were investigated using confocal imaging [confocal laser-scanning microscope, (CLSM)] and biochemical analysis. The results revealed associations with membranes of the endoplasmic reticulum (ER), mobile granules, small round structures (1-2 μm in diameter), and chloroplasts. Expression of mRFP-TGB2 in epidermal cells enabled cell-to-cell movement of a TGB2 defective PMTV reporter clone, indicating that the mRFP-TGB2 fusion protein was functional and required for cell-to-cell movement. Protein-lipid interaction assays revealed an association between TGB2 and lipids present in chloroplasts, consistent with microscopical observations where the plastid envelope was labeled later in infection. To further investigate the association of PMTV infection with chloroplasts, ultrastructural studies of thin sections of PMTV-infected potato and Nicotiana benthamiana leaves by electron microscopy revealed abnormal chloroplasts with cytoplasmic inclusions and terminal projections. Viral coat protein (CP), genomic RNA and fluorescently-labeled TGB2 were detected in plastid preparations isolated from the infected leaves, and viral RNA was localized to chloroplasts in infected tissues. The results reveal a novel association of TGB2 and vRNA with chloroplasts, and suggest viral replication is associated with chloroplast membranes, and that TGB2 plays a novel role in targeting the virus to chloroplasts.
Collapse
Affiliation(s)
| | | | | | - Angelika Ziegler
- Federal Research Centre for Cultivated Plants, Julius Kühn Institute, Institute for Epidemiology and Pathogen DiagnosticsQuedlinburg, Germany
| | - Eugene I. Savenkov
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural SciencesUppsala, Sweden
| | | |
Collapse
|
113
|
Lee MY, Yan L, Gorter FA, Kim BYT, Cui Y, Hu Y, Yuan C, Grindheim J, Ganesan U, Liu Z, Han C, Yu J, Li D, Jackson AO. Brachypodium distachyon line Bd3-1 resistance is elicited by the barley stripe mosaic virus triple gene block 1 movement protein. J Gen Virol 2012; 93:2729-2739. [DOI: 10.1099/vir.0.045880-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Barley stripe mosaic virus North Dakota 18 (ND18), Beijing (BJ), Xinjiang (XJ), Type (TY) and CV21 strains are unable to infect the Brachypodium distachyon Bd3-1 inbred line, which harbours a resistance gene designated Bsr1, but the Norwich (NW) strain is virulent on Bd3-1. Analysis of ND18 and NW genomic RNA reassortants and RNAβ mutants demonstrates that two amino acids within the helicase motif of the triple gene block 1 (TGB1) movement protein have major effects on their Bd3-1 phenotypes. Resistance to ND18 correlates with an arginine residue at TGB1 position 390 (R390) and a threonine at position 392 (T392), whereas the virulent NW strain contains lysines (K) at both positions. ND18 TGB1 R390K (NDTGB1R390K) and NDTGB1T392K single substitutions, and an NDTGB1R390K,T392K double mutation resulted in systemic infections of Bd3-1. Reciprocal NDTGB1 substitutions into NWTGB1 (NWTGB1K390R and NWTGB1K392T) failed to affect virulence, implying that K390 and K392 compensate for each other. In contrast, an NWTGB1K390R,K392T double mutant exhibited limited vascular movement in Bd3-1, but developed prominent necrotic streaks that spread from secondary leaf veins. This phenotype, combined with the appearance of necrotic spots in certain ND18 mutants, and necrosis and rapid wilting of Bd3-1 plants after BJ strain (BJTGB1K390,T392) inoculations, show that Bd3-1 Bsr1 resistance is elicited by the TGB1 protein and suggest that it involves a hypersensitive response.
Collapse
Affiliation(s)
- Mi Yeon Lee
- Department of Plant and Microbial Biology, University of California–Berkeley, Berkeley, CA 94720, USA
| | - Lijie Yan
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Florien A. Gorter
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands
- Department of Plant and Microbial Biology, University of California–Berkeley, Berkeley, CA 94720, USA
| | - Brian Y. T. Kim
- Department of Plant and Microbial Biology, University of California–Berkeley, Berkeley, CA 94720, USA
| | - Yu Cui
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100193, PR China
- Department of Plant and Microbial Biology, University of California–Berkeley, Berkeley, CA 94720, USA
| | - Yue Hu
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Cheng Yuan
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Jessica Grindheim
- Department of Plant and Microbial Biology, University of California–Berkeley, Berkeley, CA 94720, USA
| | - Uma Ganesan
- Department of Plant and Microbial Biology, University of California–Berkeley, Berkeley, CA 94720, USA
| | - Zhiyong Liu
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Andrew O. Jackson
- Department of Plant and Microbial Biology, University of California–Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
114
|
Tilsner J, Oparka KJ. Missing links? - The connection between replication and movement of plant RNA viruses. Curr Opin Virol 2012; 2:705-11. [PMID: 23036608 DOI: 10.1016/j.coviro.2012.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 12/18/2022]
Abstract
Plant virus infection spreads from cell-to-cell within the host with the aid of viral movement proteins (MPs) that transport infectious genomes through intercellular pores called plasmodesmata (PD). MPs are able to accomplish RNA trafficking independent of virus infection. However, although dispensable for replication, they often associate with or assist in the formation of viral replication complexes. Quantitative analyses of genetic bottlenecks during infection, as well as considerations of transport specificity, suggest that intricate links between replication and movement may facilitate efficient delivery of plant viruses through PD during early infection, at a stage when viral genomes are still rare.
Collapse
Affiliation(s)
- Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom.
| | | |
Collapse
|
115
|
Perraki A, Cacas JL, Crowet JM, Lins L, Castroviejo M, German-Retana S, Mongrand S, Raffaele S. Plasma membrane localization of Solanum tuberosum remorin from group 1, homolog 3 is mediated by conformational changes in a novel C-terminal anchor and required for the restriction of potato virus X movement]. PLANT PHYSIOLOGY 2012; 160:624-37. [PMID: 22855937 PMCID: PMC3461544 DOI: 10.1104/pp.112.200519] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/31/2012] [Indexed: 05/18/2023]
Abstract
The formation of plasma membrane (PM) microdomains plays a crucial role in the regulation of membrane signaling and trafficking. Remorins are a plant-specific family of proteins organized in six phylogenetic groups, and Remorins of group 1 are among the few plant proteins known to specifically associate with membrane rafts. As such, they are valuable to understand the molecular bases for PM lateral organization in plants. However, little is known about the structural determinants underlying the specific association of group 1 Remorins with membrane rafts. We used a structure-function approach to identify a short C-terminal anchor (RemCA) indispensable and sufficient for tight direct binding of potato (Solanum tuberosum) REMORIN 1.3 (StREM1.3) to the PM. RemCA switches from unordered to α-helical structure in a nonpolar environment. Protein structure modeling indicates that RemCA folds into a tight hairpin of amphipathic helices. Consistently, mutations reducing RemCA amphipathy abolished StREM1.3 PM localization. Furthermore, RemCA directly binds to biological membranes in vitro, shows higher affinity for Detergent-Insoluble Membranes lipids, and targets yellow fluorescent protein to Detergent-Insoluble Membranes in vivo. Mutations in RemCA resulting in cytoplasmic StREM1.3 localization abolish StREM1.3 function in restricting potato virus X movement. The mechanisms described here provide new insights on the control and function of lateral segregation of plant PM.
Collapse
|
116
|
Di Carli M, Benvenuto E, Donini M. Recent insights into plant-virus interactions through proteomic analysis. J Proteome Res 2012; 11:4765-80. [PMID: 22954327 DOI: 10.1021/pr300494e] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plant viruses represent a major threat for a wide range of host species causing severe losses in agricultural practices. The full comprehension of mechanisms underlying events of virus-host plant interaction is crucial to devise novel plant resistance strategies. Until now, functional genomics studies in plant-virus interaction have been limited mainly on transcriptomic analysis. Only recently are proteomic approaches starting to provide important contributions to this area of research. Classical two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MS) is still the most widely used platform in plant proteome analysis, although in the last years the application of quantitative "second generation" proteomic techniques (such as differential in gel electrophoresis, DIGE, and gel-free protein separation methods) are emerging as more powerful analytical approaches. Apparently simple, plant-virus interactions reveal a really complex pathophysiological context, in which resistance, defense and susceptibility, and direct virus-induced reactions interplay to trigger expression responses of hundreds of genes. Given that, this review is specifically focused on comparative proteome-based studies on pathogenesis of several viral genera, including some of the most important and widespread plant viruses of the genus Tobamovirus, Sobemovirus, Cucumovirus and Potyvirus. In all, this overview reveals a widespread repression of proteins associated with the photosynthetic apparatus, while energy metabolism/protein synthesis and turnover are typically up-regulated, indicating a major redirection of cell metabolism. Other common features include the modulation of metabolisms concerning sugars, cell wall, and reactive oxigen species as well as pathogenesis-related (PR) proteins. The fine-tuning between plant development and antiviral defense mechanisms determines new patterns of regulation of common metabolic pathways. By offering a 360-degree view of protein modulation, all proteomic tools reveal the extraordinary intricacy of mechanisms with which a simple viral genome perturbs the plant cell molecular networks. This "omic" approach, while providing a global perspective and useful information to the understanding of the plant host-virus interactome, may possibly reveal protein targets/markers useful in the design of future diagnosis and/or plant protection strategies.
Collapse
Affiliation(s)
- Mariasole Di Carli
- ENEA, Laboratorio Biotecnologie, UT BIORAD-FARM, Casaccia Research Center, Via Anguillarese 301, I-00123 Rome, Italy
| | | | | |
Collapse
|
117
|
Sun X, Zhang C. A conserved C-terminal motif is essential for self-interaction of Barley stripe mosaic virus China strain TGB3 protein. Biochem Biophys Res Commun 2012; 426:153-7. [PMID: 22925891 DOI: 10.1016/j.bbrc.2012.08.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/11/2012] [Indexed: 10/28/2022]
Abstract
The triple gene block (TGB) 3 protein is essential for the cell-to-cell movement of Barley stripe mosaic virus (BSMV). Previous studies have shown that TGB3, together with TGB2, facilitates the movement of TGB1 to the plasma membrane. However, the interactions among the three proteins (i.e., TGB3, TGB1, and TGB2) have not been thoroughly understood. The interactions of BSMV China strain (BSMV-CH) TGB3 with itself and with other two TGB proteins were investigated using a Gal4-based yeast two-hybrid system and pull-down assays. The results show that neither TGB1 nor TGB2 interacts with TGB3. However, self-interaction was detected for TGB3. The C-terminal 37 amino acids (amino acids 87-123) containing a conserved C-terminal motif were found required for the self-interaction of TGB3. The roles of the novel property of BSMV-CH TGB3 in virus cell-to-cell movement were discussed.
Collapse
Affiliation(s)
- Xianchao Sun
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | | |
Collapse
|
118
|
Yan F, Lu Y, Lin L, Zheng H, Chen J. The ability of PVX p25 to form RL structures in plant cells is necessary for its function in movement, but not for its suppression of RNA silencing. PLoS One 2012; 7:e43242. [PMID: 22916231 PMCID: PMC3420909 DOI: 10.1371/journal.pone.0043242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/18/2012] [Indexed: 12/29/2022] Open
Abstract
The p25 triple gene block protein of Potato virus X (PVX) is multifunctional, participating in viral movement and acting as a suppressor of RNA silencing. The cell-to-cell movement of PVX is known to depend on the suppression function of p25. GFP-fused p25 accumulates in rod-like (RL) structures with intense fluorescence in cells. By monitoring the location of fluorescence at different times, we have now shown that the RL structure is composed of filaments. P25 mutants without the conditional ability to recover movement function could not form RL structures while the mutants that had the ability did form the structure, suggesting that the ability of p25 to form RL structures is necessary for its function in cell-to-cell movement, but not for its suppressor function. Moreover, chemical inhibition of microfilaments in cells destroyed the formation of the complete RL structure. Additionally, TGBp2 and TGBp3 were recruited into the RL structure, suggesting a relationship between the TGBps in virus movement.
Collapse
Affiliation(s)
- Fei Yan
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection (Ministry of China), Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuwen Lu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection (Ministry of China), Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Lin
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection (Ministry of China), Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongying Zheng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection (Ministry of China), Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianping Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection (Ministry of China), Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
119
|
Morozov SY, Solovyev AG. Did silencing suppression counter-defensive strategy contribute to origin and evolution of the triple gene block coding for plant virus movement proteins? FRONTIERS IN PLANT SCIENCE 2012; 3:136. [PMID: 22783263 PMCID: PMC3390553 DOI: 10.3389/fpls.2012.00136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/05/2012] [Indexed: 05/25/2023]
Affiliation(s)
- Sergey Y. Morozov
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, Russia
| | - Andrey G. Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, Russia
| |
Collapse
|
120
|
Cho SY, Cho WK, Choi HS, Kim KH. Cis-acting element (SL1) of Potato virus X controls viral movement by interacting with the NbMPB2Cb and viral proteins. Virology 2012; 427:166-76. [PMID: 22405626 DOI: 10.1016/j.virol.2012.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/09/2012] [Accepted: 02/04/2012] [Indexed: 01/21/2023]
Abstract
A number of candidate tobacco proteins that bind to cis-acting elements (SL1 RNAs) of Potato virus X (PVX) have been identified in previous studies. We further characterized TMV-MP30 binding protein 2C (MPB2C) homologous protein. We isolated NbMPB2Cb from Nicotiana benthamiana and confirmed the interaction of NbMPB2Cb with SL1 RNAs in vitro. The mRNA level of NbMPB2Cb was increased upon infection by PVX and Tobacco mosaic virus. The movement of PVX was reduced by overexpression of NbMPB2Cb and increased by silenced of NbMPB2Cb. In contrast, PVX RNA accumulation was not significantly altered in protoplasts. Protein-protein interaction assays showed that NbMPB2Cb interacts with PVX movement-associated proteins. PVX infection altered the subcellular localization of NbMPB2Cb from microtubules to endoplasmic reticulum. These data suggest that the NbMPB2Cb negatively affects PVX movement by interacting with SL1 RNAs and movement-associated proteins of PVX and by re-localizing in response to PVX infection.
Collapse
Affiliation(s)
- Sang-Yun Cho
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | |
Collapse
|
121
|
Cui Y, Lee MY, Huo N, Bragg J, Yan L, Yuan C, Li C, Holditch SJ, Xie J, Luo MC, Li D, Yu J, Martin J, Schackwitz W, Gu YQ, Vogel JP, Jackson AO, Liu Z, Garvin DF. Fine mapping of the Bsr1 barley stripe mosaic virus resistance gene in the model grass Brachypodium distachyon. PLoS One 2012; 7:e38333. [PMID: 22675544 PMCID: PMC3366947 DOI: 10.1371/journal.pone.0038333] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/03/2012] [Indexed: 11/18/2022] Open
Abstract
The ND18 strain of Barley stripe mosaic virus (BSMV) infects several lines of Brachypodium distachyon, a recently developed model system for genomics research in cereals. Among the inbred lines tested, Bd3-1 is highly resistant at 20 to 25°C, whereas Bd21 is susceptible and infection results in an intense mosaic phenotype accompanied by high levels of replicating virus. We generated an F6∶7 recombinant inbred line (RIL) population from a cross between Bd3-1 and Bd21 and used the RILs, and an F2 population of a second Bd21 × Bd3-1 cross to evaluate the inheritance of resistance. The results indicate that resistance segregates as expected for a single dominant gene, which we have designated Barley stripe mosaic virus resistance 1 (Bsr1). We constructed a genetic linkage map of the RIL population using SNP markers to map this gene to within 705 Kb of the distal end of the top of chromosome 3. Additional CAPS and Indel markers were used to fine map Bsr1 to a 23 Kb interval containing five putative genes. Our study demonstrates the power of using RILs to rapidly map the genetic determinants of BSMV resistance in Brachypodium. Moreover, the RILs and their associated genetic map, when combined with the complete genomic sequence of Brachypodium, provide new resources for genetic analyses of many other traits.
Collapse
Affiliation(s)
- Yu Cui
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
- Department of Plant and Microbiology, University of California, Berkeley, California, United States of America
| | - Mi Yeon Lee
- Department of Plant and Microbiology, University of California, Berkeley, California, United States of America
| | - Naxin Huo
- USDA-ARS Western Regional Research Center, Albany, California, United States of America
| | - Jennifer Bragg
- USDA-ARS Western Regional Research Center, Albany, California, United States of America
| | - Lijie Yan
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Cheng Yuan
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Cui Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Sara J. Holditch
- Department of Plant and Microbiology, University of California, Berkeley, California, United States of America
| | - Jingzhong Xie
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Joel Martin
- US DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - Wendy Schackwitz
- US DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - Yong Qiang Gu
- USDA-ARS Western Regional Research Center, Albany, California, United States of America
| | - John P. Vogel
- USDA-ARS Western Regional Research Center, Albany, California, United States of America
| | - Andrew O. Jackson
- Department of Plant and Microbiology, University of California, Berkeley, California, United States of America
- * E-mail: (AOJ); (ZL)
| | - Zhiyong Liu
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
- * E-mail: (AOJ); (ZL)
| | - David F. Garvin
- USDA-ARS Plant Science Research Unit and Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
122
|
Rioux G, Majeau N, Leclerc D. Mapping the surface-exposed regions of papaya mosaic virus nanoparticles. FEBS J 2012; 279:2004-11. [PMID: 22524169 DOI: 10.1111/j.1742-4658.2012.08583.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In general, the structure of the papaya mosaic virus (PapMV) and other members of the potexviruses is poorly understood. Production of PapMV coat proteins in a bacterial expression system and their self-assembly in vitro into nanoparticles is a very useful tool to study the structure of this virus. Using recombinant PapMV nanoparticles that are similar in shape and appearance to the plant virus, we evaluated surface-exposed regions by two different methods, immunoblot assay and chemical modification with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide or diethyl-pyrocarbonate followed by mass spectrometry. Three regions were targeted by the two techniques. The N- and C-termini were shown to be surfaced exposed as expected. However, the region 125-136 was revealed for the first time as the major surface-exposed region of the nanoparticles. The presence of linear peptides at the surface was finally confirmed using antibodies directed to those peptides. It is likely that region 125-136 plays a key role in the lifecycle of PapMV and other members of the potexvirus group.
Collapse
Affiliation(s)
- Gervais Rioux
- Department of Microbiology Infectiology and Immunology, Infectious Disease Research Centre, Laval University, Quebec City, Canada
| | | | | |
Collapse
|
123
|
Vijayapalani P, Maeshima M, Nagasaki-Takekuchi N, Miller WA. Interaction of the trans-frame potyvirus protein P3N-PIPO with host protein PCaP1 facilitates potyvirus movement. PLoS Pathog 2012; 8:e1002639. [PMID: 22511869 PMCID: PMC3325209 DOI: 10.1371/journal.ppat.1002639] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 02/26/2012] [Indexed: 12/29/2022] Open
Abstract
A small open reading frame (ORF), pipo, overlaps with the P3 coding region of the potyviral polyprotein ORF. Previous evidence suggested a requirement for pipo for efficient viral cell-to-cell movement. Here, we provide immunoblotting evidence that the protein PIPO is expressed as a trans-frame protein consisting of the amino-terminal half of P3 fused to PIPO (P3N-PIPO). P3N-PIPO of Turnip mosaic virus (TuMV) fused to GFP facilitates its own cell-to-cell movement. Using a yeast two-hybrid screen, co-immunoprecipitation assays, and bimolecular fluorescence complementation (BiFC) assays, we found that P3N-PIPO interacts with host protein PCaP1, a cation-binding protein that attaches to the plasma membrane via myristoylation. BiFC revealed that it is the PIPO domain of P3N-PIPO that binds PCaP1 and that myristoylation of PCaP1 is unnecessary for interaction with P3N-PIPO. In PCaP1 knockout mutants (pcap1) of Arabidopsis, accumulation of TuMV harboring a GFP gene (TuMV-GFP) was drastically reduced relative to the virus level in wild-type plants, only small localized spots of GFP were visible, and the plants showed few symptoms. In contrast, TuMV-GFP infection in wild-type Arabidopsis yielded large green fluorescent patches, and caused severe stunting. However, viral RNA accumulated to high level in protoplasts from pcap1 plants indicating that PCaP1 is not required for TuMV RNA synthesis. In contrast to TuMV, the tobamovirus Oilseed rape mosaic virus did not require PCaP1 to infect Arabidopsis plants. We conclude that potyviral P3N-PIPO interacts specifically with the host plasma membrane protein PCaP1 to participate in cell-to-cell movement. We speculate that PCaP1 links a complex of viral proteins and genomic RNA to the plasma membrane by binding P3N-PIPO, enabling localization to the plasmodesmata and cell-to-cell movement. The PCaP1 knockout may contribute to a new strategy for recessive resistance to potyviruses.
Collapse
Affiliation(s)
- Paramasivan Vijayapalani
- Plant Pathology and Microbiology Department, Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa, United States of America
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Nahoko Nagasaki-Takekuchi
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - W. Allen Miller
- Plant Pathology and Microbiology Department, Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
124
|
Abstract
Virtually all studies of structure and assembly of viral filaments have been made on plant and bacterial viruses. Structures have been determined using fiber diffraction methods at high enough resolution to construct reliable molecular models or several of the rigid plant tobamoviruses (related to tobacco mosaic virus, TMV) and the filamentous bacteriophages including Pf1 and fd. Lower-resolution structures have been determined for a number of flexible filamentous plant viruses using fiber diffraction and cryo-electron microscopy. Virions of filamentous viruses have numerous mechanical functions, including cell entry, viral disassembly, viral assembly, and cell exit. The plant viruses, which infect multicellular organisms, also use virions or virion-like assemblies for transport within the host. Plant viruses are generally self-assembling; filamentous bacteriophage assembly is combined with secretion from the host cell, using a complex molecular machine. Tobamoviruses and other plant viruses disassemble concomitantly with translation, by various mechanisms and involving various viral and host assemblies. Plant virus movement within the host also makes use of a variety of viral proteins and modified host assemblies.
Collapse
|
125
|
Tilsner J, Linnik O, Wright KM, Bell K, Roberts AG, Lacomme C, Santa Cruz S, Oparka KJ. The TGB1 movement protein of Potato virus X reorganizes actin and endomembranes into the X-body, a viral replication factory. PLANT PHYSIOLOGY 2012; 158:1359-70. [PMID: 22253256 PMCID: PMC3291258 DOI: 10.1104/pp.111.189605] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/13/2012] [Indexed: 05/18/2023]
Abstract
Potato virus X (PVX) requires three virally encoded proteins, the triple gene block (TGB), for movement between cells. TGB1 is a multifunctional protein that suppresses host gene silencing and moves from cell to cell through plasmodesmata, while TGB2 and TGB3 are membrane-spanning proteins associated with endoplasmic reticulum-derived granular vesicles. Here, we show that TGB1 organizes the PVX "X-body," a virally induced inclusion structure, by remodeling host actin and endomembranes (endoplasmic reticulum and Golgi). Within the X-body, TGB1 forms helically arranged aggregates surrounded by a reservoir of the recruited host endomembranes. The TGB2/3 proteins reside in granular vesicles within this reservoir, in the same region as nonencapsidated viral RNA, while encapsidated virions accumulate at the outer (cytoplasmic) face of the X-body, which comprises a highly organized virus "factory." TGB1 is both necessary and sufficient to remodel host actin and endomembranes and to recruit TGB2/3 to the X-body, thus emerging as the central orchestrator of the X-body. Our results indicate that the actin/endomembrane-reorganizing properties of TGB1 function to compartmentalize the viral gene products of PVX infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karl J. Oparka
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (J.T., O.L., K.B., C.L., K.J.O.); and The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (K.M.W., A.G.R., S.S.C.)
| |
Collapse
|
126
|
Betti C, Lico C, Maffi D, D'Angeli S, Altamura MM, Benvenuto E, Faoro F, Baschieri S. Potato virus X movement in Nicotiana benthamiana: new details revealed by chimeric coat protein variants. MOLECULAR PLANT PATHOLOGY 2012; 13:198-203. [PMID: 21851552 PMCID: PMC6638808 DOI: 10.1111/j.1364-3703.2011.00739.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Potato virus X coat protein is necessary for both cell-to-cell and phloem transfer, but it has not been clarified definitively whether it is needed in both movement phases solely as a component of the assembled particles or also of differently structured ribonucleoprotein complexes. To clarify this issue, we studied the infection progression of a mutant carrying an N-terminal deletion of the coat protein, which was used to construct chimeric virus particles displaying peptides selectively affecting phloem transfer or cell-to-cell movement. Nicotiana benthamiana plants inoculated with expression vectors encoding the wild-type, mutant and chimeric viral genomes were examined by microscopy techniques. These experiments showed that coat protein-peptide fusions promoting cell-to-cell transfer only were not competent for virion assembly, whereas long-distance movement was possible only for coat proteins compatible with virus particle formation. Moreover, the ability of the assembled PVX to enter and persist into developing xylem elements was revealed here for the first time.
Collapse
Affiliation(s)
- Camilla Betti
- Unità Tecnica Biologia delle Radiazioni e Salute dell'Uomo, Laboratorio di Biotecnologie, ENEA CR Casaccia, Via Anguillarese 301, 00123, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Solovyev AG, Schiemann J, Morozov SY. Microscopic analysis of severe structural rearrangements of the plant endoplasmic reticulum and Golgi caused by overexpression of Poa semilatent virus movement protein. ScientificWorldJournal 2012; 2012:416076. [PMID: 22272174 PMCID: PMC3259505 DOI: 10.1100/2012/416076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/24/2011] [Indexed: 12/29/2022] Open
Abstract
Cell-to-cell transport of plant viruses is mediated by virus-encoded movement proteins and occurs through plasmodesmata interconnecting neighboring cells in plant tissues. Three movement proteins coded by the "triple gene block" (TGB) and named TGBp1, TGBp2 and TGBp3 have distinct functions in viral transport. TGBp1 binds viral genomic RNAs to form ribonucleoprotein complexes representing the transport form of viral genome, while TGBp2 and TGBp3 are necessary for intracellular delivery of such complexes to plasmodesmata. Recently, it was revealed that overexpression of Potato virus X TGBp3 triggers the unfolded protein response mitigating the endoplasmic reticulum (ER) stress leading to cell death if this protein reaches high levels in the ER. Here we report microscopic studies of the influence of the Poa semilatent hordeivirus TGBp3 overexpressed in Nicotiana benthamiana epidermal cells by particle bombardment on cell endomembranes and demonstrate that the protein C-terminal transmembrane segment contains a determinant responsible for vesiculation and coalescence of the endoplasmic reticulum and Golgi presumably accompanying the ER stress that can be induced upon high-level TGBp3 expression.
Collapse
Affiliation(s)
- Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya 42, 127550 Moscow, Russia
| | - Joachim Schiemann
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety of Genetically Modified Plants, Erwin-Baur-Street 27, 06484 Quedlinburg, Germany
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
128
|
Solovyev AG, Kalinina NO, Morozov SY. Recent advances in research of plant virus movement mediated by triple gene block. FRONTIERS IN PLANT SCIENCE 2012; 3:276. [PMID: 23248633 PMCID: PMC3520053 DOI: 10.3389/fpls.2012.00276] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/23/2012] [Indexed: 05/19/2023]
Abstract
The aim of this short review was to summarize recent advances in the field of viral cell-to-cell movement mediated by the triple gene block (TGB). The growing body of new research has uncovered links between virus cell-to-cell trafficking and replication, silencing suppression, virus spread over the plant, as well as suggested the roles of nucleus/nucleolus in plant virus transport and revealed protein-membrane associations occurring during subcellular targeting and cell-to-cell movement. In this context, our review briefly summarized current views on several potentially important functions of TGB proteins and on the development of new experimental systems that improved understanding of the molecular events during TGB-mediated virus movement.
Collapse
Affiliation(s)
- Andrey G. Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, Russia
| | - Natalia O. Kalinina
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, Russia
| | - Sergey Y. Morozov
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, Russia
- *Correspondence: Sergey Y. Morozov, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia. e-mail:
| |
Collapse
|
129
|
Melzer MJ, Sether DM, Borth WB, Hu JS. Characterization of a virus infecting Citrus volkameriana with citrus leprosis-like symptoms. PHYTOPATHOLOGY 2012; 102:122-7. [PMID: 21916557 DOI: 10.1094/phyto-01-11-0013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A Citrus volkameriana tree displaying symptoms similar to citrus leprosis on its leaves and bark was found in Hawaii. Citrus leprosis virus C (CiLV-C)-specific detection assays, however, were negative for all tissues tested. Short, bacilliform virus-like particles were observed by transmission electron microscopy in the cytoplasm of symptomatic leaves but not in healthy controls. Double-stranded (ds) RNAs ≈8 and 3 kbp in size were present in symptomatic leaf tissue but not in healthy controls. Excluding poly(A) tails, the largest molecule, RNA1, was 8,354 bp in length. The ≈3 kbp dsRNA band was found to be composed of two distinct molecules, RNA2 and RNA3, which were 3,169 and 3,113 bp, respectively. Phylogenetic analyses indicated that the RNA-dependent RNA polymerase (RdRp) domain located in RNA1 was most closely related to the RdRp domain of CiLV-C. A reverse-transcription polymerase chain reaction assay developed for the detection of this virus was used to screen nearby citrus trees as well as Hibiscus arnottianus plants with symptoms of hibiscus green spot, a disease associated with infection by Hibiscus green spot virus (HGSV). All nearby citrus trees tested negative with the assay; however, symptomatic H. arnottianus plants were positive. All three RNAs were present in symptomatic H. arnottianus and were >98% identical to the RNAs isolated from C. volkameriana. We contend that the virus described in this study is HGSV, and propose that it be the type member of a new virus genus, Higrevirus.
Collapse
|
130
|
Mathioudakis MM, Veiga R, Ghita M, Tsikou D, Medina V, Canto T, Makris AM, Livieratos IC. Pepino mosaic virus capsid protein interacts with a tomato heat shock protein cognate 70. Virus Res 2012; 163:28-39. [PMID: 21884738 DOI: 10.1016/j.virusres.2011.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 11/29/2022]
Abstract
Plant viral capsid proteins (CP) can be involved in virus movement, replication and symptom development as a result of their interaction with host factors. The identification of such interactions may thus provide information about viral pathogenesis. In this study, Pepino mosaic virus (PepMV) CP was used as bait to screen a tomato (Solanum lycopersicum) cDNA library for potential interactors in yeast. Of seven independent interacting clones, six were predicted to encode the C-termini of the heat shock cognate 70 (Hsc70) proteins. Three full length tomato Hsc70s (named Hsc70.1, .2, .3) were used to confirm the interaction in the yeast two hybrid assay and bimolecular fluorescent complementation (BiFC) in planta. The PepMV CP-Hsc70 interaction was confirmed only in the case of Hsc70.3 for both assays. In BiFC, the interaction was visualized in the cytoplasm and nucleus of agroinfiltrated Nicotiana benthamiana epidermal cells. During PepMV infection, Hsc70.3 mRNA levels were induced and protein accumulation increased at 48 and 72 h post inoculation. In transmission electron microscopy using immunogold labelling techniques, Hsc70 was detected to co-localize with virions in the phloem of PepMV-infected tomato leaves. These observations, together with the co-purification of Hsc70 with PepMV virions further support the notion of a PepMV CP/Hsc70 interaction during virus infection.
Collapse
Affiliation(s)
- Matthaios M Mathioudakis
- Department of Sustainable Agriculture, Mediterranean Agronomic Institute of Chania, Alsylio Agrokepion, GR-73100 Chania, Crete, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Xu Y, Zhou X. Role of Rice Stripe Virus NSvc4 in Cell-to-Cell Movement and Symptom Development in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2012; 3:269. [PMID: 23233857 PMCID: PMC3516811 DOI: 10.3389/fpls.2012.00269] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/19/2012] [Indexed: 05/19/2023]
Abstract
Our previous work has demonstrated that the NSvc4 protein of Rice stripe virus (RSV) functions as a cell-to-cell movement protein. However, the mechanisms whereby RSV traffics through plasmodesmata (PD) are unknown. Here we provide evidence that the NSvc4 moves on the actin filament and endoplasmic reticulum network, but not microtubules, to reach cell wall PD. Disruption of cytoskeleton using different inhibitors altered NSvc4 localization to PD, thus impeding RSV infection of Nicotiana benthamiana. Sequence analyses and deletion mutagenesis experiment revealed that the N-terminal 125 amino acids (AAs) of the NSvc4 determine PD targeting and that a transmembrane domain spanning AAs 106-125 is critical for PD localization. We also found that the NSvc4 protein can localize to chloroplasts in infected cells. Analyses using deletion mutants revealed that the N-terminal 73 AAs are essential for chloroplast localization. Furthermore, expression of NSvc4 from a Potato virus X (PVX) vector resulted in more severe disease symptoms than PVX alone in systemically infected N. benthamiana leaves. Expression of NSvc4 in Spodoptera frugiperda 9 cells did not elicit tubule formation, but instead resulted in punctate foci at the plasma membrane. These findings shed new light on our understanding of the movement mechanisms whereby RSV infects host plants.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
- *Correspondence: Xueping Zhou, State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China. e-mail:
| |
Collapse
|
132
|
D'Alonzo M, Delbianco A, Lanzoni C, Autonell CR, Gilmer D, Ratti C. Beet soil-borne mosaic virus RNA-4 encodes a 32 kDa protein involved in symptom expression and in virus transmission through Polymyxa betae. Virology 2011; 423:187-94. [PMID: 22209119 DOI: 10.1016/j.virol.2011.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/20/2011] [Accepted: 12/08/2011] [Indexed: 11/24/2022]
Abstract
Beet soil-borne mosaic virus (BSBMV), like Beet necrotic yellow vein virus (BNYVV), is a member of the Benyvirus genus and both are transmitted by Polymyxa betae. Both viruses possess a similar genomic organization: RNA-1 and -2 are essential for infection and replication while RNA-3 and -4 play important roles in disease development and vector-mediated infection in sugar beet roots. We characterized a new species of BSBMV RNA-4 that encodes a 32 kDa protein and a chimeric form of BSBMV RNA-3 and -4. We demonstrated that BSBMV RNA-4 can be amplified by BNYVV RNA-1 and -2 in planta, is involved in symptoms expression on Chenopodium quinoa plants and can also complement BNYVV RNA-4 for virus transmission through its vector P. betae in Beta vulgaris plants. Using replicon-mediated expression, we demonstrate for the first time that a correct expression of RNAs-4 encoded proteins is essential for benyvirus transmission.
Collapse
Affiliation(s)
- Massimiliano D'Alonzo
- DiSTA - Plant Pathology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
133
|
Torrance L, Wright KM, Crutzen F, Cowan GH, Lukhovitskaya NI, Bragard C, Savenkov EI. Unusual features of pomoviral RNA movement. Front Microbiol 2011; 2:259. [PMID: 22203822 PMCID: PMC3244614 DOI: 10.3389/fmicb.2011.00259] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/02/2011] [Indexed: 01/10/2023] Open
Abstract
Potato mop-top pomovirus (PMTV) is one of a few viruses that can move systemically in plants in the absence of the capsid protein (CP). Pomoviruses encode the triple gene block genetic module of movement proteins (TGB 1, 2, and 3) and recent research suggests that PMTV RNA is transported either as ribonucleoprotein (RNP) complexes containing TGB1 or encapsidated in virions containing TGB1. Furthermore, there are different requirements for local or systemic (long-distance) movement. Research suggests that nucleolar passage of TGB1 may be important for the long-distance movement of both RNP and virions. Moreover, and uniquely, the long-distance movement of the CP-encoding RNA requires expression of both major and minor CP subunits and is inhibited when only the major CP sub unit is expressed. This paper reviews pomovirus research and presents a current model for RNA movement.
Collapse
Affiliation(s)
- Lesley Torrance
- Cell and Molecular Sciences, The James Hutton Institute Dundee, UK
| | | | | | | | | | | | | |
Collapse
|
134
|
Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD. Top 10 plant viruses in molecular plant pathology. MOLECULAR PLANT PATHOLOGY 2011; 12:938-54. [PMID: 22017770 PMCID: PMC6640423 DOI: 10.1111/j.1364-3703.2011.00752.x] [Citation(s) in RCA: 584] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, 2132 TAMU, Texas A&M University, College Station, TX 77843-2132, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Tubule-guided cell-to-cell movement of a plant virus requires class XI myosin motors. PLoS Pathog 2011; 7:e1002327. [PMID: 22046131 PMCID: PMC3203191 DOI: 10.1371/journal.ppat.1002327] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/05/2011] [Indexed: 11/19/2022] Open
Abstract
Cell-to-cell movement of plant viruses occurs via plasmodesmata (PD), organelles that evolved to facilitate intercellular communications. Viral movement proteins (MP) modify PD to allow passage of the virus particles or nucleoproteins. This passage occurs via several distinct mechanisms one of which is MP-dependent formation of the tubules that traverse PD and provide a conduit for virion translocation. The MP of tubule-forming viruses including Grapevine fanleaf virus (GFLV) recruit the plant PD receptors called Plasmodesmata Located Proteins (PDLP) to mediate tubule assembly and virus movement. Here we show that PDLP1 is transported to PD through a specific route within the secretory pathway in a myosin-dependent manner. This transport relies primarily on the class XI myosins XI-K and XI-2. Inactivation of these myosins using dominant negative inhibition results in mislocalization of PDLP and MP and suppression of GFLV movement. We also found that the proper targeting of specific markers of the Golgi apparatus, the plasma membrane, PD, lipid raft subdomains within the plasma membrane, and the tonoplast was not affected by myosin XI-K inhibition. However, the normal tonoplast dynamics required myosin XI-K activity. These results reveal a new pathway of the myosin-dependent protein trafficking to PD that is hijacked by GFLV to promote tubule-guided transport of this virus between plant cells. To establish infection, plant viruses spread cell-to-cell via narrow channels in the cell wall, the plasmodesmata (PD). Movement proteins (MP) are virus-encoded proteins essential for virus intercellular transport through PD. Plasmodesmata located plant proteins (PDLPs), are specifically recognised by the MPs of tubule-forming viruses. Here we show that PDLP targeting to PD depends on the molecular motors myosin XI-K and XI-2. Consistently, and in support of a function of PDLP as PD receptor for MP, overexpression of dominant negative myosin mutants inhibits tubule formation by Grapevine fanleaf virus (GFLV) MP and dramatically reduces virus movement.
Collapse
|
136
|
Parallels and distinctions in the direct cell-to-cell spread of the plant and animal viruses. Curr Opin Virol 2011; 1:403-9. [PMID: 22440842 DOI: 10.1016/j.coviro.2011.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/23/2011] [Indexed: 01/07/2023]
Abstract
The paradigm that viruses can move directly, and in some cases covertly, between contacting target cells is now well established for several virus families. The underlying mechanisms of cell-to-cell spread, however, remain to be fully elucidated and may differ substantially depending on the viral exit/entry route and the cellular tropism. Here, two divergent cell-to-cell spread mechanisms are exemplified: firstly by human retroviruses, which rely upon transient adhesive structures that form between polarized immune cells termed virological synapses, and secondly by herpesviruses that depend predominantly on pre-existing stable cellular contacts, but may also form virological synapses. Plant viruses can also spread directly between contacting cells, but are obliged by the rigid host cell wall to move across pore structures termed plasmodesmata. This review will focus primarily on recent advances in our understanding of animal virus cell-to-cell spread using examples from these two virus families to highlight differences and similarities, and will conclude by comparing and contrasting the cell-to-cell spread of animal and plant viruses.
Collapse
|
137
|
Wrapping membranes around plant virus infection. Curr Opin Virol 2011; 1:388-95. [PMID: 22440840 DOI: 10.1016/j.coviro.2011.09.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/25/2011] [Accepted: 09/26/2011] [Indexed: 12/22/2022]
Abstract
Positive strand RNA viruses cause membrane modifications which are microenvironments or larger intracellular compartments, also called 'viroplasms'. These compartments serve to concentrate virus and host factors needed to produce new genomes. Forming these replication sites often involves virus induced membrane synthesis, changes in fatty acid metabolism, and viral recruitment of cellular factors to subcellular domains. Interacting viral and host factors builds the physical scaffold for replication complexes. Such virus induced changes are a visible cytopathology that has been used by plant and mammalian virologists to describe virus disease. This article describes key examples of membrane modifications that are essential for plant virus replication and intercellular transport.
Collapse
|
138
|
Schoelz JE, Harries PA, Nelson RS. Intracellular transport of plant viruses: finding the door out of the cell. MOLECULAR PLANT 2011; 4:813-31. [PMID: 21896501 PMCID: PMC3183398 DOI: 10.1093/mp/ssr070] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/18/2011] [Indexed: 05/03/2023]
Abstract
Plant viruses are a class of plant pathogens that specialize in movement from cell to cell. As part of their arsenal for infection of plants, every virus encodes a movement protein (MP), a protein dedicated to enlarging the pore size of plasmodesmata (PD) and actively transporting the viral nucleic acid into the adjacent cell. As our knowledge of intercellular transport has increased, it has become apparent that viruses must also use an active mechanism to target the virus from their site of replication within the cell to the PD. Just as viruses are too large to fit through an unmodified plasmodesma, they are also too large to be freely diffused through the cytoplasm of the cell. Evidence has accumulated now for the involvement of other categories of viral proteins in intracellular movement in addition to the MP, including viral proteins originally associated with replication or gene expression. In this review, we will discuss the strategies that viruses use for intracellular movement from the replication site to the PD, in particular focusing on the role of host membranes for intracellular transport and the coordinated interactions between virus proteins within cells that are necessary for successful virus spread.
Collapse
Affiliation(s)
- James E. Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Phillip A. Harries
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Richard S. Nelson
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, OK 73401, USA
| |
Collapse
|
139
|
Ye C, Dickman MB, Whitham SA, Payton M, Verchot J. The unfolded protein response is triggered by a plant viral movement protein. PLANT PHYSIOLOGY 2011; 156:741-55. [PMID: 21474436 PMCID: PMC3177272 DOI: 10.1104/pp.111.174110] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/04/2011] [Indexed: 05/17/2023]
Abstract
Infection with Potato virus X (PVX) in Nicotiana benthamiana plants leads to increased transcript levels of several stress-related host genes, including basic-region leucine zipper 60 (bZIP60), SKP1, ER luminal binding protein (BiP), protein disulfide isomerase (PDI), calreticulin (CRT), and calmodulin (CAM). bZIP60 is a key transcription factor that responds to endoplasmic reticulum (ER) stress and induces the expression of ER-resident chaperones (BiP, PDI, CRT, and CAM). SKP1 is a component of SCF (for SKP1-Cullin-F box protein) ubiquitin ligase complexes that target proteins for proteasomal degradation. Expression of PVX TGBp3 from a heterologous vector induces the same set of genes in N. benthamiana and Arabidopsis (Arabidopsis thaliana) leaves. Virus-induced gene silencing was employed to knock down the expression of bZIP60 and SKP1, and the number of infection foci on inoculated leaves was reduced and systemic PVX accumulation was altered. Silencing bZIP60 led to the suppression of BiP and SKP1 transcript levels, suggesting that bZIP60 might be an upstream signal transducer. Overexpression of TGBp3 led to localized necrosis, but coexpression of TGBp3 with BiP abrogated necrosis, demonstrating that the unfolded protein response alleviates ER stress-related cell death. Steady-state levels of PVX replicase and TGBp2 (which reside in the ER) proteins were unaltered by the presence of TGBp3, suggesting that TGBp3 does not contribute to their turnover. Taken together, PVX TGBp3-induced ER stress leads to up-regulation of bZIP60 and unfolded protein response-related gene expression, which may be important to regulate cellular cytotoxicity that could otherwise lead to cell death if viral proteins reach high levels in the ER.
Collapse
Affiliation(s)
| | | | | | | | - Jeanmarie Verchot
- Department of Entomology and Plant Pathology (C.Y., J.V.) and Department of Statistics (M.P.), Oklahoma State University, Stillwater, Oklahoma 74078; Institute for Plant Genomics and Biotechnology, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843 (M.B.D.); Department of Plant Pathology, Iowa State University, Ames, Iowa 50011 (S.A.W.)
| |
Collapse
|
140
|
Contribution of topology determinants of a viral movement protein to its membrane association, intracellular traffic, and viral cell-to-cell movement. J Virol 2011; 85:7797-809. [PMID: 21593169 DOI: 10.1128/jvi.02465-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p7B movement protein (MP) of Melon necrotic spot virus (MNSV) is a single-pass membrane protein associated with the endoplasmic reticulum (ER), the Golgi apparatus (GA), and plasmodesmata (Pd). Experimental data presented here revealed that the p7B transmembrane domain (TMD) was sufficient to target the green fluorescent protein (GFP) to ER membranes. In addition, the short extramembrane regions of p7B were essential for subsequent ER export and transport to the GA and Pd. Microsomal partitioning and bimolecular fluorescence assays supported a type II topology of p7B in planta. Mutations affecting conventional determinants of p7B membrane topology, such as the TMD secondary structure, the overall hydrophobicity profile, the so-called "aromatic belt," and the net charge distribution on either side of the TMD, were engineered into infectious RNAs to investigate the relationship between the MP structure and MNSV cell-to-cell movement. The results revealed that (i) the overall hydrophobic profile and the α-helix integrity of the TMD were relevant for virus movement, (ii) modification of the net charge balance of the regions flanking both TMD sides drastically reduced cell-to-cell movement, (iii) localization of p7B to the GA was necessary but not sufficient for virus movement, and (iv) membrane insertion was essential for p7B function in virus movement. Our results therefore indicate that MNSV cell-to-cell movement requires sequential transport of p7B from the ER via the GA to Pd, which is modulated by a combination of several signals with different strengths in the extramembrane regions and TMD of the MP.
Collapse
|
141
|
Kaido M, Funatsu N, Tsuno Y, Mise K, Okuno T. Viral cell-to-cell movement requires formation of cortical punctate structures containing Red clover necrotic mosaic virus movement protein. Virology 2011; 413:205-15. [PMID: 21377183 DOI: 10.1016/j.virol.2011.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 01/27/2011] [Accepted: 02/05/2011] [Indexed: 01/30/2023]
Abstract
Movement protein (MP) of Red clover necrotic mosaic virus (RCNMV) forms punctate structures on the cortical endoplasmic reticulum (ER) of Nicotiana benthamiana cells, which are associated with viral RNA1 replication (Kaido et al., Virology 395, 232-242. 2009). We investigated the significance of ER-targeting by MP during virus movement from cell to cell, by analyzing the function of a series of MPs with varying length deletions at their C-terminus, either fused or not fused with green fluorescent protein (GFP). The C-terminal 70 amino acids were crucial to ER-localization of MP-GFP and cell-to-cell movement of the recombinant virus encoding it. However, C-terminal deletion did not affect MP functions, such as increasing the size exclusion limit of plasmodesmata, single-stranded RNA binding in vitro, and MP interacting in vivo. We discuss the possible role of this MP region in virus movement from cell to cell.
Collapse
Affiliation(s)
- Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
142
|
Wu CH, Lee SC, Wang CW. Viral protein targeting to the cortical endoplasmic reticulum is required for cell-cell spreading in plants. ACTA ACUST UNITED AC 2011; 193:521-35. [PMID: 21518793 PMCID: PMC3087015 DOI: 10.1083/jcb.201006023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sorting signal-mediated oligomerization and localization of the viral protein TGBp3 to curved ER tubules is essential for viral movement between cells in plants. Many plant RNA viruses use their nonstructural proteins to target and move through the cortical endoplasmic reticulum (ER) tubules within the plant intercellular junction for cell-to-cell spreading. Most of these proteins, including the triple-gene-block 3 protein (TGBp3) of Potexvirus, are ER membrane proteins. We previously showed that TGBp3 of the Bamboo mosaic potexvirus partitions into tubular subdomains of the ER in both yeast and plants, but the mechanism and physiological significance of this localization is unclear. Here, we demonstrate that a sorting signal present in TGBp3 is necessary and sufficient for its oligomerization and for targeting integral membrane proteins into puncta within curved ER tubules. Mutations in the TGBp3 sorting signal impair viral spread, and plants infected with viruses harboring these mutants were either asymptomatic or had reduced symptoms. Thus, we propose that Potexvirus use the sorting signal in TGBp3 to target infectious viral derivatives to cortical ER tubules for transmission through the intercellular junctions in plants.
Collapse
Affiliation(s)
- Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | | |
Collapse
|
143
|
Shemyakina EA, Erokhina TN, Gorshkova EN, Schiemann J, Solovyev AG, Morozov SY. Formation of protein complexes containing plant virus movement protein TGBp3 is necessary for its intracellular trafficking. Biochimie 2011; 93:742-8. [PMID: 21251950 DOI: 10.1016/j.biochi.2011.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/11/2011] [Indexed: 12/11/2022]
Abstract
Cell-to-cell movement of Poa semilatent virus (genus Hordeivirus) in infected plants is mediated by three viral 'triple gene block' (TGB) proteins. One of those termed TGBp3 is an integral membrane protein essential for intracellular transport of other TGB proteins and viral genomic RNA to plasmodesmata. TGBp3 targeting to plasmodesmata-associated sites is believed to involve an unconventional mechanism which does not employ endoplasmic reticulum-derived transport vesicles. Previously TGBp3 has been shown to contain a composite transport signal consisting of the central hydrophilic protein region which includes a conserved pentapeptide YQDLN and the C-terminal transmembrane segment. This study demonstrates that these TGBp3 structural elements have distinct functions in protein transport. The YQDLN-containing region is essential for TGBp3 incorporation into high-molecular-mass protein complexes. In transient expression assay formation of such complexes is necessary for entering the TGBp3-specific pathway of intracellular transport and protein delivery to plasmodesmata-associated sites. In virus-infected plants TGBp3 is also found predominantly in the form of high-molecular-mass complexes. When the complex-formation function of YQDLN-containing region is disabled by a mutation, targeting to plasmodesmata-associated sites can be complemented by a heterologous peptide capable of formation multimeric complexes. The C-terminal transmembrane segment is found to be an essential signal of TGBp3 intracellular transport to peripheral sites.
Collapse
Affiliation(s)
- Elena A Shemyakina
- Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
144
|
Shemyakina EA, Solovyev AG, Leonova OG, Popenko VI, Schiemann J, Morozov SY. The Role of Microtubule Association in Plasmodesmal Targeting of Potato mop-top virus Movement Protein TGBp1. Open Virol J 2011; 5:1-11. [PMID: 21660184 PMCID: PMC3109696 DOI: 10.2174/1874357901105010001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/11/2010] [Accepted: 10/25/2010] [Indexed: 12/19/2022] Open
Abstract
Cell-to-cell movement of Potato mop-top virus (PMTV) is mediated by three virus-encoded ‘triple gene block’ (TGB) proteins termed TGBp1, TGBp2 and TGBp3. TGBp1 binds virus RNAs to form viral ribonucleoprotein complexes (vRNPs), the transport form of viral genome. TGBp2 and TGBp3 are necessary for intracellular delivery of TGBp1-containing vRNPs to plasmodesmata. To analyze subcellular localization and transport of TGBp1 we used a single binary vector for agrobacterium-mediated co-expression of PMTV TGBp1 fused to green fluorescent protein and TGBp2/TGBp3. At two days post infiltration (dpi) TGBp1 was found in the nucleus and in association with microtubules (MTs). Similar localization pattern was revealed in cells expressing GFP-TGBp1 alone after particle bombardment. At 3 dpi, in addition to the nucleus and MTs, TGBp1 was detected in numerous granular bodies located both along the MTs and at the cell wall. The latter structures co-localized with plasmodesmata-associated callose depositions. At 4 dpi, GFP-TGBp1 was detected in cell wall-associated bodies and also in residual MTs, the nucleoplasm and large perinuclear inclusions resembling aggresomes. Therefore GFP-TGBp1 association with MTs preceded to its localization to plasmodesmata. Disassembly of cell MTs by colchicine prevented GFP-TGBp1 targeting to plasmodesmata and the MT-dependent aggresome formation. Deletion analysis also revealed a correlation between TGBp1 microtubule association and plasmodesmata targeting. We propose that TGBp1 interaction with MTs may be important for the formation of vRNP bodies destined for the transport to plasmodesmata as well as degradation of the excessive TGBp1.
Collapse
Affiliation(s)
- Elena A Shemyakina
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | | | | | | | | | | |
Collapse
|