101
|
Abstract
Ischemia/reperfusion (I/R) injury is a major contributory factor to cardiac dysfunction and infarct size that determines patient prognosis after acute myocardial infarction. Considerable interest exists in harnessing the heart's endogenous capacity to resist I/R injury, known as ischemic preconditioning (IPC). The IPC research has contributed to uncovering the pathophysiology of I/R injury on a molecular and cellular basis and to invent potential therapeutic means to combat such damage. However, the translation of basic research findings learned from IPC into clinical practice has often been inadequate because the majority of basic research findings have stemmed from young and healthy animals. Few if any successful implementations of IPC have occurred in the diseased hearts that are the primary target of viable therapies activating cardioprotective mechanisms to limit cardiac dysfunction and infarct size. Therefore, the first purpose of this review is to facilitate understanding of pathophysiology of I/R injury and the mechanisms of cardioprotection afforded by IPC in the normal heart. Then I focus on the problems and opportunities for successful bench-to-bedside translation of IPC in the diseased hearts.
Collapse
Affiliation(s)
- Hajime Otani
- Second Department of Internal Medicine, Division of Cardiology, Kansai Medical University, Moriguchi City, Japan.
| |
Collapse
|
102
|
Abstract
BACKGROUND Aging per se is a risk factor for reduced cardiac function and heart diseases, even when adjusted for aging-associated cardiovascular risk factors. Accordingly, aging-related biochemical and cell-biological changes lead to pathophysiological conditions, especially reduced heart function and heart disease. OBJECTIVE In this review, we summarize the changes that occur as the heart ages from youth to old age on the basis of the cardiac myocyte. Aging phenotypes and underlying mechanisms shall be discussed that affect cardiomyocyte repair, signaling, structure, and function. METHODS Review of the literature. RESULTS The following factors play vital roles in the aging of cardiomyocytes: oxidative stress, inflammation, cellular protection and repair, telomere integrity, survival and death, metabolism, post-translational modifications, and altered gene expression. Importantly, non-cardiomyocyte-based aging processes (vascular, fibroblast, extracellular matrix, etc.) in the heart will interfere with cardiomyocyte aging and cardiac function. CONCLUSION Based on our analyses, we postulate that the physiological aging process of the heart and of the cardiomyocyte is primarily driven by intrinsic aging factors. However, extrinsic aging factors, e.g. smoking, also make an important contribution to pathologically accelerated aging of the heart.
Collapse
Affiliation(s)
- D Bernhard
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria.
| | | |
Collapse
|
103
|
Mocchegiani E, Giacconi R, Muti E, Cipriano C, Costarelli L, Tesei S, Gasparini N, Malavolta M. Zinc-bound metallothioneins and immune plasticity: lessons from very old mice and humans. IMMUNITY & AGEING 2007; 4:7. [PMID: 17903270 PMCID: PMC2082024 DOI: 10.1186/1742-4933-4-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 09/29/2007] [Indexed: 12/27/2022]
Abstract
The capacity of the remodelling immune responses during stress (named immune plasticity) is fundamental to reach successful ageing. We herein report two pivotal experimental models in order to demonstrate the relevance of the immune plasticity in ageing and successful ageing. These two experimental models will be compared with the capacity in remodelling the immune response in human centenarians. With regard to experimental models, one model is represented by the circadian rhythms of immune responses, the other one is the immune responses during partial hepatectomy/liver regeneration (pHx). The latter is suggestive because it mimics the immunosenescence and chronic inflammation 48 h after partial hepatectomy in the young through the continuous production of IL-6, which is the main cause of immune plasticity lack in ageing. The constant production of IL-6 leads to abnormal increments of zinc-bound Metallothionein (MT), which is in turn unable in zinc release in ageing. As a consequence, low zinc ion bioavailability appears for thymic and extrathymic immune efficiency, in particular of liver NKT cells bearing TCR γδ. The remodelling during the circadian cycle and during pHx of zinc-bound MT confers the immune plasticity of liver NKT γδ cells and NK cells in young and very old mice, not in old mice. With regard to human centenarians and their capacity in remodelling the immune response with respect to elderly, these exceptional individuals display low zinc-bound MT associated with: a) satisfactory intracellular zinc ion availability, b) more capacity in zinc release by MT, c) less inflammation due to low gene expression of IL-6 receptor (gp130), d) increased levels of IFN-gamma and number of NKT cell bearing TCR γδ. Moreover, some polymorphisms for MT tested in PBMCs from human donors are related to successful ageing. In conclusion, zinc-bound MT homeostasis is fundamental to confer the immune plasticity that is a condition "sine qua non" to achieve healthy ageing and longevity.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Immunology Ctr. (Section Nutrition, Immunity and Ageing) Res. Dept. I.N.R.C.A., Ancona, Italy
| | - Robertina Giacconi
- Immunology Ctr. (Section Nutrition, Immunity and Ageing) Res. Dept. I.N.R.C.A., Ancona, Italy
| | - Elisa Muti
- Immunology Ctr. (Section Nutrition, Immunity and Ageing) Res. Dept. I.N.R.C.A., Ancona, Italy
| | - Catia Cipriano
- Immunology Ctr. (Section Nutrition, Immunity and Ageing) Res. Dept. I.N.R.C.A., Ancona, Italy
| | - Laura Costarelli
- Immunology Ctr. (Section Nutrition, Immunity and Ageing) Res. Dept. I.N.R.C.A., Ancona, Italy
| | - Silvia Tesei
- Immunology Ctr. (Section Nutrition, Immunity and Ageing) Res. Dept. I.N.R.C.A., Ancona, Italy
| | - Nazzarena Gasparini
- Immunology Ctr. (Section Nutrition, Immunity and Ageing) Res. Dept. I.N.R.C.A., Ancona, Italy
| | - Marco Malavolta
- Immunology Ctr. (Section Nutrition, Immunity and Ageing) Res. Dept. I.N.R.C.A., Ancona, Italy
| |
Collapse
|
104
|
Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med 2007; 43:477-503. [PMID: 17640558 DOI: 10.1016/j.freeradbiomed.2007.03.034] [Citation(s) in RCA: 783] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 12/11/2022]
Abstract
The early observations on the rate-of-living theory by Max Rubner and the report by Gershman that oxygen free radicals exist in vivo culminated in the seminal proposal in the 1950s by Denham Harman that reactive oxygen species are a cause of aging (free radical theory of aging). The goal of this review is to analyze recent findings relevant in evaluating Harman's theory using experimental results as grouped by model organisms (i.e., invertebrate models and mice). In this regard, we have focused primarily on recent work involving genetic manipulations. Because the free radical theory of aging is not the only theorem proposed to explain the mechanism(s) involved in aging at the molecular level, we also discuss how this theory is related to other areas of research in biogerontology, specifically, telomere/cell senescence, genomic instability, and the mitochondrial hypothesis of aging. We also discuss where we think the free radical theory is headed. It is now possible to give at least a partial answer to the question whether oxidative stress determines life span as Harman posed so long ago. Based on studies to date, we argue that a tentative case for oxidative stress as a life-span determinant can be made in Drosophila melanogaster. Studies in mice argue for a role of oxidative stress in age-related disease, especially cancer; however, with regard to aging per se, the data either do not support or remain inconclusive on whether oxidative stress determines life span.
Collapse
Affiliation(s)
- Florian L Muller
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
105
|
Qin F, Simeone M, Patel R. Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction. Free Radic Biol Med 2007; 43:271-81. [PMID: 17603936 DOI: 10.1016/j.freeradbiomed.2007.04.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Revised: 03/28/2007] [Accepted: 04/12/2007] [Indexed: 11/19/2022]
Abstract
Increases in NADPH oxidase activity, oxidative stress, and myocyte apoptosis coexist in failing hearts. In cardiac myocytes in vitro inhibition of NADPH oxidase reduces apoptosis. In this study, we tested the hypothesis that NADPH oxidase inhibition reduces myocyte apoptosis and improves cardiac function in heart failure after myocardial infarction (MI). Rabbits with heart failure induced by MI and sham-operated animals were randomized to orally receive apocynin, an inhibitor of NADPH oxidase (15 mg per day) or placebo for 4 weeks. Left ventricular (LV) dimension and function were assessed by echocardiography and hemodynamics. Myocardial NADPH oxidase activity was measured by superoxide dismutase-inhibitable cytochrome c reduction assay, NADPH oxidase subunit p47phox expression by Western blot and immunofluorescence analysis, myocardial oxidative stress evaluated by 8-hydroxydeoxyguanosine (8-OHdG) and 4-hydroxy-2-nonenal (4-HNE) using immunohistochemistry, and myocyte apoptosis by TUNEL assay. MI rabbits exhibited LV dilatation and systolic dysfunction measured by LV fractional shortening and the maximal rate of LV pressure rise (dP/dt). These changes were associated with increases in NADPH oxidase activity, p47phox protein expression, 8-OHdG expression, 4-HNE expression, myocyte apoptosis, and Bax protein and a decrease in Bcl-2 protein. Apocynin reduced NADPH oxidase activity, p47phox protein, oxidative stress, myocyte apoptosis, and Bax protein, increased Bcl-2 protein, and ameliorated LV dilatation and dysfunction after MI. The results suggest that inhibition of NADPH oxidase may represent an attractive therapeutic approach to treat heart failure.
Collapse
Affiliation(s)
- Fuzhong Qin
- Cardiology Unit, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
106
|
Shi J, Wei L. Rho kinase in the regulation of cell death and survival. Arch Immunol Ther Exp (Warsz) 2007; 55:61-75. [PMID: 17347801 PMCID: PMC2612781 DOI: 10.1007/s00005-007-0009-7] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 12/21/2006] [Indexed: 12/19/2022]
Abstract
Rho kinase (ROCK) belongs to a family of serine/threonine kinases that are activated via interaction with Rho GTPases. ROCK is involved in a wide range of fundamental cellular functions, such as contraction, adhesion, migration, and proliferation. Recent studies have shown that ROCK plays an important role in the regulation of apoptosis in various cell types and animal disease models. Two ROCK isoforms, ROCK1 and ROCK2, are assumed to be function redundant, this based largely on kinase construct overexpression and chemical inhibitors (Y27632 and fasudil) which inhibit both ROCK1 and ROCK2. Gene targeting and RNA interference approaches allow further dissection of distinct cellular, physiological, and patho-physiological functions of the two ROCK isoforms. This review, based on recent molecular, cellular, and animal studies, focuses on the current understanding of ROCK signaling in the regulation of apoptosis and highlights new findings from recently generated ROCK-deficient mice.
Collapse
Affiliation(s)
- Jianjian Shi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, R4 building, Room 370, 1044 West Walnut Str, Indianapolis, IN 46202-5225, USA
| | | |
Collapse
|
107
|
A superoxide anion generator, pyrogallol induces apoptosis in As4.1 cells through the depletion of intracellular GSH content. Mutat Res 2007; 619:81-92. [PMID: 17382355 DOI: 10.1016/j.mrfmmm.2007.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 02/12/2007] [Accepted: 02/22/2007] [Indexed: 11/28/2022]
Abstract
We investigated the involvement of ROS such as H2O2 and O2*-, and GSH in As4.1 cell death induced by pyrogallol. The intracellular H2O2 levels were decreased or increased depending on the concentration and incubation time of pyrogallol. The levels of O2*- were significantly increased. Pyrogallol reduced the intracellular GSH content. And ROS scavengers, Tempol, Tiron, Trimetazidine and NAC could not significantly down-regulate the production of H2O2 and O2*-. However, these ROS scavengers slightly inhibited apoptosis. Interestingly, Tempol showing the recovery of GSH depletion induced by pyrogallol significantly decreased apoptosis without the significant reduction of intracellular O2*- levels. SOD and catalase did not change the level of H2O2 but decreased the level of O2*-. The inhibition of GSH depletion by these was accompanied with the decrease of apoptosis, as evidenced by sub-G1 DNA content, annexin V staining, mitochondria membrane potential (DeltaPsi(m)) and Western data. In addition, ROS scavengers and SOD did not alter a G2 phase accumulation of the cell cycle induced by pyrogallol. However, catalase changed the cell cycle distributions of pyrogallol-treated cells to those of pyrogallol-untreated cells. In summary, we have demonstrated that pyrogallol potently generates ROS, especially O2*-, in As4.1 JG cells, and Tempol, SOD and catalase could rescue to a lesser or greater extent cells from pyrogallol-induced apoptosis through the up-regulation of intracellular GSH content.
Collapse
|
108
|
Ren J, Li Q, Wu S, Li SY, Babcock SA. Cardiac overexpression of antioxidant catalase attenuates aging-induced cardiomyocyte relaxation dysfunction. Mech Ageing Dev 2006; 128:276-85. [PMID: 17250874 PMCID: PMC1847331 DOI: 10.1016/j.mad.2006.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 02/28/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
Catalase, an enzyme which detoxifies H2O2, may interfere with cardiac aging. To test this hypothesis, contractile and intracellular Ca2+ properties were evaluated in cardiomyocytes from young (3-4 months) and old (26-28 months) FVB and transgenic mice with cardiac overexpression of catalase. Contractile indices analyzed included peak shortening (PS), time-to-90% PS (TPS90), time-to-90% relengthening (TR90), half-width duration (HWD), maximal velocity of shortening/relengthening (+/-dL/dt) and intracellular Ca2+ levels or decay rate. Levels of advanced glycation endproduct (AGE), Na+/Ca2+ exchanger (NCX), sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a), phospholamban (PLB), myosin heavy chain (MHC), membrane Ca2+ and K+ channels were measured by western blot. Catalase transgene prolonged survival while did not alter myocyte function by itself. Aging depressed+/-dL/dt, prolonged HWD, TR90 and intracellular Ca2+ decay without affecting other indices in FVB myocytes. Aged FVB myocytes exhibited a stepper decline in PS in response to elevated stimulus or a dampened rise in PS in response to elevated extracellular Ca2+ levels. Interestingly, aging-induced defects were nullified or significantly attenuated by catalase. AGE level was elevated by 5-fold in aged FVB compared with young FVB mice, which was reduced by catalase. Expression of SERCA2a, NCX and Kv1.2 K+ channel was significantly reduced although levels of PLB, L-type Ca2+ channel dihydropyridine receptor and beta-MHC isozyme remained unchanged in aged FVB hearts. Catalase restored NCX and Kv1.2 K+ channel but not SERCA2a level in aged mice. In summary, our data suggested that catalase protects cardiomyocytes from aging-induced contractile defect possibly via improved intracellular Ca2+ handling.
Collapse
Affiliation(s)
- Jun Ren
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071-2000, United States.
| | | | | | | | | |
Collapse
|
109
|
Zhou X, Ji WJ, Zhu Y, He B, Li H, Huang TG, Li YM. Enhancement of endogenous defenses against ROS by supra-nutritional level of selenium is more safe and effective than antioxidant supplementation in reducing hypertensive target organ damage. Med Hypotheses 2006; 68:952-6. [PMID: 17126495 DOI: 10.1016/j.mehy.2006.09.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 09/28/2006] [Indexed: 12/14/2022]
Abstract
Hypertension-induced target organ damage (TOD), is one of the leading causes of morbidity and mortality. Reactive oxygen species (ROS) play an important role in the pathogenesis and development of hypertension. It has been suggested that hypertension-induced TOD is related to the level of oxidative stress, but is in part independent of the level of blood pressure. Therefore, in addition to anti-hypertensive drug therapy, novel strategies against ROS, will provide additional benefits to patient with hypertension. Vitamin E has long been supplemented as an effective antioxidant. However, the potential hazardous effects of vitamin E supplementation as antioxidant revealed by recent studies make its clinical and routine use prudent. Therefore, novel approaches capable of enhancing endogenous system to defend against ROS are required. Here, we propose that enhancement of intrinsic defenses against ROS by supra-nutritional level of selenium is more safe and effective than antioxidant supplementation in reducing hypertensive target organ damage, owing to its role in activating and constitution of native vital proteins and/or enzymes against oxidative stress, and the fact that scarcity of selenium can not be supplemented by normal food, and potentially extra benefits by supra-normal intake.
Collapse
Affiliation(s)
- Xin Zhou
- Graduate School of Medicine, Tianjin Medical University, Qi-Xiang-Tai Street, Tianjin, PR China
| | | | | | | | | | | | | |
Collapse
|
110
|
Li Q, Ren J. CARDIAC OVEREXPRESSION OF METALLOTHIONEIN RESCUES CHRONIC ALCOHOL INTAKE-INDUCED CARDIOMYOCYTE DYSFUNCTION: ROLE OF AKT, MAMMALIAN TARGET OF RAPAMYCIN AND RIBOSOMAL P70S6 KINASE. Alcohol Alcohol 2006; 41:585-92. [PMID: 17020909 DOI: 10.1093/alcalc/agl080] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIMS Reduced insulin sensitivity following alcohol intake plays a role in alcohol-induced organ damage although its precise mechanism is undefined. This study was designed to examine the effect of cardiac overexpression of the antioxidant metallothionein on alcohol-induced cardiac contractile dysfunction and post-receptor insulin signaling. METHODS FVB and metallothionein mice were fed a 4% alcohol diet for 16 weeks. Cardiomyocyte contractile function was evaluated including peak shortening (PS), time-to-PS (TPS), and time-to-relengthening (TR(90)). Post-insulin receptor signaling molecules Akt, mammalian target of rapamycin (mTOR), and ribosomal p70s6 kinase (p70s6k) were evaluated using western blot analysis. Akt1 kinase activity was assayed with a phosphotransferase kit. RESULTS Alcohol intake dampened whole body glucose tolerance, depressed PS, shortened TPS, and prolonged TR(90), which were abrogated by metallothionein with the exception of glucose intolerance. Our results revealed reduced expression of total Akt, phosphorylated mTOR, and phosphorylated p70s6k-to-p70s6k ratio as well as Akt1 kinase activity in alcohol consuming FVB mice. Phosphorylated Akt, total mTOR, and phosphorylated p70s6k were unaffected by alcohol. Metallothionein ablated reduced Akt protein and kinase activity without affecting any other proteins or their phosphorylation. CONCLUSION In summary, our data suggest that chronic alcohol intake interrupted cardiac contractile function and Akt/mTOR/p70s6k signaling. Akt but unlikely mTOR and p70s6k may contribute to metallothionein-elicited cardiac protective response.
Collapse
Affiliation(s)
- Qun Li
- Division of Pharmaceutical Sciences, Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | | |
Collapse
|
111
|
Li Q, Fang CX, Nunn JM, Zhang J, LaCour KH, Ren J. Characterization of cardiomyocyte excitation-contraction coupling in the FVB/N-C57BL/6 intercrossed "chocolate" brown mice. Life Sci 2006; 80:187-92. [PMID: 17014867 DOI: 10.1016/j.lfs.2006.08.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/19/2006] [Accepted: 08/30/2006] [Indexed: 11/22/2022]
Abstract
Mice are extensively used for gene modification research and isolated cardiomyocytes are essential for evaluation of cardiac function without interference from non-myocyte contribution. This study was designed to characterize cardiomyocyte excitation-contraction coupling in FVB/N-C57BL/6 intercrossed brown mice. Mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix softedge system including peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR(90)), maximal velocity of shortening and relengthening (+/- dL/dt), intracellular Ca(2+) rise and decay rate. Resting cell length was longer in age- and gender-matched C57BL/6 and brown mice compared to FVB strain. PS and +/- dL/dt were significantly lower in brown mice compared to FVB/N and C57BL/6 groups. TPS was shortened in C57BL/6 mice and TR(90) was prolonged in brown mice compared to other groups. Resting intracellular Ca(2+) level and single exponential intracellular Ca(2+) decay constant were comparable among all three mouse lines. Rise in intracellular Ca(2+) in response to electrical stimulus was higher in C57BL/6 mouse myocytes whereas bi-exponential intracellular Ca(2+) decay was faster in brown mice. Myocytes from all three groups exhibited similar fashion of reduction in PS in response to increased stimulus frequency. These data suggest that inherent differences in cardiomyocyte excitation-contraction coupling exist between strains, which may warrant caution when comparing data from these mouse lines.
Collapse
Affiliation(s)
- Qun Li
- Center for Cardiovascular Research and Alternative Medicine and Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | | | |
Collapse
|
112
|
Cai L. Suppression of nitrative damage by metallothionein in diabetic heart contributes to the prevention of cardiomyopathy. Free Radic Biol Med 2006; 41:851-61. [PMID: 16934665 DOI: 10.1016/j.freeradbiomed.2006.06.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 06/05/2006] [Accepted: 06/06/2006] [Indexed: 01/12/2023]
Abstract
Diabetic cardiomyopathy has become a major contributor to the increased mortality of diabetic patients. Although the development and progression of diabetic cardiomyopathy are considered to be associated with diabetes-derived oxidative stress, the precise mechanisms for and effectively preventive approaches to diabetic cardiomyopathy remain to be explored. Recent studies showed that reactive oxygen or nitrogen species (ROS/RNS) not only play a critical role in the initiation of diabetic cardiomyopathy, but also play an important role in physiological signaling. Therefore, this review will first discuss the dual roles of ROS/RNS in the physiological signaling and pathogenic remodeling leading to cardiomyopathy under diabetic conditions. The significant prevention of diabetic cardiomyopathy by metallothionein (MT) as a potent and nonspecific antioxidant will be also summarized. It is clearly revealed that although dual roles of peroxynitrite-nitrated proteins have been indicated under both physiological and pathogenic conditions, suppression of nitrative damage by MT in the diabetic heart is the major mechanism responsible for its prevention of diabetic cardiomyopathy. Finally the potential for clinical enhancement of the cardiac MT expression to prevent or delay the occurrence of cardiomyopathy in diabetic patients will also be addressed.
Collapse
Affiliation(s)
- Lu Cai
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
113
|
Fang CX, Wu S, Ren J. Intracerebral hemorrhage elicits aberration in cardiomyocyte contractile function and intracellular Ca2+ transients. Stroke 2006; 37:1875-82. [PMID: 16763184 DOI: 10.1161/01.str.0000227232.39582.66] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The sequelae of intracerebral hemorrhage involve multiple organ damage including electrocardiographic alteration, although the mechanism(s) behind myocardial dysfunction is unknown. The aim of this study was to examine the impact of intracerebral hemorrhage on cardiomyocyte contractile function, intracellular Ca2+ handling, Ca2+ cycling proteins, I kappa B beta protein (IkappaB) phosphorylation, hypoxia-inducible factor 1alpha (HIF-1alpha), and nitrosative damage within 48 hours of injury. METHODS Mechanical and intracellular Ca2+ properties were evaluated including peak shortening (PS), maximal velocity of shortening/relengthening (+/-dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), fura-2 fluorescence intensity (FFI), and intracellular Ca2+ decay. RESULTS Myocytes from intracerebral hemorrhage rats exhibited depressed PS, +/-dL/dt, prolonged TPS and TR90, as well as declined baseline FFI and slowed intracellular Ca2+ decay between 12 and 24 hours after injury. Most of these aberrations returned to normal levels 48 hours after hemorrhage with the exception of -dL/dt and TR90. Myocytes from 24-hour posthemorrhage rats exhibited a stepper negative staircase in PS with increased stimulus frequency. Cardiac expression of sarco(endo)plasmic reticulum Ca2+-ATPase 2a and phospholamban was enhanced, whereas that of Na+-Ca2+ exchanger and voltage-dependent K+ channel was decreased. IkappaB phosphorylation, HIF-1alpha, inducible NO synthase, and 3-nitrotyrosine were enhanced 12 hours after injury. CONCLUSIONS These data demonstrated that intracerebral hemorrhage initiates cardiomyocyte contractile and intracellular Ca2+ dysregulation possibly related to altered expression of Ca2+ cycling proteins, nitrosative damage, and myocardial phosphorylation of IkappaB.
Collapse
Affiliation(s)
- Cindy X Fang
- Division of Pharmaceutical Sciences and Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie 82071, USA
| | | | | |
Collapse
|
114
|
Fang CX, Doser TA, Yang X, Sreejayan N, Ren J. Metallothionein antagonizes aging-induced cardiac contractile dysfunction: role of PTP1B, insulin receptor tyrosine phosphorylation and Akt. Aging Cell 2006; 5:177-85. [PMID: 16626396 DOI: 10.1111/j.1474-9726.2006.00201.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aging is often accompanied by reduced insulin sensitivity and cardiac dysfunction. However, the causal relationship between the two remains poorly understood. This study was designed to determine the impact of cardiac-specific overexpression of antioxidant metallothionein (MT) on aging-associated cardiac dysfunction and impaired insulin signaling. Contractile and intracellular Ca(2+) properties were evaluated in left ventricular myocytes including peak shortening (PS), maximal velocity of shortening/relengthening (+/- dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR(90)), fura-2 fluorescence intensity change (DeltaFFI) and intracellular Ca(2+) decay rate. Expression of insulin receptor, protein-tyrosine phosphatase 1B (PTP1B), phosphorylation of insulin receptor (Tyr1146) and Akt were evaluated by Western blot analysis. Aged wild-type FVB and MT transgenic mice (26-28 months old) displayed glucose intolerance and hyperinsulinemia. Cardiomyocytes from aged FVB mice exhibited prolonged TR(90) and intracellular Ca(2+) decay associated with normal PS, +/- dL/dt, TPS and DeltaFFI compared with those from young (2-3 months old) mice. Western blot analysis revealed reduced Akt expression and insulin (5 mU g(-1))-stimulated Akt phosphorylation, elevated PTP1B expression and diminished basal insulin receptor tyrosine phosphorylation associated with comparable insulin receptor expression in aged FVB mouse hearts. All of these aging-related defects in cardiac contractile function and insulin signaling (although not hyperinsulinemia and glucose intolerance) were significantly attenuated or ablated by MT transgene. These data indicate that enhanced antioxidant defense is beneficial for aging-induced cardiac contractile dysfunction and alteration in insulin signaling.
Collapse
Affiliation(s)
- Cindy X Fang
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, 82071, USA
| | | | | | | | | |
Collapse
|