101
|
Banerjee A, Tai Y, Myung NV, Nam J. Non-destructive characterization of bone mineral content by machine learning-assisted electrochemical impedance spectroscopy. Front Bioeng Biotechnol 2022; 10:961108. [PMID: 36131724 PMCID: PMC9484274 DOI: 10.3389/fbioe.2022.961108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
Continuous quantitative monitoring of the change in mineral content during the bone healing process is crucial for efficient clinical treatment. Current radiography-based modalities, however, pose various technological, medical, and economical challenges such as low sensitivity, radiation exposure risk, and high cost/instrument accessibility. In this regard, an analytical approach utilizing electrochemical impedance spectroscopy (EIS) assisted by machine learning algorithms is developed to quantitatively characterize the physico-electrochemical properties of the bone, in response to the changes in the bone mineral contents. The system is designed and validated following the process of impedance data measurement, equivalent circuit model designing, machine learning algorithm optimization, and data training and testing. Overall, the systematic machine learning-based classification utilizing the combination of EIS measurements and electrical circuit modeling offers a means to accurately monitor the status of the bone healing process.
Collapse
Affiliation(s)
- Aihik Banerjee
- Department of Bioengineering, University of California, Riverside, University Ave, Riverside, CA, United States
| | - Youyi Tai
- Department of Bioengineering, University of California, Riverside, University Ave, Riverside, CA, United States
| | - Nosang V. Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Jin Nam
- Department of Bioengineering, University of California, Riverside, University Ave, Riverside, CA, United States
- UC-KIMS Center for Innovative Materials, University of California, Riverside, University Ave, Riverside, CA, United States
- *Correspondence: Jin Nam,
| |
Collapse
|
102
|
The production and application of bacterial exopolysaccharides as biomaterials for bone regeneration. Carbohydr Polym 2022; 291:119550. [DOI: 10.1016/j.carbpol.2022.119550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
|
103
|
Zhang S, Xie Y, Yan F, Zhang Y, Yang Z, Chen Z, Zhao Y, Huang Z, Cai L, Deng Z. Negative pressure wound therapy improves bone regeneration by promoting osteogenic differentiation via the AMPK-ULK1-autophagy axis. Autophagy 2022; 18:2229-2245. [PMID: 34964701 PMCID: PMC9466622 DOI: 10.1080/15548627.2021.2016231] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Deficient bone regeneration causes bone defects or nonunion in a substantial proportion of trauma patients that urges for novel therapies. To develop a reliable therapy, we investigated the effect of negative pressure wound therapy (NPWT) on bone regeneration in vivo in a rat calvarial defect model. Negative pressure (NP) treatment in vitro was mimicked to test its effect on osteoblast differentiation in rat mesenchymal stem cells (MSCs) and MC3T3-E1 cells. Transcriptomic analyses, pharmaceutical interventions, and shRNA knockdowns were conducted to explore the underlying mechanism and their clinical relevance was investigated in samples from patients with nonunion. The potential application of a combined therapy of MSCs in hydrogels with negative pressure was tested in the rat critical-size calvarial defect model. We found that NPWT promoted bone regeneration in vivo and NP treatment induced osteoblast differentiation in vitro. NP induced osteogenesis via activating macroautophagy/autophagy by AMPK-ULK1 signaling that was impaired in clinical samples from patients with nonunion. More importantly, the combined therapy involving MSCs in hydrogels with negative pressure significantly improved bone regeneration in rat critical-size calvarial defect model. Thus, our study identifies a novel AMPK-ULK1-autophagy axis by which negative pressure promotes osteoblast differentiation of MSCs and bone regeneration. NPWT treatment can potentially be adopted for therapy of bone defects.Abbreviations: ADP, adenosine diphosphate; AICAR/Aic, acadesine; ALP, alkaline phosphatase; ALPL, alkaline phosphatase, biomineralization associated; AMP, adenosine monophosphate; AMPK, AMP-activated protein kinase; ARS, alizarin red S staining; ATG7, autophagy related 7; ATP, adenosine triphosphate; BA1, bafilomycin A1; BGLAP/OCN, bone gamma-carboxyglutamate protein; BL, BL-918; BS, bone surface; BS/TV, bone surface per tissue volume; BV/TV, bone volume per tissue volume; C.C, compound C; CCN1, cellular communication network factor 1; COL1A1, collagen type I alpha 1 chain; COL4A3, collagen type IV alpha 3 chain; COL4A4, collagen type IV alpha 4 chain; COL18A1, collagen type XVIII alpha 1 chain; CQ, chloroquine; GelMA, gelatin methacryloyl hydrogel; GO, Gene Ontology; GSEA, gene set enrichment analysis; HIF1A, hypoxia inducible factor 1 subunit alpha; HPLC, high-performance liquid chromatography; ITGAM/CD11B, integrin subunit alpha M; ITGAX/CD11C, integrin subunit alpha X; ITGB1/CdD9, integrin subunit beta 1; KEGG, Kyoto Encyclopedia of Genes and Genomes; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; micro-CT, microcomputed tomography; MSCs, mesenchymal stem cells; MTOR, mechanistic target of rapamycin kinase; NP, negative pressure; NPWT, negative pressure wound therapy; PRKAA1/AMPKα1, protein kinase AMP-activated catalytic subunit alpha 1; PRKAA2, protein kinase AMP-activated catalytic subunit alpha 2; PTPRC/CD45, protein tyrosine phosphatase receptor type C; ROS, reactive oxygen species; RUNX2, RUNX family transcription factor 2; SBI, SBI-0206965; SPP1/OPN, secreted phosphoprotein 1; THY1/CD90, Thy-1 cell surface antigen; SQSTM1, sequestosome 1; TGFB3, transforming growth factor beta 3; ULK1/Atg1, unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yuanlong Xie
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Feifei Yan
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yufeng Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhiqiang Yang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhe Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yong Zhao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zan Huang
- Department of Biochemistry in College of Life Sciences, Key Laboratory of Cell Hemostasis of Hubei Province, Wuhan University, Wuhan, Hubei, People’s Republic of China,Nhc Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai Children’s Hospital, Shanghai, People’s Republic of China,CONTACT Zan Huang College of Life Sciences, Key Laboratory of Cell Hemostasis of Hubei Province, Wuhan University, No. 299 Bayi Road, Wuhan, Hubei430072, People’s Republic of China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China,Lin Cai Department of Orthopedics, Zhongnan Hospital of Wuhan University, No. 163 Donghu Road, Wuhan, Hubei430071, People’s Republic of China
| | - Zhouming Deng
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China,Zhouming Deng Department of Orthopedics, Zhongnan Hospital of Wuhan University, No. 163 Donghu Road, Wuhan, Hubei430071, People’s Republic of China
| |
Collapse
|
104
|
Gabetti S, Masante B, Cochis A, Putame G, Sanginario A, Armando I, Fiume E, Scalia AC, Daou F, Baino F, Salati S, Morbiducci U, Rimondini L, Bignardi C, Massai D. An automated 3D-printed perfusion bioreactor combinable with pulsed electromagnetic field stimulators for bone tissue investigations. Sci Rep 2022; 12:13859. [PMID: 35974079 PMCID: PMC9381575 DOI: 10.1038/s41598-022-18075-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
In bone tissue engineering research, bioreactors designed for replicating the main features of the complex native environment represent powerful investigation tools. Moreover, when equipped with automation, their use allows reducing user intervention and dependence, increasing reproducibility and the overall quality of the culture process. In this study, an automated uni-/bi-directional perfusion bioreactor combinable with pulsed electromagnetic field (PEMF) stimulation for culturing 3D bone tissue models is proposed. A user-friendly control unit automates the perfusion, minimizing the user dependency. Computational fluid dynamics simulations supported the culture chamber design and allowed the estimation of the shear stress values within the construct. Electromagnetic field simulations demonstrated that, in case of combination with a PEMF stimulator, the construct can be exposed to uniform magnetic fields. Preliminary biological tests on 3D bone tissue models showed that perfusion promotes the release of the early differentiation marker alkaline phosphatase. The histological analysis confirmed that perfusion favors cells to deposit more extracellular matrix (ECM) with respect to the static culture and revealed that bi-directional perfusion better promotes ECM deposition across the construct with respect to uni-directional perfusion. Lastly, the Real-time PCR results of 3D bone tissue models cultured under bi-directional perfusion without and with PEMF stimulation revealed that the only perfusion induced a ~ 40-fold up-regulation of the expression of the osteogenic gene collagen type I with respect to the static control, while a ~ 80-fold up-regulation was measured when perfusion was combined with PEMF stimulation, indicating a positive synergic pro-osteogenic effect of combined physical stimulations.
Collapse
Affiliation(s)
- Stefano Gabetti
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Beatrice Masante
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Andrea Cochis
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Giovanni Putame
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Alessandro Sanginario
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Ileana Armando
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Elisa Fiume
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Alessandro Calogero Scalia
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Farah Daou
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Francesco Baino
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | | | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Lia Rimondini
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Cristina Bignardi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Diana Massai
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy.
| |
Collapse
|
105
|
In Vivo Application of Silica-Derived Inks for Bone Tissue Engineering: A 10-Year Systematic Review. Bioengineering (Basel) 2022; 9:bioengineering9080388. [PMID: 36004914 PMCID: PMC9404869 DOI: 10.3390/bioengineering9080388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
As the need for efficient, sustainable, customizable, handy and affordable substitute materials for bone repair is critical, this systematic review aimed to assess the use and outcomes of silica-derived inks to promote in vivo bone regeneration. An algorithmic selection of articles was performed following the PRISMA guidelines and PICO method. After the initial selection, 51 articles were included. Silicon in ink formulations was mostly found to be in either the native material, but associated with a secondary role, or to be a crucial additive element used to dope an existing material. The inks and materials presented here were essentially extrusion-based 3D-printed (80%), and, overall, the most investigated animal model was the rabbit (65%) with a femoral defect (51%). Quality (ARRIVE 2.0) and risk of bias (SYRCLE) assessments outlined that although a large majority of ARRIVE items were “reported”, most risks of bias were left “unclear” due to a lack of precise information. Almost all studies, despite a broad range of strategies and formulations, reported their silica-derived material to improve bone regeneration. The rising number of publications over the past few years highlights Si as a leverage element for bone tissue engineering to closely consider in the future.
Collapse
|
106
|
Liu Z, Wei P, Cui Q, Mu Y, Zhao Y, Deng J, Zhi M, Wu Y, Jing W, Liu X, Zhao J, Zhao B. Guided bone regeneration with extracellular matrix scaffold of small intestinal submucosa membrane. J Biomater Appl 2022; 37:805-813. [PMID: 35924456 DOI: 10.1177/08853282221114450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Guided bone regeneration (GBR) is a promising strategy for repairing bone defects using bioactive membranes. In this study, a new type of GBR membrane based on the small intestinal submucosa (SIS) was created, and its surface structure, cytological characteristics, and bone defect repair ability were compared with commonly used membranes. Our results show that compared to the Heal-all and Dentium membranes, the SIS membrane has an asymmetric structure that does not affect the proliferation of bone marrow mesenchymal stem cells (BMSCs). Instead, it increased their formation of calcium nodules and expression of bone morphogenetic protein-2 (BMP-2), alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteopontin (OPN). Six weeks after their insertion into a rat calvarial defect model, increased bone growth was observed in the SIS membrane group. Our results indicate that the SIS membrane has good biocompatibility and is more effective in promoting early bone formation than existing membranes. Given the wide range of source materials and simple preparation processes available, SIS membrane is a promising candidate for guided bone regeneration.
Collapse
Affiliation(s)
- Zihao Liu
- Tianjin Nankai Zhongnuo Stomatological Hospital, Tianjin, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co, Ltd, Beijing, China
| | - Qingying Cui
- School of Stomatology Kunming Medical University, Kunming, China
| | - Yuzhu Mu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yifan Zhao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Jiayin Deng
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Min Zhi
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yi Wu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Wei Jing
- Beijing Biosis Healing Biological Technology Co, Ltd, Beijing, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, ChengDu, China
| | - Jihong Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co, Ltd, Beijing, China
| |
Collapse
|
107
|
Howard T, Reichert I, Giddie J, Ahluwalia R. Treatment of Infected Nonunions With Bone Defects Using Autologous Bone Graft and Absorbable Antibiotic-Loaded Calcium Sulfate-Hydroxyapatite Paste. Foot Ankle Int 2022; 43:1007-1021. [PMID: 35856290 DOI: 10.1177/10711007221094013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Revision surgery in the presence of infection carries high risks. We describe our results using a new technique to treat these challenging problems. We treated infected nonunions with cavitary voids with adjuvant antibiotic loaded calcium sulfate-hydroxyapatite paste composite and autologous bone graft (ABG) layer technique coupled with stable fixation. METHODS Thirty consecutive patients who underwent revision foot and ankle surgery for an infected nonunion were prospectively studied. Following multidisciplinary team workup, surgical debridement and biopsies were undertaken. Bone voids were measured and classified according to containment and size. ABG was mixed and layered with an adjuvant antibiotic-loaded calcium sulfate-hydroxyapatite paste followed by surgical reconstruction including arthrodesis and fixation. Empirical and pathogen-specific antibiotics were instituted until intraoperative sample-specific antibiotics were identified and used. Patients were prospectively followed up for a minimum of 1 year. RESULTS The male-female ratio was 16:14, mean age was 51.3 years, and 23.3% smoked at definitive surgery. Void volume was <1 cm3 (n=9), 1-2 cm3 (n = 13), and >2 cm3 (n=8). No patients either were lost to follow-up or had a further infective episode at a mean of 38.3 months; 86.7% united with fusion on imaging. Four patients had radiographic evidence of nonunion; 3 were asymptomatic and 1 required revision surgery (void >2 cm3). Independent ambulation was achieved at an average of 12 weeks, at 1 year mean American Orthopaedic Foot & Ankle Society score was 77.7 (SD 9.59), and the Manchester-Oxford Foot Questionnaire reached an effect size >0.5 in all domains at 1 year following surgery. The union rate was independent of smoking status and vitamin D deficiency (P = .94). CONCLUSION Layered autologous bone grafting with adjuvant antibiotic-loaded calcium sulfate-hydroxyapatite paste has been shown to be effective and safe in revision arthrodesis, with low comorbidities in void gaps without infection recurrence.
Collapse
Affiliation(s)
- Theodore Howard
- Department of Orthopaedics, King's College Hospital, Brixton, London, United Kingdom.,King's Diabetic Foot Unit, King's College Hospital, London, United Kingdom
| | - Ines Reichert
- Department of Orthopaedics, King's College Hospital, Brixton, London, United Kingdom.,King's Diabetic Foot Unit, King's College Hospital, London, United Kingdom
| | - Jasdeep Giddie
- Department of Orthopaedics, King's College Hospital, Brixton, London, United Kingdom.,King's Diabetic Foot Unit, King's College Hospital, London, United Kingdom
| | - Raju Ahluwalia
- Department of Orthopaedics, King's College Hospital, Brixton, London, United Kingdom.,King's Diabetic Foot Unit, King's College Hospital, London, United Kingdom
| |
Collapse
|
108
|
Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues. Carbohydr Polym 2022; 296:119964. [DOI: 10.1016/j.carbpol.2022.119964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/17/2022] [Accepted: 08/04/2022] [Indexed: 12/27/2022]
|
109
|
Farhan-Alanie MM, Ward J, Kelly MB, Al-Hourani K. Current Perspectives on the Management of Bone Fragments in Open Tibial Fractures: New Developments and Future Directions. Orthop Res Rev 2022; 14:275-286. [PMID: 35983563 PMCID: PMC9380731 DOI: 10.2147/orr.s340534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022] Open
Abstract
Open tibial fractures may be associated with bone loss at the time of the injury or following surgical debridement of the fracture. This article discusses the various treatment options available and the latest developments surrounding the management of free bone fragments in open tibial fractures.
Collapse
Affiliation(s)
- Muhamed M Farhan-Alanie
- Department of Trauma & Orthopaedics, University Hospital Coventry & Warwickshire, Coventry, UK
- Correspondence: Muhamed M Farhan-Alanie, Email
| | - Jayne Ward
- Department of Trauma & Orthopaedics, University Hospital Coventry & Warwickshire, Coventry, UK
| | - Michael B Kelly
- Department of Trauma & Orthopaedics, Southmead Hospital, Bristol, UK
| | - Khalid Al-Hourani
- Department of Trauma & Orthopaedics, Royal Infirmary of Edinburgh, UK
| |
Collapse
|
110
|
Rezapourian M, Kamboj N, Jasiuk I, Hussainova I. Biomimetic design of implants for long bone critical-sized defects. J Mech Behav Biomed Mater 2022; 134:105370. [PMID: 35872461 DOI: 10.1016/j.jmbbm.2022.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 07/10/2022] [Indexed: 11/30/2022]
Abstract
This computational study addresses new biomimetic load-bearing implants designed to treat long bone critical-sized defects in a proximal diaphysis region. The design encompasses two strategies: a Haversian bone-mimicking approach for cortical bone and lattices based on triply periodic minimal surfaces (TPMS) for trabecular bone. Compression tests are modeled computationally via a non-linear finite element analysis with Ti6Al4V alloy as a base material. Nine topologies resembling cortical bone are generated as hollow cylinders with different channel arrangements simulating Haversian (longitudinal) and Volkmann (transverse) canals to achieve properties like those of a human cortical bone (Strategy I). Then, the selected optimal structure from Strategy I is merged with the trabecular bone part represented by four types of TPMS-based lattices (Diamond, Primitive, Split-P, and Gyroid) with the same relative density to imitate the whole bone structure. The Strategy I resulted in finding a hollow cylinder including Haversian and Volkmann canals, optimized in canals number, shape, and orientation to achieve mechanical behavior close to human cortical bone. The surface area and volume created by such canals have the maximum values among all studied combinations of transverse and longitudinal channels. Strategy II reveals the effect of interior design on the load-bearing capacity of the whole component. Between four types of selected TPMS, Diamond-based lattice and Split-P have more uniform stress distribution, resulting in a superior load-bearing efficiency than Gyroid and Primitive-based design showing less uniformity. This work offers a new design of the bone-mimicking implant, with cortical and trabecular bone components, to repair long bone critical-sized defects.
Collapse
Affiliation(s)
- Mansoureh Rezapourian
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia
| | - Nikhil Kamboj
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia; Turku Clinical Biomaterials Center-TCBC, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, FI-20014, Turku, Finland
| | - Iwona Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Irina Hussainova
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
111
|
Bai H, Wang Y, Zhao Y, Chen X, Xiao Y, Bao C. HIF signaling: A new propellant in bone regeneration. BIOMATERIALS ADVANCES 2022; 138:212874. [PMID: 35913258 DOI: 10.1016/j.bioadv.2022.212874] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Bone tissue destruction leads to severe pain, physical flaws, and loss of motility. Bone repair using biocompatible and osteo-inductive scaffolds is regarded as a viable and potential therapeutic approach. However, for large-scale bone regeneration, oxygen and nutrient supply have become limiting factors. Further, a considerable need exists for recruited cell activities and blood vessel growth. Hypoxia-inducible factor (HIF) signaling pathways induced by hypoxia are involved in angiogenesis and osteogenesis. As an important transcription factor, HIF-1 functions by modulating vital genes, such as VEGF, PDK1, and EPO, and is a crucial regulator that influences the final fate of bone regeneration. Collectively, to achieve better osteogenesis results, the in-depth molecular mechanisms that underpin the links between materials, cells, and HIF signaling pathways must be determined. This review aimed to provide an in-depth insight into recent progress in HIF-regulated bone regeneration. Hypoxia and cellular oxygen-sensing mechanisms and their correlations with osteogenesis were determined, and recent studies on hypoxia-inducing and hypoxia-mimicking strategies were briefly described. Finally, the potential applications of HIF signaling in bone regeneration were highlighted. This review provides theoretical support for establishing a novel and viable bone repair strategy in the clinic by harnessing HIF signaling.
Collapse
Affiliation(s)
- Hetian Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China
| | - Yi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China
| | - Xin Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China
| | - Yu Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China
| |
Collapse
|
112
|
PLGA Containing Human Adipose-Derived Stem Cell-Derived Extracellular Vesicles Accelerates the Repair of Alveolar Bone Defects via Transfer of CGRP. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4815284. [PMID: 35726333 PMCID: PMC9206573 DOI: 10.1155/2022/4815284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is an important neuropeptide expressed in the nerve fibers during bone repair. Here, we aimed to pinpoint the role of CGRP in the osteogenic differentiation property of human periodontal ligament stem cells (hPDLSCs) and the resultant repair of alveolar bone defect. The key factor related to the osteogenic differentiation of hPDLSCs was retrieved from the GEO database. After extraction from hADSCs (hADSC-EVs) and identification, EVs were subjected to coculture with hPDLSCs, in which the expression patterns of CGRP and osteogenic differentiation marker proteins (ALP, RUNX2, and OCN), as well as ALP activity, were detected. A novel cell-free tissue-engineered bone (TEB) comprised of PLGA/pDA and hADSC-EVs was implanted into the rats with alveolar bone defects to evaluate the repair of alveolar bone defects. CGRP was enriched in hADSC-EVs. hADSCs delivered CGRP to hPDLSCs through EVs, thereby promoting the osteogenic differentiation potential of hPDLSCs. The PLGA/pDA-EV scaffold released EVs slowly, and its implantation into the rat alveolar bone defect area significantly induced bone defect repair, which was reversed by further knockdown of CGRP. In conclusion, our newly discovered cell-free system consisted of hADSC-EVs, and PLGA/pDA scaffold shows promising function in repairing alveolar bone defects.
Collapse
|
113
|
Zhang M, Li Y, Feng T, Li R, Wang Z, Zhang L, Yin P, Tang P. Bone Engineering Scaffolds With Exosomes: A Promising Strategy for Bone Defects Repair. Front Bioeng Biotechnol 2022; 10:920378. [PMID: 35782499 PMCID: PMC9240482 DOI: 10.3389/fbioe.2022.920378] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
The treatment of bone defects is still an intractable clinical problem, despite the fact that numerous treatments are currently available. In recent decades, bone engineering scaffolds have become a promising tool to fill in the defect sites and remedy the deficiencies of bone grafts. By virtue of bone formation, vascular growth, and inflammation modulation, the combination of bone engineering scaffolds with cell-based and cell-free therapy is widely used in bone defect repair. As a key element of cell-free therapy, exosomes with bioactive molecules overcome the deficiencies of cell-based therapy and promote bone tissue regeneration via the potential of osteogenesis, angiogenesis, and inflammation modulation. Hence, this review aimed at overviewing the bone defect microenvironment and healing mechanism, summarizing current advances in bone engineering scaffolds and exosomes in bone defects to probe for future applications.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Yi Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Taojin Feng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Ran Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Zhongqi Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- *Correspondence: Licheng Zhang, ; Pengbin Yin,
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- *Correspondence: Licheng Zhang, ; Pengbin Yin,
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| |
Collapse
|
114
|
Schätzlein E, Kicker C, Söhling N, Ritz U, Neijhoft J, Henrich D, Frank J, Marzi I, Blaeser A. 3D-Printed PLA-Bioglass Scaffolds with Controllable Calcium Release and MSC Adhesion for Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14122389. [PMID: 35745964 PMCID: PMC9229101 DOI: 10.3390/polym14122389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Large bone defects are commonly treated by replacement with auto- and allografts, which have substantial drawbacks including limited supply, donor site morbidity, and possible tissue rejection. This study aimed to improve bone defect treatment using a custom-made filament for tissue engineering scaffolds. The filament consists of biodegradable polylactide acid (PLA) and a varying amount (up to 20%) of osteoconductive S53P4 bioglass. By employing an innovative, additive manufacturing technique, scaffolds with optimized physico-mechanical and biological properties were produced. The scaffolds feature adjustable macro- and microporosity (200–2000 µm) with adaptable mechanical properties (83–135 MPa). Additionally, controllable calcium release kinetics (0–0.25 nMol/µL after 24 h), tunable mesenchymal stem cell (MSC) adhesion potential (after 24 h by a factor of 14), and proliferation (after 168 h by a factor of 18) were attained. Microgrooves resulting from the 3D-printing process on the surface act as a nucleus for cell aggregation, thus being a potential cell niche for spheroid formation or possible cell guidance. The scaffold design with its adjustable biomechanics and the bioglass with its antimicrobial properties are of particular importance for the preclinical translation of the results. This study comprehensibly demonstrates the potential of a 3D-printed bioglass composite scaffold for the treatment of critical-sized bone defects.
Collapse
Affiliation(s)
- Eva Schätzlein
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, 64289 Darmstadt, Germany;
| | | | - Nicolas Söhling
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt am Main, 60323 Frankfurt am Main, Germany; (N.S.); (J.N.); (D.H.); (J.F.); (I.M.)
| | - Ulrike Ritz
- BiomaTiCS Group, Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University Mainz, 55122 Mainz, Germany;
| | - Jonas Neijhoft
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt am Main, 60323 Frankfurt am Main, Germany; (N.S.); (J.N.); (D.H.); (J.F.); (I.M.)
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt am Main, 60323 Frankfurt am Main, Germany; (N.S.); (J.N.); (D.H.); (J.F.); (I.M.)
| | - Johannes Frank
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt am Main, 60323 Frankfurt am Main, Germany; (N.S.); (J.N.); (D.H.); (J.F.); (I.M.)
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt am Main, 60323 Frankfurt am Main, Germany; (N.S.); (J.N.); (D.H.); (J.F.); (I.M.)
| | - Andreas Blaeser
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, 64289 Darmstadt, Germany;
- Centre for Synthetic Biology, Technical University of Darmstadt, 64289 Darmstadt, Germany
- Correspondence:
| |
Collapse
|
115
|
The Free Tissue Transfer-Masquelet-Reamer-Irrigator-Aspirator Bone Graft Orthoplastic Approach for Lower Extremity Reconstruction. Plast Reconstr Surg 2022; 149:1203e-1208e. [PMID: 35426862 DOI: 10.1097/prs.0000000000009133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SUMMARY The management of critical-sized bone and soft-tissue defects of the lower extremity poses unique challenge to reconstructive surgeons. The aim of this article is to present the authors' current orthoplastic approach for the management of extended (more than 6 cm) osteocutaneous defects of the lower extremity, based on a sequential combination of two stages: free flap for soft-tissue coverage and the Masquelet technique (first step) followed by reamer-irrigator-aspirator cancellous bone graft and definitive osteosynthesis (second step). This study was a single-center observational retrospective review of prospectively collected data. Adult patients (>18 years of age) with segmental bone loss of the lower extremity caused by acute trauma (Gustilo type IIIB fracture) or nonunion (septic/aseptic) who were treated with the free flap for soft-tissue coverage-Masquelet technique-reamer-irrigator-aspirator approach between January of 2017 and December of 2020 were included. Time of consolidation and early and late complications were recorded. A total of 11 patients (nine male patients and two female patients) with a mean age of 45.8 years were identified. The average bone gap length (standard deviation) was 87.3 (24.9) mm. An anterolateral thigh flap was harvested in all cases. The average duration of the first stage (i.e., time from antibiotic cement spacer placement and free flap to time of bone grafting) was 50.4 days (range, 40 to 62 days). Bone consolidation was achieved in all cases after an average period (standard deviation) of 20.4 (3.3) weeks, with acceptable functional outcomes. The free flap for soft-tissue coverage-Masquelet technique-reamer-irrigator-aspirator approach could be considered a viable option in patients with segmental critical-sized bone defects associated with a large soft-tissue deficit of the lower extremity. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, IV.
Collapse
|
116
|
Peña Fernández M, Sasso SJ, McPhee S, Black C, Kanczler J, Tozzi G, Wolfram U. Nonlinear micro finite element models based on digital volume correlation measurements predict early microdamage in newly formed bone. J Mech Behav Biomed Mater 2022; 132:105303. [PMID: 35671669 DOI: 10.1016/j.jmbbm.2022.105303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/21/2022]
Abstract
Bone regeneration in critical-sized defects is a clinical challenge, with biomaterials under constant development aiming at enhancing the natural bone healing process. The delivery of bone morphogenetic proteins (BMPs) in appropriate carriers represents a promising strategy for bone defect treatment but optimisation of the spatial-temporal release is still needed for the regeneration of bone with biological, structural, and mechanical properties comparable to the native tissue. Nonlinear micro finite element (μFE) models can address some of these challenges by providing a tool able to predict the biomechanical strength and microdamage onset in newly formed bone when subjected to physiological or supraphysiological loads. Yet, these models need to be validated against experimental data. In this study, experimental local displacements in newly formed bone induced by osteoinductive biomaterials subjected to in situ X-ray computed tomography compression in the apparent elastic regime and measured using digital volume correlation (DVC) were used to validate μFE models. Displacement predictions from homogeneous linear μFE models were highly correlated to DVC-measured local displacements, while tissue heterogeneity capturing mineralisation differences showed negligible effects. Nonlinear μFE models improved the correlation and showed that tissue microdamage occurs at low apparent strains. Microdamage seemed to occur next to large cavities or in biomaterial-induced thin trabeculae, independent of the mineralisation. While localisation of plastic strain accumulation was similar, the amount of damage accumulated in these locations was slightly higher when including material heterogeneity. These results demonstrate the ability of the nonlinear μFE model to capture local microdamage in newly formed bone tissue and can be exploited to improve the current understanding of healing bone and mechanical competence. This will ultimately aid the development of BMPs delivery systems for bone defect treatment able to regenerate bone with optimal biological, mechanical, and structural properties.
Collapse
Affiliation(s)
- Marta Peña Fernández
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, EH14 4AS, UK.
| | - Sebastian J Sasso
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, EH14 4AS, UK
| | - Samuel McPhee
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, EH14 4AS, UK
| | - Cameron Black
- Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Development Sciences, University of Southampton, SO16 6YD, UK
| | - Janos Kanczler
- Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Development Sciences, University of Southampton, SO16 6YD, UK
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, UK
| | - Uwe Wolfram
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, EH14 4AS, UK.
| |
Collapse
|
117
|
Abar B, Kwon N, Allen NB, Lau T, Johnson LG, Gall K, Adams SB. Outcomes of Surgical Reconstruction Using Custom 3D-Printed Porous Titanium Implants for Critical-Sized Bone Defects of the Foot and Ankle. Foot Ankle Int 2022; 43:750-761. [PMID: 35209733 PMCID: PMC9177519 DOI: 10.1177/10711007221077113] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Treating critically sized defects (CSDs) of bone remains a significant challenge in foot and ankle surgery. Custom 3D-printed implants are being offered to a small but growing subset of patients as a salvage procedure in lieu of traditional alternates such as structural allografts after the patient has failed prior procedures. The long-term outcomes of 3D-printed implants are still unknown and understudied because of the limited number of cases and short follow-up durations. The purpose of this study was to evaluate the outcomes of patients who received custom 3D-printed implants to treat CSDs of the foot and ankle in an attempt to aid surgeons in selecting appropriate surgical candidates. METHODS This was a retrospective study to assess surgical outcomes of patients who underwent implantation of a custom 3D-printed implant made with medical-grade titanium alloy powder (Ti-6Al-4V) to treat CSDs of the foot and ankle between June 1, 2014, and September 30, 2019. All patients had failed previous nonoperative or operative management before proceeding with treatment with a custom 3D-printed implant. Univariate and multivariate odds ratios (ORs) of a secondary surgery and implant removal were calculated for perioperative variables. RESULTS There were 39 cases of patients who received a custom 3D-printed implant with at least 1 year of follow-up. The mean follow-up time was 27.0 (12-74) months. Thirteen of 39 cases (33.3%) required a secondary surgery and 10 of 39 (25.6%) required removal of the implant because of septic nonunion (6/10) or aseptic nonunion (4/10). The mean time to secondary surgery was 10 months (1-22). Multivariate logistic regression revealed that patients with neuropathy were more likely to require a secondary surgery with an OR of 5.76 (P = .03). CONCLUSION This study demonstrated that 74% of patients who received a custom 3D-printed implant for CSDs did not require as subsequent surgery (minimum of 1-year follow-up). Neuropathy was significantly associated with the need for a secondary surgery. This is the largest series to date demonstrating the efficacy of 3D-printed custom titanium implants. As the number of cases using patient-specific 3D-printed titanium implant increases, larger cohorts of patients should be studied to identify other high-risk groups and possible interventions to improve surgical outcomes. LEVEL OF EVIDENCE Level IV, case series.
Collapse
Affiliation(s)
- Bijan Abar
- Dept. of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC,Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC
| | - Nicholas Kwon
- Dept. of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC
| | - Nicholas B. Allen
- Dept. of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC
| | - Trent Lau
- Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC
| | - Lindsey G. Johnson
- Dept. of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC
| | - Ken Gall
- Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC
| | - Samuel B. Adams
- Dept. of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC
| |
Collapse
|
118
|
Yamada Y, Okano T, Orita K, Makino T, Shima F, Nakamura H. 3D-cultured small size adipose-derived stem cell spheroids promote bone regeneration in the critical-sized bone defect rat model. Biochem Biophys Res Commun 2022; 603:57-62. [DOI: 10.1016/j.bbrc.2022.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022]
|
119
|
Zhang J, Liu Z, Luo Y, Li X, Huang G, Chen H, Li A, Qin S. The Role of Flavonoids in the Osteogenic Differentiation of Mesenchymal Stem Cells. Front Pharmacol 2022; 13:849513. [PMID: 35462886 PMCID: PMC9019748 DOI: 10.3389/fphar.2022.849513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/16/2022] [Indexed: 01/02/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play an important role in developing bone tissue engineered constructs due to their osteogenic and chondrogenic differentiation potential. MSC-based tissue engineered constructs are generally considered a safe procedure, however, the long-term results obtained up to now are far from satisfactory. The main causes of these therapeutic limitations are inefficient homing, engraftment, and directional differentiation. Flavonoids are a secondary metabolite, widely existed in nature and have many biological activities. For a long time, researchers have confirmed the anti-osteoporosis effect of flavonoids through in vitro cell experiments, animal studies. In recent years the regulatory effects of flavonoids on mesenchymal stem cells (MSCs) differentiation have been received increasingly attention. Recent studies revealed flavonoids possess the ability to modulate self-renewal and differentiation potential of MSCs. In order to facilitate further research on MSCs osteogenic differentiation of flavonoids, we surveyed the literature published on the use of flavonoids in osteogenic differentiation of MSCs, and summarized their pharmacological activities as well as the underlying mechanisms, aimed to explore their promising therapeutic application in bone disorders and bone tissue engineered constructs.
Collapse
Affiliation(s)
- Jinli Zhang
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Yang Luo
- School of Physical Education, Southwest University, Guangzhou, China
| | - Xiaojian Li
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Guowei Huang
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Huan Chen
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Shengnan Qin
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
120
|
Novel Techniques and Future Perspective for Investigating Critical-Size Bone Defects. Bioengineering (Basel) 2022; 9:bioengineering9040171. [PMID: 35447731 PMCID: PMC9027954 DOI: 10.3390/bioengineering9040171] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/31/2023] Open
Abstract
A critical-size bone defect is a challenging clinical problem in which a gap between bone ends will not heal and will become a nonunion. The current treatment is to harvest and transplant an autologous bone graft to facilitate bone bridging. To develop less invasive but equally effective treatment options, one needs to first have a comprehensive understanding of the bone healing process. Therefore, it is imperative to leverage the most advanced technologies to elucidate the fundamental concepts of the bone healing process and develop innovative therapeutic strategies to bridge the nonunion gap. In this review, we first discuss the current animal models to study critical-size bone defects. Then, we focus on four novel analytic techniques and discuss their strengths and limitations. These four technologies are mass cytometry (CyTOF) for enhanced cellular analysis, imaging mass cytometry (IMC) for enhanced tissue special imaging, single-cell RNA sequencing (scRNA-seq) for detailed transcriptome analysis, and Luminex assays for comprehensive protein secretome analysis. With this new understanding of the healing of critical-size bone defects, novel methods of diagnosis and treatment will emerge.
Collapse
|
121
|
Hixon KR, Miller AN. Animal models of impaired long bone healing and tissue engineering- and cell-based in vivo interventions. J Orthop Res 2022; 40:767-778. [PMID: 35072292 DOI: 10.1002/jor.25277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/05/2021] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Bone healing after injury typically follows a systematic process and occurs spontaneously under appropriate physiological conditions. However, impaired long bone healing is still quite common and may require surgical intervention. Various complications can result in different forms of impaired bone healing including nonunion, critical-size defects, or stress fractures. While a nonunion may occur due to impaired biological signaling and/or mechanical instability, a critical-size defect exhibits extensive bone loss that will not spontaneously heal. Comparatively, a stress fracture occurs from repetitive forces and results in a non-healing crack or break in the bone. Clinical standards of treatment vary between these bone defects due to their pathological differences. The use of appropriate animal models for modeling healing defects is critical to improve current treatment methods and develop novel rescue therapies. This review provides an overview of these clinical bone healing impairments and current animal models available to study the defects in vivo. The techniques used to create these models are compared, along with the outcomes, to clarify limitations and future objectives. Finally, rescue techniques focused on tissue engineering and cell-based therapies currently applied in animal models are specifically discussed to analyze their ability to initiate healing at the defect site, providing information regarding potential future therapies. In summary, this review focuses on the current animal models of nonunion, critical-size defects, and stress fractures, as well as interventions that have been tested in vivo to provide an overview of the clinical potential and future directions for improving bone healing.
Collapse
Affiliation(s)
- Katherine R Hixon
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Thayer School of Engineering, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Anna N Miller
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
122
|
Siverino C, Fahmy-Garcia S, Mumcuoglu D, Oberwinkler H, Muehlemann M, Mueller T, Farrell E, van Osch GJVM, Nickel J. Site-Directed Immobilization of an Engineered Bone Morphogenetic Protein 2 (BMP2) Variant to Collagen-Based Microspheres Induces Bone Formation In Vivo. Int J Mol Sci 2022; 23:ijms23073928. [PMID: 35409290 PMCID: PMC8999711 DOI: 10.3390/ijms23073928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022] Open
Abstract
For the treatment of large bone defects, the commonly used technique of autologous bone grafting presents several drawbacks and limitations. With the discovery of the bone-inducing capabilities of bone morphogenetic protein 2 (BMP2), several delivery techniques were developed and translated to clinical applications. Implantation of scaffolds containing adsorbed BMP2 showed promising results. However, off-label use of this protein-scaffold combination caused severe complications due to an uncontrolled release of the growth factor, which has to be applied in supraphysiological doses in order to induce bone formation. Here, we propose an alternative strategy that focuses on the covalent immobilization of an engineered BMP2 variant to biocompatible scaffolds. The new BMP2 variant harbors an artificial amino acid with a specific functional group, allowing a site-directed covalent scaffold functionalization. The introduced artificial amino acid does not alter BMP2′s bioactivity in vitro. When applied in vivo, the covalently coupled BMP2 variant induces the formation of bone tissue characterized by a structurally different morphology compared to that induced by the same scaffold containing ab-/adsorbed wild-type BMP2. Our results clearly show that this innovative technique comprises translational potential for the development of novel osteoinductive materials, improving safety for patients and reducing costs.
Collapse
Affiliation(s)
- Claudia Siverino
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (C.S.); (H.O.); (M.M.)
| | - Shorouk Fahmy-Garcia
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands; (S.F.-G.); (D.M.); (G.J.V.M.v.O.)
- Department of Internal Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Didem Mumcuoglu
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands; (S.F.-G.); (D.M.); (G.J.V.M.v.O.)
- Fujifilm Manufacturing Europe B.V., 5047 TK Tilburg, The Netherlands
| | - Heike Oberwinkler
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (C.S.); (H.O.); (M.M.)
| | - Markus Muehlemann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (C.S.); (H.O.); (M.M.)
| | - Thomas Mueller
- Department for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, 97082 Wuerzburg, Germany;
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands; (S.F.-G.); (D.M.); (G.J.V.M.v.O.)
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Joachim Nickel
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (C.S.); (H.O.); (M.M.)
- Fraunhofer ISC, Translational Center RT, 97070 Wuerzburg, Germany
- Correspondence: ; Tel.: +49-0931-3184122
| |
Collapse
|
123
|
Wang J, Yao QY, Zhu HY. Efficacy of bone grafts in jaw cystic lesions: A systematic review. World J Clin Cases 2022; 10:2799-2808. [DOI: 10.12998/wjcc.v10.i9.2799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bone grafts have been applied for many years in orthopedic surgery to assist with bone repair for defects or bone discontinuity caused by trauma and tumors as well as periodontal defects. Jaw cysts are another common benign disease of the maxillofacial region which may lead to pathological bone fracture, loss of teeth, and infection. However, whether bone grafts are beneficial for bone regeneration in jaw cystic lesions and when bone grafts should be used remains unclear.
AIM To study the efficacy of bone grafts compared to spontaneous healing in the treatment of jaw cystic lesions.
METHODS A literature search was performed in Medline, Cochrane Library and Embase to identify related articles published in English in the last ten years. The following key words and MeSH terms were used: “jaw cyst”, “cystic lesion”, “odontogenic cyst”, “periapical cyst”, “dentigerous cyst”, “follicular cyst”, “keratocyst”, “treatment”, “surgery”, “bone graft”, “enucleation”, “cystectomy”, and “bone regeneration”. Case reports, clinical trials, clinical studies, observational studies and randomized controlled trials were included. Study quality was evaluated.
RESULTS Ten studies (n = 10) met the inclusion criteria. Five studies reported spontaneous bone healing after enucleation, three studies investigated the efficacy of various bone grafts, and two randomized comparative studies focused on the comparison between spontaneous healing and bone grafting. Over 90% of bone regeneration occurred within 6 mo after bone grafting. The bone regeneration rate after cystectomy showed great variation, ranging from 50% to 100% after 6 mo, but reaching over 90% after 12 mo.
CONCLUSION While the long-term superiority of bone grafting compared with spontaneous healing after cystectomy is unclear, bone grafts accelerate the process of healing and significantly increase bone quality.
Collapse
Affiliation(s)
- Jin Wang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Qiu-Yun Yao
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hui-Yong Zhu
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
124
|
Wang J, Yao QY, Zhu HY. Efficacy of bone grafts in jaw cystic lesions: A systematic review. World J Clin Cases 2022; 10:2801-2810. [PMID: 35434117 PMCID: PMC8968803 DOI: 10.12998/wjcc.v10.i9.2801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/23/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bone grafts have been applied for many years in orthopedic surgery to assist with bone repair for defects or bone discontinuity caused by trauma and tumors as well as periodontal defects. Jaw cysts are another common benign disease of the maxillofacial region which may lead to pathological bone fracture, loss of teeth, and infection. However, whether bone grafts are beneficial for bone regeneration in jaw cystic lesions and when bone grafts should be used remains unclear.
AIM To study the efficacy of bone grafts compared to spontaneous healing in the treatment of jaw cystic lesions.
METHODS A literature search was performed in Medline, Cochrane Library and Embase to identify related articles published in English in the last ten years. The following key words and MeSH terms were used: “jaw cyst”, “cystic lesion”, “odontogenic cyst”, “periapical cyst”, “dentigerous cyst”, “follicular cyst”, “keratocyst”, “treatment”, “surgery”, “bone graft”, “enucleation”, “cystectomy”, and “bone regeneration”. Case reports, clinical trials, clinical studies, observational studies and randomized controlled trials were included. Study quality was evaluated.
RESULTS Ten studies (n = 10) met the inclusion criteria. Five studies reported spontaneous bone healing after enucleation, three studies investigated the efficacy of various bone grafts, and two randomized comparative studies focused on the comparison between spontaneous healing and bone grafting. Over 90% of bone regeneration occurred within 6 mo after bone grafting. The bone regeneration rate after cystectomy showed great variation, ranging from 50% to 100% after 6 mo, but reaching over 90% after 12 mo.
CONCLUSION While the long-term superiority of bone grafting compared with spontaneous healing after cystectomy is unclear, bone grafts accelerate the process of healing and significantly increase bone quality.
Collapse
Affiliation(s)
- Jin Wang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Qiu-Yun Yao
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hui-Yong Zhu
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
125
|
Treatment of Critical Size Femoral Bone Defects with Biomimetic Hybrid Scaffolds of 3D Plotted Calcium Phosphate Cement and Mineralized Collagen Matrix. Int J Mol Sci 2022; 23:ijms23063400. [PMID: 35328820 PMCID: PMC8949113 DOI: 10.3390/ijms23063400] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
To treat critical-size bone defects, composite materials and tissue-engineered bone grafts play important roles in bone repair materials. The purpose of this study was to investigate the bone regenerative potential of hybrid scaffolds consisting of macroporous calcium phosphate cement (CPC) and microporous mineralized collagen matrix (MCM). Hybrid scaffolds were synthetized by 3D plotting CPC and then filling with MCM (MCM-CPC group) and implanted into a 5 mm critical size femoral defect in rats. Defects left empty (control group) as well as defects treated with scaffolds made of CPC only (CPC group) and MCM only (MCM group) served as controls. Eight weeks after surgery, micro-computed tomography scans and histological analysis were performed to analyze the newly formed bone, the degree of defect healing and the activity of osteoclasts. Mechanical stability was tested by 3-point-bending of the explanted femora. Compared with the other groups, more newly formed bone was found within MCM-CPC scaffolds. The new bone tissue had a clamp-like structure which was fully connected to the hybrid scaffolds and thereby enhanced the biomechanical strength. Together, the biomimetic hybrid MCM-CPC scaffolds enhanced bone defect healing by improved osseointegration and their differentiated degradation provides spatial effects in the process of critical-bone defect healing.
Collapse
|
126
|
Deshpande R, Shukla S, Kale A, Deshmukh N, Nisal A, Venugopalan P. Silk Fibroin Microparticle Scaffold for Use in Bone Void Filling: Safety and Efficacy Studies. ACS Biomater Sci Eng 2022; 8:1226-1238. [PMID: 35166518 DOI: 10.1021/acsbiomaterials.1c01103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silk fibroin (SF) is a natural biocompatible protein polymer extracted from cocoons of silkworm Bombyx mori. SF can be processed into a variety of different forms and shapes that can be used as scaffolds to support bone regeneration. Three-dimensional (3D) SF scaffolds have shown promise in bone-void-filling applications. In in vitro studies, it has been demonstrated that a microparticle-based SF (M-RSF) scaffold promotes the differentiation of stem cells into an osteoblastic lineage. The expression of differentiation markers was also significantly higher for M-RSF scaffolds as compared to other SF scaffolds and commercial ceramic scaffolds. In this work, we have evaluated the in vitro and in vivo biocompatibility of M-RSF scaffolds as per the ISO 10993 guidelines in a Good Laboratory Practice (GLP)-certified facility. The cytotoxicity, immunogenicity, genotoxicity, systemic toxicity, and implantation studies confirmed that the M-RSF scaffold is biocompatible. Further, the performance of the M-RSF scaffold to support bone formation was evaluated in in vivo bone implantation studies in a rabbit model. Calcium sulfate (CaSO4) scaffolds were chosen as reference material for this study as they are one of the preferred materials for bone-void-filling applications. M-RSF scaffold implantation sites showed a higher number of osteoblast and osteoclast cells as compared to CaSO4 implantation sites indicating active bone remodeling. The number density of osteocytes was double for M-RSF scaffold implantation sites, and these M-RSF scaffold implantation sites were characterized by enhanced collagen deposition, pointing toward a finer quality of the new bone formed. Moreover, the M-RSF scaffold implantation sites had a negligible incidence of secondary fractures as compared to the CaSO4 implantation sites (∼50% sites with secondary fracture), implying a reduction in postsurgical complications. Thus, the study demonstrates that the M-RSF scaffold is nontoxic for bone-void-filling applications and facilitates superior healing of fracture defects as compared to commercial calcium-based bone void fillers.
Collapse
Affiliation(s)
- Rucha Deshpande
- Serigen Mediproducts Pvt Ltd., Plot no. 9, Electronic Co-op Estate, Satara Road, Parvati Paytha, Pune 411009, India
| | - Swati Shukla
- Serigen Mediproducts Pvt Ltd., Plot no. 9, Electronic Co-op Estate, Satara Road, Parvati Paytha, Pune 411009, India
| | - Amod Kale
- Intox Private Limited, Pune, 375, Urawade, Tal. Mulshi, Pune 412115, India
| | - Narendra Deshmukh
- Intox Private Limited, Pune, 375, Urawade, Tal. Mulshi, Pune 412115, India
| | - Anuya Nisal
- Polymer Science and Engineering Dept., CSIR-National Chemical Laboratory, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Premnath Venugopalan
- Polymer Science and Engineering Dept., CSIR-National Chemical Laboratory, Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
127
|
Injectable pH-responsive adhesive hydrogels for bone tissue engineering inspired by the underwater attachment strategy of marine mussels. BIOMATERIALS ADVANCES 2022; 133:112606. [PMID: 35525750 PMCID: PMC9933951 DOI: 10.1016/j.msec.2021.112606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022]
Abstract
A major challenge in tissue engineering is the development of alternatives to traditional bone autografts and allografts that can regenerate critical-sized bone defects. Here we present the design of injectable pH-responsive double-crosslinked adhesive hydrogels inspired by the molecular mechanism and environmental post-processing of marine mussel adhesive. Nine adhesive hydrogel formulations were developed through the conjugation of crosslinkable catechol functional groups (DOPA) and the synthetic oligomer oligo[poly(ethylene glycol) fumarate] (OPF), varying the DOPA content (w/w%) and molecular weight (MW) of the OPF backbone to produce formulations with a range of swelling ratios, porosities, and crosslink densities. DOPA incorporation altered the surface chemistry, mechanical properties, and surface topography of hydrogels, resulting in an increase in material stiffness, slower degradation, and enhanced pre-osteoblast cell attachment and proliferation. When injected within simulated bone defects, DOPA-mediated interfacial adhesive interactions also prevented the displacement of scaffolds, an effect that was maintained even after swelling within physiological conditions. Taken together, OPF-DOPA hydrogels represent a promising new material to enhanced tissue integration and the prevention of the post-implantation migration of scaffolds that can occur due to biomechanical loading in vivo.
Collapse
|
128
|
Anandhapadman A, Venkateswaran A, Jayaraman H, Ghone NV. Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects. Biotechnol Prog 2022; 38:e3234. [PMID: 35037419 DOI: 10.1002/btpr.3234] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/11/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Abstract
The conventional methods of using autografts and allografts for repairing defects in bone, the osteochondral bone and the cartilage tissue have many disadvantages, like donor site morbidity and shortage of donors. Moreover, only 30% of the implanted grafts are shown to be successful in treating the defects. Hence, exploring alternative techniques such as tissue engineering to treat bone tissue associated defects is promising as it eliminates the above-mentioned limitations. To enhance the mechanical and biological properties of the tissue engineered product, it is essential to fabricate the scaffold used in tissue engineering by the combination of various biomaterials. Three-dimensional (3D) printing, with its ability to print composite materials and with complex geometry seems to have a huge potential in scaffold fabrication technique for engineering bone associated tissues.This review summarizes the recent applications and future perspectives of 3D printing technologies in the fabrication of composite scaffolds used in bone, osteochondral and cartilage tissue engineering. Key developments in the field of 3D printing technologies involves the incorporation of various biomaterials and cells in printing composite scaffolds mimicking physiologically relevant complex geometry & gradient porosity. Much recently, the emerging trend of printing smart scaffolds which can respond to external stimulus such as temperature, pH and magnetic field, known as 4D printing is gaining immense popularity and can be considered as the future of 3D printing applications in the field of tissue engineering. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ashwin Anandhapadman
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No.1, Pennalur - 602117, Sriperumbudur, Kancheepuram, Tamil Nadu, India
| | - Ajay Venkateswaran
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No.1, Pennalur - 602117, Sriperumbudur, Kancheepuram, Tamil Nadu, India
| | - Hariharan Jayaraman
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No.1, Pennalur - 602117, Sriperumbudur, Kancheepuram, Tamil Nadu, India
| | - Nalinkanth Veerabadran Ghone
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi Salai (OMR), Kalavakkam, Tamil Nadu, India
| |
Collapse
|
129
|
Hou G, Liu B, Tian Y, Liu Z, Zhou F. Reconstruction of Ipsilateral Femoral and Tibial Bone Defect by 3D Printed Porous Scaffold Without Bone Graft: A Case Report. JBJS Case Connect 2022; 12:01709767-202203000-00001. [PMID: 34986136 DOI: 10.2106/jbjs.cc.20.00592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
CASE This study reported the case of a 42-year-old woman with traumatic ipsilateral critical bone defect of right femur and tibia after a motor accident. Three-dimensional (3D) printed porous titanium scaffolds were innovatively used to reconstruct this challenging situation. The initial stability was safe enough for early exercise and partial weight bearing. The 26-month follow-up showed osseous integration of the prosthesis-bone interface with short-term satisfactory clinical result. CONCLUSION The custom-designed 3D-printed porous scaffold has the potential to become an effective option for reconstructing the segmental irregular-shaped bone defect.
Collapse
Affiliation(s)
- Guojin Hou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Bingchuan Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhongjun Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Fang Zhou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
130
|
Enhanced bone formation in rat critical-size tibia defect by a novel quercetin-containing alpha-calcium sulphate hemihydrate/nano-hydroxyapatite composite. Biomed Pharmacother 2021; 146:112570. [PMID: 34959114 DOI: 10.1016/j.biopha.2021.112570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
We developed an innovative method to include quercetin into alpha-calcium sulphate hemihydrate/nano-hydroxyapatite (α-CSH/n-HA), to prepare a novel quercetin-containing α-CSH/n-HA composite (Q-α-CSH/n-HA). The physicochemical properties, and ability of Q-α-CSH/n-HA to promote cell proliferation, migration, and osteogenic differentiation of bone marrow stem cells (BMSCs) in vitro were examined. Further, the potential of Q-α-CSH/n-HA to promote bone defect repair was studied using a Sprague-Dawley rat model of critical tibial defects. Imaging was conducted by radiography and micro-CT, and bone defect repairs were observed by histopathological staining. Addition of quercetin clearly increased the porosity of the degraded composite, which elevated the cell proliferation rate, migration ability, osteogenesis differentiation, and mineralisation of BMSCs. Further, quercetin-containing composite increased the expression levels of OSX, RUNX2, OCN, ALP, BMP-2, OPN, BSP, SMAD2, and TGF-β in BMSCs, while it downregulated TNF-α. X-ray and micro-CT imaging showed that the quercetin-containing composite significantly enhanced bone defect repair and new bone in formation. Haematoxylin and eosin, Goldner, and Safranin O staining also showed that quercetin significantly increased new bone generation and promoted composite degradation and absorption. Moreover, immunofluorescence assay revealed that quercetin significantly increased the number of RUNX2/OSX/OCN-positive cells. Overall, our data demonstrate that Q-α-CSH/n-HA has excellent biocompatibility, bone conductivity, and osteo-induction performance in vitro and mediates enhanced overall repair effects and bone reconstruction in vivo, indicating that it is a promising artificial bone graft to promote bone regeneration.
Collapse
|
131
|
Ferreira E, Gatrell LB, Childress L, Wu H, Porter RM. A Transgenic Rat for Noninvasive Assessment of Chondrogenesis in Vivo. Cartilage 2021; 13:1720S-1733S. [PMID: 34809478 PMCID: PMC8804729 DOI: 10.1177/19476035211057243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To support the preclinical evaluation of therapeutics that target chondrogenesis, our goal was to generate a rat strain that can noninvasively report endogenous chondrogenic activity. DESIGN A transgene was constructed in which the dual expression of bioluminescent (firefly luciferase) and fluorescent (mCherry) reporters is controlled by regulatory sequences from rat Col2a1. Candidate lines were established on a Lewis background and characterized by serial bioluminescence imaging as well as ex vivo measurement of molecular reporter levels in several tissues. The sensitivity and specificity of the reporter strain were assessed in models of orthotopic and ectopic chondrogenesis. RESULTS Substantial bioluminescence signal was detected from cartilaginous regions, including the appendicular synovial joints, spine, sternum, nose, and pinnae. Bioluminescent radiance was intense at 1 month of age, rapidly declined with continued development, yet remained detectable in 2-year-old animals. Explant imaging and immunohistochemistry confirmed that both molecular reporters were localized to cartilage. Implantation of wild-type bone marrow stromal cells into osteochondral defects made in both young adult and aged reporter rats led to a time-dependent elevation of intra-articular reporter activity concurrent with cartilaginous tissue repair. To stimulate ectopic, endochondral bone formation, bone morphogenetic protein 2 was overexpressed in the gastrocnemius muscle, which led to bioluminescent signal that closely preceded heterotopic ossification. CONCLUSIONS This strain can help develop strategies to stimulate cartilage repair and endochondral bone formation or to inhibit chondrogenesis associated with heterotopic ossification.
Collapse
Affiliation(s)
- Elisabeth Ferreira
- Center for Musculoskeletal Disease
Research, Departments of Internal Medicine and Orthopaedic Surgery, University of
Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Landon B. Gatrell
- Center for Musculoskeletal Disease
Research, Division of Endocrinology and Metabolism, Department of Internal Medicine,
University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Luke Childress
- Center for Musculoskeletal Disease
Research, Division of Endocrinology and Metabolism, Department of Internal Medicine,
University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hong Wu
- Center for Musculoskeletal Disease
Research, Division of Endocrinology and Metabolism, Department of Internal Medicine,
University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ryan M. Porter
- Center for Musculoskeletal Disease
Research, Departments of Internal Medicine and Orthopaedic Surgery, University of
Arkansas for Medical Sciences, Little Rock, AR, USA,Ryan M. Porter, Center for Musculoskeletal
Disease Research, Departments of Internal Medicine and Orthopaedic Surgery,
University of Arkansas for Medical Sciences, 4301 W. Markham Street, Mail Slot
#587, Little Rock, AR 72202, USA.
| |
Collapse
|
132
|
Reynolds AW, Melvin PR, Yakish EJ, Sotereanos N, Altman GT, Sewecke JJ. Use of Tantalum Trabecular Metal Cones for Management of Nonunion of the Distal Femur with Segmental Bone Defects: Technique and Case Series. J Orthop Case Rep 2021; 11:19-23. [PMID: 34790596 PMCID: PMC8576782 DOI: 10.13107/jocr.2021.v11.i07.2298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/07/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction: Segmental bone loss in the distal femur presents a challenge for reconstruction regardless of etiology. Use of tantalum trabecular metal cones with intramedullary fixation and autologous bone graft may be used as a salvage technique in difficult situations where other options have either been exhausted or are unavailable. Case Report: Surgical planning and technique for this approach to reconstruction are described. A retrospective review of five cases with >1 year of follow-up was performed to provide radiographic and clinical outcomes. All five patients had satisfactory outcomes with clinical union and retention of implants at final follow-up (average >4 years). Conclusions: Use of tantalum metal cones for reconstruction of distal femur nonunion with segmental bone defects can be a successful technique in a complex group of patients.
Collapse
Affiliation(s)
- Alan W Reynolds
- Department of Orthopedic Surgery, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States
| | - Patricia R Melvin
- Department of Orthopedic Surgery, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States
| | - Eric J Yakish
- Department of Orthopedic Surgery, Mid-Atlantic Permanente Medical Group, North Bethesda, Maryland, United States
| | - Nicholas Sotereanos
- Department of Orthopedic Surgery, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States
| | - Gregory T Altman
- Department of Orthopedic Surgery, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States
| | - Jeffrey J Sewecke
- Department of Orthopedic Surgery, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
133
|
Venkataiah VS, Yahata Y, Kitagawa A, Inagaki M, Kakiuchi Y, Nakano M, Suzuki S, Handa K, Saito M. Clinical Applications of Cell-Scaffold Constructs for Bone Regeneration Therapy. Cells 2021; 10:2687. [PMID: 34685667 PMCID: PMC8534498 DOI: 10.3390/cells10102687] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Bone tissue engineering (BTE) is a process of combining live osteoblast progenitors with a biocompatible scaffold to produce a biological substitute that can integrate into host bone tissue and recover its function. Mesenchymal stem cells (MSCs) are the most researched post-natal stem cells because they have self-renewal properties and a multi-differentiation capacity that can give rise to various cell lineages, including osteoblasts. BTE technology utilizes a combination of MSCs and biodegradable scaffold material, which provides a suitable environment for functional bone recovery and has been developed as a therapeutic approach to bone regeneration. Although prior clinical trials of BTE approaches have shown promising results, the regeneration of large bone defects is still an unmet medical need in patients that have suffered a significant loss of bone function. In this present review, we discuss the osteogenic potential of MSCs in bone tissue engineering and propose the use of immature osteoblasts, which can differentiate into osteoblasts upon transplantation, as an alternative cell source for regeneration in large bone defects.
Collapse
Affiliation(s)
- Venkata Suresh Venkataiah
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
| | - Yoshio Yahata
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
| | - Akira Kitagawa
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
- OsteRenatos Ltd., Sendai Capital Tower 2F, 4-10-3 Central, Aoba-ku, Sendai 980-0021, Japan
| | - Masahiko Inagaki
- National Institute of Advanced Industrial Science and Technology, 2266-98 Anagahora, Nagoya 463-8560, Japan;
| | - Yusuke Kakiuchi
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
| | - Masato Nakano
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
| | - Shigeto Suzuki
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
| | - Keisuke Handa
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
- Department of Oral Science, Division of Oral Biochemistry, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan
| | - Masahiro Saito
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
- OsteRenatos Ltd., Sendai Capital Tower 2F, 4-10-3 Central, Aoba-ku, Sendai 980-0021, Japan
| |
Collapse
|
134
|
Migliorini F, La Padula G, Torsiello E, Spiezia F, Oliva F, Maffulli N. Strategies for large bone defect reconstruction after trauma, infections or tumour excision: a comprehensive review of the literature. Eur J Med Res 2021; 26:118. [PMID: 34600573 PMCID: PMC8487570 DOI: 10.1186/s40001-021-00593-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
Large bone defects resulting from musculoskeletal tumours, infections, or trauma are often unable to heal spontaneously. The challenge for surgeons is to avoid amputation, and provide the best functional outcomes. Allograft, vascularized fibular or iliac graft, hybrid graft, extracorporeal devitalized autograft, distraction osteogenesis, induced-membrane technique, and segmental prostheses are the most common surgical strategies to manage large bone defects. Given its optimal osteogenesis, osteoinduction, osteoconduction, and histocompatibility properties, along with the lower the risk of immunological rejection, autologous graft represents the most common used strategy for reconstruction of bone defects. However, the choice of the best surgical technique is still debated, and no consensus has been reached. The present study investigated the current reconstructive strategies for large bone defect after trauma, infections, or tumour excision, discussed advantages and disadvantages of each technique, debated available techniques and materials, and evaluated complications and new perspectives.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Gerardo La Padula
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Ernesto Torsiello
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Filippo Spiezia
- Ospedale San Carlo Potenza, Via Potito Petrone, 85100, Potenza, Italy
| | - Francesco Oliva
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy.,School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Thornburrow Drive, Stoke on Trent, England.,Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London, E1 4DG, England
| |
Collapse
|
135
|
Abar B, Kelly C, Pham A, Allen N, Barber H, Kelly A, Mirando AJ, Hilton MJ, Gall K, Adams SB. Effect of surface topography on in vitro osteoblast function and mechanical performance of 3D printed titanium. J Biomed Mater Res A 2021; 109:1792-1802. [PMID: 33754494 PMCID: PMC8373644 DOI: 10.1002/jbm.a.37172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 02/13/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Critical-sized defects remain a significant challenge in orthopaedics. 3D printed scaffolds are a promising treatment but are still limited due to inconsistent osseous integration. The goal of the study is to understand how changing the surface roughness of 3D printed titanium either by surface treatment or artificially printing rough topography impacts the mechanical and biological properties of 3D printed titanium. Titanium tensile samples and discs were printed via laser powder bed fusion. Roughness was manipulated by post-processing printed samples or by directly printing rough features. Experimental groups in order of increasing surface roughness were Polished, Blasted, As Built, Sprouts, and Rough Sprouts. Tensile behavior of samples showed reduced strength with increasing surface roughness. MC3T3 pre-osteoblasts were seeded on discs and analyzed for cellular proliferation, differentiation, and matrix deposition at 0, 2, and 4 weeks. Printing roughness diminished mechanical properties such as tensile strength and ductility without clear benefit to cell growth. Roughness features were printed on mesoscale, unlike samples in literature in which roughness on microscale demonstrated an increase in cell activity. The data suggest that printing artificial roughness on titanium scaffold is not an effective strategy to promote osseous integration.
Collapse
Affiliation(s)
- Bijan Abar
- Duke University Department of Mechanical Engineering and Material Sciences
| | - Cambre Kelly
- Duke University Department of Mechanical Engineering and Material Sciences
| | - Anh Pham
- Duke University Department of Mechanical Engineering and Material Sciences
| | | | | | - Alexander Kelly
- Duke University Department of Mechanical Engineering and Material Sciences
| | | | | | - Ken Gall
- Duke University Department of Mechanical Engineering and Material Sciences
| | | |
Collapse
|
136
|
Management of Segmental Tibial Bone Defects With a Motorized Intramedullary Bone Transport Nail: A Case Review With Follow-Up. J Orthop Trauma 2021; 35:S13-S18. [PMID: 34533481 DOI: 10.1097/bot.0000000000002119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/02/2023]
Abstract
Large segment bone defects of the tibia are challenging problems. Although caused by a wide range of conditions, tibial critical bone loss defects often require complex reconstructive plans with prolonged inability to weight-bear on the effected extremity. Reconstruction options frequently require harvesting of autograft leading to further morbidity. Distraction osteogenesis allows reconstruction of large segmental defects of the tibia while avoiding donor site morbidity. Historically, distraction osteogenesis of tibia was most reliably performed with circler ring external fixation. This process allowed early weight-bearing but unfortunately has considerable drawbacks. Negative effects include pin tract irritation and inability to wear normal clothes. The advent of the bone transport nail now allows management of tibial critical bone loss defects through distraction osteogenesis negating the need for external fixation. This new technique allows treatment of large segmental tibial defects by means of distraction osteogenesis with an all-internal device avoiding the negative effects of external fixation while simultaneously allowing early weight-bearing.
Collapse
|
137
|
Shibahara K, Hayashi K, Nakashima Y, Ishikawa K. Honeycomb Scaffold-Guided Bone Reconstruction of Critical-Sized Defects in Rabbit Ulnar Shafts. ACS APPLIED BIO MATERIALS 2021; 4:6821-6831. [PMID: 35006982 DOI: 10.1021/acsabm.1c00533] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reconstruction of critical-sized defects (CSDs) in bone shafts remains a major challenge in orthopedics. Honeycomb (HC) scaffolds are considered promising as their uniaxial channels bridge the amputation stumps of bones and promote the ingrowth of bone and blood vessels (BV) into the scaffolds. In this study, the ability of the HC scaffolds, composed of the bone mineral or carbonate apatite (CAp), was evaluated by reconstructing 10, 15, and 20 mm segmental defects in the rabbit ulnar shaft. Radiographic and μ-computed tomography evaluations showed that bony calluses were formed around the scaffolds at 4 weeks post-surgery in all defects, whereas no callus bridged in the ulna without scaffolds. At 12 weeks post-surgery, the scaffolds were connected to the host bone in 10 and 15 mm defects, while a slight gap remained between the scaffold and host bone in the 20 mm defect. New bone formation and scaffold resorption progressed over 12 weeks. Histological evaluations showed that mature bones (MB) and BV were already formed at the edges of the scaffolds at 4 weeks post-surgery in 10, 15, and 20 mm defects. In the central region of the scaffold, in the 10 mm defect, MB and BV were formed at 4 weeks post-surgery. In the 15 mm defect, although BV were formed, a few MB were formed. It is concluded that CAp HC scaffolds have good potential value for the reconstruction of CSDs.
Collapse
Affiliation(s)
- Keigo Shibahara
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan.,Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yasuharu Nakashima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
138
|
Surface treatment of 3D printed porous Ti6Al4V implants by ultraviolet photofunctionalization for improved osseointegration. Bioact Mater 2021; 7:26-38. [PMID: 34466715 PMCID: PMC8377410 DOI: 10.1016/j.bioactmat.2021.05.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022] Open
Abstract
Three-dimensional (3D)-printed porous Ti6Al4V implants play an important role in the reconstruction of bone defects. However, its osseointegration capacity needs to be further improved, and related methods are inadequate, especially lacking customized surface treatment technology. Consequently, we aimed to design an omnidirectional radiator based on ultraviolet (UV) photofunctionalization for the surface treatment of 3D-printed porous Ti6Al4V implants, and studied its osseointegration promotion effects in vitro and in vivo, while elucidating related mechanisms. Following UV treatment, the porous Ti6Al4V scaffolds exhibited significantly improved hydrophilicity, cytocompatibility, and alkaline phosphatase activity, while preserving their original mechanical properties. The increased osteointegration strength was further proven using a rabbit condyle defect model in vivo, in which UV treatment exhibited a high efficiency in the osteointegration enhancement of porous Ti6Al4V scaffolds by increasing bone ingrowth (BI), the bone-implant contact ratio (BICR), and the mineralized/osteoid bone ratio. The advantages of UV treatment for 3D-printed porous Ti6Al4V implants using the omnidirectional radiator in the study were as follows: 1) it can significantly improve the osseointegration capacity of porous titanium implants despite the blocking out of UV rays by the porous structure; 2) it can evenly treat the surface of porous implants while preserving their original topography or other morphological features; and 3) it is an easy-to-operate low-cost process, making it worthy of wide clinical application. An omnidirectional radiator based on ultraviolet photofunctionalization was invented.. The omnidirectional radiator can evenly treat the surface of the porous implants.. The present method can enhance osteoinetegration of porous Ti6Al4V implants in a convenient way with a low cost.
Collapse
|
139
|
Waletzko-Hellwig J, Pohl C, Riese J, Schlosser M, Dau M, Engel N, Springer A, Bader R. Effect of High Hydrostatic Pressure on Human Trabecular Bone Regarding Cell Death and Matrix Integrity. Front Bioeng Biotechnol 2021; 9:730266. [PMID: 34458245 PMCID: PMC8387795 DOI: 10.3389/fbioe.2021.730266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
The reconstruction of critical size bone defects is still clinically challenging. Even though the transplantation of autologous bone is used as gold standard, this therapy is accompanied by donor site morbidities as well as tissue limitations. The alternatively used allografts, which are devitalized due to thermal, chemical or physical processing, often lose their matrix integrity and have diminished biomechanical properties. High Hydrostatic Pressure (HHP) may represent a gentle alternative to already existing methods since HHP treated human osteoblasts undergo cell death and HHP treated bone cylinders maintain their mechanical properties. The aim of this study was to determine the biological effects caused by HHP treatment regarding protein/matrix integrity and type of cell death in trabecular bone cylinders. Therefore, different pressure protocols (250 and 300 MPa for 10, 20 and 30 min) and end point analysis such as quantification of DNA-fragmentation, gene expression, SDS-PAGE, FESEM analysis and histological staining were performed. While both protein and matrix integrity was preserved, molecular biological methods showed an apoptotic differentiation of cell death for lower pressures and shorter applications (250 MPa for 10 and 20 min) and necrotic differentiation for higher pressures and longer applications (300 MPa for 30 min). This study serves as a basis for further investigation as it shows that HHP successfully devitalizes trabecular bone cylinders.
Collapse
Affiliation(s)
- Janine Waletzko-Hellwig
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, Rostock, Germany
| | - Christopher Pohl
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Janik Riese
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Michael Schlosser
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Michael Dau
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, Rostock, Germany
| | - Nadja Engel
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
140
|
Rony L, Aguado E, Verlee B, Pascaretti-Grizon F, Chappard D. Microarchitecture of titanium cylinders obtained by additive manufacturing does not influence osseointegration in the sheep. Regen Biomater 2021; 8:rbab021. [PMID: 34188953 PMCID: PMC8226111 DOI: 10.1093/rb/rbab021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022] Open
Abstract
Large bone defects are a challenge for orthopedic surgery. Natural (bone grafts) and synthetic biomaterials have been proposed but several problems arise such as biomechanical resistance or viral/bacterial safety. The use of metallic foams could be a solution to improve mechanical resistance and promote osseointegration of large porous metal devices. Titanium cylinders have been prepared by additive manufacturing (3D printing/rapid prototyping) with a geometric or trabecular microarchitecture. They were implanted in the femoral condyles of aged ewes; the animals were left in stabling for 90 and 270 days. A double calcein labeling was done before sacrifice; bones were analyzed by histomorphometry. Neither bone volume, bone/titanium interface nor mineralization rate were influenced by the cylinder's microarchitecture; the morphometric parameters did not significantly increase over time. Bone anchoring occurred on the margins of the cylinders and some trabeculae extended in the core of the cylinders but the amount of bone inside the cylinders remained low. The rigid titanium cylinders preserved bone cells from strains in the core of the cylinders. Additive manufacturing is an interesting tool to prepare 3D metallic scaffolds, but microarchitecture does not seem as crucial as expected and anchoring seems limited to the first millimeters of the graft.
Collapse
Affiliation(s)
- Louis Rony
- GEROM-Groupe Etudes Remodelage Osseux et bioMatériaux, LabCom NextBone, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, 49933 Angers, France
| | - Eric Aguado
- GEROM-Groupe Etudes Remodelage Osseux et bioMatériaux, LabCom NextBone, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, 49933 Angers, France
| | - Bruno Verlee
- SIRRIS Liège Science Park, Rue du bois St Jean 12, Seraing 4102, Belgium
| | - Florence Pascaretti-Grizon
- GEROM-Groupe Etudes Remodelage Osseux et bioMatériaux, LabCom NextBone, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, 49933 Angers, France
| | - Daniel Chappard
- GEROM-Groupe Etudes Remodelage Osseux et bioMatériaux, LabCom NextBone, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, 49933 Angers, France
| |
Collapse
|
141
|
Rupp M, Klute L, Baertl S, Walter N, Mannala GK, Frank L, Pfeifer C, Alt V, Kerschbaum M. The clinical use of bone graft substitutes in orthopedic surgery in Germany-A 10-years survey from 2008 to 2018 of 1,090,167 surgical interventions. J Biomed Mater Res B Appl Biomater 2021; 110:350-357. [PMID: 34291874 DOI: 10.1002/jbm.b.34911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/08/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022]
Abstract
Aim of the study was to evaluate (1) the overall use of bone graft substitutes, autografts and allografts, (2) of different types of bone graft substitutes (calcium sulfate, calcium phosphate, calcium phosphate ceramics or polymethyl methacrylate) and of different bone grafts (cancellous vs. cortical), and (3) the use of antibiotic-loading of bone graft substitutes in orthopedic surgery in Germany. Gross data were provided from the Federal Statistical Office of Germany and revealed an overall increase in bone defect reconstruction procedures using bone graft substitutes, autografts and allografts from 86,294 in 2008 to 99,863 cases in 2018 (+15.7%). The relative use of bone graft substitutes for these interventions strongly increased from 11.8% in 2008 (10,163 cases) to 23.9% in 2018 (23,838 cases) with an increase of +134.4%. Furthermore, antibiotic-loaded bone graft substitutes were implanted more frequently with an overall increase of +194% (2008: n = 2,657; 2018: n = 7,811). The work shows an increasing use of bone graft substitutes and antibiotic-loaded bone graft substitutes over the last 10 years in Germany.
Collapse
Affiliation(s)
- Markus Rupp
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Lisa Klute
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Susanne Baertl
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Nike Walter
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | | | - Leona Frank
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Christian Pfeifer
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Maximilian Kerschbaum
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
142
|
Laird NZ, Acri TM, Tingle K, Salem AK. Gene- and RNAi-activated scaffolds for bone tissue engineering: Current progress and future directions. Adv Drug Deliv Rev 2021; 174:613-627. [PMID: 34015421 PMCID: PMC8217358 DOI: 10.1016/j.addr.2021.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 01/02/2023]
Abstract
Large bone defects are usually managed by replacing lost bone with non-biological prostheses or with bone grafts that come from the patient or a donor. Bone tissue engineering, as a field, offers the potential to regenerate bone within these large defects without the need for grafts or prosthetics. Such therapies could provide improved long- and short-term outcomes in patients with critical-sized bone defects. Bone tissue engineering has long relied on the administration of growth factors in protein form to stimulate bone regeneration, though clinical applications have shown that using such proteins as therapeutics can lead to concerning off-target effects due to the large amounts required for prolonged therapeutic action. Gene-based therapies offer an alternative to protein-based therapeutics where the genetic material encoding the desired protein is used and thus loading large doses of protein into the scaffolds is avoided. Gene- and RNAi-activated scaffolds are tissue engineering devices loaded with nucleic acids aimed at promoting local tissue repair. A variety of different approaches to formulating gene- and RNAi-activated scaffolds for bone tissue engineering have been explored, and include the activation of scaffolds with plasmid DNA, viruses, RNA transcripts, or interfering RNAs. This review will discuss recent progress in the field of bone tissue engineering, with specific focus on the different approaches employed by researchers to implement gene-activated scaffolds as a means of facilitating bone tissue repair.
Collapse
Affiliation(s)
- Noah Z Laird
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Timothy M Acri
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Kelsie Tingle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
143
|
Rocha T, Cavalcanti AS, Leal AC, Dias RB, da Costa RS, Ribeiro GDO, Guimarães JAM, Duarte MEL. PTH 1-34 improves devitalized allogenic bone graft healing in a murine femoral critical size defect. Injury 2021; 52 Suppl 3:S3-S12. [PMID: 34088469 DOI: 10.1016/j.injury.2021.03.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
The treatment of large segmental defects of long bones resulting from trauma, infection, or bone tumor resections is a major challenge for orthopedic surgeons. The reconstruction of bone defects with acellular allografts can be used as an osteoconductive approach. However, devitalized allografts are associated with high rates of clinical failure as a result of poor intrinsic osteoinduction properties and a lack of further remodeling. Nevertheless, evidence suggests that due to its anabolic properties, teriparatide (PTH1-34) could be effective as an adjuvant therapy for massive allograft healing. Therefore, our goal was to investigate in a murine critical-sized defect model whether the intermittent administration of PTH1-34 improves the incorporation and revitalization of acellular structural bone allografts. Thus, a 2.5-mm critical-sized defect was established in the right femur of C57BL/6 mice, followed by the reconstruction with a devitalized cortical structural allograft. A titanium micro locking plate was applied to the anterior femoral surface and secured in place with self-tapping locking screws. Subsequently, daily doses of PTH1-34 (30, and 40 µg/kg) or saline were administered to the mice for 14 days after surgery. The mice were maintained without PTH1-34 therapy for an additional 7 days before being euthanized at 3 weeks post-surgery. Bone graft consolidation was assessed on radiographic images and by histomorphometric analysis. Additionally, to determine the frequency of osteoprogenitor cells in the bone marrow and their in vitro osteogenic capacity, stromal cells were isolated from the bone marrow of animals treated with 30 or 40 µg/kg/day of PTH1-34 following the same protocol used for the experimental animals. Our results suggest that intermittent PTH1-34 treatment at 30 µg/kg/day after femoral allograft reconstruction surgery accelerated the healing process as evidenced by new bone formation induced on endosteal and periosteal surfaces, enhanced revitalization of allogeneic graft, and increased frequency and osteogenic capacity of bone marrow stromal cells (BMSC). These findings should encourage further studies aimed at investigating the potential therapeutic use of intermittent PTH1-34, specifically with regards to the optimal dosing regimen in clinically challenging orthopedic scenarios.
Collapse
Affiliation(s)
- Tito Rocha
- Trauma Center, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| | - Amanda S Cavalcanti
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| | - Ana Carolina Leal
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| | - Rhayra B Dias
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| | - Rafaela Sartore da Costa
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| | | | - João Antonio Matheus Guimarães
- Trauma Center, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil; Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| | - Maria Eugênia Leite Duarte
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| |
Collapse
|
144
|
Umer F, Javed F. Decompression strategy for critical-sized lesions: A case series and literature review. AUST ENDOD J 2021; 47:731-740. [PMID: 34145932 DOI: 10.1111/aej.12536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/23/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Critical-sized lesions are defined as the smallest sized intraosseous wound in a particular bone that will not heal spontaneously during the lifetime of that animal. These critical-sized entities pose a unique challenge in endodontics, where these lesions are most likely cystic, with dimensions extending over 10 mm. This paper describes a structured methodology to treat such cases whilst also highlighting inconsistencies and variability between practitioners regarding management of critical-sized lesions. The case series demonstrates that non-surgical root canal therapy followed by surgical decompression may be the treatment of choice for such pathosis. A 16 gauge nasogastric tube was used as a decompression device and sutured to surrounding mucosa. Healing was evaluated using both two- and three-dimensional radiographs. Decompression of critical-sized lesions would appear to be a reliable, conservative and an altogether complete procedure that may not warrant second-stage surgery.
Collapse
Affiliation(s)
- Fahad Umer
- Operative Dentistry, Department of Surgery, Aga Khan University, Karachi, Pakistan
| | - Faizan Javed
- Operative Dentistry, Department of Surgery, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
145
|
Bozorgi A, Khazaei M, Soleimani M, Jamalpoor Z. Application of nanoparticles in bone tissue engineering; a review on the molecular mechanisms driving osteogenesis. Biomater Sci 2021; 9:4541-4567. [PMID: 34075945 DOI: 10.1039/d1bm00504a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of nanoparticles into bone tissue engineering strategies is beneficial to govern cell fate into osteogenesis and the regeneration of large bone defects. The present study explored the role of nanoparticles to advance osteogenesis with a focus on the cellular and molecular pathways involved. Pubmed, Pubmed Central, Embase, Scopus, and Science Direct databases were explored for those published articles relevant to the involvement of nanoparticles in osteogenic cellular pathways. As multifunctional compounds, nanoparticles contribute to scaffold-free and scaffold-based tissue engineering strategies to progress osteogenesis and bone regeneration. They regulate inflammatory responses and osteo/angio/osteoclastic signaling pathways to generate an osteogenic niche. Besides, nanoparticles interact with biomolecules, enhance their half-life and bioavailability. Nanoparticles are promising candidates to promote osteogenesis. However, the interaction of nanoparticles with the biological milieu is somewhat complicated, and more considerations are recommended on the employment of nanoparticles in clinical applications because of NP-induced toxicities.
Collapse
Affiliation(s)
- Azam Bozorgi
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
146
|
Hamushan M, Cai W, Zhang Y, Ren Z, Du J, Zhang S, Zhao C, Cheng P, Zhang X, Shen H, Han P. High-purity magnesium pin enhances bone consolidation in distraction osteogenesis via regulating Ptch protein activating Hedgehog-alternative Wnt signaling. Bioact Mater 2021; 6:1563-1574. [PMID: 33294734 PMCID: PMC7691121 DOI: 10.1016/j.bioactmat.2020.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022] Open
Abstract
Magnesium alloys are promising biomaterials for orthopedic implants because of their degradability, osteogenic effects, and biocompatibility. Magnesium has been proven to promote distraction osteogenesis. However, its mechanism of promoting distraction osteogenesis is not thoroughly studied. In this work, a high-purity magnesium pin developed and applied in rat femur distraction osteogenesis. Mechanical test, radiological and histological analysis suggested that high-purity magnesium pin can promote distraction osteogenesis and shorten the consolidation time. Further RNA sequencing investigation found that alternative Wnt signaling was activated. In further bioinformatics analysis, it was found that the Hedgehog pathway is the upstream signaling pathway of the alternative Wnt pathway. We found that Ptch protein is a potential target of magnesium and verified by molecular dynamics that magnesium ions can bind to Ptch protein. In conclusion, HP Mg implants have the potential to enhance bone consolidation in the DO application, and this process might be via regulating Ptch protein activating Hedgehog-alternative Wnt signaling.
Collapse
Affiliation(s)
- Musha Hamushan
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Weijie Cai
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yubo Zhang
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zun Ren
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jiafei Du
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Shaoxiang Zhang
- Suzhou Origin Medical Technology Co. Ltd, Suzhou, 215513, China
| | - Changli Zhao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengfei Cheng
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaonong Zhang
- Suzhou Origin Medical Technology Co. Ltd, Suzhou, 215513, China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Shen
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Pei Han
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
147
|
Li G, Shen W, Tang X, Mo G, Yao L, Wang J. Combined use of calcium phosphate cement, mesenchymal stem cells and platelet-rich plasma for bone regeneration in critical-size defect of the femoral condyle in mini-pigs. Regen Med 2021; 16:451-464. [PMID: 34030462 DOI: 10.2217/rme-2020-0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the outcome of autologous bone marrow mesenchymal stem cells (BMMSCs) and platelet-rich plasma in combination with calcium phosphate cement (CPC) scaffold to reconstruct femoral critical bone defects in mini-pigs. Materials & methods: Scanning electron microscopy, micro-computed tomography evaluation and quantitative histological assessment were used. Results & conclusion: BMMSCs were attached to the CPC scaffold after 7 days of culture and decreased the residual CPC material in each group at 12 weeks compared with 6 weeks. The newly formed bone area was higher in the CPC+SC+P group than in the CPC group at each time point (all p < 0.05). The strategy of CPC combined with BMMSCs and platelet-rich plasma might be an effective method to repair bone defects.
Collapse
Affiliation(s)
- Guangjun Li
- Department of Orthopedic, Deqing People's Hospital, Deqing, Zhejiang 313200, PR China
| | - Wen Shen
- Department of Radiology, Deqing People's Hospital, Deqing, Zhejiang 313200, PR China
| | - Xing Tang
- Department of Orthopedic, Deqing People's Hospital, Deqing, Zhejiang 313200, PR China
| | - Guowei Mo
- Department of Orthopedic, Deqing People's Hospital, Deqing, Zhejiang 313200, PR China
| | - Liqin Yao
- Department of Orthopedic, Deqing People's Hospital, Deqing, Zhejiang 313200, PR China
| | - Jixing Wang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| |
Collapse
|
148
|
Wang P, Lin H. [Research progress of nanomaterials in osteomyelitis treatment]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:648-655. [PMID: 33998221 DOI: 10.7507/1002-1892.202012044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the related studies on the application of nanomaterials in the treatment of osteomyelitis, and to provide new ideas for the research and clinical treatment of osteomyelitis. Methods The literature about the treatment of osteomyelitis with nanomaterials at home and abroad in recent years was reviewed and analyzed. Results At present, surgical treatment and antibiotic application are the main treatment options for osteomyelitis. But there are many defects such as antibiotic resistance, residual bone defect, and low effective concentration of local drugs. The application of nanomaterials can make up for the above defects. In recent years, nanomaterials play an important role in the treatment of osteomyelitis by filling bone defects, establishing local drug delivery system, and self-antibacterial properties. Conclusion It will provide a new idea and an important research direction for the treatment of osteomyelitis to fully study the related characteristics of nanomaterials and select beneficial materials to make drug delivery system or substitute drugs.
Collapse
Affiliation(s)
- Peilin Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai, 200080, P.R.China
| | - Haodong Lin
- Department of Orthopaedics, Shanghai General Hospital, Shanghai, 200080, P.R.China
| |
Collapse
|
149
|
Bagnol R, Sprecher C, Peroglio M, Chevalier J, Mahou R, Büchler P, Richards G, Eglin D. Coaxial micro-extrusion of a calcium phosphate ink with aqueous solvents improves printing stability, structure fidelity and mechanical properties. Acta Biomater 2021; 125:322-332. [PMID: 33631396 DOI: 10.1016/j.actbio.2021.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/11/2023]
Abstract
Micro-extrusion-based 3D printing of complex geometrical and porous calcium phosphate (CaP) can improve treatment of bone defects through the production of personalized bone substitutes. However, achieving printing and post-printing shape stabilities for the efficient fabrication and application of rapid hardening protocol are still challenging. In this work, the coaxial printing of a self-setting CaP cement with water and ethanol mixtures aiming to increase the ink yield stress upon extrusion and the stability of fabricated structures was explored. Printing height of overhang structure was doubled when aqueous solvents were used and a 2 log increase of the stiffness was achieved post-printing. A standard and fast steam sterilization protocol applied as hardening step on the coaxial printed CaP cement (CPC) ink resulted in constructs with 4 to 5 times higher compressive moduli in comparison to extrusion process in the absence of solvent. This improved mechanical performance is likely due to rapid CPC setting, preventing cracks formation during hardening process. Thus, coaxial micro-extrusion-based 3D printing of a CPC ink with aqueous solvent enhances printability and allows the use of the widespread steam sterilization cycle as a standalone post-processing technique for production of 3D printed personalized CaP bone substitutes. STATEMENT OF SIGNIFICANCE: Coaxial micro-extrusion-based 3D printing of a self-setting CaP cement with water:ethanol mixtures increased the ink yield stress upon extrusion and the stability of fabricated structures. Printing height of overhang structure was doubled when aqueous solvents were used, and a 2 orders of magnitude log increase of the stiffness was achieved post-printing. A fast hardening step consisting of a standard steam sterilization was applied. Four to 5 times higher compressive moduli was obtained for hardened coaxially printed constructs. This improved mechanical performance is likely due to rapid CPC setting in the coaxial printing, preventing cracks formation during hardening process.
Collapse
Affiliation(s)
- Romain Bagnol
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland; Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Christoph Sprecher
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Marianna Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Jerome Chevalier
- University of Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, F-69621, Villeurbanne, France
| | | | - Philippe Büchler
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Geoff Richards
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland; Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands.
| |
Collapse
|
150
|
Lu X, Yu S, Chen G, Zheng W, Peng J, Huang X, Chen L. Insight into the roles of melatonin in bone tissue and bone‑related diseases (Review). Int J Mol Med 2021; 47:82. [PMID: 33760138 PMCID: PMC7979260 DOI: 10.3892/ijmm.2021.4915] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Bone‑related diseases comprise a large group of common diseases, including fractures, osteoporosis and osteoarthritis (OA), which affect a large number of individuals, particularly the elderly. The progressive destruction and loss of alveolar bone caused by periodontitis is a specific type of bone loss, which has a high incidence and markedly reduces the quality of life of patients. With the existing methods of prevention and treatment, the incidence and mortality of bone‑related diseases are still gradually increasing, creating a significant financial burden to societies worldwide. To prevent the occurrence of bone‑related diseases, delay their progression or reverse the injuries they cause, new alternative or complementary treatments need to be developed. Melatonin exerts numerous physiological effects, including inducing anti‑inflammatory and antioxidative functions, resetting circadian rhythms and promoting wound healing and tissue regeneration. Melatonin also participates in the health management of bone and cartilage. In the present review, the potential roles of melatonin in the pathogenesis and progression of bone injury, osteoporosis, OA and periodontitis are summarized. Furthermore, the high efficiency and diversity of the physiological regulatory effects of melatonin are highlighted and the potential benefits of the use of melatonin for the clinical prevention and treatment of bone‑related diseases are discussed.
Collapse
Affiliation(s)
- Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shaoling Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wenhao Zheng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|