101
|
Fischer J, Heidrová A, Hermanová M, Bednařík Z, Joukal M, Burša J. Structural parameters defining distribution of collagen fiber directions in human carotid arteries. J Mech Behav Biomed Mater 2024; 153:106494. [PMID: 38507995 DOI: 10.1016/j.jmbbm.2024.106494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Collagen fiber arrangement is decisive for constitutive description of anisotropic mechanical response of arterial wall. In this study, their orientation in human common carotid artery was investigated using polarized light microscopy and an automated algorithm giving more than 4·106 fiber angles per slice. In total 113 slices acquired from 18 arteries taken from 14 cadavers were used for fiber orientation in the circumferential-axial plane. All histograms were approximated with unimodal von Mises distribution to evaluate dominant direction of fibers and their concentration parameter. 10 specimens were analyzed also in circumferential-radial and axial-radial planes (2-4 slices per specimen in each plane); the portion of radially oriented fibers was found insignificant. In the circumferential-axial plane, most specimens showed a pronounced unimodal distribution with angle to circumferential direction μ = 0.7° ± 9.4° and concentration parameter b = 3.4 ± 1.9. Suitability of the unimodal fit was confirmed by high values of coefficient of determination (mean R2 = 0.97, median R2 = 0.99). Differences between media and adventitia layers were not found statistically significant. The results are directly applicable as structural parameters in the GOH constitutive model of arterial wall if the postulated two fiber families are unified into one with circumferential orientation.
Collapse
Affiliation(s)
- Jiří Fischer
- Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 2896/2, Brno, 616 69, Czech Republic.
| | - Aneta Heidrová
- Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 2896/2, Brno, 616 69, Czech Republic
| | - Markéta Hermanová
- 1st Department of Pathology, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Pekařská 664/53, 656 91, Brno, Czech Republic
| | - Zdeněk Bednařík
- 1st Department of Pathology, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Pekařská 664/53, 656 91, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Kamenice 126/3, 625 00, Brno, Czech Republic
| | - Jiří Burša
- Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 2896/2, Brno, 616 69, Czech Republic
| |
Collapse
|
102
|
Donahue CL, Westman CL, Faanes BL, Qureshi AM, Barocas VH, Aggarwal V. Finite element modeling with patient-specific geometry to assess clinical risks of percutaneous pulmonary valve implantation. Catheter Cardiovasc Interv 2024; 103:924-933. [PMID: 38597297 DOI: 10.1002/ccd.31016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Percutaneous pulmonary valve implantation (PPVI) is a non-surgical treatment for right ventricular outflow tract (RVOT) dysfunction. During PPVI, a stented valve, delivered via catheter, replaces the dysfunctional pulmonary valve. Stent oversizing allows valve anchoring within the RVOT, but overexpansion can intrude on the surrounding structures. Potentially dangerous outcomes include aortic valve insufficiency (AVI) from aortic root (AR) distortion and myocardial ischemia from coronary artery (CA) compression. Currently, risks are evaluated via balloon angioplasty/sizing before stent deployment. Patient-specific finite element (FE) analysis frameworks can improve pre-procedural risk assessment, but current methods require hundreds of hours of high-performance computation. METHODS We created a simplified method to simulate the procedure using patient-specific FE models for accurate, efficient pre-procedural PPVI (using balloon expandable valves) risk assessment. The methodology was tested by retrospectively evaluating the clinical outcome of 12 PPVI candidates. RESULTS Of 12 patients (median age 14.5 years) with dysfunctional RVOT, 7 had native RVOT and 5 had RV-PA conduits. Seven patients had undergone successful RVOT stent/valve placement, three had significant AVI on balloon testing, one had left CA compression, and one had both AVI and left CA compression. A model-calculated change of more than 20% in lumen diameter of the AR or coronary arteries correctly predicted aortic valve sufficiency and/or CA compression in all the patients. CONCLUSION Agreement between FE results and clinical outcomes is excellent. Additionally, these models run in 2-6 min on a desktop computer, demonstrating potential use of FE analysis for pre-procedural risk assessment of PPVI in a clinically relevant timeframe.
Collapse
Affiliation(s)
- Carly L Donahue
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Claire L Westman
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Brittany L Faanes
- Division of Pediatric Cardiology, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - Athar M Qureshi
- Department of Pediatrics, The Lillei Frank Abercombie Section of Pediatric Cardiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Varun Aggarwal
- Division of Pediatric Cardiology, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota, USA
| |
Collapse
|
103
|
Szafron JM, Heng EE, Boyd J, Humphrey JD, Marsden AL. Hemodynamics and Wall Mechanics of Vascular Graft Failure. Arterioscler Thromb Vasc Biol 2024; 44:1065-1085. [PMID: 38572650 PMCID: PMC11043008 DOI: 10.1161/atvbaha.123.318239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Blood vessels are subjected to complex biomechanical loads, primarily from pressure-driven blood flow. Abnormal loading associated with vascular grafts, arising from altered hemodynamics or wall mechanics, can cause acute and progressive vascular failure and end-organ dysfunction. Perturbations to mechanobiological stimuli experienced by vascular cells contribute to remodeling of the vascular wall via activation of mechanosensitive signaling pathways and subsequent changes in gene expression and associated turnover of cells and extracellular matrix. In this review, we outline experimental and computational tools used to quantify metrics of biomechanical loading in vascular grafts and highlight those that show potential in predicting graft failure for diverse disease contexts. We include metrics derived from both fluid and solid mechanics that drive feedback loops between mechanobiological processes and changes in the biomechanical state that govern the natural history of vascular grafts. As illustrative examples, we consider application-specific coronary artery bypass grafts, peripheral vascular grafts, and tissue-engineered vascular grafts for congenital heart surgery as each of these involves unique circulatory environments, loading magnitudes, and graft materials.
Collapse
Affiliation(s)
- Jason M Szafron
- Departments of Pediatrics (J.M.S., A.L.M.), Stanford University, CA
| | - Elbert E Heng
- Cardiothoracic Surgery (E.E.H., J.B.), Stanford University, CA
| | - Jack Boyd
- Cardiothoracic Surgery (E.E.H., J.B.), Stanford University, CA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.)
| | | |
Collapse
|
104
|
Li Y, Yang Y, Shen M, Wang C, Chang L, Liu T, Wang Y. Investigation of the optimal cutting depth in small incision lenticule extraction based on a collagen fibril crimping constitutive model of the cornea. J Biomech 2024; 169:112145. [PMID: 38761745 DOI: 10.1016/j.jbiomech.2024.112145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
To investigate the optimal cutting depth (Cap) in small incision lenticule extraction from the perspective of corneal biomechanics, a three-dimensional finite element model of the cornea was established using a stromal sub-regional material model to simulate small incision lenticule extraction. The displacement difference PΔ at the central point of the posterior corneal surface before and after lenticule extraction, as well as the von Mises stress at four points of different thicknesses in the center of the cornea, were analyzed using the finite element model considering the hyperelastic property and the difference in stiffness between the anterior and posterior of the cornea. The numerical curves of PΔ-Cap and von Mises Stress-Cap relations at different diopters show that the displacement difference PΔ has a smallest value at the same diopter. In this case, the von Mises stress at four points with different thicknesses in the center of the cornea was also minimal. Which means that the optimal cutting depth exsisting in the cornea. Moreover, PΔ-Cap curves for different depth of stromal stiffness boundaries show that the optimal cap thickness would change with the depth of the stromal stiffness boundary. These results are of guiding significance for accurately formulating small incision lenticule extraction surgery plans and contribute to the advancement of research on the biomechanical properties of the cornea.
Collapse
Affiliation(s)
- Yikuan Li
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Yaqing Yang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Min Shen
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China.
| | - Congzheng Wang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Le Chang
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China
| | - Taiwei Liu
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yan Wang
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
105
|
Wang X, Wang S, Holland MA. Axonal tension contributes to consistent fold placement. SOFT MATTER 2024; 20:3053-3065. [PMID: 38506323 DOI: 10.1039/d4sm00129j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Cortical folding is a critical process during brain development, resulting in morphologies that are both consistent and distinct between individuals and species. While earlier studies have highlighted important aspects of cortical folding, most existing computational models, based on the differential growth theory, fall short of explaining why folds tend to appear in particular locations. The axon tension hypothesis may provide insight into this conundrum; however, there has been significant controversy about a potential role of axonal tension during the gyrification. The common opinion in the field is that axonal tension is inadequate to drive gyrification, but we currently run the risk of discarding this hypothesis without comprehensively studying the role of axonal tension. Here we propose a novel bi-layered finite element model incorporating the two theories, including characteristic axonal tension in the subcortex and differential cortical growth. We show that axon tension can serve as a perturbation sufficient to trigger buckling in simulations; similarly to other types of perturbations, the natural stability behavior of the system tends to determine some characteristics of the folding morphology (e.g. the wavelength) while the perturbation determines the location of folds. Certain geometries, however, can interact or compete with the natural stability of the system to change the wavelength. When multiple perturbations are present, they similarly compete with each other. We found that an axon bundle of reasonable size will overpower up to a 5% thickness perturbation (typical in the literature) and determine fold placement. Finally, when multiple axon tracts are present, even a slight difference in axon stiffness, representing the heterogeneity of axonal connections, is enough to significantly change the folding pattern. While the simulations presented here are a very simple representation of white matter connectivity, our findings point to urgent future research on the role of axon connectivity in cortical folding.
Collapse
Affiliation(s)
- Xincheng Wang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Shuolun Wang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Maria A Holland
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
106
|
Pukaluk A, Sommer G, Holzapfel GA. Multimodal experimental studies of the passive mechanical behavior of human aortas: Current approaches and future directions. Acta Biomater 2024; 178:1-12. [PMID: 38401775 DOI: 10.1016/j.actbio.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Cardiovascular diseases are the leading cause of death worldwide and include, among others, critical conditions of the aortic wall. Importantly, such critical conditions require effective diagnosis and treatment, which are not yet accurate enough. However, they could be significantly strengthened with predictive material models of the aortic wall. In particular, such predictive models could support surgical decisions, preoperative planning, and estimation of postoperative tissue remodeling. However, developing a predictive model requires experimental data showing both structural parameters and mechanical behavior. Such experimental data can be obtained using multimodal experiments. This review therefore discusses the current approaches to multimodal experiments. Importantly, the strength of the aortic wall is determined primarily by its passive components, i.e., mainly collagen, elastin, and proteoglycans. Therefore, this review focuses on multimodal experiments that relate the passive mechanical behavior of the human aortic wall to the structure and organization of its passive components. In particular, the multimodal experiments are classified according to the expected results. Multiple examples are provided for each experimental class and summarized with highlighted advantages and disadvantages of the method. Finally, future directions of multimodal experiments are envisioned and evaluated. STATEMENT OF SIGNIFICANCE: Multimodal experiments are innovative approaches that have gained interest very quickly, but also recently. This review presents therefore a first clear summary of groundbreaking research in the field of multimodal experiments. The benefits and limitations of various types of multimodal experiments are thoroughly discussed, and a comprehensive overview of possible results is provided. Although this review focuses on multimodal experiments performed on human aortic tissues, the methods used and described are not limited to human aortic tissues but can be extended to other soft materials.
Collapse
Affiliation(s)
- Anna Pukaluk
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering (NTNU), Trondheim, Norway.
| |
Collapse
|
107
|
Raviol J, Plet G, Langlois JB, Si-Mohamed S, Magoariec H, Pailler-Mattei C. In vivo mechanical characterization of arterial wall using an inverse analysis procedure: application on an animal model of intracranial aneurysm. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231936. [PMID: 38633347 PMCID: PMC11022001 DOI: 10.1098/rsos.231936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 04/19/2024]
Abstract
Intracranial aneurysm is a pathology related to the deterioration of the arterial wall. This work is an essential part of a large-scale project aimed at providing clinicians with a non-invasive patient-specific decision support tool to facilitate the rupture risk assessment. It will lean on the link between the aneurysm shape clinically observed and a database derived from the in vivo mechanical characterization of aneurysms. To supply this database, a deformation device prototype of the arterial wall was developed. Its use coupled with medical imaging (spectral photon-counting computed tomography providing a spatial resolution down to 250 μm) is used to determine the in vivo mechanical properties of the wall based on the inverse analysis of the quantification of the wall deformation observed experimentally. This study presents the in vivo application of this original procedure to an animal model of aneurysm. The mechanical properties of the aneurysm wall identified were consistent with the literature, and the errors between the numerical and experimental results were less than 10%. Based on these parameters, this study allows the assessment of the aneurysm stress state for a known solicitation and points towards the definition of a rupture criterion.
Collapse
Affiliation(s)
- J. Raviol
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, UMR 5513, Écully69130, France
| | - G. Plet
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, UMR 5513, Écully69130, France
| | | | - S. Si-Mohamed
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F69621, Villeurbanne69100, France
- Département de Radiologie, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron69677, France
| | - H. Magoariec
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, UMR 5513, Écully69130, France
| | - C. Pailler-Mattei
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, UMR 5513, Écully69130, France
- Université de Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie, Lyon69008, France
| |
Collapse
|
108
|
Qin T, Mao W, Caballero A, Kamioka N, Lerakis S, Lain S, Elefteriades J, Liang L, Sun W. Patient-specific analysis of bicuspid aortic valve hemodynamics using a fully coupled fluid-structure interaction model. Comput Biol Med 2024; 172:108191. [PMID: 38457932 PMCID: PMC11498348 DOI: 10.1016/j.compbiomed.2024.108191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 02/18/2024] [Indexed: 03/10/2024]
Abstract
Bicuspid aortic valve (BAV), the most common congenital heart disease, is prone to develop significant valvular dysfunction and aortic wall abnormalities such as ascending aortic aneurysm. Growing evidence has suggested that abnormal BAV hemodynamics could contribute to disease progression. In order to investigate BAV hemodynamics, we performed 3D patient-specific fluid-structure interaction (FSI) simulations with fully coupled blood flow dynamics and valve motion throughout the cardiac cycle. Results showed that the hemodynamics during systole can be characterized by a systolic jet and two counter-rotating recirculation vortices. At peak systole, the jet was usually eccentric, with asymmetric recirculation vortices and helical flow motion in the ascending aorta. The flow structure at peak systole was quantified using the vorticity, flow rate reversal ratio and local normalized helicity (LNH) at four locations from the aortic root to the ascending aorta. The systolic jet was evaluated with the peak velocity, normalized flow displacement, and jet angle. It was found that peak velocity and normalized flow displacement (rather than jet angle) gave a strong correlation with the vorticity and LNH in the ascending aorta, which suggests that these two metrics could be used for clinical noninvasive evaluation of abnormal blood flow patterns in BAV patients.
Collapse
Affiliation(s)
- Tongran Qin
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Sutra Medical Inc, Lake Forest, CA, USA
| | - Wenbin Mao
- Mechanical Engineering, University of South Florida, FL, USA
| | - Andrés Caballero
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; PAI+ Research Group, Mechanical Engineering Department, Universidad Autónoma de Occidente, Cali, Colombia
| | | | - Stamatios Lerakis
- Emory University, School of Medicine, Atlanta, GA, USA; Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Santiago Lain
- PAI+ Research Group, Mechanical Engineering Department, Universidad Autónoma de Occidente, Cali, Colombia
| | - John Elefteriades
- Aortic Institute, School of Medicine, Yale University, New Haven, CT, USA
| | - Liang Liang
- Department of Computer Science, University of Miami, Coral Gables, FL, USA
| | - Wei Sun
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Sutra Medical Inc, Lake Forest, CA, USA.
| |
Collapse
|
109
|
Suárez S, López-Campos JA, Fernández JR, Segade A. Nonlocal damage evaluation of a sigmoid-based damage model for fibrous biological soft tissues. Biomech Model Mechanobiol 2024; 23:655-674. [PMID: 38158483 DOI: 10.1007/s10237-023-01798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
The comprehension and modeling of the mechanical behavior of soft biological tissues are essential due to their clinical applications. This knowledge is essential for predicting tissue responses accurately and enhancing our ability to compute the behavior of biological structures and bio-prosthetic devices under specific loading conditions. The current research is centered on modeling the initiation and progression of soft tissues damage, which typically exhibit intricate anisotropic and nonlinear elastic characteristics. For this purpose, the following study presents a comparative analysis of the computational performance of two distinct damage modeling techniques. The first technique employs a well-established damage model, based on a piece-wise exponential damage function as proposed by Calvo et al. (Int J Numer Methods Eng 69:2036-2057, 2007. https://doi.org/10.1002/nme.1825 ). The second approach adopts a sigmoid function, as proposed by López-Campos et al. (Comput Methods Biomech Biomed Eng 23(6):213-223. https://doi.org/10.1080/10255842.2019.1710742 ). The aim of this study is to verify the validity of the López-Campos sigmoid-based damage model to be used in finite element simulation, the implementation of which is unknown. For this proposal, both models were implemented within a commercial Finite Element software package, and their responses to local and non-local damage algorithms were assessed in depth through two standard benchmark tests: a plate with a hole and a ball burst. The results of this study indicate that, for a wide range of cases, such as in-plane stresses, out-plane stresses, stress concentration and contact, all over large displacement conditions, the López-Campos damage model shows a good response to non-local algorithms achieving mesh independence and convergence in all these cases. The results obtained are in line with those obtained for the Calvo's damage model, showing, in addition, larger deformations under in-plane stress and stress concentration conditions and a lower number of iterations under out-plane stress and contact conditions. Consequently, the López-Campos' damage model emerges as a valuable and useful tool in the field of mechanical damage research in biological systems.
Collapse
Affiliation(s)
- Sofía Suárez
- CINTECX, Department of Mechanical Engineering, Universidade de Vigo, Campus As Lagoas, Marcosende, 36310, Vigo, Pontevedra, Spain.
- Design and Numerical Simulation Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Carretera Clara Campoamor 341, Tecnical Building 2º Floor, 36312, Vigo, Pontevedra, Spain.
| | - Jose A López-Campos
- CINTECX, Department of Mechanical Engineering, Universidade de Vigo, Campus As Lagoas, Marcosende, 36310, Vigo, Pontevedra, Spain
- Design and Numerical Simulation Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Carretera Clara Campoamor 341, Tecnical Building 2º Floor, 36312, Vigo, Pontevedra, Spain
| | - Jose R Fernández
- Design and Numerical Simulation Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Carretera Clara Campoamor 341, Tecnical Building 2º Floor, 36312, Vigo, Pontevedra, Spain
- Department of Applied Mathematics I, Industrial Engineering School, Universidade de Vigo, Campus As Lagoas, Marcosende, 36310, Vigo, Pontevedra, Spain
| | - Abraham Segade
- CINTECX, Department of Mechanical Engineering, Universidade de Vigo, Campus As Lagoas, Marcosende, 36310, Vigo, Pontevedra, Spain
- Design and Numerical Simulation Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Carretera Clara Campoamor 341, Tecnical Building 2º Floor, 36312, Vigo, Pontevedra, Spain
| |
Collapse
|
110
|
Kikuchi J, Sakakura Y, Ikushima K. Anisotropic properties of acoustically induced electric polarization in soft fibrous biological tissues. JAPANESE JOURNAL OF APPLIED PHYSICS 2024; 63:04SP17. [DOI: 10.35848/1347-4065/ad2d0a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
Acoustically induced electric polarization and its anisotropy in soft fibrous biological tissues were investigated under wet conditions. Assuming that fibrous tissues have polar uniaxial symmetry, stress-induced polarization should occur in the direction of fiber orientation in the non-shear terms of the piezoelectric tensor. Using the acoustically stimulated electromagnetic method, we measured the anisotropic properties of acoustically induced polarization in wet samples of Achilles tendon, skeletal muscle, and aortic wall. In all these tissues, the major non-shear term was confirmed to be
d
33
,
with polarization occurring along the fibrous direction. In Achilles tendon, which contains highly oriented collagen fibers, the uniaxially symmetric fiber structure explains the anisotropic polarization well. However, substantial polarization perpendicular to the fiber orientation (the
d
11
term) was observed in skeletal muscle and aortic wall, suggesting that the presence of fiber crimps and complex extracellular matrix produces polarization that does not occur in the uniaxially symmetric structures.
Collapse
|
111
|
Zamirpour S, Xuan Y, Wang Z, Gomez A, Leach JR, Mitsouras D, Saloner DA, Guccione JM, Ge L, Tseng EE. Height and body surface area versus wall stress for stratification of mid-term outcomes in ascending aortic aneurysm. IJC HEART & VASCULATURE 2024; 51:101375. [PMID: 38435381 PMCID: PMC10909604 DOI: 10.1016/j.ijcha.2024.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Objectives Current diameter-based guidelines for ascending thoracic aortic aneurysms (aTAA) do not consistently predict risk of dissection/rupture. ATAA wall stresses may enhance risk stratification independent of diameter. The relation of wall stresses and diameter indexed to height and body surface area (BSA) is unknown. Our objective was to compare aTAA wall stresses with indexed diameters in relation to all-cause mortality at 3.75 years follow-up. Methods Finite element analyses were performed in a veteran population with aortas ≥ 4.0 cm. Three-dimensional geometries were reconstructed from computed tomography with models accounting for pre-stress geometries. A fiber-embedded hyperelastic material model was applied to obtain wall stress distributions under systolic pressure. Peak wall stresses were compared across guideline thresholds for diameter/BSA and diameter/height. Hazard ratios for all-cause mortality and surgical aneurysm repair were estimated using cause-specific Cox proportional hazards models. Results Of 253 veterans, 54 (21 %) had aneurysm repair at 3.75 years. Indexed diameter alone would have prompted repair at baseline in 17/253 (6.7 %) patients, including only 4/230 (1.7 %) with diameter < 5.5 cm. Peak wall stresses did not significantly differ across guideline thresholds for diameter/BSA (circumferential: p = 0.15; longitudinal: p = 0.18), but did differ for diameter/height (circumferential: p = 0.003; longitudinal: p = 0.048). All-cause mortality was independently associated with peak longitudinal stresses (p = 0.04). Peak longitudinal stresses were best predicted by diameter (c-statistic = 0.66), followed by diameter/height (c-statistic = 0.59), and diameter/BSA (c-statistic = 0.55). Conclusions Diameter/height improved stratification of peak wall stresses compared to diameter/BSA. Peak longitudinal stresses predicted all-cause mortality independent of age and indexed diameter and may aid risk stratification for aTAA adverse events.
Collapse
Affiliation(s)
- Siavash Zamirpour
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
- School of Medicine, University of California, San Francisco, USA
| | - Yue Xuan
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
| | - Zhongjie Wang
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
| | - Axel Gomez
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
| | - Joseph R. Leach
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
| | - Dimitrios Mitsouras
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
| | - David A. Saloner
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
| | - Julius M. Guccione
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
| | - Liang Ge
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
| | - Elaine E. Tseng
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
| |
Collapse
|
112
|
Ahuja A, Guo X, Noblet JN, Krieger JF, Roeder B, Haulon S, Chambers S, Kassab G. Dissection flap fenestration can reduce re-apposition force of the false lumen in type-B aortic dissection: a computational and bench study. Front Bioeng Biotechnol 2024; 12:1326190. [PMID: 38605989 PMCID: PMC11007646 DOI: 10.3389/fbioe.2024.1326190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
Thoracic endovascular aortic repair (TEVAR) has been widely adopted as a standard for treating complicated acute and high-risk uncomplicated Stanford Type-B aortic dissections. The treatment redirects the blood flow towards the true lumen by covering the proximal dissection tear which promotes sealing of the false lumen. Despite advances in TEVAR, over 30% of Type-B dissection patients require additional interventions. This is primarily due to the presence of a persistent patent false lumen post-TEVAR that could potentially enlarge over time. We propose a novel technique, called slit fenestration pattern creation, which reduces the forces for re-apposition of the dissection flap (i.e., increase the compliance of the flap). We compute the optimal slit fenestration design using a virtual design of experiment (DOE) and demonstrate its effectiveness in reducing the re-apposition forces through computational simulations and benchtop experiments using porcine aortas. The findings suggest this potential therapy can drastically reduce the radial loading required to re-appose a dissected flap against the aortic wall to ensure reconstitution of the aortic wall (remodeling).
Collapse
Affiliation(s)
- Aashish Ahuja
- California Medical Innovations Institute, San Diego, CA, United States
| | - Xiaomei Guo
- California Medical Innovations Institute, San Diego, CA, United States
| | | | | | | | - Stéphan Haulon
- Chirurgie Vasculaire—Centre de l’Aorte, Hôpital Marie Lannelongue, Université Paris Saclay, Paris, France
| | | | - Ghassan Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
113
|
Lin AC, Pirrung F, Niestrawska JA, Ondruschka B, Pinter G, Henyš P, Hammer N. Shape or size matters? Towards standard reporting of tensile testing parameters for human soft tissues: systematic review and finite element analysis. Front Bioeng Biotechnol 2024; 12:1368383. [PMID: 38600944 PMCID: PMC11005100 DOI: 10.3389/fbioe.2024.1368383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Material properties of soft-tissue samples are often derived through uniaxial tensile testing. For engineering materials, testing parameters (e.g., sample geometries and clamping conditions) are described by international standards; for biological tissues, such standards do not exist. To investigate what testing parameters have been reported for tensile testing of human soft-tissue samples, a systematic review of the literature was performed using PRISMA guidelines. Soft tissues are described as anisotropic and/or hyperelastic. Thus, we explored how the retrieved parameters compared against standards for engineering materials of similar characteristics. All research articles published in English, with an Abstract, and before 1 January 2023 were retrieved from databases of PubMed, Web of Science, and BASE. After screening of articles based on search terms and exclusion criteria, a total 1,096 articles were assessed for eligibility, from which 361 studies were retrieved and included in this review. We found that a non-tapered shape is most common (209 of 361), followed by a tapered sample shape (92 of 361). However, clamping conditions varied and were underreported (156 of 361). As a preliminary attempt to explore how the retrieved parameters might influence the stress distribution under tensile loading, a pilot study was performed using finite element analysis (FEA) and constitutive modeling for a clamped sample of little or no fiber dispersion. The preliminary FE simulation results might suggest the hypothesis that different sample geometries could have a profound influence on the stress-distribution under tensile loading. However, no conclusions can be drawn from these simulations, and future studies should involve exploring different sample geometries under different computational models and sample parameters (such as fiber dispersion and clamping effects). Taken together, reporting and choice of testing parameters remain as challenges, and as such, recommendations towards standard reporting of uniaxial tensile testing parameters for human soft tissues are proposed.
Collapse
Affiliation(s)
- Alvin C. Lin
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
| | - Felix Pirrung
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Justyna A. Niestrawska
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerald Pinter
- Institute of Materials Science and Testing of Polymers, Montanuniversität Leoben, Leoben, Austria
| | - Petr Henyš
- Institute of New Technologies and Applied Informatics, Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Liberec, Czechia
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany
- Fraunhofer Institute for Forming Tools, Division of Biomechatronics, Dresden, Germany
| |
Collapse
|
114
|
Sauer TJ, Buckler AJ, Abadi E, Daubert M, Douglas PS, Samei E, Segars WP. Development of physiologically-informed computational coronary artery plaques for use in virtual imaging trials. Med Phys 2024; 51:1583-1596. [PMID: 38306457 PMCID: PMC11044179 DOI: 10.1002/mp.16959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/30/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND As a leading cause of death, worldwide, cardiovascular disease is of great clinical importance. Among cardiovascular diseases, coronary artery disease (CAD) is a key contributor, and it is the attributed cause of death for 10% of all deaths annually. The prevalence of CAD is commensurate with the rise in new medical imaging technologies intended to aid in its diagnosis and treatment. The necessary clinical trials required to validate and optimize these technologies require a large cohort of carefully controlled patients, considerable time to complete, and can be prohibitively expensive. A safer, faster, less expensive alternative is using virtual imaging trials (VITs), utilizing virtual patients or phantoms combined with accurate computer models of imaging devices. PURPOSE In this work, we develop realistic, physiologically-informed models for coronary plaques for application in cardiac imaging VITs. METHODS Histology images of plaques at micron-level resolution were used to train a deep convolutional generative adversarial network (DC-GAN) to create a library of anatomically variable plaque models with clinical anatomical realism. The stability of each plaque was evaluated by finite element analysis (FEA) in which plaque components and vessels were meshed as volumes, modeled as specialized tissues, and subjected to the range of normal coronary blood pressures. To demonstrate the utility of the plaque models, we combined them with the whole-body XCAT computational phantom to perform initial simulations comparing standard energy-integrating detector (EID) CT with photon-counting detector (PCD) CT. RESULTS Our results show the network is capable of generating realistic, anatomically variable plaques. Our simulation results provide an initial demonstration of the utility of the generated plaque models as targets to compare different imaging devices. CONCLUSIONS Vast, realistic, and variable CAD pathologies can be generated to incorporate into computational phantoms for VITs. There they can serve as a known truth from which to optimize and evaluate cardiac imaging technologies quantitatively.
Collapse
Affiliation(s)
- Thomas J Sauer
- Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, the Duke University Medical Center, Durham, North Carolina, USA
| | | | - Ehsan Abadi
- Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, the Duke University Medical Center, Durham, North Carolina, USA
| | - Melissa Daubert
- Duke Department of Medicine, the Duke University Medical Center, Durham, North Carolina, USA
| | - Pamela S Douglas
- Duke Department of Medicine, the Duke University Medical Center, Durham, North Carolina, USA
| | - Ehsan Samei
- Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, the Duke University Medical Center, Durham, North Carolina, USA
| | - William P Segars
- Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, the Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
115
|
Kailash KA, Hawes JZ, Cocciolone AJ, Bersi MR, Mecham RP, Wagenseil JE. Constitutive Modeling of Mouse Arteries Suggests Changes in Directional Coupling and Extracellular Matrix Remodeling That Depend on Artery Type, Age, Sex, and Elastin Amounts. J Biomech Eng 2024; 146:051001. [PMID: 37646627 DOI: 10.1115/1.4063272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Arterial stiffening occurs during natural aging, is associated with an increased risk of adverse cardiovascular events, and can follow different timelines in males and females. One mechanism of arterial stiffening includes remodeling of the extracellular matrix (ECM), which alters the wall material properties. We used elastin haploinsufficient (Eln+/-) and wildtype (Eln+/+) mice to investigate how material properties of two different arteries (ascending aorta and carotid artery) change with age, sex, and ECM composition. We used a constitutive model by Dong and Sun that is based on the Holzapfel-Gasser-Ogden (HGO) type, but does not require a discrete number of fibrous ECM families and allows varied deformation coupling. We find that the amount of deformation coupling for the best fit model depends on the artery type. We also find that remodeling to maintain homeostatic (i.e., young, wildtype) values of biomechanical parameters with age, sex, and ECM composition depends on the artery type, with ascending aorta being more adaptable than carotid artery. Fitted material constants indicate sex-dependent remodeling that may be important for determining the time course of arterial stiffening in males and females. We correlated fitted material constants with ECM composition measured by biochemical (ascending aorta) or histological (carotid artery) methods. We show significant correlations between ECM composition and material parameters for the mean values for each group, with biochemical measurements correlating more strongly than histological measurements. Understanding how arterial stiffening depends on age, sex, ECM composition, and artery type may help design effective, personalized clinical treatment strategies.
Collapse
Affiliation(s)
- Keshav A Kailash
- Biomedical Engineering, Washington University, St. Louis, MO 63130
| | - Jie Z Hawes
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130
| | - Austin J Cocciolone
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130
| | - Matthew R Bersi
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130
| | - Robert P Mecham
- Cell Biology and Physiology, Washington University, St. Louis, MO 63130
| | - Jessica E Wagenseil
- Mechanical Engineering and Materials Science, Washington University, One Brookings Dr., MSC 1185-208-125, St. Louis, MO 63130
| |
Collapse
|
116
|
Gheysen L, Maes L, Caenen A, Segers P, Peirlinck M, Famaey N. Uncertainty quantification of the wall thickness and stiffness in an idealized dissected aorta. J Mech Behav Biomed Mater 2024; 151:106370. [PMID: 38224645 DOI: 10.1016/j.jmbbm.2024.106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/17/2024]
Abstract
Personalized treatment informed by computational models has the potential to markedly improve the outcome for patients with a type B aortic dissection. However, existing computational models of dissected walls significantly simplify the characteristic false lumen, tears and/or material behavior. Moreover, the patient-specific wall thickness and stiffness cannot be accurately captured non-invasively in clinical practice, which inevitably leads to assumptions in these wall models. It is important to evaluate the impact of the corresponding uncertainty on the predicted wall deformations and stress, which are both key outcome indicators for treatment optimization. Therefore, a physiology-inspired finite element framework was proposed to model the wall deformation and stress of a type B aortic dissection at diastolic and systolic pressure. Based on this framework, 300 finite element analyses, sampled with a Latin hypercube, were performed to assess the global uncertainty, introduced by 4 uncertain wall thickness and stiffness input parameters, on 4 displacement and stress output parameters. The specific impact of each input parameter was estimated using Gaussian process regression, as surrogate model of the finite element framework, and a δ moment-independent analysis. The global uncertainty analysis indicated minor differences between the uncertainty at diastolic and systolic pressure. For all output parameters, the 4th quartile contained the major fraction of the uncertainty. The parameter-specific uncertainty analysis elucidated that the material stiffness and relative thickness of the dissected membrane were the respective main determinants of the wall deformation and stress. The uncertainty analysis provides insight into the effect of uncertain wall thickness and stiffness parameters on the predicted deformation and stress. Moreover, it emphasizes the need for probabilistic rather than deterministic predictions for clinical decision making in aortic dissections.
Collapse
Affiliation(s)
- Lise Gheysen
- Institute for Biomedical Engineering and Technology, Electronics and Information Systems, Ghent University, Belgium.
| | - Lauranne Maes
- Biomechanics Section, Mechanical Engineering, KU Leuven, Belgium
| | - Annette Caenen
- Institute for Biomedical Engineering and Technology, Electronics and Information Systems, Ghent University, Belgium; Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Patrick Segers
- Institute for Biomedical Engineering and Technology, Electronics and Information Systems, Ghent University, Belgium
| | - Mathias Peirlinck
- Department of BioMechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands
| | - Nele Famaey
- Biomechanics Section, Mechanical Engineering, KU Leuven, Belgium
| |
Collapse
|
117
|
Jyoti Mech D, Suhail Rizvi M. Micromechanics of fibrous scaffolds and their stiffness sensing by cells. Biomed Mater 2024; 19:025035. [PMID: 38290154 DOI: 10.1088/1748-605x/ad2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Mechanical properties of the tissue engineering scaffolds are known to play a crucial role in cell response. Therefore, an understanding of the cell-scaffold interactions is of high importance. Here, we have utilized discrete fiber network model to quantitatively study the micromechanics of fibrous scaffolds with different fiber arrangements and cross-linking densities. We observe that localized forces on the scaffold result in its anisotropic deformation even for isotropic fiber arrangements. We also see an exponential decay of the displacement field with distance from the location of applied force. This nature of the decay allows us to estimate the characteristic length for force transmission in fibrous scaffolds. Furthermore, we also looked at the stiffness sensing of fibrous scaffolds by individual cells and its dependence on the cellular sensing mechanism. For this, we considered two conditions- stress-controlled, and strain-controlled application of forces by a cell. With fixed strain, we find that the stiffness sensed by a cell is proportional to the scaffold's 'macroscopic' elastic modulus. However, under fixed stress application by the cell, the stiffness sensed by the cell also depends on the cell's own stiffness. In fact, the stiffness values for the same scaffold sensed by the stiff and soft cells can differ from each other by an order of magnitude. The insights from this work will help in designing tissue engineering scaffolds for applications where mechanical stimuli are a critical factor.
Collapse
Affiliation(s)
- Dhruba Jyoti Mech
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Mohd Suhail Rizvi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
- Computational Biology Research Lab, IIT Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| |
Collapse
|
118
|
Song G, Gosain AK, Buganza Tepole A, Rhee K, Lee T. Exploring uncertainty in hyper-viscoelastic properties of scalp skin through patient-specific finite element models for reconstructive surgery. Comput Methods Biomech Biomed Engin 2024:1-15. [PMID: 38339988 DOI: 10.1080/10255842.2024.2313067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Understanding skin responses to external forces is crucial for post-cutaneous flap wound healing. However, the in vivo viscoelastic behavior of scalp skin remains poorly understood. Personalized virtual surgery simulations offer a way to study tissue responses in relevant 3D geometries. Yet, anticipating wound risk remains challenging due to limited data on skin viscoelasticity, which hinders our ability to determine the interplay between wound size and stress levels. To bridge this gap, we reexamine three clinical cases involving scalp reconstruction using patient-specific geometric models and employ uncertainty quantification through a Monte Carlo simulation approach to study the effect of skin viscoelasticity on the final stress levels from reconstructive surgery. Utilizing the generalized Maxwell model via the Prony series, we can parameterize and efficiently sample a realistic range of viscoelastic response and thus shed light on the influence of viscoelastic material uncertainty in surgical scenarios. Our analysis identifies regions at risk of wound complications based on reported threshold stress values from the literature and highlights the significance of focusing on long-term responses rather than short-term ones.
Collapse
Affiliation(s)
- Gyohyeon Song
- Department of Intelligent Robotics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Arun K Gosain
- Surgery (Pediatric Surgery), Plastic Surgery, Lurie Children's Hospital of Chicago, Northwestern Feinberg School of Medicine, Chicago 60611, IL, United States
| | - Adrian Buganza Tepole
- Department of Mechanical Engineering, Purdue University, West Lafayette 47907, IN, United States
| | - Kyehan Rhee
- Department of Mechanical Engineering, Myongji University, Yongin, 17058, Republic of Korea
| | - Taeksang Lee
- Department of Mechanical Engineering, Myongji University, Yongin, 17058, Republic of Korea
| |
Collapse
|
119
|
Keshavanarayana P, Spill F. A mechanical modeling framework to study endothelial permeability. Biophys J 2024; 123:334-348. [PMID: 38169215 PMCID: PMC10870174 DOI: 10.1016/j.bpj.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
The inner lining of blood vessels, the endothelium, is made up of endothelial cells. Vascular endothelial (VE)-cadherin protein forms a bond with VE-cadherin from neighboring cells to determine the size of gaps between the cells and thereby regulate the size of particles that can cross the endothelium. Chemical cues such as thrombin, along with mechanical properties of the cell and extracellular matrix are known to affect the permeability of endothelial cells. Abnormal permeability is found in patients suffering from diseases including cardiovascular diseases, cancer, and COVID-19. Even though some of the regulatory mechanisms affecting endothelial permeability are well studied, details of how several mechanical and chemical stimuli acting simultaneously affect endothelial permeability are not yet understood. In this article, we present a continuum-level mechanical modeling framework to study the highly dynamic nature of the VE-cadherin bonds. Taking inspiration from the catch-slip behavior that VE-cadherin complexes are known to exhibit, we model the VE-cadherin homophilic bond as cohesive contact with damage following a traction-separation law. We explicitly model the actin cytoskeleton and substrate to study their role in permeability. Our studies show that mechanochemical coupling is necessary to simulate the influence of the mechanical properties of the substrate on permeability. Simulations show that shear between cells is responsible for the variation in permeability between bicellular and tricellular junctions, explaining the phenotypic differences observed in experiments. An increase in the magnitude of traction force due to disturbed flow that endothelial cells experience results in increased permeability, and it is found that the effect is higher on stiffer extracellular matrix. Finally, we show that the cylindrical monolayer exhibits higher permeability than the planar monolayer under unconstrained cases. Thus, we present a contact mechanics-based mechanochemical model to investigate the variation in the permeability of endothelial monolayer due to multiple loads acting simultaneously.
Collapse
Affiliation(s)
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
120
|
Nicolini LF, Oliveira RC, Ribeiro M, Stoffel M, Markert B, Kobbe P, Hildebrand F, Trobisch P, Simões MS, de Mello Roesler CR, Fancello EA. Tether pre-tension within vertebral body tethering reduces motion of the spine and influences coupled motion: a finite element analysis. Comput Biol Med 2024; 169:107851. [PMID: 38113683 DOI: 10.1016/j.compbiomed.2023.107851] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Anterior Vertebral Body Tethering (VBT) is a novel fusionless treatment option for selected adolescent idiopathic scoliosis patients which is gaining widespread interest. The primary objective of this study is to investigate the effects of tether pre-tension within VBT on the biomechanics of the spine including sagittal and transverse parameters as well as primary motion, coupled motion, and stresses acting on the L2 superior endplate. For that purpose, we used a calibrated and validated Finite Element model of the L1-L2 spine. The VBT instrumentation was inserted on the left side of the L1-L2 segment with different cord pre-tensions and submitted to an external pure moment of 6 Nm in different directions. The range of motion (ROM) for the instrumented spine was measured from the initial post-VBT position. The magnitudes of the ROM of the native spine and VBT-instrumented with pre-tensions of 100 N, 200 N, and 300 N were, respectively, 3.29°, 2.35°, 1.90° and 1.61° in extension, 3.30°, 3.46°, 2.79°, and 2.17° in flexion, 2.11°, 1.67°, 1.33° and 1.06° in right axial rotation, and 2.10°, 1.88°, 1.48° and 1.16° in left axial rotation. During flexion-extension, an insignificant coupled lateral bending motion was observed in the native spine. However, VBT instrumentation with pre-tensions of 100 N, 200 N, and 300 N generated coupled right lateral bending of 0.85°, 0.81°, and 0.71° during extension and coupled left lateral bending of 0.32°, 0.24°, and 0.19° during flexion, respectively. During lateral bending, a coupled extension motion of 0.33-0.40° is observed in the native spine, but VBT instrumentation with pre-tensions of 100 N, 200 N, and 300 N generates coupled flexion of 0.67°, 0.58°, and 0.42° during left (side of the implant) lateral bending and coupled extension of 1.28°, 1.07°, and 0.87° during right lateral bending, respectively. Therefore, vertebral body tethering generates coupled motion. Tether pre-tension within vertebral body tethering reduces the motion of the spine.
Collapse
Affiliation(s)
- Luis Fernando Nicolini
- Group of Analysis and Mechanical Design - GRANTE, Dep. of Mechanical Engineering, Federal University of Santa Catarina, Brazil; Mechanical and Aerospace Technology Laboratory (NUMAE), Dep. of Mechanical Engineering, Federal University of Santa Maria, Brazil.
| | - Rafael Carreira Oliveira
- Group of Analysis and Mechanical Design - GRANTE, Dep. of Mechanical Engineering, Federal University of Santa Catarina, Brazil
| | - Marx Ribeiro
- Group of Analysis and Mechanical Design - GRANTE, Dep. of Mechanical Engineering, Federal University of Santa Catarina, Brazil; Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Marcus Stoffel
- Institute of General Mechanics (IAM), RWTH Aachen University, Germany
| | - Bernd Markert
- Institute of General Mechanics (IAM), RWTH Aachen University, Germany
| | - Philipp Kobbe
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | | | - Marcelo Simoni Simões
- Biomechanical Engineering Laboratory - LEBm, Dep. of Mechanical Engineering, Federal University of Santa Catarina, Brazil
| | - Carlos Rodrigo de Mello Roesler
- Group of Analysis and Mechanical Design - GRANTE, Dep. of Mechanical Engineering, Federal University of Santa Catarina, Brazil; Biomechanical Engineering Laboratory - LEBm, Dep. of Mechanical Engineering, Federal University of Santa Catarina, Brazil
| | - Eduardo Alberto Fancello
- Group of Analysis and Mechanical Design - GRANTE, Dep. of Mechanical Engineering, Federal University of Santa Catarina, Brazil; Biomechanical Engineering Laboratory - LEBm, Dep. of Mechanical Engineering, Federal University of Santa Catarina, Brazil
| |
Collapse
|
121
|
Campos T, Araújo R, Xavier J, Nguyễn Q, Dourado N, Morais J, Pereira F. Identification of Apple Fruit-Skin Constitutive Laws by Full-Field Methods Using Uniaxial Tensile Loading. MATERIALS (BASEL, SWITZERLAND) 2024; 17:700. [PMID: 38591566 PMCID: PMC10856416 DOI: 10.3390/ma17030700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 04/10/2024]
Abstract
The protective and preservative role of apple skin in maintaining the integrity of the fruit is well-known, with its mechanical behaviour playing a pivotal role in determining fruit storage capacity. This study employs a combination of experimental and numerical methodologies, specifically utilising the digital image correlation (DIC) technique. A specially devised inverse strategy is applied to evaluate the mechanical behaviour of apple skin under uniaxial tensile loading. Three apple cultivars were tested in this work: Malus domestica Starking Delicious, Malus pumila Rennet, and Malus domestica Golden Delicious. Stress-strain curves were reconstructed, revealing distinct variations in the mechanical responses among these cultivars. Yeoh's hyperelastic model was fitted to the experimental data to identify the coefficients capable of reproducing the non-linear deformation. The results suggest that apple skin varies significantly in composition and structure among the tested cultivars, as evidenced by differences in elastic properties and non-linear behaviour. These differences can significantly affect how fruit is handled, stored, and transported. Thus, the insights resulting from this research enable the development of mathematical models based on the mechanical behaviour of apple tissue, constituting important data for improvements in the economics of the agri-food industry.
Collapse
Affiliation(s)
- Teresa Campos
- CMEMS-UMINHO, Universidade do Minho, 4800-058 Guimarães, Portugal (N.D.)
- LABBELS–Associate Laboratory, 4800-058 Guimarães, Portugal
| | - Rafael Araújo
- CITAB/UTAD, Departamento de Engenharias, Quinta de Prados, 5001-801 Vila Real, Portugal (J.M.); (F.P.)
| | - José Xavier
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- LASI, Intelligent Systems Associate Laboratory, 4800-058 Guimarães, Portugal
| | - Quyền Nguyễn
- 2C2T-Centro de Ciência e Tecnologia Têxtil, Universidade do Minho, 4800-058 Guimarães, Portugal
| | - Nuno Dourado
- CMEMS-UMINHO, Universidade do Minho, 4800-058 Guimarães, Portugal (N.D.)
- LABBELS–Associate Laboratory, 4800-058 Guimarães, Portugal
| | - José Morais
- CITAB/UTAD, Departamento de Engenharias, Quinta de Prados, 5001-801 Vila Real, Portugal (J.M.); (F.P.)
| | - Fábio Pereira
- CITAB/UTAD, Departamento de Engenharias, Quinta de Prados, 5001-801 Vila Real, Portugal (J.M.); (F.P.)
| |
Collapse
|
122
|
Tang J, Liu W, Li X, Peng Y, Zhang Y, Hou S. Linking myosin heavy chain isoform shift to mechanical properties and fracture modes in skeletal muscle tissue. Biomech Model Mechanobiol 2024; 23:103-116. [PMID: 37568047 DOI: 10.1007/s10237-023-01761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Muscle fibers play a crucial role in the mechanical action of skeletal muscle tissue. However, it is unclear how the histological variations affect the mechanical properties of tissues. In this study, the shift of myosin heavy chain (MHC) isoforms is used for the first time to establish a linkage between tissue histological variation and passive mechanical properties. The shift of MHC isoform is found not only to induce significant differences in skeletal muscle passive mechanical properties, but also to lead to differences in strain rate responses. Non-negligible rate dependence is observed even in the conventionally defined quasi-static regime. Fidelity in the estimated constitutive parameters, which can be impacted due to variation in MHC isoforms and hence in rate sensitivity, is enhanced using a Bayesian inference framework. Subsequently, scanning electron microscopy and fluorescence microscopy are used to characterize the fracture morphology of muscle tissues and fibers. The fracture mode of both MHC I and II muscle fibers exhibited shearing of endomysium. Results show that the increase in strain rate only leads to stronger rebounding of the muscle fibers during tissue rupture without changing fracture modes.
Collapse
Affiliation(s)
- Jiabao Tang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China
| | - Wenyang Liu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China.
| | - Xuhong Li
- The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yun Peng
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Shujuan Hou
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China
| |
Collapse
|
123
|
Bellina E, Laurino ME, Perego A, Pezzinga A, Carpenedo L, Ninarello D, La Barbera L. Assessment of a fully-parametric thoraco-lumbar spine model generator with articulated ribcage. J Biomech 2024; 164:111951. [PMID: 38310005 DOI: 10.1016/j.jbiomech.2024.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
The present paper describes a novel user-friendly fully-parametric thoraco-lumbar spine CAD model generator including the ribcage, based on 22 independent parameters (1 posterior vertebral body height per vertebra + 4 sagittal alignment parameters, namely pelvic incidence, sacral slope, L1-L5 lumbar lordosis, and T1-T12 thoracic kyphosis). Reliable third-order polynomial regression equations were implemented in Solidworks to analytically calculate 56 morphological dependent parameters and to automatically generate the spine CAD model based on primitive geometrical features. A standard spine CAD model, representing the case-study of an average healthy adult, was then created and positively assessed in terms of spinal anatomy, ribcage morphology, and sagittal profile. The immediate translation from CAD to FEM for relevant biomechanical analyses was successfully demonstrated, first, importing the CAD model into Abaqus, and then, iteratively calibrating the constitutive parameters of one lumbar and three thoracic FSUs, with particular interest on the hyperelastic material properties of the IVD, and the spinal and costo-vertebral ligaments. The credibility of the resulting lumbo-sacral and thoracic spine FEM with/without ribcage were assessed and validated throughout comparison with extensive in vitro and in vivo data both in terms of kinematics (range of motion) and dynamics (intradiscal pressure) either collected under pure bending moments and complex loading conditions (bending moments + axial compressive force).
Collapse
Affiliation(s)
- Emilia Bellina
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; IRCCS Humanitas Research Hospital, Milan, Italy
| | - Maria Elvira Laurino
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Alice Perego
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Alice Pezzinga
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Linda Carpenedo
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Davide Ninarello
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Luigi La Barbera
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; IRCCS Galeazzi-Sant'Ambrogio Hospital, Milan, Italy.
| |
Collapse
|
124
|
Skacel P, Bursa J. Need for transverse strain data for fitting constitutive models of arterial tissue to uniaxial tests. J Mech Behav Biomed Mater 2024; 150:106194. [PMID: 38091922 DOI: 10.1016/j.jmbbm.2023.106194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 01/09/2024]
Abstract
The study deals with the process of estimation of material parameters from uniaxial test data of arterial tissue and focuses on the role of transverse strains. Two fitting strategies are analyzed and their impact on the predictive and descriptive capabilities of the resulting model is evaluated. The standard fitting procedure (strategy A) based on longitudinal stress-strain curves is compared with the enhanced approach (strategy B) taking also the transverse strain test data into account. The study is performed on a large set of material data adopted from literature and for a variety of constitutive models developed for fibrous soft tissues. The standard procedure (A) ignoring the transverse strain test data is found rather hazardous, leading often to unrealistic predictions of the model exhibiting auxetic behaviour. In contrast, the alternative fitting method (B) ensures a realistic strain response of the model and is proved to be superior since it does not require any significant demands of computational effort or additional testing. The results presented in this paper show that even the artificial transverse strain data (i.e., not measured during testing but generated ex post based on assumed Poisson's ratio) are much less hazardous than total disregard of the transverse strain response.
Collapse
Affiliation(s)
- Pavel Skacel
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Technicka 2896/2, 616 69, Brno, Czech Republic.
| | - Jiri Bursa
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Technicka 2896/2, 616 69, Brno, Czech Republic
| |
Collapse
|
125
|
Coccarelli A, Pant S, Polydoros I, Harraz OF. A new model for evaluating pressure-induced vascular tone in small cerebral arteries. Biomech Model Mechanobiol 2024; 23:271-286. [PMID: 37925376 PMCID: PMC10901969 DOI: 10.1007/s10237-023-01774-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/17/2023] [Indexed: 11/06/2023]
Abstract
The capacity of small cerebral arteries (SCAs) to adapt to pressure fluctuations has a fundamental physiological role and appears to be relevant in different pathological conditions. Here, we present a new computational model for quantifying the link, and its contributors, between luminal pressure and vascular tone generation in SCAs. This is assembled by combining a chemical sub-model, representing pressure-induced smooth muscle cell (SMC) signalling, with a mechanical sub-model for the tone generation and its transduction at tissue level. The devised model can accurately reproduce the impact of luminal pressure on different cytoplasmic components involved in myogenic signalling, both in the control case and when combined with some specific pharmacological interventions. Furthermore, the model is also able to capture and predict experimentally recorded pressure-outer diameter relationships obtained for vessels under control conditions, both in a Ca2 + -free bath and under drug inhibition. The modularity of the proposed framework allows the integration of new components for the study of a broad range of processes involved in the vascular function.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Sanjay Pant
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Ioannis Polydoros
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine, and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, USA
| |
Collapse
|
126
|
Li GY, Feng X, Yun SH. Simultaneous tensile and shear measurement of the human cornea in vivo using S0- and A0-wave optical coherence elastography. Acta Biomater 2024; 175:114-122. [PMID: 38101555 PMCID: PMC10872441 DOI: 10.1016/j.actbio.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Understanding corneal stiffness is valuable for improving refractive surgery, detecting corneal abnormalities, and assessing intraocular pressure. However, accurately measuring the elastic properties, specifically the tensile and shear moduli that govern mechanical deformation, has been challenging. To tackle this issue, we have developed guided-wave optical coherence elastography that can simultaneously excite and analyze symmetric (S0) and anti-symmetric (A0) elastic waves in the cornea at around 10 kHz frequencies, enabling us to extract tensile and shear properties from measured wave dispersion curves. We verified the technique using elastomer phantoms and ex vivo porcine corneas and investigated the dependence on intraocular pressure using acoustoelastic theory that incorporates corneal tension and a nonlinear constitutive tissue model. In a pilot study involving six healthy human subjects aged 31 to 62, we measured shear moduli (Gzx) of 94±20 kPa (mean±standard deviation) and tensile moduli (Exx) of 4.0±1.1 MPa at central corneas. Our preliminary analysis of age-dependence revealed contrasting trends: -8.3±4.5 kPa/decade for shear and 0.30±0.21 MPa/decade for tensile modulus. This OCE technique has the potential to become a highly useful clinical tool for the quantitative biomechanical assessment of the cornea. STATEMENT OF SIGNIFICANCE: This article reports an innovative elastography technique using two guided elastic waves, demonstrating the measurement of both tensile and shear moduli in human cornea in vivo with unprecedented precision. This technique paves the way for comprehensive investigations into corneal mechanics and holds clinical significance in various aspects of corneal health and disease management.
Collapse
Affiliation(s)
- Guo-Yang Li
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom St., Boston, MA 02114, USA
| | - Xu Feng
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom St., Boston, MA 02114, USA
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom St., Boston, MA 02114, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
127
|
Savvopoulos F, Keeling MC, Carassiti D, Fogell NA, Patel MB, Naser J, Gavara N, de Silva R, Krams R. Assessment of the nano-mechanical properties of healthy and atherosclerotic coronary arteries by atomic force microscopy. J R Soc Interface 2024; 21:20230674. [PMID: 38320600 PMCID: PMC10846958 DOI: 10.1098/rsif.2023.0674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Nano-indentation techniques might be better equipped to assess the heterogeneous material properties of plaques than macroscopic methods but there are no bespoke protocols for this kind of material testing for coronary arteries. Therefore, we developed a measurement protocol to extract mechanical properties from healthy and atherosclerotic coronary artery tissue sections. Young's modulus was derived from force-indentation data. Metrics of collagen fibre density were extracted from the same tissue, and the local material properties were co-registered to the local collagen microstructure with a robust framework. The locations of the indentation were retrospectively classified by histological category (healthy, plaque, lipid-rich, fibrous cap) according to Picrosirius Red stain and adjacent Hematoxylin & Eosin and Oil-Red-O stains. Plaque tissue was softer (p < 0.001) than the healthy coronary wall. Areas rich in collagen within the plaque (fibrous cap) were significantly (p < 0.001) stiffer than areas poor in collagen/lipid-rich, but less than half as stiff as the healthy coronary media. Young's moduli correlated (Pearson's ρ = 0.53, p < 0.05) with collagen content. Atomic force microscopy (AFM) is capable of detecting tissue stiffness changes related to collagen density in healthy and diseased cardiovascular tissue. Mechanical characterization of atherosclerotic plaques with nano-indentation techniques could refine constitutive models for computational modelling.
Collapse
Affiliation(s)
- Fotios Savvopoulos
- Department of Bioengineering, Imperial College London, London SW3 6LR, UK
- National Heart and Lung Institute, Department of Medicine, Imperial College London, London SW3 6LR, UK
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Michael C. Keeling
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Daniele Carassiti
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Nicholas A. Fogell
- National Heart and Lung Institute, Department of Medicine, Imperial College London, London SW3 6LR, UK
| | - Miten B. Patel
- National Heart and Lung Institute, Department of Medicine, Imperial College London, London SW3 6LR, UK
| | - Jarka Naser
- National Heart and Lung Institute, Department of Medicine, Imperial College London, London SW3 6LR, UK
| | - Núria Gavara
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
- Unit of Biophysics and Bioengineering, Medical School, University of Barcelona, Barcelona 08007, Spain
| | - Ranil de Silva
- National Heart and Lung Institute, Department of Medicine, Imperial College London, London SW3 6LR, UK
| | - Rob Krams
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
128
|
Sarantides P, Raptis A, Mathioulakis D, Moulakakis K, Kakisis J, Manopoulos C. Computational Study of Abdominal Aortic Aneurysm Walls Accounting for Patient-Specific Non-Uniform Intraluminal Thrombus Thickness and Distinct Material Models: A Pre- and Post-Rupture Case. Bioengineering (Basel) 2024; 11:144. [PMID: 38391630 PMCID: PMC10886172 DOI: 10.3390/bioengineering11020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
An intraluminal thrombus (ILT) is present in the majority of abdominal aortic aneurysms, playing a crucial role in their growth and rupture. Although most computational studies do not include the ILT, in the present study, this is taken into account, laying out the whole simulation procedure, namely, from computed tomography scans to medical image segmentation, geometry reconstruction, mesh generation, biomaterial modeling, finite element analysis, and post-processing, all carried out in open software. By processing the tomography scans of a patient's aneurysm before and after rupture, digital twins are reconstructed assuming a uniform aortic wall thickness. The ILT and the aortic wall are assigned different biomaterial models; namely, the first is modeled as an isotropic linear elastic material, and the second is modeled as the Mooney-Rivlin hyperelastic material as well as the transversely isotropic hyperelastic Holzapfel-Gasser-Ogden nonlinear material. The implementation of the latter requires the designation of local Cartesian coordinate systems in the aortic wall, suitably oriented in space, for the proper orientation of the collagen fibers. The composite aneurysm geometries (ILT and aortic wall structures) are loaded with normal and hypertensive static intraluminal pressure. Based on the calculated stress and strain distributions, ILT seems to be protecting the aneurysm from a structural point of view, as the highest stresses appear in the thrombus-free areas of the aneurysmal wall.
Collapse
Affiliation(s)
- Platon Sarantides
- Laboratory of Biofluid Mechanics & Biomedical Technology, School of Mechanical Engineering, National Technical University of Athens, 157 72 Zografos, Greece
| | - Anastasios Raptis
- Laboratory of Biofluid Mechanics & Biomedical Technology, School of Mechanical Engineering, National Technical University of Athens, 157 72 Zografos, Greece
| | - Dimitrios Mathioulakis
- Laboratory of Biofluid Mechanics & Biomedical Technology, School of Mechanical Engineering, National Technical University of Athens, 157 72 Zografos, Greece
- School of Engineering, Bahrain Polytechnic, Isa Town P.O. Box 33349, Bahrain
| | - Konstantinos Moulakakis
- Department of Vascular Surgery, School of Medicine, University of Patras, 265 04 Patras, Greece
| | - John Kakisis
- Department of Vascular Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Christos Manopoulos
- Laboratory of Biofluid Mechanics & Biomedical Technology, School of Mechanical Engineering, National Technical University of Athens, 157 72 Zografos, Greece
| |
Collapse
|
129
|
Garyfallogiannis K, Purohit PK, Bassani JL. Cracks in tensile-contracting and tensile-dilating poroelastic materials. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES 2024; 286-287:112563. [PMID: 38130319 PMCID: PMC10732463 DOI: 10.1016/j.ijsolstr.2023.112563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Fibrous gels such as cartilage, blood clots, and carbon-nanotube-based sponges with absorbed oils suffer a reduction in volume by the expulsion of liquid under uniaxial tension, and this directly affects crack-tip fields and energy release rates. A continuum model is formulated for isotropic fibrous gels that exhibit a range of behaviors from volume increasing to volume decreasing in uniaxial tension by changing the ratio of two material parameters. The motion of liquid in the pores of such gels is modeled using poroelasticity. The direction of liquid fluxes around cracks is shown to depend on whether the gel locally increases or decreases in volume. The energy release rate for cracks is computed using a surface-independent integral and it is shown to have two contributions - one from the stresses in the solid network, and another from the flow of liquid. The contribution to the integral from liquid permeation tends to be negative when the gel exhibits volume decrease, which effectively is a crack shielding mechanism.
Collapse
Affiliation(s)
| | - Prashant K. Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John L. Bassani
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
130
|
Taç V, Linka K, Sahli-Costabal F, Kuhl E, Tepole AB. Benchmarking physics-informed frameworks for data-driven hyperelasticity. COMPUTATIONAL MECHANICS 2024; 73:49-65. [PMID: 38741577 PMCID: PMC11090478 DOI: 10.1007/s00466-023-02355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/13/2023] [Indexed: 05/16/2024]
Abstract
Data-driven methods have changed the way we understand and model materials. However, while providing unmatched flexibility, these methods have limitations such as reduced capacity to extrapolate, overfitting, and violation of physics constraints. Recently, frameworks that automatically satisfy these requirements have been proposed. Here we review, extend, and compare three promising data-driven methods: Constitutive Artificial Neural Networks (CANN), Input Convex Neural Networks (ICNN), and Neural Ordinary Differential Equations (NODE). Our formulation expands the strain energy potentials in terms of sums of convex non-decreasing functions of invariants and linear combinations of these. The expansion of the energy is shared across all three methods and guarantees the automatic satisfaction of objectivity, material symmetries, and polyconvexity, essential within the context of hyperelasticity. To benchmark the methods, we train them against rubber and skin stress-strain data. All three approaches capture the data almost perfectly, without overfitting, and have some capacity to extrapolate. This is in contrast to unconstrained neural networks which fail to make physically meaningful predictions outside the training range. Interestingly, the methods find different energy functions even though the prediction on the stress data is nearly identical. The most notable differences are observed in the second derivatives, which could impact performance of numerical solvers. On the rich data used in these benchmarks, the models show the anticipated trade-off between number of parameters and accuracy. Overall, CANN, ICNN and NODE retain the flexibility and accuracy of other data-driven methods without compromising on the physics. These methods are ideal options to model arbitrary hyperelastic material behavior.
Collapse
Affiliation(s)
- Vahidullah Taç
- School of Mechanical Engineering, Purdue University, West Lafayette, USA
| | - Kevin Linka
- Department of Mechanical Engineering, Stanford University, Stanford, USA
| | - Francisco Sahli-Costabal
- Department of Mechanical and Metallurgical Engineering, Institute for Biological and Medical Engineering, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Ellen Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, USA
| | - Adrian Buganza Tepole
- School of Mechanical Engineering, Purdue University, West Lafayette, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, USA
| |
Collapse
|
131
|
Lackner F, Šurina P, Fink J, Kotzbeck P, Kolb D, Stana J, Grab M, Hagl C, Tsilimparis N, Mohan T, Stana Kleinschek K, Kargl R. 4-Axis 3D-Printed Tubular Biomaterials Imitating the Anisotropic Nanofiber Orientation of Porcine Aortae. Adv Healthc Mater 2024; 13:e2302348. [PMID: 37807640 PMCID: PMC11469240 DOI: 10.1002/adhm.202302348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/16/2023] [Indexed: 10/10/2023]
Abstract
Many of the peculiar properties of the vasculature are related to the arrangement of anisotropic proteinaceous fibers in vessel walls. Understanding and imitating these arrangements can potentially lead to new therapies for cardiovascular diseases. These can be pre-surgical planning, for which patient-specific ex vivo anatomical models for endograft testing are of interest. Alternatively, therapies can be based on tissue engineering, for which degradable in vitro cell growth substrates are used to culture replacement parts. In both cases, materials are desirable that imitate the biophysical properties of vessels, including their tubular shapes and compliance. This work contributes to these demands by offering methods for the manufacturing of anisotropic 3D-printed nanofibrous tubular structures that have similar biophysical properties as porcine aortae, that are biocompatible, and that allow for controlled nutrient diffusion. Tubes of various sizes with axial, radial, or alternating nanofiber orientation along the blood flow direction are manufactured by a customized method. Blood pressure-resistant, compliant, stable, and cell culture-compatible structures are obtained, that can be degraded in vitro on demand. It is suggested that these healthcare materials can contribute to the next generation of cardiovascular therapies of ex vivo pre-surgical planning or in vitro cell culture.
Collapse
Affiliation(s)
- Florian Lackner
- Institute for Chemistry and Technology of Biobased System (IBioSys)Graz University of TechnologyStremayrgasse 98010GrazAustria
| | - Paola Šurina
- Institute for Chemistry and Technology of Biobased System (IBioSys)Graz University of TechnologyStremayrgasse 98010GrazAustria
| | - Julia Fink
- COREMED ‐ Centre of Regenerative and Precision MedicineJOANNEUM RESEARCH Forschungsgesellschaft mbHNeue Stiftingtalstraße 28010GrazAustria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of SurgeryMedical University of GrazAuenbruggerplatz 29/48036GrazAustria
| | - Petra Kotzbeck
- COREMED ‐ Centre of Regenerative and Precision MedicineJOANNEUM RESEARCH Forschungsgesellschaft mbHNeue Stiftingtalstraße 28010GrazAustria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of SurgeryMedical University of GrazAuenbruggerplatz 29/48036GrazAustria
| | - Dagmar Kolb
- Core Unit Ultrastructure AnalysisMedical University GrazStiftingtalstraße 6/II8010GrazAustria
- Gottfried Schatz Research Center for Cell Signaling Metabolism and AgingMedical University GrazStiftingtalstraße 68010GrazAustria
| | - Jan Stana
- Department of Vascular SurgeryLudwig Maximilian University MunichMarchioninistraße 1581377MunichGermany
| | - Maximilian Grab
- Department of Cardiac SurgeryLudwig Maximilian University MunichMarchioninistraße 1581377MunichGermany
| | - Christian Hagl
- Department of Cardiac SurgeryLudwig Maximilian University MunichMarchioninistraße 1581377MunichGermany
| | - Nikolaos Tsilimparis
- Department of Vascular SurgeryLudwig Maximilian University MunichMarchioninistraße 1581377MunichGermany
| | - Tamilselvan Mohan
- Institute for Chemistry and Technology of Biobased System (IBioSys)Graz University of TechnologyStremayrgasse 98010GrazAustria
- Laboratory for Characterization and Processing of PolymersUniversity of MariborSmetanova ulica 16Maribor2000Slovenia
| | - Karin Stana Kleinschek
- Institute for Chemistry and Technology of Biobased System (IBioSys)Graz University of TechnologyStremayrgasse 98010GrazAustria
| | - Rupert Kargl
- Institute for Chemistry and Technology of Biobased System (IBioSys)Graz University of TechnologyStremayrgasse 98010GrazAustria
- Laboratory for Characterization and Processing of PolymersUniversity of MariborSmetanova ulica 16Maribor2000Slovenia
| |
Collapse
|
132
|
Polzer S, Thompson S, Vittalbabu S, Ulu A, Carter D, Nordgren T, Eskandari M. MATLAB-Based Algorithm and Software for Analysis of Wavy Collagen Fibers. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2108-2126. [PMID: 37992253 DOI: 10.1093/micmic/ozad117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 11/24/2023]
Abstract
Knowledge of soft tissue fiber structure is necessary for accurate characterization and modeling of their mechanical response. Fiber configuration and structure informs both our understanding of healthy tissue physiology and of pathological processes resulting from diseased states. This study develops an automatic algorithm to simultaneously estimate fiber global orientation, abundance, and waviness in an investigated image. To our best knowledge, this is the first validated algorithm which can reliably separate fiber waviness from its global orientation for considerably wavy fibers. This is much needed feature for biological tissue characterization. The algorithm is based on incremental movement of local regions of interest (ROI) and analyzes two-dimensional images. Pixels belonging to the fiber are identified in the ROI, and ROI movement is determined according to local orientation of fiber within the ROI. The algorithm is validated with artificial images and ten images of porcine trachea containing wavy fibers. In each image, 80-120 fibers were tracked manually to serve as verification. The coefficient of determination R2 between curve lengths and histograms documenting the fiber waviness and global orientation were used as metrics for analysis. Verification-confirmed results were independent of image rotation and degree of fiber waviness, with curve length accuracy demonstrated to be below 1% of fiber curved length. Validation-confirmed median and interquartile range of R2, respectively, were 0.90 and 0.05 for curved length, 0.92 and 0.07 for waviness, and 0.96 and 0.04 for global orientation histograms. Software constructed from the proposed algorithm was able to track one fiber in about 1.1 s using a typical office computer. The proposed algorithm can reliably and accurately estimate fiber waviness, curve length, and global orientation simultaneously, moving beyond the limitations of prior methods.
Collapse
Affiliation(s)
- Stanislav Polzer
- Department of Applied Mechanics, VSB-Technical University of Ostrava, 17.listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Sarah Thompson
- Department of Mechanical Engineering, University of California at Riverside, 3401 Watkins Drive, Riverside CA 92521, USA
| | - Swathi Vittalbabu
- Department of Mechanical Engineering, University of California at Riverside, 3401 Watkins Drive, Riverside CA 92521, USA
| | - Arzu Ulu
- BREATHE Center School of Medicine, University of California at Riverside, 3401 Watkins Drive, Riverside CA 92521USA
| | - David Carter
- Molecular Cell and Systems Biology, University of California at Riverside, 900 University Ave, Riverside CA 92521, USA
| | - Tara Nordgren
- BREATHE Center School of Medicine, University of California at Riverside, 3401 Watkins Drive, Riverside CA 92521USA
| | - Mona Eskandari
- Department of Mechanical Engineering, University of California at Riverside, 3401 Watkins Drive, Riverside CA 92521, USA
- BREATHE Center School of Medicine, University of California at Riverside, 3401 Watkins Drive, Riverside CA 92521USA
| |
Collapse
|
133
|
Latorre ÁT, Martínez MA, Peña E. Characterizing atherosclerotic tissues: in silico analysis of mechanical properties using intravascular ultrasound and inverse finite element methods. Front Bioeng Biotechnol 2023; 11:1304278. [PMID: 38152285 PMCID: PMC10751321 DOI: 10.3389/fbioe.2023.1304278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Atherosclerosis is a prevalent cause of acute coronary syndromes that consists of lipid deposition inside the artery wall, creating an atherosclerotic plaque. Early detection may prevent the risk of plaque rupture. Nowadays, intravascular ultrasound (IVUS) is the most common medical imaging technology for atherosclerotic plaque detection. It provides an image of the section of the coronary wall and, in combination with new techniques, can estimate the displacement or strain fields. From these magnitudes and by inverse analysis, it is possible to estimate the mechanical properties of the plaque tissues and their stress distribution. In this paper, we presented a methodology based on two approaches to characterize the mechanical properties of atherosclerotic tissues. The first approach estimated the linear behavior under particular pressure. In contrast, the second technique yielded the non-linear hyperelastic material curves for the fibrotic tissues across the complete physiological pressure range. To establish and validate this method, the theoretical framework employed in silico models to simulate atherosclerotic plaques and their IVUS data. We analyzed different materials and real geometries with finite element (FE) models. After the segmentation of the fibrotic, calcification, and lipid tissues, an inverse FE analysis was performed to estimate the mechanical response of the tissues. Both approaches employed an optimization process to obtain the mechanical properties by minimizing the error between the radial strains obtained from the simulated IVUS and those achieved in each iteration. The second methodology was successfully applied to five distinct real geometries and four different fibrotic tissues, getting median R 2 of 0.97 and 0.92, respectively, when comparing the real and estimated behavior curves. In addition, the last technique reduced errors in the estimated plaque strain field by more than 20% during the optimization process, compared to the former approach. The findings enabled the estimation of the stress field over the hyperelastic plaque tissues, providing valuable insights into its risk of rupture.
Collapse
Affiliation(s)
- Álvaro T. Latorre
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Miguel A. Martínez
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Estefanía Peña
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
134
|
Vander Linden K, Vanderveken E, Van Hoof L, Maes L, Fehervary H, Dreesen S, Hendrickx A, Verbrugghe P, Rega F, Meuris B, Famaey N. Stiffness matters: Improved failure risk assessment of ascending thoracic aortic aneurysms. JTCVS OPEN 2023; 16:66-83. [PMID: 38204617 PMCID: PMC10775041 DOI: 10.1016/j.xjon.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 01/12/2024]
Abstract
Objectives Rupture and dissection are feared complications of ascending thoracic aortic aneurysms caused by mechanical failure of the wall. The current method of using the aortic diameter to predict the risk of wall failure and to determine the need for surgical resection lacks accuracy. Therefore, this study aims to identify reliable and clinically measurable predictors for aneurysm rupture or dissection by performing a personalized failure risk analysis, including clinical, geometrical, histologic, and mechanical data. Methods The study cohort consisted of 33 patients diagnosed with ascending aortic aneurysms without genetic syndromes. Uniaxial tensile tests until failure were performed to determine the wall strength. Material parameters were fitted against ex vivo planar biaxial data and in vivo pressure-diameter relationships at diastole and systole, which were derived from multiphasic computed tomography (CT) scans. Using the resulting material properties and in vivo data, the maximal in vivo stress at systole was calculated, assuming a thin-walled axisymmetric geometry. The retrospective failure risk was calculated by comparing the peak wall stress at suprasystolic pressure with the wall strength. Results The distensibility coefficient, reflecting aortic compliance and derived from blood pressure measurements and multiphasic CT scans, outperformed predictors solely based on geometrical features in assessing the risk of aneurysm failure. Conclusions In a clinical setting, multiphasic CT scans followed by the calculation of the distensibility coefficient are of added benefit in patient-specific, clinical decision-making. The distensibility derived from the aneurysm volume change has the best predictive power, as it also takes the axial stretch into account.
Collapse
Affiliation(s)
| | - Emma Vanderveken
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Lucas Van Hoof
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Lauranne Maes
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Heleen Fehervary
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- FIBEr, KU Leuven Core Facility for Biomechanical Experimentation, Leuven, Belgium
| | - Silke Dreesen
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Amber Hendrickx
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Peter Verbrugghe
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Filip Rega
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Bart Meuris
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Nele Famaey
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- FIBEr, KU Leuven Core Facility for Biomechanical Experimentation, Leuven, Belgium
| |
Collapse
|
135
|
Sesa M, Holthusen H, Lamm L, Böhm C, Brepols T, Jockenhövel S, Reese S. Mechanical modeling of the maturation process for tissue-engineered implants: Application to biohybrid heart valves. Comput Biol Med 2023; 167:107623. [PMID: 37922603 DOI: 10.1016/j.compbiomed.2023.107623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
The development of tissue-engineered cardiovascular implants can improve the lives of large segments of our society who suffer from cardiovascular diseases. Regenerative tissues are fabricated using a process called tissue maturation. Furthermore, it is highly challenging to produce cardiovascular regenerative implants with sufficient mechanical strength to withstand the loading conditions within the human body. Therefore, biohybrid implants for which the regenerative tissue is reinforced by standard reinforcement material (e.g. textile or 3d printed scaffold) can be an interesting solution. In silico models can significantly contribute to characterizing, designing, and optimizing biohybrid implants. The first step towards this goal is to develop a computational model for the maturation process of tissue-engineered implants. This paper focuses on the mechanical modeling of textile-reinforced tissue-engineered cardiovascular implants. First, an energy-based approach is proposed to compute the collagen evolution during the maturation process. Then, the concept of structural tensors is applied to model the anisotropic behavior of the extracellular matrix and the textile scaffold. Next, the newly developed material model is embedded into a special solid-shell finite element formulation with reduced integration. Finally, our framework is used to compute two structural problems: a pressurized shell construct and a tubular-shaped heart valve. The results show the ability of the model to predict collagen growth in response to the boundary conditions applied during the maturation process. Consequently, the model can predict the implant's mechanical response, such as the deformation and stresses of the implant.
Collapse
Affiliation(s)
- Mahmoud Sesa
- Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany.
| | - Hagen Holthusen
- Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany
| | - Lukas Lamm
- Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany
| | - Christian Böhm
- Biohybrid & Medical Textiles, Institute of Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany
| | - Tim Brepols
- Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany
| | - Stefan Jockenhövel
- Biohybrid & Medical Textiles, Institute of Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany
| | - Stefanie Reese
- Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany
| |
Collapse
|
136
|
Vervenne T, Maes L, Van Hoof L, Rega F, Famaey N. Drivers of vascular growth and remodeling: A computational framework to promote benign adaptation in the Ross procedure. J Mech Behav Biomed Mater 2023; 148:106170. [PMID: 37852088 DOI: 10.1016/j.jmbbm.2023.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
In the sixties, Dr Donald Ross designed a surgical solution for young patients with aortic valve disease by using the patients' own pulmonary valve. The Ross procedure is the only aortic valve replacement technique that can restore long-term survival and preserve quality of life. The main failure mode of the Ross procedure is wall dilatation, potentially leading to valve regurgitation and leakage. Dilatation occurs due to the inability of the pulmonary autograft to adapt to the sudden increase in loading when exposing to aortic pressures. Previous experimental data has shown that a permanent external support wrapped around the artery can prevent the acute dilatation of the arterial wall. However, the textile support leads to stress-shielding phenomena due to the loss of mechanical wall compliance. We present a pragmatic and modular computational framework of arterial growth and remodeling predicting the long-term outcomes of cardiovascular tissue adaptation, with and without textile wrapping. The model integrates mean, systolic and diastolic pressures and assumes the resulting wall stresses to drive the biological remodeling rules. Rather than a single mean pressure or stress deviation from the homeostatic state, we demonstrate that only pulsatile stresses can predict available experimental results. Therefore, we suggest that a biodegradable external support could induce benign remodeling in the Ross procedure. Indeed, a biodegradable textile wrapped around the autograft fulfills the trade-off between prevention of acute dilatation on the one hand and recovery of arterial wall compliance on the other hand. After further validation, the computational framework can set the basis for the development of an actual biodegradable external support for the Ross procedure with optimized polymer mechanical properties and degradation behavior.
Collapse
Affiliation(s)
- Thibault Vervenne
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300, Leuven, 3001, Belgium.
| | - Lauranne Maes
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300, Leuven, 3001, Belgium
| | - Lucas Van Hoof
- Cardiac Surgery, Department of Cardiovascular Sciences, KU Leuven, UZ Herestraat 49, Leuven, 3000, Belgium
| | - Filip Rega
- Cardiac Surgery, Department of Cardiovascular Sciences, KU Leuven, UZ Herestraat 49, Leuven, 3000, Belgium
| | - Nele Famaey
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300, Leuven, 3001, Belgium
| |
Collapse
|
137
|
Jilberto J, DePalma SJ, Lo J, Kobeissi H, Quach L, Lejeune E, Baker BM, Nordsletten D. A data-driven computational model for engineered cardiac microtissues. Acta Biomater 2023; 172:123-134. [PMID: 37879587 PMCID: PMC10938557 DOI: 10.1016/j.actbio.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Engineered heart tissues (EHTs) present a potential solution to some of the current challenges in the treatment of heart disease; however, the development of mature, adult-like cardiac tissues remains elusive. Mechanical stimuli have been observed to improve whole-tissue function and cardiomyocyte (CM) maturation, although our ability to fully utilize these mechanisms is hampered, in part, by our incomplete understanding of the mechanobiology of EHTs. In this work, we leverage experimental data, produced by a mechanically tunable experimental setup, to introduce a tissue-specific computational modeling pipeline of EHTs. Our new modeling pipeline generates simulated, image-based EHTs, capturing ECM and myofibrillar structure as well as functional parameters estimated directly from experimental data. This approach enables the unique estimation of EHT function by data-based estimation of CM active stresses. We use this experimental and modeling pipeline to study different mechanical environments, where we contrast the force output of the tissue with the computed active stress of CMs. We show that the significant differences in measured experimental forces can largely be explained by the levels of myofibril formation achieved by the CMs in the distinct mechanical environments, with active stress showing more muted variations across conditions. The presented model also enables us to dissect the relative contributions of myofibrils and extracellular matrix to tissue force output, a task difficult to address experimentally. These results highlight the importance of tissue-specific modeling to augment EHT experiments, providing deeper insights into the mechanobiology driving EHT function. STATEMENT OF SIGNIFICANCE: Engineered heart tissues (EHTs) have the potential to revolutionize the way heart disease is treated. However, developing mature cardiomyocytes (CM) in these tissues remains a challenge due, in part, to our incomplete understanding of the fundamental biomechanical mechanisms that drive EHT development. This work integrates the experimental data of an EHT platform developed to study the influence of mechanics in CM maturation with computational biomechanical models. This approach is used to augment conclusions obtained in-vitro - by measuring quantities such as cell stress and strain - and to dissect the relevance of each component in the whole tissue performance. Our results show how a combination of specialized in-silico and in-vitro approaches can help us better understand the mechanobiology of EHTs.
Collapse
Affiliation(s)
- Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan, MI, USA.
| | - Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | - Jason Lo
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | - Hiba Kobeissi
- Department of Mechanical Engineering, Boston University, MA, USA
| | - Lani Quach
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, MA, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | - David Nordsletten
- Department of Biomedical Engineering, University of Michigan, MI, USA; Department of Cardiac Surgery, University of Michigan, MI, USA; Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
138
|
Zamirpour S, Xuan Y, Wang Z, Gomez A, Leach J, Mitsouras D, Saloner DA, Guccione JM, Ge L, Tseng EE. Aortic area/height ratio, peak wall stresses, and outcomes in veterans with tricuspid versus bicuspid aortic valve-associated ascending thoracic aortic aneurysms. J Thorac Cardiovasc Surg 2023; 166:1583-1593.e2. [PMID: 37295642 DOI: 10.1016/j.jtcvs.2023.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND In ascending thoracic aortic aneurysm risk stratification, aortic area/height ratio is a reasonable alternative to maximum diameter. Biomechanically, aortic dissection may be initiated by wall stress exceeding wall strength. Our objective was to evaluate the association between aortic area/height and peak aneurysm wall stresses in relation to valve morphology and 3-year all-cause mortality. METHODS Finite element analysis was performed on 270 ascending thoracic aortic aneurysms (46 associated with bicuspid and 224 with tricuspid aortic valves) in veterans. Three-dimensional aneurysm geometries were reconstructed from computed tomography and models developed accounting for prestress geometries. Fiber-embedded hyperelastic material model was applied to obtain aneurysm wall stresses during systole. Correlations of aortic area/height ratio and peak wall stresses were compared across valve types. Area/height ratio was evaluated across peak wall stress thresholds obtained from proportional hazards models of 3-year all-cause mortality, with aortic repair treated as a competing risk. RESULTS Aortic area/height 10 cm2/m or greater coincided with 23/34 (68%) 5.0 to 5.4 cm and 20/24 (83%) 5.5 cm or greater aneurysms. Area/height correlated weakly with peak aneurysm stresses: for tricuspid valves, r = 0.22 circumferentially and r = 0.24 longitudinally; and for bicuspid valves, r = 0.42 circumferentially and r = 0.14 longitudinally. Age and peak longitudinal stress, but not area/height, were independent predictors of all-cause mortality (age: hazard ratio, 2.20 per 9-year increase, P = .013; peak longitudinal stress: hazard ratio, 1.78 per 73-kPa increase, P = .035). CONCLUSIONS Area/height was more predictive of high circumferential stresses in bicuspid than tricuspid valve aneurysms, but similarly less predictive of high longitudinal stresses in both valve types. Peak longitudinal stress, not area/height, independently predicted all-cause mortality. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Siavash Zamirpour
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif; Joint Medical Program, School of Public Health, University of California Berkeley, Berkeley, Calif, and School of Medicine, University of California, San Francisco, San Francisco, Calif
| | - Yue Xuan
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif
| | - Zhongjie Wang
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif
| | - Axel Gomez
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif
| | - Joseph Leach
- Department of Radiology and Biomedical Imaging, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif
| | - Dimitrios Mitsouras
- Department of Radiology and Biomedical Imaging, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif
| | - David A Saloner
- Department of Radiology and Biomedical Imaging, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif
| | - Julius M Guccione
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif
| | - Liang Ge
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif
| | - Elaine E Tseng
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif.
| |
Collapse
|
139
|
Turčanová M, Fischer J, Hermanová M, Bednařík Z, Skácel P, Burša J. Biaxial stretch can overcome discrepancy between global and local orientations of wavy collagen fibres. J Biomech 2023; 161:111868. [PMID: 37976938 DOI: 10.1016/j.jbiomech.2023.111868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/20/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Most frequently used structure-based constitutive models of arterial wall apply assumptions on two symmetric helical (and dispersed) fibre families which, however, are not well supported with histological findings where two collagen fibre families are seldom found. Moreover, bimodal distributions of fibre directions may originate also from their waviness combined with ignoring differences between local and global fibre orientations. In contrast, if the model parameters are identified without histological information on collagen fibre directions, the resulting mean angles of both fibre families are close to ±45°, which contradicts nearly all histologic findings. The presented study exploited automated polarized light microscopy for detection of collagen fibre directions in porcine aorta under different biaxial extensions and approximated the resulting histograms with unimodal and bimodal von Mises distributions. Their comparison showed dominantly circumferential orientation of collagen fibres. Their concentration parameter for unimodal distributions increased with circumferential load, no matter if acting uniaxially or equibiaxially. For bimodal distributions, the angle between both dominant fibre directions (chosen as measure of fibre alignment) decreased similarly for both uniaxial and equibiaxial loads. These results indicate the existence of a single family of wavy circumferential collagen fibres in all layers of the aortic wall. Bimodal distributions of fibre directions presented sometimes in literature may come rather from waviness of circumferentially arranged fibres than from two symmetric families of helical fibres. To obtain a final evidence, the fibre orientation should be analysed together with their waviness.
Collapse
Affiliation(s)
- Michaela Turčanová
- Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 2896/2, Brno 616 69, Czech Republic.
| | - Jiří Fischer
- Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 2896/2, Brno 616 69, Czech Republic
| | - Markéta Hermanová
- 1st Department of Pathology, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Zdeněk Bednařík
- 1st Department of Pathology, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Pavel Skácel
- Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 2896/2, Brno 616 69, Czech Republic
| | - Jiří Burša
- Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 2896/2, Brno 616 69, Czech Republic
| |
Collapse
|
140
|
Bhave A, Sittkus B, Urban G, Mescheder U, Möller K. Finite element analysis of the interaction between high-compliant balloon catheters and non-cylindrical vessel structures: towards tactile sensing balloon catheters. Biomech Model Mechanobiol 2023; 22:2033-2061. [PMID: 37573552 PMCID: PMC10613175 DOI: 10.1007/s10237-023-01749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
Aiming for sensing balloon catheters which are able to provide intraoperative information of the vessel stiffness and shape, the present study uses finite element analysis (FEA) to evaluate the interaction between high-compliant elastomer balloon catheters with the inner wall of a non-cylindrical-shaped lumen structure. The contact simulations are based on 3D models with varying balloon thicknesses and varying tissue geometries to analyse the resulting balloon and tissue deformation as well as the inflation pressure dependent contact area. The wrinkled tissue structure is modelled by utilizing a two-layer fibre-based Holzapfel-Gasser-Ogden constitutive model and the model parameters are adapted based on available biomechanical data for human urethral vessel samples. The balloon catheter structure is implemented as a high-compliant hyper-elastic silicone material (based on polydimethylsiloxane (PDMS)) with a varying catheter wall thickness between 0.5 and 2.5 µm. Two control parameters are introduced to describe the balloon shape adaption in reaction to a wrinkled vessel wall during the inflation process. Basic semi-quantitative relations are revealed depending on the evolving balloon deformation and contact surface. Based on these relations some general design guidelines for balloon-based sensor catheters are presented. The results of the conducted in-silico study reveal some general interdependencies with respect to the compliance ratio between balloon and tissue and also in respect of the tissue aspect ratio. Further they support the proposed concept of high-compliant balloon catheters equipped for tactile sensing as diagnosis approach in urology and angioplasty.
Collapse
Affiliation(s)
- Ashish Bhave
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054, Villingen-Schwenningen, Germany
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany
| | - Benjamin Sittkus
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany.
- Institute for Microsystems Technology (iMST), Furtwangen University, 78120, Furtwangen, Germany.
| | - Gerald Urban
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany
| | - Ulrich Mescheder
- Institute for Microsystems Technology (iMST), Furtwangen University, 78120, Furtwangen, Germany
- Associated to the Faculty of Engineering, University of Freiburg, 79110, Freiburg, Germany
| | - Knut Möller
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054, Villingen-Schwenningen, Germany
- Associated to the Faculty of Engineering, University of Freiburg, 79110, Freiburg, Germany
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
141
|
Stratakos E, Antonini L, Poletti G, Berti F, Tzafriri AR, Petrini L, Pennati G. Investigating Balloon-Vessel Contact Pressure Patterns in Angioplasty: In Silico Insights for Drug-Coated Balloons. Ann Biomed Eng 2023; 51:2908-2922. [PMID: 37751027 PMCID: PMC10632265 DOI: 10.1007/s10439-023-03359-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/02/2023] [Indexed: 09/27/2023]
Abstract
Drug-Coated Balloons have shown promising results as a minimally invasive approach to treat stenotic arteries, but recent animal studies have revealed limited, non-uniform coating transfer onto the arterial lumen. In vitro data suggested that local coating transfer tracks the local Contact Pressure (CP) between the balloon and the endothelium. Therefore, this work aimed to investigate in silico how different interventional and device parameters may affect the spatial distribution of CP during the inflation of an angioplasty balloon within idealized vessels that resemble healthy femoral arteries in size and compliance. An angioplasty balloon computational model was developed, considering longitudinal non-uniform wall thickness, due to its forming process, and the folding procedure of the balloon. To identify the conditions leading to non-uniform CP, sensitivity finite element analyses were performed comparing different values for balloon working length, longitudinally varying wall thickness, friction coefficient on the balloon-vessel interface, vessel wall stiffness and thickness, and balloon-to-vessel diameter ratio. Findings indicate a significant irregularity of contact between the balloon and the vessel, mainly affected by the balloon's unfolding and longitudinal thickness variation. Mirroring published data on coating transfer distribution in animal studies, the interfacial CP distribution was maximal at the middle of the balloon treatment site, while exhibiting a circumferential pattern of linear peaks as a consequence of the particular balloon-vessel interaction during unfolding. A high ratio of balloon-to-vessel diameter, higher vessel stiffness, and thickness was found to increase significantly the amplitude and spatial distribution of the CP, while a higher friction coefficient at the balloon-to-vessel interface further exacerbated the non-uniformity of CP. Evaluation of balloon design effects revealed that the thicker tapered part caused CP reduction in the areas that interacted with the extremities of the balloon, whereas total length only weakly impacted the CP. Taken together, this study offers a deeper understanding of the factors influencing the irregularity of balloon-tissue contact, a key step toward uniformity in drug-coating transfer and potential clinical effectiveness.
Collapse
Affiliation(s)
- Efstathios Stratakos
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Luca Antonini
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Gianluca Poletti
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Francesca Berti
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | | | - Lorenza Petrini
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy.
| | - Giancarlo Pennati
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
142
|
Smoljkić M, Vander Sloten J, Segers P, Famaey N. In Vivo Material Properties of Human Common Carotid Arteries: Trends and Sex Differences. Cardiovasc Eng Technol 2023; 14:840-852. [PMID: 37973700 DOI: 10.1007/s13239-023-00691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION In vivo estimation of material properties of arterial tissue can provide essential insights into the development and progression of cardiovascular diseases. Furthermore, these properties can be used as an input to finite element simulations of potential medical treatments. MATERIALS AND METHODS This study uses non-invasively measured pressure, diameter and wall thickness of human common carotid arteries (CCAs) acquired in 103 healthy subjects. A non-linear optimization was performed to estimate material parameters of two different constitutive models: a phenomenological, isotropic model and a structural, anisotropic model. The effect of age, sex, body mass index and blood pressure on the parameters was investigated. RESULTS AND CONCLUSION Although both material models were able to model in vivo arterial behaviour, the structural model provided more realistic results in the supra-physiological domain. The phenomenological model predicted very high deformations for pressures above the systolic level. However, the phenomenological model has fewer parameters that were shown to be more robust. This is an advantage when only the physiological domain is of interest. The effect of stiffening with age, BMI and blood pressure was present for women, but not always for men. In general, sex had the biggest effect on the mechanical properties of CCAs. Stiffening trends with age, BMI and blood pressure were present but not very strong. The intersubject variability was high. Therefore, it can be concluded that finding a representative set of parameters for a certain age or BMI group would be very challenging. Instead, for purposes of patient-specific modelling of surgical procedures, we currently advise the use of patient-specific parameters.
Collapse
Affiliation(s)
- Marija Smoljkić
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300C, 3001, Heverlee, Leuven, Belgium
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
| | - Jos Vander Sloten
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300C, 3001, Heverlee, Leuven, Belgium
| | | | - Nele Famaey
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300C, 3001, Heverlee, Leuven, Belgium.
| |
Collapse
|
143
|
Mohammadkhah M, Klinge S. Review paper: The importance of consideration of collagen cross-links in computational models of collagen-based tissues. J Mech Behav Biomed Mater 2023; 148:106203. [PMID: 37879165 DOI: 10.1016/j.jmbbm.2023.106203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Collagen as the main protein in Extra Cellular Matrix (ECM) is the main load-bearing component of fibrous tissues. Nanostructure and architecture of collagen fibrils play an important role in mechanical behavior of these tissues. Extensive experimental and theoretical studies have so far been performed to capture these properties, but none of the current models realistically represent the complexity of network mechanics because still less is known about the collagen's inner structure and its effect on the mechanical properties of tissues. The goal of this review article is to emphasize the significance of cross-links in computational modeling of different collagen-based tissues, and to reveal the need for continuum models to consider cross-links properties to better reflect the mechanical behavior observed in experiments. In addition, this study outlines the limitations of current investigations and provides potential suggestions for the future work.
Collapse
Affiliation(s)
- Melika Mohammadkhah
- Technische Universität Berlin, Institute of Mechanics, Chair of Structural Mechanics and Analysis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Sandra Klinge
- Technische Universität Berlin, Institute of Mechanics, Chair of Structural Mechanics and Analysis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
144
|
de Lucio M, Leng Y, Wang H, Ardekani AM, Vlachos PP, Shi G, Gomez H. Computational modeling of the effect of skin pinch and stretch on subcutaneous injection of monoclonal antibodies using autoinjector devices. Biomech Model Mechanobiol 2023; 22:1965-1982. [PMID: 37526775 DOI: 10.1007/s10237-023-01746-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023]
Abstract
Subcutaneous injection of monoclonal antibodies (mAbs) has experienced unprecedented growth in the pharmaceutical industry due to its benefits in patient compliance and cost-effectiveness. However, the impact of different injection techniques and autoinjector devices on the drug's transport and uptake is poorly understood. Here, we develop a biphasic large-deformation chemomechanical model that accounts for the components of the extracellular matrix that govern solid deformation and fluid flow within the subcutaneous tissue: interstitial fluid, collagen fibers and negatively charged proteoglycan aggregates. We use this model to build a high-fidelity representation of a virtual patient performing a subcutaneous injection of mAbs. We analyze the impact of the pinch and stretch methods on the injection dynamics and the use of different handheld autoinjector devices. The results suggest that autoinjector base plates with a larger device-skin contact area cause significantly lower tissue mechanical stress, fluid pressure and fluid velocity during the injection process. Our simulations indicate that the stretch technique presents a higher risk of intramuscular injection for autoinjectors with a relatively long needle insertion depth.
Collapse
Affiliation(s)
- Mario de Lucio
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Yu Leng
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Hao Wang
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Pavlos P Vlachos
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Galen Shi
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA.
| |
Collapse
|
145
|
Navarrete Á, Utrera A, Rivera E, Latorre M, Celentano DJ, García-Herrera CM. An inverse fitting strategy to determine the constrained mixture model parameters: application in patient-specific aorta. Front Bioeng Biotechnol 2023; 11:1301988. [PMID: 38053847 PMCID: PMC10694237 DOI: 10.3389/fbioe.2023.1301988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The Constrained Mixture Model (CMM) is a novel approach to describe arterial wall mechanics, whose formulation is based on a referential physiological state. The CMM considers the arterial wall as a mixture of load-bearing constituents, each of them with characteristic mass fraction, material properties, and deposition stretch levels from its stress-free state to the in-vivo configuration. Although some reports of this model successfully assess its capabilities, they barely explore experimental approaches to model patient-specific scenarios. In this sense, we propose an iterative fitting procedure of numerical-experimental nature to determine material parameters and deposition stretch values. To this end, the model has been implemented in a finite element framework, and it is calibrated using reported experimental data of descending thoracic aorta. The main results obtained from the proposed procedure consist of a set of material parameters for each constituent. Moreover, a relationship between deposition stretches and residual strain measurements (opening angle and axial stretch) has been numerically proved, establishing a strong consistency between the model and experimental data.
Collapse
Affiliation(s)
- Álvaro Navarrete
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Andrés Utrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Eugenio Rivera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, Spain
| | - Diego J. Celentano
- Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Claudio M. García-Herrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| |
Collapse
|
146
|
Saeidi S, Kainz MP, Dalbosco M, Terzano M, Holzapfel GA. Histology-informed multiscale modeling of human brain white matter. Sci Rep 2023; 13:19641. [PMID: 37949949 PMCID: PMC10638412 DOI: 10.1038/s41598-023-46600-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
In this study, we propose a novel micromechanical model for the brain white matter, which is described as a heterogeneous material with a complex network of axon fibers embedded in a soft ground matrix. We developed this model in the framework of RVE-based multiscale theories in combination with the finite element method and the embedded element technique for embedding the fibers. Microstructural features such as axon diameter, orientation and tortuosity are incorporated into the model through distributions derived from histological data. The constitutive law of both the fibers and the matrix is described by isotropic one-term Ogden functions. The hyperelastic response of the tissue is derived by homogenizing the microscopic stress fields with multiscale boundary conditions to ensure kinematic compatibility. The macroscale homogenized stress is employed in an inverse parameter identification procedure to determine the hyperelastic constants of axons and ground matrix, based on experiments on human corpus callosum. Our results demonstrate the fundamental effect of axon tortuosity on the mechanical behavior of the brain's white matter. By combining histological information with the multiscale theory, the proposed framework can substantially contribute to the understanding of mechanotransduction phenomena, shed light on the biomechanics of a healthy brain, and potentially provide insights into neurodegenerative processes.
Collapse
Affiliation(s)
- Saeideh Saeidi
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Manuel P Kainz
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Misael Dalbosco
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- GRANTE - Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Michele Terzano
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria.
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
147
|
Wang C, Shen M, Song Y, Chang L, Yang Y, Li Y, Liu T, Wang Y. Biaxial hyperelastic and anisotropic behaviors of the corneal anterior central stroma along the preferential fibril orientations. Part I: Measurement and calibration of personalized stress-strain curves. Exp Eye Res 2023; 236:109677. [PMID: 37827443 DOI: 10.1016/j.exer.2023.109677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/09/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Lacking specimens is the biggest limitation of studying the mechanical behaviors of human corneal. Extracting stress-strain curves is the crucial step in investigating hyperelastic and anisotropic properties of human cornea. 15 human corneal specimens extracted from the small incision lenticule extraction (SMILE) surgery were applied in this study. To accurately measure the personalized true stress-strain curve using corneal lenticules, the digital image correlation (DIC) method and finite element method were used to calibrate the stress and the strain of the biaxial extension test. The hyperelastic load-displacement curves obtained from the biaxial extension test were performed in preferential fibril orientations, which are arranged along the nasal-temporal (NT) and the superior-inferior (SI) directions within the anterior central stroma. The displacement and strain fields were accurately calibrated and calculated using the digital image correlation (DIC) method. A conversion equation was given to convert the effective engineering strain to the true strain. The stress field distribution, which was simulated using the finite element method, was verified. Based on this, the effective nominal stress with personalized characteristics was calibrated. The personalized stress-strain curves containing individual characteristic, like diopter and anterior surface curvature, was accurately measured in this study. These results provide an experimental method using biaxial tensile test with corneal lenticules. It is the foundation for investigating the hyperelasticity and anisotropy of the central anterior stroma of human cornea.
Collapse
Affiliation(s)
- Congzheng Wang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Min Shen
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China.
| | - Yi Song
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300070, China
| | - Le Chang
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300070, China
| | - Yaqing Yang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Yikuan Li
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Taiwei Liu
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China; Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Yan Wang
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
148
|
Toaquiza Tubon J, Sree VD, Payne J, Solorio L, Tepole AB. Mechanical damage in porcine dermis: Micro-mechanical model and experimental characterization. J Mech Behav Biomed Mater 2023; 147:106143. [PMID: 37778167 DOI: 10.1016/j.jmbbm.2023.106143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/25/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Skin is subjected to extreme mechanical loading during needle insertion and drug delivery to the subcutaneous space. There is a rich literature on the characterization of porcine skin biomechanics as the preeminent animal model for human skin, but the emphasis has been on the elastic response and specific anatomical locations such as the dorsal and the ventral regions. During drug delivery, however, energy dissipation in the form of damage, softening, and fracture, is expected. Similarly, reports on experimental characterization are complemented by modeling efforts, but with similar gaps in microstructure-driven modeling of dissipative mechanisms. Here we contribute to the bridging of these gaps by testing porcine skin from belly and breast regions, in two different orientation with respect to anatomical axes, and to progressively higher stretches in order to show damage accumulation and stiffness degradation. We complement the mechanical test with imaging of the collagen structure and a micro-mechanics modeling framework. We found that skin from the belly is stiffer with respect to the breast region when comparing the calf stiffness of the J-shaped stress-stretch response observed in most collagenous tissues. No significant direction dependent properties were found in either anatomical location. Both locations showed energy dissipation due to damage, evident though a softening of the stress-stretch response. The microstructure model was able to capture the elastic and damage progression with a small set of parameters, some of which were determined directly from imaging. We anticipate that data and model fits can help in predictive simulations for device design in situations where skin is subject to supra-physiological deformation such as in subcutaneous drug delivery.
Collapse
Affiliation(s)
| | - Vivek D Sree
- School of Mechanical Engineering Purdue University, West Lafayette, IN, USA
| | - Jordanna Payne
- Weldon School of Biomedical Engineering Purdue University, West Lafayette, IN, USA
| | - Luis Solorio
- Weldon School of Biomedical Engineering Purdue University, West Lafayette, IN, USA
| | - Adrian Buganza Tepole
- School of Mechanical Engineering Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
149
|
Anderson C, Ntala C, Ozel A, Reuben RL, Chen Y. Computational homogenization of histological microstructures in human prostate tissue: Heterogeneity, anisotropy and tension-compression asymmetry. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3758. [PMID: 37477174 PMCID: PMC10909480 DOI: 10.1002/cnm.3758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/21/2023] [Accepted: 07/01/2023] [Indexed: 07/22/2023]
Abstract
Human prostatic tissue exhibits complex mechanical behaviour due to its multiphasic, heterogeneous nature, with hierarchical microstructures involving epithelial compartments, acinar lumens and stromal tissue all interconnected in complex networks. This study aims to establish a computational homogenization framework for quantifying the mechanical behaviour of prostate tissue, considering its multiphasic heterogeneous microstructures and the mechanical characteristics of tissue constituents. Representative tissue microstructure models were reconstructed from high-resolution histology images. Parametric studies on the mechanical properties of the tissue constituents, particularly the fibre-reinforced hyper-elasticity of the stromal tissue, were carried out to investigate their effects on the apparent tissue properties. These were then benchmarked against the experimental data reported in literature. Results showed significant anisotropy, both structural and mechanical, and tension-compression asymmetry of the apparent behaviours of the prostatic tissue. Strong correlation with the key microstructural indices such as area fractions of tissue constituents and the tissue fabric tensor was also observed. The correlation between the stromal tissue orientation and the principal directions of the apparent properties suggested an essential role of stromal tissue in determining the directions of anisotropy and the compression-tension asymmetry characteristics in normal human prostatic tissue. This work presented a homogenization and histology-based computational approach to characterize the apparent mechanical behaviours of human prostatic or other similar glandular tissues, with the ultimate aim of assessing how pathological conditions (e.g., prostate cancer and benign prostatic hyperplasia) could affect the tissue mechanical properties in a future study.
Collapse
Affiliation(s)
- Calum Anderson
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | - Chara Ntala
- Department of Pathology, Western General HospitalUniversity of EdinburghEdinburghUK
| | - Ali Ozel
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | - Robert L. Reuben
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | - Yuhang Chen
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| |
Collapse
|
150
|
Lauber M, Weymouth GD, Limbert G. Rapid flapping and fibre-reinforced membrane wings are key to high-performance bat flight. J R Soc Interface 2023; 20:20230466. [PMID: 37963557 PMCID: PMC10645508 DOI: 10.1098/rsif.2023.0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Abstract
Bats fly using significantly different wing motions from other fliers, stemming from the complex interplay of their membrane wings' motion and structural properties. Biological studies show that many bats fly at Strouhal numbers, the ratio of flapping to flight speed, 50-150% above the range typically associated with optimal locomotion. We use high-resolution fluid-structure interaction simulations of a bat wing to independently study the role of kinematics and material/structural properties in aerodynamic performance and show that peak propulsive and lift efficiencies for a bat-like wing motion require flapping 66% faster than for a symmetric motion, agreeing with the increased flapping frequency observed in zoological studies. In addition, we find that reduced membrane stiffness is associated with improved propulsive efficiency until the membrane flutters, but that incorporating microstructural anisotropy arising from biological fibre reinforcement enables a tenfold reduction of the flutter energy while maintaining high aerodynamic efficiency. Our results indicate that animals with specialized flapping motions may have correspondingly specialized flapping speeds, in contrast to arguments for a universally efficient Strouhal range. Additionally, our study demonstrates the significant role that the microstructural constitutive properties of the membrane wing of a bat can have in its propulsive performance.
Collapse
Affiliation(s)
- Marin Lauber
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- Faculty of Mechanical Maritime and Materials Engineering (3mE), Delft University of Technology, Delft, The Netherlands
| | - Gabriel D. Weymouth
- Faculty of Mechanical Maritime and Materials Engineering (3mE), Delft University of Technology, Delft, The Netherlands
| | - Georges Limbert
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|