101
|
Smith CC, Ryan MJ. Evolution of sperm quality but not quantity in the internally fertilized fish Xiphophorus nigrensis. J Evol Biol 2010; 23:1759-71. [PMID: 20626545 DOI: 10.1111/j.1420-9101.2010.02041.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Species with alternative reproductive strategies are characterized by discrete differences among males in suites of traits related to competition for fertilizations. Models predict sneaker males should allocate more resources to their ejaculates because they experience sperm competition more frequently and often occupy a disfavoured 'role' owing to subordinance in intramale competition and female preferences for larger males. We examined whether sperm number and quality differed between male strategies in the internally fertilized fish Xiphophorus nigrensis and explored the relationship between sperm morphology and performance. We found sneaker males had similar testes sizes compared to courting males but ejaculates with both more viable and longer lived sperm. Sneaker sperm also had longer midpieces, which was positively correlated with both velocity and longevity. Our study suggests that the evolution of sperm quantity and quality can be decoupled and that the sperm morphology is likely to play an important role in mediating sperm competition through its effects on sperm performance.
Collapse
Affiliation(s)
- C C Smith
- University of Texas at Austin, Section of Integrative Biology, Austin, TX 78712, USA.
| | | |
Collapse
|
102
|
ELGEE KE, EVANS JP, RAMNARINE IW, RUSH SA, PITCHER TE. Geographic variation in sperm traits reflects predation risk and natural rates of multiple paternity in the guppy. J Evol Biol 2010; 23:1331-8. [DOI: 10.1111/j.1420-9101.2010.01996.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
103
|
Austin MU, Liau WS, Balamurugan K, Ashokkumar B, Said HM, LaMunyon CW. Knockout of the folate transporter folt-1 causes germline and somatic defects in C. elegans. BMC DEVELOPMENTAL BIOLOGY 2010; 10:46. [PMID: 20441590 PMCID: PMC2874772 DOI: 10.1186/1471-213x-10-46] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 05/04/2010] [Indexed: 12/02/2022]
Abstract
BACKGROUND The C. elegans gene folt-1 is an ortholog of the human reduced folate carrier gene. The FOLT-1 protein has been shown to transport folate and to be involved in uptake of exogenous folate by worms. A knockout mutation of the gene, folt-1(ok1460), was shown to cause sterility, and here we investigate the source of the sterility and the effect of the folt-1 knockout on somatic function. RESULTS Our results show that folt-1(ok1460) knockout hermaphrodites have a substantially reduced germline, generate a small number of functional sperm, and only rarely produce a functional oocyte. We found no evidence of increased apoptosis in the germline of folt-1 knockout mutants, suggesting that germline proliferation is defective. While folt-1 knockout males are fertile, their rate of spermatogenesis was severely diminished, and the males were very poor maters. The mating defect is likely due to compromised metabolism and/or other somatic functions, as folt-1 knockout hermaphrodites displayed a shortened lifespan and elongated defecation intervals. CONCLUSIONS The FOLT-1 protein function affects both the soma and the germline. folt-1(ok1460) hermaphrodites suffer severely diminished lifespan and germline defects that result in sterility. Germline defects associated with folate deficiency appear widespread in animals, being found in humans, mice, fruit flies, and here, nematodes.
Collapse
Affiliation(s)
- Misa U Austin
- Department of Biological Sciences, California State University Pomona, CA 91768, USA
| | - Wei-Siang Liau
- Department of Biological Sciences, California State University Pomona, CA 91768, USA
- Current Address: Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Krishnaswamy Balamurugan
- Veterans Affairs Medical Center, Long Beach, CA 90822, USA
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, CA 92697, USA
- Current Address: Department of Biotechnology, Alagappa University, Karaikudi 630 003, India
| | - Balasubramaniem Ashokkumar
- Veterans Affairs Medical Center, Long Beach, CA 90822, USA
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, CA 92697, USA
| | - Hamid M Said
- Veterans Affairs Medical Center, Long Beach, CA 90822, USA
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, CA 92697, USA
| | - Craig W LaMunyon
- Department of Biological Sciences, California State University Pomona, CA 91768, USA
| |
Collapse
|
104
|
Findlay GD, Swanson WJ. Proteomics enhances evolutionary and functional analysis of reproductive proteins. Bioessays 2010; 32:26-36. [PMID: 20020477 DOI: 10.1002/bies.200900127] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Reproductive proteins maintain species-specific barriers to fertilization, affect the outcome of sperm competition, mediate reproductive conflicts between the sexes, and potentially contribute to the formation of new species. However, the specific proteins and molecular mechanisms that underlie these processes are understood in only a handful of cases. Advances in genomic and proteomic technologies enable the identification of large suites of reproductive proteins, making it possible to dissect reproductive phenotypes at the molecular level. We first review these technological advances and describe how reproductive proteins are identified in diverse animal taxa. We then discuss the dynamic evolution of reproductive proteins and the potential selective forces that act on them. Finally, we describe molecular and genomic tools for functional analysis and detail how evolutionary data may be used to make predictions about interactions among reproductive proteins.
Collapse
Affiliation(s)
- Geoffrey D Findlay
- Department of Genome Sciences, University of Washington, Seattle, 98195-5065, USA.
| | | |
Collapse
|
105
|
Chasnov JR. The evolution from females to hermaphrodites results in a sexual conflict over mating in androdioecious nematode worms and clam shrimp. J Evol Biol 2010; 23:539-56. [PMID: 20074309 DOI: 10.1111/j.1420-9101.2009.01919.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nematode worm Caenorhabditis elegans and the clam shrimp Eulimnadia texana are two well-studied androdioecious species consisting mostly of self-fertilizing hermaphrodites and few males. To understand how androdioecy can evolve, a simple two-step mathematical model of the evolutionary pathway from a male-female species to a selfing-hermaphrodite species is constructed. First, the frequency of mutant females capable of facultative self-fertilization increases if the benefits of reproductive assurance exceed the cost. Second, hermaphrodites become obligate self-fertilizers if the fitness of selfed offspring exceeds one-half the fitness of outcrossed offspring. Genetic considerations specific to C. elegans and E. texana show that males may endure as descendants of the ancestral male-female species. These models combined with an extensive literature review suggest a sexual conflict over mating in these androdioecious species: selection favours hermaphrodites that self and males that outcross. The strength of selection on hermaphrodites and males differs, however. Males that fail to outcross suffer a genetic death. Hermaphrodites may never encounter a rare male, and those that do and outcross only bear less fecund offspring. This asymmetric sexual conflict results in an evolutionary stand-off: rare, but persistent males occasionally fertilize common, but reluctant hermaphrodites. A consequence of this stand-off may be an increase in the longevity of the androdioecious mating system.
Collapse
Affiliation(s)
- J R Chasnov
- Department of Mathematics, Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| |
Collapse
|
106
|
Luo S, Shaw WM, Ashraf J, Murphy CT. TGF-beta Sma/Mab signaling mutations uncouple reproductive aging from somatic aging. PLoS Genet 2009; 5:e1000789. [PMID: 20041217 PMCID: PMC2791159 DOI: 10.1371/journal.pgen.1000789] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 11/24/2009] [Indexed: 01/07/2023] Open
Abstract
Female reproductive cessation is one of the earliest age-related declines humans experience, occurring in mid-adulthood. Similarly, Caenorhabditis elegans' reproductive span is short relative to its total life span, with reproduction ceasing about a third into its 15–20 day adulthood. All of the known mutations and treatments that extend C. elegans' reproductive period also regulate longevity, suggesting that reproductive span is normally linked to life span. C. elegans has two canonical TGF-ß signaling pathways. We recently found that the TGF-ß Dauer pathway regulates longevity through the Insulin/IGF-1 Signaling (IIS) pathway; here we show that this pathway has a moderate effect on reproductive span. By contrast, TGF-ß Sma/Mab signaling mutants exhibit a substantially extended reproductive period, more than doubling reproductive span in some cases. Sma/Mab mutations extend reproductive span disproportionately to life span and act independently of known regulators of somatic aging, such as Insulin/IGF-1 Signaling and Dietary Restriction. This is the first discovery of a pathway that regulates reproductive span independently of longevity and the first identification of the TGF-ß Sma/Mab pathway as a regulator of reproductive aging. Our results suggest that longevity and reproductive span regulation can be uncoupled, although they appear to normally be linked through regulatory pathways. Female reproductive cessation is the earliest aging phenotype humans experience, and its importance as a clinical issue is growing as more women opt to have children later in life. While much work has been done to understand the general aging process, little is currently known about the regulation of reproductive aging. Like longevity, the ability to produce progeny with advanced age is likely to be genetically regulated. Thus, understanding the processes that regulate reproductive aging may allow us to address the problems of maternal age-related infertility and birth defects. C. elegans and humans both have long post-reproductive life spans, leaving open the possibility that their reproductive spans might be extendable. C. elegans has been used previously to discover conserved regulators of aging, and here we use worms to identify a new regulator of reproductive aging, a highly conserved TGF-ß signaling pathway. We find that TGF-ß signaling regulates reproductive aging independently of somatic aging. This is the first identification of a pathway that breaks the coupling that normally links the two processes. Our work will provide new insights into the improvement of human fertility and prevention of age-related birth defects, and it has implications for the evolutionary relationship between reproduction and longevity regulation.
Collapse
Affiliation(s)
- Shijing Luo
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | | | | | |
Collapse
|
107
|
Helfenstein F, Podevin M, Richner H. Sperm morphology, swimming velocity, and longevity in the house sparrow Passer domesticus. Behav Ecol Sociobiol 2009. [DOI: 10.1007/s00265-009-0871-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
108
|
Guo Y, Lang S, Ellis RE. Independent recruitment of F box genes to regulate hermaphrodite development during nematode evolution. Curr Biol 2009; 19:1853-60. [PMID: 19836240 DOI: 10.1016/j.cub.2009.09.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/25/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
Elucidating the molecular mechanisms that created ancient complex traits like insect wings is difficult. Fortunately, some complex traits have arisen recently. For example, hermaphroditic reproduction evolved independently many times during recent nematode evolution. Although C. elegans hermaphrodites require fog-2, which encodes an F box protein that regulates the translation of tra-2 mRNAs, the related species C. briggsae lacks fog-2. We identified a critical regulator of hermaphrodite development in C. briggsae, named she-1. Analysis of double mutants indicates that she-1 acts upstream of tra-2 in C. briggsae, just as fog-2 does in C. elegans. Molecular cloning shows that she-1 encodes a novel F box protein that was created by a recent gene duplication. Whereas FOG-2 acts through GLD-1 in C. elegans, SHE-1 does not bind GLD-1 in C. briggsae. Thus, both species recruited F box genes produced by recent duplication events into the sex-determination pathway to control hermaphrodite development, but these genes have distinct activities. This result implies that some gene families are more likely to give rise to novel regulatory genes than other families. Finally, we note that null mutations of she-1 are temperature sensitive, so C. briggsae might once have been a facultative hermaphrodite.
Collapse
Affiliation(s)
- Yiqing Guo
- Department of Molecular Biology, School of Osteopathic Medicine, The University of Medicine and Dentistry of New Jersey, B303 Science Center, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | | | | |
Collapse
|
109
|
Wegewitz V, Schulenburg H, Streit A. Do males facilitate the spread of novel phenotypes within populations of the androdioecious nematode Caenorhabditis elegans? J Nematol 2009; 41:247-254. [PMID: 22736822 PMCID: PMC3380496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Indexed: 06/01/2023] Open
Abstract
In the androdioecious nematode Caenorhabditis elegans, self-fertilization is the predominant mode of reproduction. Nevertheless, males do occur, and it is still unclear if these represent a selective advantage or merely an evolutionary relict. In this study, we first tested the hypothesis that the production of males might benefit invaders to resident populations. We added single, GFP-marked worms to established laboratory populations and followed GFP frequencies over time. Mated hermaphrodites and also males were more successful in invading resident populations if compared to single, unmated hermaphrodites. The observed higher frequencies should increase the likelihood that any of the associated invading alleles persist. Second, we tested the hypothesis that males and, thus, higher outcrossing rates, are specifically favored under changing environmental conditions. After an outbred population was subjected to changing stress or to control laboratory conditions, we measured the male maintenance of the resulting populations. Interestingly all populations, experimental and control alike, showed high male maintenance, suggesting that persistence of males is also favored under standard laboratory conditions.
Collapse
Affiliation(s)
- Viktoria Wegewitz
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
110
|
Pitnick S, Dobler R, Hosken DJ. Sperm length is not influenced by haploid gene expression in the flies Drosophila melanogaster and Scathophaga stercoraria. Proc Biol Sci 2009; 276:4029-34. [PMID: 19710066 DOI: 10.1098/rspb.2009.1208] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Recent theoretical models have postulated a role for haploid-diploid conflict and for kin selection favouring sperm cooperation and altruism in the diversification and specialization of sperm form. A critical assumption of these models-that haploid gene expression contributes to variation in sperm form-has never been demonstrated and remains contentious. By quantifying within-male variation in sperm length using crosses between males and females from populations that had been subjected to divergent experimental selection, we demonstrate that haploid gene expression does not contribute to variation in sperm length in both Drosophila melanogaster and Scathophaga stercoraria. This finding casts doubt on the importance of haploid-diploid conflict and kin selection as evolutionary influences of sperm phenotypes.
Collapse
Affiliation(s)
- Scott Pitnick
- Department of Biology, Syracuse University, Syracuse, NY 13244-1270, USA.
| | | | | |
Collapse
|
111
|
Contreras JL, Fierro R. ULTRASTRUCTURAL MORPHOLOGY AND MORPHOMETRY OF EPIDIDYMAL SPERM IN THE VOLCANO RABBIT (ROMEROLAGUS DIAZI). ACTA ACUST UNITED AC 2009; 50:359-65. [PMID: 15551750 DOI: 10.1080/01485010490474616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sperm characteristics of Romerolagus diazi, an endemic endangered rabbit from Mexico's Higlands, are poorly known. Knowledge of gamete characteristics are urged for any conservation-oriented strategy and morphometry-based taxonomical database. Sperm lagomorph comparisons have been made at light microscopy resolution. Our goal was to analyze the ultrastructure of the R. diazi male gamete. Two wild animals were kept in captivity and the epididymus were obtained. Fixed gametes show a characteristic spatula-like morphology with a dilated forefront. The nucleus has an arrow head morphology lightly thicker at the base. Tail ultrastructure is similar to that of laboratory rabbits with an end piece thicker than that of human sperm. Morphometry data could be used for construction of a male gamete data base for further studies.
Collapse
|
112
|
Tourmente M, Gomendio M, Roldan ERS, Giojalas LC, Chiaraviglio M. Sperm competition and reproductive mode influence sperm dimensions and structure among snakes. Evolution 2009; 63:2513-24. [PMID: 19490075 DOI: 10.1111/j.1558-5646.2009.00739.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of sperm competition in increasing sperm length is a controversial issue, because findings from different taxa seem contradictory. We present a comparative study of 25 species of snakes with different levels of sperm competition to test whether it influences the size and structure of different sperm components. We show that, as levels of sperm competition increase, so does sperm length, and that this elongation is largely explained by increases in midpiece length. In snakes, the midpiece is comparatively large and it contains structures, which in other taxa are present in the rest of the flagellum, suggesting that it may integrate some of its functions. Thus, increases in sperm midpiece size would result in more energy as well as greater propulsion force. Sperm competition also increases the area occupied by the fibrous sheath and outer dense fibers within the sperm midpiece, revealing for the first time an effect upon structural elements within the sperm. Finally, differences in male-male encounter rates between oviparous and viviparous species seem to lead to differences in levels of sperm competition. We conclude that the influence of sperm competition upon different sperm components varies between taxa, because their structure and function is different.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Laboratorio de Biología del Comportamiento, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | | | | | | | | |
Collapse
|
113
|
Click A, Savaliya CH, Kienle S, Herrmann M, Pires-daSilva A. Natural variation of outcrossing in the hermaphroditic nematode Pristionchus pacificus. BMC Evol Biol 2009; 9:75. [PMID: 19379507 PMCID: PMC2676249 DOI: 10.1186/1471-2148-9-75] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 04/20/2009] [Indexed: 01/09/2023] Open
Abstract
Background Evolution of selfing can be associated with an increase in fixation of deleterious mutations, which in certain conditions can lead to species extinction. In nematodes, a few species evolved self-fertilization independently, making them excellent model systems to study the evolutionary consequences of this type of mating system. Results Here we determine various parameters that influence outcrossing in the hermaphroditic nematode Pristionchus pacificus and compare them to the better known Caenorhabditis elegans. These nematode species are distinct in terms of genetic diversity, which could be explained by differences in outcrossing rates. We find that, similarly to C. elegans, P. pacificus males are generated at low frequencies from self-fertilizing hermaphrodites and are relatively poor mating partners. Furthermore, crosses between different isolates reveal that hybrids have lower brood sizes than the pure strains, which is a sign of outbreeding depression. In contrast to C. elegans, P. pacificus has lower brood sizes and the male X-bearing sperm is able to outcompete the X-nullo sperm. Conclusion The results indicate that there is no evidence of any selection acting very strongly on P. pacificus males.
Collapse
Affiliation(s)
- Arielle Click
- Biology Department, University of Texas at Arlington, Arlington, Texas 76019, USA.
| | | | | | | | | |
Collapse
|
114
|
Evans JP. No evidence for sperm priming responses under varying sperm competition risk or intensity in guppies. Naturwissenschaften 2009; 96:771-9. [DOI: 10.1007/s00114-009-0529-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/10/2009] [Accepted: 03/10/2009] [Indexed: 10/21/2022]
|
115
|
Lüpold S, Calhim S, Immler S, Birkhead TR. Sperm morphology and sperm velocity in passerine birds. Proc Biol Sci 2009; 276:1175-81. [PMID: 19129098 PMCID: PMC2679085 DOI: 10.1098/rspb.2008.1645] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 12/03/2008] [Indexed: 11/12/2022] Open
Abstract
Sperm velocity is one of the main determinants of the outcome of sperm competition. Since sperm vary considerably in their morphology between and within species, it seems likely that sperm morphology is associated with sperm velocity. Theory predicts that sperm velocity may be increased by enlarged midpiece (energetic component) or flagellum length (kinetic component), or by particular ratios between sperm components, such as between flagellum length and head size. However, such associations have rarely been found in empirical studies. In a comparative framework in passerine birds, we tested these theoretical predictions both across a wide range of species and within a single family, the New World blackbirds (Icteridae). In both study groups, sperm velocity was influenced by sperm morphology in the predicted direction. Consistent with theoretical models, these results show that selection on sperm morphology and velocity are likely to be concomitant evolutionary forces.
Collapse
Affiliation(s)
- Stefan Lüpold
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | | | | | | |
Collapse
|
116
|
Cutter AD, Dey A, Murray RL. Evolution of the Caenorhabditis elegans genome. Mol Biol Evol 2009; 26:1199-234. [PMID: 19289596 DOI: 10.1093/molbev/msp048] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A fundamental problem in genome biology is to elucidate the evolutionary forces responsible for generating nonrandom patterns of genome organization. As the first metazoan to benefit from full-genome sequencing, Caenorhabditis elegans has been at the forefront of research in this area. Studies of genomic patterns, and their evolutionary underpinnings, continue to be augmented by the recent push to obtain additional full-genome sequences of related Caenorhabditis taxa. In the near future, we expect to see major advances with the onset of whole-genome resequencing of multiple wild individuals of the same species. In this review, we synthesize many of the important insights to date in our understanding of genome organization and function that derive from the evolutionary principles made explicit by theoretical population genetics and molecular evolution and highlight fertile areas for future research on unanswered questions in C. elegans genome evolution. We call attention to the need for C. elegans researchers to generate and critically assess nonadaptive hypotheses for genomic and developmental patterns, in addition to adaptive scenarios. We also emphasize the potential importance of evolution in the gonochoristic (female and male) ancestors of the androdioecious (hermaphrodite and male) C. elegans as the source for many of its genomic and developmental patterns.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology and the Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
117
|
|
118
|
Sperm competition and ejaculate investment in red squirrels (Tamiasciurus hudsonicus). Behav Ecol Sociobiol 2009. [DOI: 10.1007/s00265-009-0718-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
119
|
Beese K, Armbruster GFJ, Beier K, Baur B. Evolution of female sperm-storage organs in the carrefour of stylommatophoran gastropods. J ZOOL SYST EVOL RES 2009. [DOI: 10.1111/j.1439-0469.2008.00491.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
120
|
Solensky MJ, Oberhauser KS. Sperm precedence in monarch butterflies (Danaus plexippus). Behav Ecol 2009. [DOI: 10.1093/beheco/arp003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
121
|
Fitzpatrick JL, Montgomerie R, Desjardins JK, Stiver KA, Kolm N, Balshine S. Female promiscuity promotes the evolution of faster sperm in cichlid fishes. Proc Natl Acad Sci U S A 2009; 106:1128-32. [PMID: 19164576 PMCID: PMC2633556 DOI: 10.1073/pnas.0809990106] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Indexed: 11/18/2022] Open
Abstract
Sperm competition, the contest among ejaculates from rival males to fertilize ova of a female, is a common and powerful evolutionary force influencing ejaculate traits. During competitive interactions between ejaculates, longer and faster spermatozoa are expected to have an edge; however, to date, there has been mixed support for this key prediction from sperm competition theory. Here, we use the spectacular radiation of cichlid fishes from Lake Tanganyika to examine sperm characteristics in 29 closely related species. We provide phylogenetically robust evidence that species experiencing greater levels of sperm competition have faster-swimming sperm. We also show that sperm competition selects for increases in the number, size, and longevity of spermatozoa in the ejaculate of a male, and, contrary to expectations from theory, we find no evidence of trade-offs among sperm traits in an interspecific analysis. Also, sperm swimming speed is positively correlated with sperm length among, but not within, species. These different responses to sperm competition at intra- and interspecific levels provide a simple, powerful explanation for equivocal results from previous studies. Using phylogenetic analyses, we also reconstructed the probable evolutionary route of trait evolution in this taxon, and show that, in response to increases in the magnitude of sperm competition, the evolution of sperm traits in this clade began with the evolution of faster (thus, more competitive) sperm.
Collapse
Affiliation(s)
- John L Fitzpatrick
- Centre for Evolutionary Biology, University of Western Australia, Crawley 6009, Australia.
| | | | | | | | | | | |
Collapse
|
122
|
Crudgington HS, Fellows S, Badcock NS, Snook RR. Experimental manipulation of sexual selection promotes greater male mating capacity but does not alter sperm investment. Evolution 2009; 63:926-38. [PMID: 19236477 DOI: 10.1111/j.1558-5646.2008.00601.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Sexual selection theory makes clear predictions regarding male spermatogenic investment. To test these predictions we used experimental sexual selection in Drosophila pseudoobscura, a sperm heteromorphic species in which males produce both fertile and sterile sperm, the latter of which may function in postmating competition. Specifically, we determined whether the number and size of both sperm types, as well as relative testis mass and accessory gland size, increased with increased sperm competition risk and whether any fitness benefits could accrue from such changes. We found no effect of sexual selection history on either the number or size of either sperm morph, or on relative testis mass. However, males experiencing a greater opportunity for sexual selection evolved the largest accessory glands, had the greatest mating capacity, and sired the most progeny. These findings suggest that sterile sperm are not direct targets of sexual selection and that accessory gland size, rather than testis mass, appears to be an important determinant of male reproductive success. We briefly review the data from experimental sexual selection studies and find that testis mass may not be a frequent target of postcopulatory sexual selection and, even when it is, the resulting changes do not always improve fitness.
Collapse
Affiliation(s)
- Helen S Crudgington
- Department of Animal and Plant Sciences, Western Bank, University of Sheffield Sheffield S10 2TN, United Kingdom.
| | | | | | | |
Collapse
|
123
|
Humphries S, Evans JP, Simmons LW. Sperm competition: linking form to function. BMC Evol Biol 2008; 8:319. [PMID: 19032741 PMCID: PMC2632676 DOI: 10.1186/1471-2148-8-319] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 11/25/2008] [Indexed: 12/05/2022] Open
Abstract
Background Using information from physics, biomechanics and evolutionary biology, we explore the implications of physical constraints on sperm performance, and review empirical evidence for links between sperm length and sperm competition (where two or more males compete to fertilise a female's eggs). A common theme in the literature on sperm competition is that selection for increased sperm performance in polyandrous species will favour the evolution of longer, and therefore faster swimming, sperm. This argument is based on the common assumption that sperm swimming velocity is directly related to sperm length, due to the increased thrust produced by longer flagella. Results We critically evaluate the evidence for links between sperm morphology and swimming speed, and draw on cross-disciplinary studies to show that the assumption that velocity is directly related to sperm length will rarely be satisfied in the microscopic world in which sperm operate. Conclusion We show that increased sperm length is unlikely to be driven by selection for increased swimming speed, and that the relative lengths of a sperm's constituent parts, rather than their absolute lengths, are likely to be the target of selection. All else being equal, we suggest that a simple measure of the ratio of head to tail length should be used to assess the possible link between morphology and speed. However, this is most likely to be the case for external fertilizers in which females have relatively limited opportunity to influence a sperm's motility.
Collapse
Affiliation(s)
- Stuart Humphries
- Department of Animal & Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK.
| | | | | |
Collapse
|
124
|
Rapid experimental evolution of pesticide resistance in C. elegans entails no costs and affects the mating system. PLoS One 2008; 3:e3741. [PMID: 19011681 PMCID: PMC2580027 DOI: 10.1371/journal.pone.0003741] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 09/29/2008] [Indexed: 11/29/2022] Open
Abstract
Pesticide resistance is a major concern in natural populations and a model trait to study adaptation. Despite the importance of this trait, the dynamics of its evolution and of its ecological consequences remain largely unstudied. To fill this gap, we performed experimental evolution with replicated populations of Caenorhabditis elegans exposed to the pesticide Levamisole during 20 generations. Exposure to Levamisole resulted in decreased survival, fecundity and male frequency, which declined from 30% to zero. This was not due to differential susceptibility of males. Rather, the drug affected mobility, resulting in fewer encounters, probably leading to reduced outcrossing rates. Adaptation, i.e., increased survival and fecundity, occurred within 10 and 20 generations, respectively. Male frequency also increased by generation 20. Adaptation costs were undetected in the ancestral environment and in presence of Ivermectin, another widely-used pesticide with an opposite physiological effect. Our results demonstrate that pesticide resistance can evolve at an extremely rapid pace. Furthermore, we unravel the effects of behaviour on life-history traits and test the environmental dependence of adaptation costs. This study establishes experimental evolution as a powerful tool to tackle pesticide resistance, and paves the way to further investigations manipulating environmental and/or genetic factors underlying adaptation to pesticides.
Collapse
|
125
|
MORROW EH, LEIJON A, MEERUPATI A. Hemiclonal analysis reveals significant genetic, environmental and genotype × environment effects on sperm size inDrosophila melanogaster. J Evol Biol 2008; 21:1692-702. [DOI: 10.1111/j.1420-9101.2008.01585.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
126
|
Manier MK, Palumbi SR. Intraspecific divergence in sperm morphology of the green sea urchin, Strongylocentrotus droebachiensis: implications for selection in broadcast spawners. BMC Evol Biol 2008; 8:283. [PMID: 18851755 PMCID: PMC2613923 DOI: 10.1186/1471-2148-8-283] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/13/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sperm morphology can be highly variable among species, but less is known about patterns of population differentiation within species. Most studies of sperm morphometric variation are done in species with internal fertilization, where sexual selection can be mediated by complex mating behavior and the environment of the female reproductive tract. Far less is known about patterns of sperm evolution in broadcast spawners, where reproductive dynamics are largely carried out at the gametic level. We investigated variation in sperm morphology of a broadcast spawner, the green sea urchin (Strongylocentrotus droebachiensis), within and among spawnings of an individual, among individuals within a population, and among populations. We also examined population-level variation between two reproductive seasons for one population. We then compared among-population quantitative genetic divergence (QST) for sperm characters to divergence at neutral microsatellite markers (FST). RESULTS All sperm traits except total length showed strong patterns of high diversity among populations, as did overall sperm morphology quantified using multivariate analysis. We also found significant differences in almost all traits among individuals in all populations. Head length, axoneme length, and total length had high within-male repeatability across multiple spawnings. Only sperm head width had significant within-population variation across two reproductive seasons. We found signatures of directional selection on head length and head width, with strong selection possibly acting on head length between the Pacific and West Atlantic populations. We also discuss the strengths and limitations of the QST-FST comparison. CONCLUSION Sperm morphology in S. droebachiensis is highly variable, both among populations and among individuals within populations, and has low variation within an individual across multiple spawnings. Selective pressures acting among populations may differ from those acting within, with directional selection implicated in driving divergence among populations and balancing selection as a possible mechanism for producing variability among males. Sexual selection in broadcast spawners may be mediated by different processes from those acting on internal fertilizers. Selective divergence in sperm head length among populations is associated with ecological differences among populations that may play a large role in mediating sexual selection in this broadcast spawner.
Collapse
Affiliation(s)
- Mollie K Manier
- Department of Biological Sciences, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Current address: Department of Biology, 110 Life Sciences Complex, Syracuse University, Syracuse, NY 13244, USA
| | - Stephen R Palumbi
- Department of Biological Sciences, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|
127
|
Rugman-Jones PF, Eady PE. Co-evolution of male and female reproductive traits across the Bruchidae (Coleoptera). Funct Ecol 2008. [DOI: 10.1111/j.1365-2435.2008.01446.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
128
|
Abstract
Sperm competition has classically been thought to maintain anisogamy (large eggs and smaller sperm) because males are thought to maximize their chance of winning fertilizations by trading sperm size for number. More recently it has been recognized that sperm quality (e.g., size, velocity) can also influence sperm competition, although studies have yielded conflicting results. Because sex evolved in the sea, debate has continued over the role of sperm competition and sperm environment in determining both sperm and egg size in externally fertilizing broadcast spawners. Remarkably, however, there have been no direct tests of whether broadcast spawners change the traits of their gametes depending on the likelihood of sperm competition. We manipulated the density (and thus, sperm environment) of a broadcast spawning ascidian (Styela plicata) in the field and then determined whether the phenotype of eggs and sperm changed. We found that sperm from adults kept at high density were larger and more motile than sperm from low-density adults. In vitro fertilizations revealed that sperm from high-density adults also lived longer and induced less polyspermy. Adult density also affected egg traits: eggs from high-density adults were smaller targets for sperm overall but produced larger ovicells than eggs from low-density adults. This suggests that broadcast spawning mothers balance (potentially conflicting) pre- and postzygotic selection pressures on egg size. Overall, our results suggest that sperm competition does not represent a strong force maintaining anisogamy in broadcast spawners. Instead, sperm limitation seems to select for large eggs and smaller, more numerous sperm.
Collapse
|
129
|
Experimental insight into the proximate causes of male persistence variation among two strains of the androdioecious Caenorhabditis elegans (Nematoda). BMC Ecol 2008; 8:12. [PMID: 18620600 PMCID: PMC2483263 DOI: 10.1186/1472-6785-8-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 07/13/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the androdioecious nematode Caenorhabditis elegans virtually all progeny produced by hermaphrodite self-fertilization is hermaphrodite while 50% of the progeny that results from cross-fertilization by a male is male. In the standard laboratory wild type strain N2 males disappear rapidly from populations. This is not the case in some other wild type isolates of C. elegans, among them the Hawaiian strain CB4856. RESULTS We determined the kinetics of the loss of males over time for multiple population sizes and wild isolates and found significant differences. We performed systematic inter- and intra-strain crosses with N2 and CB4856 and show that the males and the hermaphrodites contribute to the difference in male maintenance between these two strains. In particular, CB4856 males obtained a higher number of successful copulations than N2 males and sired correspondingly more cross-progeny. On the other hand, N2 hermaphrodites produced a higher number of self-progeny, both when singly mated and when not mated. CONCLUSION These two differences have the potential to explain the observed variation in male persistence, since they should lead to a predominance of self-progeny (and thus hermaphrodites) in N2 and, at the same time, a high proportion of cross-progeny (and thus the presence of males as well as hermaphrodites) in CB4856.
Collapse
|
130
|
ARNAUD LUDOVIC, HAUBRUGE ERIC, GAGE MATTHEWJG. Sperm size and number variation in the red flour beetle. Zool J Linn Soc 2008. [DOI: 10.1111/j.1096-3642.2001.tb00631.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
131
|
Civetta A, Rosing KR, Fisher JH. Differences in sperm competition and sperm competition avoidance in Drosophila melanogaster. Anim Behav 2008. [DOI: 10.1016/j.anbehav.2007.10.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
132
|
Depolymerization-driven flow in nematode spermatozoa relates crawling speed to size and shape. Biophys J 2008; 94:3810-23. [PMID: 18227129 DOI: 10.1529/biophysj.107.120980] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell crawling is an inherently physical process that includes protrusion of the leading edge, adhesion to the substrate, and advance of the trailing cell body. Research into advance of the cell body has focused on actomyosin contraction, with cytoskeletal disassembly regarded as incidental, rather than causative; however, extracts from nematode spermatozoa, which use Major Sperm Protein rather than actin, provide at least one example where cytoskeletal disassembly apparently generates force in the absence of molecular motors. To test whether depolymerization can explain force production during nematode sperm crawling, we constructed a mathematical model that simultaneously describes the dynamics of both the cytoskeleton and the cytosol. We also performed corresponding experiments using motile Caenorhabditis elegans spermatozoa. Our experiments reveal that crawling speed is an increasing function of both cell size and anterior-posterior elongation. The quantitative, depolymerization-driven model robustly predicts that cell speed should increase with cell size and yields a cytoskeletal disassembly rate that is consistent with previous measurements. Notably, the model requires anisotropic elasticity, with the cell being stiffer along the direction of motion, to accurately reproduce the dependence of speed on elongation. Our simulations also predict that speed should increase with cytoskeletal anisotropy and disassembly rate.
Collapse
|
133
|
Abstract
Sexual identity is one of the most important factors that determine how an animal will develop. Although it controls many dimorphic tissues in the body, its most ancient role is in the germ line, where it species that some cells become sperm, and others become eggs. In most animals, these two fates occur in distinct sexes. However, certain nematodes like C. elegans produce XX hermaphrodites, which make both types of gametes. In these animals, a core sex-determination pathway regulates the development of both the body and the germ line. However, modifier genes alter the activity of this pathway in germ cells, and these changes are critical for allowing XX animals to produce oocytes and sperm in an otherwise female body. In this review, I focus on (1) the core sex-determination pathway, (2) the activity of the transcription factor TRA-1 and its immediate targets fog-1 and fog-3 in germ cells, (3) how the regulation of tra-2 activity allows XX spermatogenesis, and (4) how the regulation of fem-3 activity maintains the appropriate balance between TRA-2 and FEM-3 in the germ line. Finally, I consider the major questions in this field that are driving new research.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, School of Osteopathic Medicine, B303 Science Center, The University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA
| |
Collapse
|
134
|
Facultative decrease in mating resistance in hermaphroditic Caenorhabditis elegans with self-sperm depletion. Anim Behav 2007. [DOI: 10.1016/j.anbehav.2007.02.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
135
|
Snook RR, Chapman T, Moore PJ, Wedell N, Crudgington HS. Interactions between the sexes: new perspectives on sexual selection and reproductive isolation. Evol Ecol 2007. [DOI: 10.1007/s10682-007-9215-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
136
|
ENGQVIST L. Genetic variance and genotype reaction norms in response to larval food manipulation for a trait important in scorpionfly sperm competition. Funct Ecol 2007. [DOI: 10.1111/j.1365-2435.2007.01336.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
137
|
Evans JP, Simmons LW. The genetic basis of traits regulating sperm competition and polyandry: can selection favour the evolution of good- and sexy-sperm? Genetica 2007; 134:5-19. [PMID: 17619174 DOI: 10.1007/s10709-007-9162-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 06/05/2007] [Indexed: 11/28/2022]
Abstract
The good-sperm and sexy-sperm (GS-SS) hypotheses predict that female multiple mating (polyandry) can fuel sexual selection for heritable male traits that promote success in sperm competition. A major prediction generated by these models, therefore, is that polyandry will benefit females indirectly via their sons' enhanced fertilization success. Furthermore, like classic 'good genes' and 'sexy son' models for the evolution of female preferences, GS-SS processes predict a genetic correlation between genes for female mating frequency (analogous to the female preference) and those for traits influencing fertilization success (the sexually selected traits). We examine the premise for these predictions by exploring the genetic basis of traits thought to influence fertilization success and female mating frequency. We also highlight recent debates that stress the possible genetic constraints to evolution of traits influencing fertilization success via GS-SS processes, including sex-linked inheritance, nonadditive effects, interacting parental genotypes, and trade-offs between integrated ejaculate components. Despite these possible constraints, the available data suggest that male traits involved in sperm competition typically exhibit substantial additive genetic variance and rapid evolutionary responses to selection. Nevertheless, the limited data on the genetic variation in female mating frequency implicate strong genetic maternal effects, including X-linkage, which is inconsistent with GS-SS processes. Although the relative paucity of studies on the genetic basis of polyandry does not allow us to draw firm conclusions about the evolutionary origins of this trait, the emerging pattern of sex linkage in genes for polyandry is more consistent with an evolutionary history of antagonistic selection over mating frequency. We advocate further development of GS-SS theory to take account of the complex evolutionary dynamics imposed by sexual conflict over mating frequency.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Animal Biology M092, The University of Western Australia, Nedlands, WA, Australia.
| | | |
Collapse
|
138
|
|
139
|
Pires-daSilva A. Evolution of the control of sexual identity in nematodes. Semin Cell Dev Biol 2007; 18:362-70. [PMID: 17306573 DOI: 10.1016/j.semcdb.2006.11.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 11/21/2006] [Indexed: 02/03/2023]
Abstract
Most animals are male/female species and reproduce sexually. Variation in this pattern of reproduction has arisen many times during animal evolution, particularly in nematodes. Little is known about the evolutionary forces and constraints that influenced the origin of self-fertilization, for instance, a type of reproduction that seems to have evolved many times in the phylum Nematoda. Caenorhabditis elegans, a very well known nematode, provides the framework for comparative studies of sex determination. The relative ease with which nematodes can be studied in the laboratory and the fact that many recently developed techniques can be applied to many species make them attractive for comparative research. It is relatively poorly understood how the evolution of new types of sex determination and mode of reproduction results in changes in genome structure, ecology and population genetics. Here, I review the evolution of sex determination and mating types in the phylum Nematoda with the objective of providing a framework for future research.
Collapse
Affiliation(s)
- Andre Pires-daSilva
- UT Arlington, Department of Biology, 501 S. Nedderman, 337 LS Building, Arlington, TX 76019, United States.
| |
Collapse
|
140
|
Pattarini JM, Starmer WT, Bjork A, Pitnick S. MECHANISMS UNDERLYING THE SPERM QUALITY ADVANTAGE IN DROSOPHILA MELANOGASTER. Evolution 2007. [DOI: 10.1111/j.0014-3820.2006.tb01844.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
141
|
Abstract
Spermatozoa exhibit taxonomically widespread patterns of divergent morphological evolution. However, the adaptive significance of variation in sperm morphology remains unclear. In this study we examine the role of natural variation in sperm length on fertilization success in the dung beetle Onthophagus taurus. We conducted sperm competition trials between males that differed in the length of their sperm and determined the paternity of resulting offspring using amplified fragment length polymorphism (AFLP) markers. We also quantified variation in the size and shape of the female's sperm storage organ to determine whether female morphology influenced the competitiveness of different sperm morphologies. We found that fertilization success was biased toward males with relatively shorter sperm, but that selection on sperm length was dependent on female tract morphology; selection was directional for reduced sperm length across most of the spermathecal size range, but stabilizing in females with the smallest spermathecae. Our data provide empirical support for the theory that sperm competition should favor the evolution of numerous tiny sperm. Moreover, because sperm length is both heritable and genetically correlated with condition, our results are consistent with a process by which females can accrue genetic benefits for their offspring from the incitement of sperm competition and/or cryptic female choice, as proposed by the "sexy sperm" and "good sperm" models for the evolution of polyandry.
Collapse
Affiliation(s)
- Francisco García-González
- Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, Nedlands, Western Australia 6009, Australia.
| | | |
Collapse
|
142
|
A persistent mitochondrial deletion reduces fitness and sperm performance in heteroplasmic populations of C. elegans. BMC Genet 2007; 8:8. [PMID: 17394659 PMCID: PMC1852114 DOI: 10.1186/1471-2156-8-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 03/29/2007] [Indexed: 11/21/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) mutations are of increasing interest due to their involvement in aging, disease, fertility, and their role in the evolution of the mitochondrial genome. The presence of reactive oxygen species and the near lack of repair mechanisms cause mtDNA to mutate at a faster rate than nuclear DNA, and mtDNA deletions are not uncommon in the tissues of individuals, although germ-line mtDNA is largely lesion-free. Large-scale deletions in mtDNA may disrupt multiple genes, and curiously, some large-scale deletions persist over many generations in a heteroplasmic state. Here we examine the phenotypic effects of one such deletion, uaDf5, in Caenorhabditis elegans (C. elegans). Our study investigates the phenotypic effects of this 3 kbp deletion. Results The proportion of uaDf5 chromosomes in worms was highly heritable, although uaDf5 content varied from worm to worm and within tissues of individual worms. We also found an impact of the uaDf5 deletion on metabolism. The deletion significantly reduced egg laying rate, defecation rate, and lifespan. Examination of sperm bearing the uaDf5 deletion revealed that sperm crawled more slowly, both in vitro and in vivo. Conclusion Worms harboring uaDf5 are at a selective disadvantage compared to worms with wild-type mtDNA. These effects should lead to the rapid extinction of the deleted chromosome, but it persists indefinitely. We discuss both the implications of this phenomenon and the possible causes of a shortened lifespan for uaDf5 mutant worms.
Collapse
|
143
|
JENNIONS MICHAELD, PETRIE MARION. Why do females mate multiply? A review of the genetic benefits. Biol Rev Camb Philos Soc 2007. [DOI: 10.1111/j.1469-185x.1999.tb00040.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
144
|
Curril IM, LaMunyon CW. Sperm storage and arrangement within females of the arctiid moth Utetheisa ornatrix. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:1182-8. [PMID: 17054976 DOI: 10.1016/j.jinsphys.2006.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 08/11/2006] [Accepted: 08/14/2006] [Indexed: 05/12/2023]
Abstract
Female Utetheisa ornatrix mate prolifically, a behavior that accrues nuptially transferred gifts of nutrient and defensive alkaloids from males. This behavior also potentially places sperm from numerous males in competition within the female reproductive tract. Here, we investigate sperm interactions within female U. ornatrix by exploring the arrangement and numbers of sperm stored within the spermatheca and by examining sperm deposition in the pseudobursa, a presumed digestive organ in the female reproductive tract. Our results show that females store fewer sperm than they receive from their numerous mates, and the data suggest that unwanted sperm is either shunted to the pseudobursa or expelled from the spermatheca. We found no evidence that the apyrene, or non-nucleated, sperm morph common to the Lepidoptera are involved in forming barriers between ejaculates within the spermatheca. Female U. ornatrix are thus able to control sperm use, which we argue may contribute to the pattern of paternity observed in this species.
Collapse
Affiliation(s)
- Ingrid M Curril
- Cell and Molecular Biology Department, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
145
|
Gomendio M, Martin-Coello J, Crespo C, Magaña C, Roldan ERS. Sperm competition enhances functional capacity of mammalian spermatozoa. Proc Natl Acad Sci U S A 2006; 103:15113-7. [PMID: 16990431 PMCID: PMC1570616 DOI: 10.1073/pnas.0605795103] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Indexed: 11/18/2022] Open
Abstract
When females mate promiscuously, sperm from rival males compete within the female reproductive tract to fertilize ova. Sperm competition is a powerful selective force that has shaped sexual behavior, sperm production, and sperm morphology. However, nothing is known about the influence of sperm competition on fertilization-related processes, because it has been assumed that sperm competition only involves a race to reach the site of fertilization. We compared four closely related rodent species with different levels of sperm competition to examine whether there are differences in the proportion of spermatozoa that become ready to interact with the ovum ("capacitated") and in the proportion of spermatozoa that experience the acrosome reaction in response to a natural stimulant. Our results show that differences between species in levels of sperm competition were associated with the proportion of spermatozoa that undergo capacitation and with the proportion of spermatozoa that respond to progesterone, an ovum-associated signal. Sperm competition thus favors a larger population of spermatozoa that are competent to fertilize, and spermatozoa that are more sensitive to the signals emitted by the ovum and that may penetrate the ova vestments more rapidly. These results suggest that, contrary to previous assumptions, competition between spermatozoa from rival males continues at the site of fertilization. These findings may have further evolutionary implications because the enhanced competitiveness of spermatozoa during fertilization may increase the risk of polyspermy to females. This could lead to antagonistic coevolution between the sexes and may contribute to the explanation of the rapid divergence observed in fertilization-related traits.
Collapse
Affiliation(s)
- Montserrat Gomendio
- Reproductive Ecology and Biology Group, Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (CSIC), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Juan Martin-Coello
- Reproductive Ecology and Biology Group, Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (CSIC), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Cristina Crespo
- Reproductive Ecology and Biology Group, Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (CSIC), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Concepción Magaña
- Reproductive Ecology and Biology Group, Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (CSIC), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Eduardo R. S. Roldan
- Reproductive Ecology and Biology Group, Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (CSIC), José Gutierrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
146
|
|
147
|
Affiliation(s)
- Andrew Singson
- Waksman Institute and Department of Genetics, Rutgers University, 190 Frelinghuysen Road, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
148
|
|
149
|
Stanfield GM, Villeneuve AM. Regulation of Sperm Activation by SWM-1 Is Required for Reproductive Success of C. elegans Males. Curr Biol 2006; 16:252-63. [PMID: 16461278 DOI: 10.1016/j.cub.2005.12.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 12/12/2005] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Sexual reproduction in animals requires the production of highly specialized motile sperm cells that can navigate to and fertilize ova. During sperm differentiation, nonmotile spermatids are remodeled into motile spermatozoa through a process known as spermiogenesis. In nematodes, spermiogenesis, or sperm activation, involves a rapid cellular morphogenesis that converts unpolarized round spermatids into polarized amoeboid spermatozoa capable of both motility and fertilization. RESULTS Here we demonstrate, by genetic analysis and in vivo and in vitro cell-based assays, that the temporal and spatial localization of spermiogenesis are critical determinants of male fertility in C. elegans, a male/hermaphrodite species. We identify swm-1 as a factor important for male but not hermaphrodite fertility. We show that whereas in wild-type males, activation occurs after spermatids are transferred to the hermaphrodite, swm-1 mutants exhibit ectopic activation of sperm within the male reproductive tract. This ectopic activation leads to infertility by impeding sperm transfer. The SWM-1 protein is composed of a signal sequence and two trypsin inhibitor-like domains and likely functions as a secreted serine protease inhibitor that targets two distinct proteases. CONCLUSIONS These findings support a model in which (1) proteolysis acts as an important in vivo trigger for sperm activation and (2) regulating the timing of proteolysis-triggered activation is crucial for male reproductive success. Furthermore, our data provide insight into how a common program of gamete differentiation can be modulated to allow males to participate in reproduction in the context of a male/hermaphrodite species where the capacity for hermaphrodite self-fertilization has rendered them nonessential for progeny production.
Collapse
Affiliation(s)
- Gillian M Stanfield
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
150
|
Pattarini JM, Starmer WT, Bjork A, Pitnick S. MECHANISMS UNDERLYING THE SPERM QUALITY ADVANTAGE IN DROSOPHILA MELANOGASTER. Evolution 2006. [DOI: 10.1554/06-142.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|