101
|
Liu F, Zhao Q, Ruan X, He Y, Li H. Suppressor of RNA silencing encoded by Rice gall dwarf virus genome segment 11. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11434-008-0095-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
102
|
Genetic characterization of the NS gene indicates co-circulation of two sub-lineages of highly pathogenic avian influenza virus of H5N1 subtype in Northern Europe in 2006. Virus Genes 2008; 36:117-25. [DOI: 10.1007/s11262-007-0188-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 12/13/2007] [Indexed: 01/05/2023]
|
103
|
Valli A, Dujovny G, García JA. Protease activity, self interaction, and small interfering RNA binding of the silencing suppressor p1b from cucumber vein yellowing ipomovirus. J Virol 2008; 82:974-86. [PMID: 17989179 PMCID: PMC2224578 DOI: 10.1128/jvi.01664-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 10/25/2007] [Indexed: 12/25/2022] Open
Abstract
The RNA silencing pathway mediated by small interfering RNAs (siRNAs) plays an important antiviral role in eukaryotes. To counteract this defense barrier, a large number of plant viruses express proteins with RNA silencing suppression activity. Recently, it was reported that the ipomovirus Cucumber vein yellowing virus (CVYV), which lacks the typical silencing suppressor of members of the family Potyviridae, i.e., HCPro, has a duplicated P1 coding sequence and that the downstream P1 copy, named P1b, has silencing suppression activity. In this study, we provide experimental evidence that P1b is a serine protease that self-cleaves at its C terminus but that its proteolytic activity is not essential for silencing suppression. In contrast, a putative zinc finger and a conserved basic motif in the N-terminal region of the protein are required for efficient silencing suppression. In vitro gel filtration-fast protein liquid chromatography and in vivo bimolecular fluorescence complementation assays showed that P1b binds itself to form oligomeric structures and that the zinc finger-like motif is essential for the self interaction. Moreover, we observed that CVYV P1b forms complexes with synthetic siRNAs, and this ability correlated with both silencing suppression activity and enhancement of Potato virus X pathogenicity in a mutational analysis. Together, these results suggest that CVYV P1b resembles potyviral HCPro and other viral proteins in interfering RNA silencing by preventing siRNA loading into the RNA-induced silencing complex.
Collapse
Affiliation(s)
- Adrian Valli
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
104
|
de Vries W, Berkhout B. RNAi suppressors encoded by pathogenic human viruses. Int J Biochem Cell Biol 2008; 40:2007-12. [DOI: 10.1016/j.biocel.2008.04.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/17/2008] [Accepted: 04/18/2008] [Indexed: 01/27/2023]
|
105
|
Zhang J, Wu YO, Xiao L, Li K, Chen LL, Sirois P. Therapeutic potential of RNA interference against cellular targets of HIV infection. Mol Biotechnol 2007; 37:225-36. [PMID: 17952669 PMCID: PMC7091338 DOI: 10.1007/s12033-007-9000-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 08/09/2007] [Indexed: 12/11/2022]
Abstract
RNA interference is not only very promising in identifying new targets for drug development, siRNA/shRNA themselves may be directly used as therapeutic agents. In inhibiting viral infections by RNA interference, both viral targets and cellular proteins have been evaluated. Most of the early studies in this field had chosen viral targets for RNA interference. However, recent efforts are mainly focusing on cellular proteins for RNA silencing due to the realization that a variety of viral responses substantially minimize siRNA effects. With the application of siRNA approaching, many new cellular targets relevant to HIV infection have been identified. The value of siRNA/shRNA in the treatment of AIDS is largely dependent on better understanding of the biology of HIV replication. Efforts in the identification of cellular processes with the employment of siRNA/shRNA have shed some new lights on our understanding of how HIV infection occurs. Furthermore, the relative specific effects and simplicity of design makes siRNA/shRNA themselves to be favorable drug leads.
Collapse
Affiliation(s)
- Jia Zhang
- Gene Core, The Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
106
|
Haasnoot J, de Vries W, Geutjes EJ, Prins M, de Haan P, Berkhout B. The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog 2007; 3:e86. [PMID: 17590081 PMCID: PMC1894824 DOI: 10.1371/journal.ppat.0030086] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 05/10/2007] [Indexed: 12/30/2022] Open
Abstract
RNA silencing or interference (RNAi) is a gene regulation mechanism in eukaryotes that controls cell differentiation and developmental processes via expression of microRNAs. RNAi also serves as an innate antiviral defence response in plants, nematodes, and insects. This antiviral response is triggered by virus-specific double-stranded RNA molecules (dsRNAs) that are produced during infection. To overcome antiviral RNAi responses, many plant and insect viruses encode RNA silencing suppressors (RSSs) that enable them to replicate at higher titers. Recently, several human viruses were shown to encode RSSs, suggesting that RNAi also serves as an innate defence response in mammals. Here, we demonstrate that the Ebola virus VP35 protein is a suppressor of RNAi in mammalian cells and that its RSS activity is functionally equivalent to that of the HIV-1 Tat protein. We show that VP35 can replace HIV-1 Tat and thereby support the replication of a Tat-minus HIV-1 variant. The VP35 dsRNA-binding domain is required for this RSS activity. Vaccinia virus E3L protein and influenza A virus NS1 protein are also capable of replacing the HIV-1 Tat RSS function. These findings support the hypothesis that RNAi is part of the innate antiviral response in mammalian cells. Moreover, the results indicate that RSSs play a critical role in mammalian virus replication. Cells have evolved mechanisms to protect themselves from virus infection. A well-known antiviral mechanism in mammals is the interferon (IFN) response of the innate immune system. In plants, insects, and worms, RNA silencing or RNA interference (RNAi) is a strong antiviral defence mechanism. It is still debated whether RNAi is also used as an antiviral mechanism in mammals. Many mammalian viruses encode essential factors that suppress the innate antiviral responses of the host. Such innate immunity suppressor proteins, or IFN antagonists, have recently been reported to also suppress RNAi in mammalian cells. We now demonstrate that the Ebola virus VP35 protein, a known IFN antagonist, suppresses RNAi in human cells. In addition, VP35 restores the production of an HIV-1 variant with a defective RNAi suppressor Tat protein. These results indicate that RNAi is part of the innate antiviral defence response in mammals and that viruses need to counteract this response in order to replicate. Whereas RNAi and INF act in concert to prevent the infection of mammalian cells, the invading viruses encode a protein that counteracts both defence mechanisms.
Collapse
Affiliation(s)
- Joost Haasnoot
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center of Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Walter de Vries
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center of Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Ernst-Jan Geutjes
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center of Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel Prins
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center of Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
107
|
Hemmes H, Lakatos L, Goldbach R, Burgyán J, Prins M. The NS3 protein of Rice hoja blanca tenuivirus suppresses RNA silencing in plant and insect hosts by efficiently binding both siRNAs and miRNAs. RNA (NEW YORK, N.Y.) 2007; 13:1079-89. [PMID: 17513697 PMCID: PMC1894927 DOI: 10.1261/rna.444007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
RNA silencing plays a key role in antiviral defense as well as in developmental processes in plants and insects. Negative strand RNA viruses such as the plant virus Rice hoja blanca tenuivirus (RHBV) replicate in plants and in their insect transmission vector. Like most plant-infecting viruses, RHBV encodes an RNA silencing suppressor, the NS3 protein, and here it is demonstrated that this protein is capable of suppressing RNA silencing in both plants and insect cells. Biochemical analyses showed that NS3 efficiently binds siRNA as well as miRNA molecules. Binding of NS3 is greatly influenced by the size of small RNA molecules, as 21 nucleotide (nt) siRNA molecules are bound > 100 times more efficiently than 26 nt species. Competition assays suggest that the activity of NS3 is based on binding to siRNAs prior to strand separation during the assembly of the RNA-induced silencing complex. In addition, NS3 has a high affinity for miRNA/miRNA* duplexes, indicating that its activity might also interfere with miRNA-regulated gene expression in both insects and plants.
Collapse
Affiliation(s)
- Hans Hemmes
- Laboratory of Virology, Wageningen University, 6709 PD Wageningen, The Netherlands
| | - Lóránt Lakatos
- Agricultural Biotechnology Center, Plant Virology Group, P.O. Box 411, H2101 Gödöllő, Hungary
| | - Rob Goldbach
- Laboratory of Virology, Wageningen University, 6709 PD Wageningen, The Netherlands
| | - József Burgyán
- Agricultural Biotechnology Center, Plant Virology Group, P.O. Box 411, H2101 Gödöllő, Hungary
| | - Marcel Prins
- Laboratory of Virology, Wageningen University, 6709 PD Wageningen, The Netherlands
| |
Collapse
|
108
|
Goto K, Kobori T, Kosaka Y, Natsuaki T, Masuta C. Characterization of silencing suppressor 2b of cucumber mosaic virus based on examination of its small RNA-binding abilities. PLANT & CELL PHYSIOLOGY 2007; 48:1050-60. [PMID: 17567638 DOI: 10.1093/pcp/pcm074] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Double-stranded (ds) RNAs and imperfect hairpin RNAs of endogenous genes trigger post-transcriptional gene silencing (PTGS) and are cleaved by a Dicer-like nuclease into small interfering RNAs (siRNAs) and microRNs (miRNAs), respectively. Such small RNAs (siRNAs and miRNAs) then guide an RNA-induced silencing complex (RISC) for sequence-specific RNA degradation. While PTGS serves as an antiviral defense in plants, many plant viruses encode suppressors as a counter defense. Here we demonstrate that the PTGS suppressor (2b) of a severe strain (CM95R) of cucumber mosaic virus (CMV) can bind to in vitro synthesized siRNAs and even to long dsRNAs to a lesser extent. However, the 2b suppressor weakly bound to a miRNA (miR171) duplex in contrast to another small RNA-binding suppressor, p19 of tombusvirus that can effectively bind miRNAs. Because the 2b suppressor of an attenuated strain of CMV (CM95), which differs in a single amino acid from the 2b of CM95R, could barely bind siRNAs, we hypothesized that the weak suppressor activity of the attenuated strain resulted from a loss of the siRNA-binding property of 2b via a single amino acid change. Here we consider that 2b interferes with the PTGS pathway by directly binding siRNAs (or long dsRNA).
Collapse
Affiliation(s)
- Kazunori Goto
- Cell Biology and Manipulation Laboratory, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | | | | | | | | |
Collapse
|
109
|
Kochs G, García-Sastre A, Martínez-Sobrido L. Multiple anti-interferon actions of the influenza A virus NS1 protein. J Virol 2007; 81:7011-21. [PMID: 17442719 PMCID: PMC1933316 DOI: 10.1128/jvi.02581-06] [Citation(s) in RCA: 367] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The replication and pathogenicity of influenza A virus (FLUAV) are controlled in part by the alpha/beta interferon (IFN-alpha/beta) system. This virus-host interplay is dependent on the production of IFN-alpha/beta and on the capacity of the viral nonstructural protein NS1 to counteract the IFN system. Two different mechanisms have been described for NS1, namely, blocking the activation of IFN regulatory factor 3 (IRF3) and blocking posttranscriptional processing of cellular mRNAs. Here we directly compare the abilities of NS1 gene products from three different human FLUAV (H1N1) strains to counteract the antiviral host response. We found that A/PR/8/34 NS1 has a strong capacity to inhibit IRF3 and activation of the IFN-beta promoter but is unable to suppress expression of other cellular genes. In contrast, the NS1 proteins of A/Tx/36/91 and of A/BM/1/18, the virus that caused the Spanish influenza pandemic, caused suppression of additional cellular gene expression. Thus, these NS1 proteins prevented the establishment of an IFN-induced antiviral state, allowing virus replication even in the presence of IFN. Interestingly, the block in gene expression was dependent on a newly described NS1 domain that is important for interaction with the cleavage and polyadenylation specificity factor (CPSF) component of the cellular pre-mRNA processing machinery but is not functional in A/PR/8/34 NS1. We identified the Phe-103 and Met-106 residues in NS1 as being critical for CPSF binding, together with the previously described C-terminal binding domain. Our results demonstrate the capacity of FLUAV NS1 to suppress the antiviral host defense at multiple levels and the existence of strain-specific differences that may modulate virus pathogenicity.
Collapse
Affiliation(s)
- Georg Kochs
- Department of Virology, University of Freiburg, D-79008 Freiburg, Germany
| | | | | |
Collapse
|
110
|
Lantermann M, Schwantes A, Sliva K, Sutter G, Schnierle BS. Vaccinia virus double-stranded RNA-binding protein E3 does not interfere with siRNA-mediated gene silencing in mammalian cells. Virus Res 2007; 126:1-8. [PMID: 17306404 DOI: 10.1016/j.virusres.2007.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 01/08/2007] [Accepted: 01/13/2007] [Indexed: 01/10/2023]
Abstract
Vaccinia virus (VACV) evolved several strategies to evade antiviral cellular defence. The vaccinia virus E3 protein for example binds and sequesters double stranded RNA (dsRNA) and counteracts interferon action. We were interested to find out whether and to what extend E3 interferes with RNA silencing mediated by short interfering RNA (siRNA) in mammalian cells. We could show that the expression of a VACV-encoded marker gene can be efficiently inhibited by siRNA independently of the presence of the E3 protein. In addition, expression of E3 had no impact on RNA polymerase III promoter-derived shRNA-induced silencing of a cellular gene in human cells. Both VACV early and late gene expression could be inhibited by siRNA. Furthermore, downregulation of the expression of the E3L gene itself by siRNA in VACV infected cells produced the previously described phenotype of a knock-out virus, which illustrates the power of siRNA for vaccinia virus gene function analysis.
Collapse
Affiliation(s)
- Markus Lantermann
- Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | | | | | | | | |
Collapse
|
111
|
Ribeiro SG, Lohuis H, Goldbach R, Prins M. Tomato chlorotic mottle virus is a target of RNA silencing but the presence of specific short interfering RNAs does not guarantee resistance in transgenic plants. J Virol 2007; 81:1563-73. [PMID: 17135316 PMCID: PMC1797551 DOI: 10.1128/jvi.01238-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 11/16/2006] [Indexed: 11/20/2022] Open
Abstract
Tomato chlorotic mottle virus (ToCMoV) is a begomovirus found widespread in tomato fields in Brazil. ToCMoV isolate BA-Se1 (ToCMoV-[BA-Se1]) was shown to trigger the plant RNA silencing surveillance in different host plants and, coinciding with a decrease in viral DNA levels, small interfering RNAs (siRNAs) specific to ToCMoV-[BA-Se1] accumulated in infected plants. Although not homogeneously distributed, the siRNA population in both infected Nicotiana benthamiana and tomato plants represented the entire DNA-A and DNA-B genomes. We determined that in N. benthamiana, the primary targets corresponded to the 5' end of AC1 and the embedded AC4, the intergenic region and 5' end of AV1 and overlapping central part of AC5. Subsequently, transgenic N. benthamiana plants were generated that were preprogrammed to express double-stranded RNA corresponding to this most targeted portion of the virus genome by using an intron-hairpin construct. These plants were shown to indeed produce ToCMoV-specific siRNAs. When challenge inoculated, most transgenic lines showed significant delays in symptom development, and two lines had immune plants. Interestingly, the levels of transgene-produced siRNAs were similar in resistant and susceptible siblings of the same line. This indicates that, in contrast to RNA viruses, the mere presence of transgene siRNAs corresponding to DNA virus sequences does not guarantee virus resistance and that other factors may play a role in determining RNA-mediated resistance to DNA viruses.
Collapse
Affiliation(s)
- Simone G Ribeiro
- Laboratory of Virology, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | | | | | | |
Collapse
|
112
|
Sarmiento C, Gomez E, Meier M, Kavanagh TA, Truve E. Cocksfoot mottle virus P1 suppresses RNA silencing in Nicotiana benthamiana and Nicotiana tabacum. Virus Res 2007; 123:95-9. [PMID: 16971015 DOI: 10.1016/j.virusres.2006.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 07/22/2006] [Accepted: 07/22/2006] [Indexed: 10/24/2022]
Abstract
The Sobemovirus genome consists of positive sense, single-stranded polycistronic RNA. The 5'-terminal ORF, encoding the protein P1, is its most variable region. Sobemoviral P1 has been described as dispensable for replication but indispensable for systemic infection. The P1 of Rice yellow mottle virus-Nigerian isolate (RYMV-N) is the only RNA silencing suppressor reported for sobemoviruses until now. Using an agrobacterium-mediated transient assay, we demonstrate here that P1 of Cocksfoot mottle virus-Norwegian isolate (CfMV-NO) suppresses RNA silencing in Nicotiana benthamiana and Nicotiana tabacum, two non-host plants. CfMV-NO P1 was able to suppress the initiation and maintenance of silencing. The suppression of systemic silencing was weaker with CfMV-NO P1 than in the case of RYMV-N P1. In the case of suppression at the local level, the reduction in the amount of 25-nucleotide small interfering RNAs (siRNAs) was less pronounced for CfMV-NO P1 than it was when RYMV-N P1 was used. At the same time, we show that CfMV-NO P1 did not bind siRNAs.
Collapse
Affiliation(s)
- Cecilia Sarmiento
- Tallinn University of Technology, Department of Gene Technology, Akadeemia tee 15, 19086 Tallinn, Estonia.
| | | | | | | | | |
Collapse
|
113
|
Abstract
Viruses are obligate, intracellular pathogens that must manipulate and exploit host molecular mechanisms to prosper in the hostile cellular environment. Here we review the strategies used by viruses to evade the immunity controlled by 21- to 26-nt small RNAs. Viral suppressors of RNA silencing (VSRs) are encoded by genetically diverse viruses infecting plants, invertebrates, and vertebrates. VSRs target key steps in the small RNA pathways by inhibiting small RNA production, sequestering small RNAs, or preventing short- and long-distance spread of RNA silencing. However, although VSRs are required for infection, explicit data demonstrating a role of silencing suppression in virus infection are available only for a few VSRs. A subset of VSRs bind double-stranded RNA, but a distinct protein fold is revealed for each of the four VSRs examined. We propose that VSR families are evolved independently as a viral adaptation to immunity. Unresolved issues on the role of RNA silencing in virus-host interactions are highlighted.
Collapse
Affiliation(s)
- Feng Li
- Graduate Program for Microbiology, University of California, Riverside, California 92521
| | - Shou-Wei Ding
- Graduate Program for Microbiology, University of California, Riverside, California 92521
- Department of Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92521
| |
Collapse
|
114
|
Bucher E, Lohuis D, van Poppel PMJA, Geerts-Dimitriadou C, Goldbach R, Prins M. Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol 2006; 87:3697-3701. [PMID: 17098987 DOI: 10.1099/vir.0.82276-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA silencing is a natural antiviral defence in plants, which can be exploited in transgenic plants for preprogramming virus recognition and ensuring enhanced resistance. By arranging viral transgenes as inverted repeats it is thus possible to obtain strong repression of incoming viruses. Due to the high sequence specificity of RNA silencing, this technology has hitherto been limited to the targeting of single viruses. Here it is shown that efficient simultaneous targeting of four different tospoviruses can be achieved by using a single small transgene based on the production of minimal sized chimaeric cassettes. Due to simultaneous RNA silencing, as demonstrated by specific siRNA accumulation, the transgenic expression of these cassettes rendered up to 82 % of the transformed plant lines heritably resistant against all four viruses. Thus RNA silencing can be further improved for high frequency multiple virus resistance by combining small RNA fragments from a series of target viruses.
Collapse
Affiliation(s)
- Etienne Bucher
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Dick Lohuis
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Pieter M J A van Poppel
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | | | - Rob Goldbach
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Marcel Prins
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| |
Collapse
|
115
|
Abstract
Viruses represent one of the main factors that cause normal cells to proliferate and to become malignant: up to 15% of all human cancers are associated with single or multiple virus infections, and several viruses have been recognized as causal agents of specific types of cancer. Viruses have evolved many strategies to prevent infected cells from becoming apoptotic and to evade the innate and adaptive immune responses of their hosts. The recent discovery that Epstein-Barr virus and other herpesviruses produce their own sets of micro (mi)RNAs brings an additional layer of complexity in this ongoing host-virus arms race and changes our initial views of the antiviral roles of RNA silencing in plants and insects. It seems that, rather than being inhibited by this process, many mammalian viruses can usurp or divert the host RNA silencing machinery to their advantage. Viral-encoded miRNAs can act both in cis, to ensure accurate expression of viral genomes, and in trans, to modify the expression of host transcripts. Here, we review the current knowledge on viral miRNAs and discuss how mammalian viruses can also perturb host miRNA expression. Those recent findings provide new insights into the role of viruses and miRNAs in cancer development.
Collapse
Affiliation(s)
- S Pfeffer
- IBMP-CNRS, rue du Général Zimmer, Strasbourg, France.
| | | |
Collapse
|
116
|
Kok KH, Jin DY. Influenza A virus NS1 protein does not suppress RNA interference in mammalian cells. J Gen Virol 2006; 87:2639-2644. [PMID: 16894203 DOI: 10.1099/vir.0.81764-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Influenza A virus NS1 protein has been shown to suppress RNA interference (RNAi) in plants and Drosophila. Although it has not been demonstrated experimentally, NS1 has also been thought to inhibit RNAi in mammals as well as being an antagonist of interferon. In this study, the influence of NS1 protein from influenza virus strain A/WSN/33 on RNAi in mammalian cells was investigated. While transiently or stably expressed NS1 was fully competent to inhibit the interferon pathway in cultured cells, it did not suppress RNAi-mediated silencing of different reporter genes. These findings imply a significant difference in RNAi mechanism between mammals and plants.
Collapse
Affiliation(s)
- Kin Hang Kok
- Department of Biochemistry, Faculty of Medicine, The University of Hong Kong, Third Floor, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Hong Kong, China
| | - Dong-Yan Jin
- Department of Biochemistry, Faculty of Medicine, The University of Hong Kong, Third Floor, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Hong Kong, China
| |
Collapse
|
117
|
Zrachya A, Glick E, Levy Y, Arazi T, Citovsky V, Gafni Y. Suppressor of RNA silencing encoded by Tomato yellow leaf curl virus-Israel. Virology 2006; 358:159-65. [PMID: 16979684 DOI: 10.1016/j.virol.2006.08.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 07/12/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
The Israeli isolate of Tomato yellow leaf curl geminivirus (TYLCV-Is) is a major tomato pathogen, causing extensive crop losses both in the New and Old World. Surprisingly, however, little is known about the molecular mechanisms of TYLCV-Is interactions with tomato cells. Here, we have identified a TYLCV-Is protein, V2, which acts as a suppressor of RNA silencing and which is unrelated to presently known viral suppressors. Specifically, V2, but not other proteins of TYLCV-Is, inhibited RNA silencing of a reporter transgene, GFP. This inhibition elevated the cellular levels of the GFP transcript and the GFP protein, but it had no apparent effect on the accumulation of GFP-specific short interfering RNAs (siRNAs), suggesting that TYLCV-Is V2 targets a step in the RNA silencing pathway which is subsequent to the Dicer-mediated cleavage of dsRNA. Visualization of the sub-cellular localization of TYLCV-Is V2 in plant protoplasts and tissues showed that this protein is associated with cytoplasmic strands and inclusion bodies in the cortical regions of the cell.
Collapse
Affiliation(s)
- Avi Zrachya
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| | | | | | | | | | | |
Collapse
|
118
|
Nishitsuji H, Kohara M, Kannagi M, Masuda T. Effective suppression of human immunodeficiency virus type 1 through a combination of short- or long-hairpin RNAs targeting essential sequences for retroviral integration. J Virol 2006; 80:7658-66. [PMID: 16840344 PMCID: PMC1563699 DOI: 10.1128/jvi.00078-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Small interfering RNA (siRNA) could provide a new therapeutic approach to treating human immunodeficiency virus type 1 (HIV-1) infection. For long-term suppression of HIV-1, emergence of siRNA escape variants must be controlled. Here, we constructed lentiviral vectors encoding short-hairpin RNAs (shRNA) corresponding to conserved target sequences within the integrase (int) and the attachment site (att) genes, both of which are essential for HIV-1 integration. Compared to shRNA targeting of the HIV-1 transcription factor tat (shTat), shRNA against int (shIN) or the U3 region of att (shU3) showed a more potent inhibitory effect on HIV-1 replication in human CD4+ T cells. Infection with a high dose of HIV-1 resulted in the emergence of escape mutants during long-term culture. Of note, limited genetic variation was observed in the viruses resistant to shIN. A combination of shINs against wild-type and escape mutant sequences had a negative effect on their antiviral activities, indicating a potentially detrimental effect when administering multiple shRNA targeting the same region to combat HIV-1 variants. The combination of shIN and shU3 att exhibited the strongest anti-HIV-1 activity, as seen by complete abrogation of viral DNA synthesis and viral integration. In addition, a modified long-hairpin RNA spanning the 50 nucleotides in the shIN target region effectively suppressed wild-type and shIN-resistant mutant HIV-1. These results suggest that targeting of incoming viral RNA before proviral DNA formation occurs through the use of nonoverlapping multiple siRNAs is a potent approach to achieving sustained, efficient suppression of highly mutable viruses, such as HIV-1.
Collapse
Affiliation(s)
- Hironori Nishitsuji
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | |
Collapse
|
119
|
Abstract
Non-coding small RNAs (19-24 nucleotide long) have recently been recognized as the important regulator of gene expression in both plants and animals. Several classes of endogenous short RNAs have partial or near perfect complementarity to mRNAs and a protein complex is guided by short RNAs to target mRNAs. The targeted mRNA is either cleaved or its translation is suppressed. Initially, short RNAs were believed to primarily regulate the normal development of plants and animals, but recent advances implicate short RNAs in environmental adaptation.
Collapse
Affiliation(s)
- Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
120
|
Mérai Z, Kerényi Z, Kertész S, Magna M, Lakatos L, Silhavy D. Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J Virol 2006; 80:5747-56. [PMID: 16731914 PMCID: PMC1472586 DOI: 10.1128/jvi.01963-05] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In plants, RNA silencing (RNA interference) is an efficient antiviral system, and therefore successful virus infection requires suppression of silencing. Although many viral silencing suppressors have been identified, the molecular basis of silencing suppression is poorly understood. It is proposed that various suppressors inhibit RNA silencing by targeting different steps. However, as double-stranded RNAs (dsRNAs) play key roles in silencing, it was speculated that dsRNA binding might be a general silencing suppression strategy. Indeed, it was shown that the related aureusvirus P14 and tombusvirus P19 suppressors are dsRNA-binding proteins. Interestingly, P14 is a size-independent dsRNA-binding protein, while P19 binds only 21-nucleotide ds-sRNAs (small dsRNAs having 2-nucleotide 3' overhangs), the specificity determinant of the silencing system. Much evidence supports the idea that P19 inhibits silencing by sequestering silencing-generated viral ds-sRNAs. In this study we wanted to test the hypothesis that dsRNA binding is a general silencing suppression strategy. Here we show that many plant viral silencing suppressors bind dsRNAs. Beet yellows virus Peanut P21, clump virus P15, Barley stripe mosaic virus gammaB, and Tobacco etch virus HC-Pro, like P19, bind ds-sRNAs size-selectively, while Turnip crinkle virus CP is a size-independent dsRNA-binding protein, which binds long dsRNAs as well as ds-sRNAs. We propose that size-selective ds-sRNA-binding suppressors inhibit silencing by sequestering viral ds-sRNAs, whereas size-independent dsRNA-binding suppressors inactivate silencing by sequestering long dsRNA precursors of viral sRNAs and/or by binding ds-sRNAs. The findings that many unrelated silencing suppressors bind dsRNA suggest that dsRNA binding is a general silencing suppression strategy which has evolved independently many times.
Collapse
Affiliation(s)
- Zsuzsanna Mérai
- Agricultural Biotechnology Center, H-2101 Gödöllö, P. O. Box. 411, Hungary
| | | | | | | | | | | |
Collapse
|
121
|
Garcia S, Billecocq A, Crance JM, Prins M, Garin D, Bouloy M. Viral suppressors of RNA interference impair RNA silencing induced by a Semliki Forest virus replicon in tick cells. J Gen Virol 2006; 87:1985-1989. [PMID: 16760400 DOI: 10.1099/vir.0.81827-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It was recently shown that infection of ISE6 tick cells by a recombinant Semliki Forest virus (SFV) expressing a heterologous gene induced small interfering RNAs (siRNAs) and silencing of the gene. To gain information on RNA interference (RNAi) in ticks, three known viral inhibitors that act in different ways, the NS1 protein of Influenza virus, NSs of Tospovirus Tomato spotted wilt virus and HC-Pro of Zucchini yellow mosaic virus were expressed and investigated to determine if they antagonize induced RNAi. Using the recombinant SFV replicon expressing firefly luciferase, silencing was induced and the suppressor activity of these inhibitors during or after initiation of siRNA synthesis was tested, to determine which step of the RNAi pathway is impaired. It was found that these proteins, identified in mammalian or plant systems, also display activity in tick cells. These data suggest that ticks utilize a mechanism similar to the one found in other eukaryotes.
Collapse
Affiliation(s)
- Stephan Garcia
- Unité de Génétique Moléculaire des Bunyaviridés, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
- Laboratoire de Virologie, CRSSA, BP 87, 38702 Grenoble, France
| | - Agnès Billecocq
- Unité de Génétique Moléculaire des Bunyaviridés, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | - Marcel Prins
- Laboratory of Virology, Wageningen University, The Netherlands
| | - Daniel Garin
- Laboratoire de Virologie, CRSSA, BP 87, 38702 Grenoble, France
| | - Michèle Bouloy
- Unité de Génétique Moléculaire des Bunyaviridés, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
122
|
Abstract
RNA interference constitutes a key component of the innate immune response to viral infection in both plants and invertebrate animals and has been postulated to have a similar protective function in mammals. This perspective reviews the available data addressing whether RNA interference forms part of the mammalian innate immune response and concludes that the popular hypothesis in favor of that possibility remains far from proven and may not be valid.
Collapse
Affiliation(s)
- Bryan R Cullen
- Center for Virology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
123
|
Abstract
The field of directed RNA interference (RNAi) has rapidly developed into a highly promising approach for specifically down regulating genes to alleviate disease pathology. This technology is especially well-suited to treating viral infections, and numerous examples now illustrate that a wide range of viruses can be inhibited with RNAi, both in vitro and in vivo. One principle that has arisen from this work is that antiviral RNAi therapies must be tailored to the unique life cycle of each pathogen, including the choice of delivery vehicle, route of administration, gene(s) targeted and regulation and duration of RNAi induction. Although effective strategies will be customized to each virus, all such therapies must overcome similar challenges. Importantly, treatment strategies must compensate for the inevitable fact that viral genome sequences evolve extremely rapidly, and computational and bioinformatics approaches may aid in the development of therapies that resist viral escape. Furthermore, all RNAi strategies involve the delivery of nucleic acids to target cells, and all will therefore benefit from the development of enhanced gene design and delivery technologies. Here, we review the substantial progress that has been made towards identifying effective antiviral RNAi targets and discuss strategies for translating these findings into effective clinical therapies.
Collapse
Affiliation(s)
- J N Leonard
- Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA USA
| | - D V Schaffer
- Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA USA
| |
Collapse
|
124
|
Abstract
The discovery of RNA interference (RNAi) in C. elegans and in plants has revolutionized current approaches to biology and medicine. RNAi silences genes in a sequence-specific manner through the actions of small pieces of double-stranded RNAs (siRNAs and miRNAs). RNAi has been found as a widespread natural phenomenon in eukaryotic cells and is also being used as a powerful experimental tool to explore gene function. Most importantly, it has many potential therapeutic applications. Viral gene-specific siRNAs are theoretically very promising antiviral inhibitors and have been examined in a broad range of medically important viruses. However, many RNA viruses escape RNAi-mediated suppression by counteracting the RNAi machinery through mutation of the targeted region, by encoding viral suppressors, or both. DNA viruses also counteract the RNAi machinery, preferentially using viral suppressors. Cellular factors may also contribute to RNAi resistance; ADAR1 was the first cellular factor found to be responsible for editing-mediated RNAi resistance. Because siRNAs can be used as potent small-molecule inhibitors of any cellular gene, the best way for a cell to maintain expression of essential genes for its long-term survival is to develop a program to resist the detrimental effects of RNAi.
Collapse
Affiliation(s)
- Zhi-Ming Zheng
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 10S 255, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
125
|
Cárdenas WB, Loo YM, Gale M, Hartman AL, Kimberlin CR, Martínez-Sobrido L, Saphire EO, Basler CF. Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol 2006; 80:5168-78. [PMID: 16698997 PMCID: PMC1472134 DOI: 10.1128/jvi.02199-05] [Citation(s) in RCA: 347] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 03/11/2006] [Indexed: 01/20/2023] Open
Abstract
The Ebola virus (EBOV) VP35 protein blocks the virus-induced phosphorylation and activation of interferon regulatory factor 3 (IRF-3), a transcription factor critical for the induction of alpha/beta interferon (IFN-alpha/beta) expression. However, the mechanism(s) by which this blockage occurs remains incompletely defined. We now provide evidence that VP35 possesses double-stranded RNA (dsRNA)-binding activity. Specifically, VP35 bound to poly(rI) . poly(rC)-coated Sepharose beads but not control beads. In contrast, two VP35 point mutants, R312A and K309A, were found to be greatly impaired in their dsRNA-binding activity. Competition assays showed that VP35 interacted specifically with poly(rI) . poly(rC), poly(rA) . poly(rU), or in vitro-transcribed dsRNAs derived from EBOV sequences, and not with single-stranded RNAs (ssRNAs) or double-stranded DNA. We then screened wild-type and mutant VP35s for their ability to target different components of the signaling pathways that activate IRF-3. These experiments indicate that VP35 blocks activation of IRF-3 induced by overexpression of RIG-I, a cellular helicase recently implicated in the activation of IRF-3 by either virus or dsRNA. Interestingly, the VP35 mutants impaired for dsRNA binding have a decreased but measurable IFN antagonist activity in these assays. Additionally, wild-type and dsRNA-binding-mutant VP35s were found to have equivalent abilities to inhibit activation of the IFN-beta promoter induced by overexpression of IPS-1, a recently identified signaling molecule downstream of RIG-I, or by overexpression of the IRF-3 kinases IKKepsilon and TBK-1. These data support the hypothesis that dsRNA binding may contribute to VP35 IFN antagonist function. However, additional mechanisms of inhibition, at a point proximal to the IRF-3 kinases, most likely also exist.
Collapse
Affiliation(s)
- Washington B Cárdenas
- Department of Microbiology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Sliva K, Schnierle BS. Stable integration of a functional shRNA expression cassette into the murine leukemia virus genome. Virology 2006; 351:218-25. [PMID: 16631223 DOI: 10.1016/j.virol.2006.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 02/25/2006] [Accepted: 03/07/2006] [Indexed: 11/26/2022]
Abstract
Short hairpin RNA (shRNA) can be stably expressed in cells to down-modulate gene expression. While retroviral and lentiviral vectors can be used to deliver shRNAs, the restricted viral titer is the major limitation for efficient gene transfer, which is especially important for cancer gene therapy. We were interested in using replicating murine leukemia virus (MLV) to enhance the shRNA transfer. Although stem loop structures could potentially interfere with the retroviral life cycle, we were able to demonstrate that the insertion of shRNA expression cassettes into MLV did not interfere significantly with viral fitness. The virus was genetically stable and able to silence target gene expression. Our results show that replicating MLVs are excellent tools for delivering shRNAs efficiently throughout the culture and have the potential to be used for gene function elucidation or even for cancer gene therapy.
Collapse
Affiliation(s)
- Katja Sliva
- Institute for Biomedical Research, Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt/Main, Germany
| | | |
Collapse
|
127
|
Sarmiento C, Nigul L, Kazantseva J, Buschmann M, Truve E. AtRLI2 is an endogenous suppressor of RNA silencing. PLANT MOLECULAR BIOLOGY 2006; 61:153-63. [PMID: 16786298 DOI: 10.1007/s11103-005-0001-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 12/28/2005] [Indexed: 05/10/2023]
Abstract
RNA silencing is a mechanism involved in gene regulation during development and anti-viral defense in plants and animals. Although many viral suppressors of this mechanism have been described up to now, this is not the case for endogenous suppressors. We have identified a novel endogenous suppressor in plants: RNase L inhibitor (RLI) of Arabidopsis thaliana. RLI is a very conserved protein among eukaryotes and archaea. It was first known as component of the interferon-induced mammalian 2'-5' oligoadenylate (2-5A) anti-viral pathway. This protein is in several organisms responsible for essential functions, which are not related to the 2-5A pathway, like ribosome biogenesis and translation initiation. Arabidopsis has two RLI paralogs. We have described in detail the expression pattern of one of these paralogs (AtRLI2), which is ubiquitously expressed in all plant organs during different developmental stages. Infiltrating Nicotiana benthamiana green fluorescent protein (GFP)-transgenic line with Agrobacterium strains harboring GFP and AtRLI2, we proved that AtRLI2 suppresses silencing at the local and at the systemic level, reducing drastically the amount of GFP small interfering RNAs.
Collapse
Affiliation(s)
- Cecilia Sarmiento
- Department of Gene Technology, Tallinn University of Technology, Estonia.
| | | | | | | | | |
Collapse
|
128
|
Berkhout B, Haasnoot J. The interplay between virus infection and the cellular RNA interference machinery. FEBS Lett 2006; 580:2896-902. [PMID: 16563388 PMCID: PMC7094296 DOI: 10.1016/j.febslet.2006.02.070] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 02/25/2006] [Indexed: 12/04/2022]
Abstract
RNA interference (RNAi) plays a pivotal role in the regulation of gene expression to control cell development and differentiation. In plants, insects and nematodes RNAi also functions as an innate defence response against viruses. Similarly, there is accumulating evidence that RNAi functions as an antiviral defence mechanism in mammalian cells. Viruses have evolved highly sophisticated mechanisms for interacting with the host cell machinery, and recent evidence indicates that this also involves RNAi pathways. The cellular RNAi machinery can inhibit virus replication, but viruses may also exploit the RNAi machinery for their own replication. In addition, viruses can encode proteins or RNA molecules that suppress existing RNAi pathways or trigger the silencing of specific host genes. Besides the natural interplay between RNAi and viruses, induced RNAi provides an attractive therapy approach for the fight against human pathogenic viruses. Here, we summarize the latest news on virus–RNAi interactions and RNAi based antiviral therapy.
Collapse
Affiliation(s)
- Ben Berkhout
- Department of Human Retrovirology, K3-110, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | | |
Collapse
|
129
|
van Rij RP, Andino R. The silent treatment: RNAi as a defense against virus infection in mammals. Trends Biotechnol 2006; 24:186-93. [PMID: 16503061 DOI: 10.1016/j.tibtech.2006.02.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 11/25/2005] [Accepted: 02/13/2006] [Indexed: 12/22/2022]
Abstract
RNA interference (RNAi) is a mechanism for sequence-specific gene silencing guided by double-stranded RNA. In plants and insects it is well established that RNAi is instrumental in the response to viral infections; whether RNAi has a similar function in mammals is under intense investigation. Recent studies to address this question have identified some unanticipated interactions between the RNAi machinery and mammalian viruses. Furthermore, introduction of virus-specific small interfering RNAs (siRNAs) into cells, thus programming the RNAi machinery to target viruses, is an effective therapeutic approach to inhibit virus replication in vitro and in animal models. Although several issues remain to be addressed, such as delivery and viral escape, these findings hold tremendous potential for the development of RNAi-based antiviral therapeutics.
Collapse
Affiliation(s)
- Ronald P van Rij
- Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA 94143-2280, USA
| | | |
Collapse
|
130
|
Saumet A, Lecellier CH. Anti-viral RNA silencing: do we look like plants? Retrovirology 2006; 3:3. [PMID: 16409629 PMCID: PMC1363733 DOI: 10.1186/1742-4690-3-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Accepted: 01/12/2006] [Indexed: 01/01/2023] Open
Abstract
The anti-viral function of RNA silencing was first discovered in plants as a natural manifestation of the artificial 'co-suppression', which refers to the extinction of endogenous gene induced by homologous transgene. Because silencing components are conserved among most, if not all, eukaryotes, the question rapidly arose as to determine whether this process fulfils anti-viral functions in animals, such as insects and mammals. It appears that, whereas the anti-viral process seems to be similarly conserved from plants to insects, even in worms, RNA silencing does influence the replication of mammalian viruses but in a particular mode: micro(mi)RNAs, endogenous small RNAs naturally implicated in translational control, rather than virus-derived small interfering (si)RNAs like in other organisms, are involved. In fact, these recent studies even suggest that RNA silencing may be beneficial for viral replication. Accordingly, several large DNA mammalian viruses have been shown to encode their own miRNAs. Here, we summarize the seminal studies that have implicated RNA silencing in viral infection and compare the different eukaryotic responses.
Collapse
Affiliation(s)
- Anne Saumet
- CNRS UPR2357, Institut de Biologie Moléculaire des Plantes, 12, rue du Général Zimmer, 67084 STRASBOURG Cedex, France
| | - Charles-Henri Lecellier
- CNRS UPR2357, Institut de Biologie Moléculaire des Plantes, 12, rue du Général Zimmer, 67084 STRASBOURG Cedex, France
| |
Collapse
|
131
|
Schott DH, Cureton DK, Whelan SP, Hunter CP. An antiviral role for the RNA interference machinery in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2005; 102:18420-4. [PMID: 16339901 PMCID: PMC1317933 DOI: 10.1073/pnas.0507123102] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) is a sequence-specific gene-silencing mechanism triggered by exogenous dsRNA. In plants an RNAi-like mechanism defends against viruses, but the hypothesis that animals possess a similar natural antiviral mechanism related to RNAi remains relatively untested. To test whether genes needed for RNAi defend animal cells against virus infection, we infected wild-type and RNAi-defective cells of the nematode C. elegans with vesicular stomatitis virus engineered to encode a GFP fusion protein. We show that upon infection, cells lacking components of the RNAi apparatus produce more GFP and infective particles than wild-type cells. Furthermore, we show that mutant cells with enhanced RNAi produce less GFP. Our observation that multiple genes required for RNAi are also required for resistance to vesicular stomatitis virus suggests that the RNAi machinery functions in resistance to viruses in nature.
Collapse
Affiliation(s)
- Daniel H Schott
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
132
|
Iwamoto T, Mise K, Takeda A, Okinaka Y, Mori KI, Arimoto M, Okuno T, Nakai T. Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. J Gen Virol 2005; 86:2807-2816. [PMID: 16186236 DOI: 10.1099/vir.0.80902-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Striped jack nervous necrosis virus (SJNNV), which infects fish, is the type species of the genus Betanodavirus. This virus has a bipartite genome of positive-strand RNAs, designated RNAs 1 and 2. A small RNA (ca. 0.4 kb) has been detected from SJNNV-infected cells, which was newly synthesized and corresponded to the 3'-terminal region of RNA1. Rapid amplification of cDNA ends analysis showed that the 5' end of this small RNA (designated RNA3) initiated at nt 2730 of the corresponding RNA1 sequence and contained a 5' cap structure. Substitution of the first nucleotide of the subgenomic RNA sequence within RNA1 selectively inhibited production of the positive-strand RNA3 but not of the negative-strand RNA3, which suggests that RNA3 may be synthesized via a premature termination model. The single RNA3-encoded protein (designated protein B2) was expressed in Escherichia coli, purified and used to immunize a rabbit to obtain an anti-protein B2 polyclonal antibody. An immunological test showed that the antigen was specifically detected in the central nervous system and retina of infected striped jack larvae (Pseudocaranx dentex), and in the cytoplasm of infected cultured E-11 cells. These results indicate that SJNNV produces subgenomic RNA3 from RNA1 and synthesizes protein B2 during virus multiplication, as reported for alphanodaviruses. In addition, an Agrobacterium co-infiltration assay established in transgenic plants that express green fluorescent protein showed that SJNNV protein B2 has a potent RNA silencing-suppression activity, as discovered for the protein B2 of insect-infecting alphanodaviruses.
Collapse
Affiliation(s)
- Tokinori Iwamoto
- Kamiura Station, Japan Fisheries Research Agency, Oita 879-2602, Japan
| | - Kazuyuki Mise
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Atsushi Takeda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yasushi Okinaka
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, 739-8528, Japan
| | - Koh-Ichiro Mori
- Kamiura Station, Japan Fisheries Research Agency, Oita 879-2602, Japan
| | - Misao Arimoto
- Kamiura Station, Japan Fisheries Research Agency, Oita 879-2602, Japan
| | - Tetsuro Okuno
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Toshihiro Nakai
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, 739-8528, Japan
| |
Collapse
|
133
|
Kościańska E, Kalantidis K, Wypijewski K, Sadowski J, Tabler M. Analysis of RNA silencing in agroinfiltrated leaves of Nicotiana benthamiana and Nicotiana tabacum. PLANT MOLECULAR BIOLOGY 2005; 59:647-61. [PMID: 16244913 DOI: 10.1007/s11103-005-0668-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 07/08/2005] [Indexed: 05/05/2023]
Abstract
In this study we analyse several aspects of cytoplasmic RNA silencing by agroinfiltration of DNA constructs encoding single- and double-stranded RNAs derived from a GFP transgene and from the endogenous Virp1 gene. Both types of inductors resulted after 2-4 days in much higher concentration of siRNAs in the agroinfiltrated zone than normally seen during systemic silencing. More specifically, infiltration of two transgene hairpin constructs resulted in elevated levels of siRNAs. However, differences between the two constructs were observed: the antisense-sense arrangement was more effective than the sense-antisense order. For both double-stranded forms, we observed a relative increase of the 24-mer size class of siRNAs. When a comparable hairpin construct of the endogenous Virp1 gene was assayed, the portion of the 24-mer siRNA class remained low as observed for all kinds of single-stranded inducers. The lack of increase of Virp1-derived 24-mers was independent of the expression level, as demonstrated by agroinfiltration into a transgenic plant that overexpressed Virp1 and showed the same pattern. Using transducer constructs, we could detect within a week transitive silencing from GFP to GUS sequences in the infiltrated zone and in either direction 5'-3' and 3'-5'. Conversely, for the endogenous Virp1 gene neither transitive silencing nor the induction of systemic silencing could be observed. These results are discussed in view of the current models of RNA silencing.
Collapse
Affiliation(s)
- Edyta Kościańska
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, P.O. Box 1527, GR-71110 Crete, Heraklion, Greece
| | | | | | | | | |
Collapse
|
134
|
Hunter CV, Tiley LS, Sang HM. Developments in transgenic technology: applications for medicine. Trends Mol Med 2005; 11:293-8. [PMID: 15949771 DOI: 10.1016/j.molmed.2005.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 03/22/2005] [Accepted: 04/25/2005] [Indexed: 02/05/2023]
Abstract
Recent advances in the efficiency of transgenic technology have important implications for medicine. The production of therapeutic proteins from animal bioreactors is well established and the first products are close to market. The genetic modification of pigs to improve their suitability as organ donors for xenotransplantation has been initiated, but many challenges remain. The use of transgenesis, in combination with the method of RNA interference to knock down gene expression, has been proposed as a method for making animals resistant to viral diseases, which could reduce the likelihood of transmission to humans. Here, the latest developments in transgenic technology and their applications relevant to medicine and human health will be discussed.
Collapse
|
135
|
Ye K, Patel DJ. RNA silencing suppressor p21 of Beet yellows virus forms an RNA binding octameric ring structure. Structure 2005; 13:1375-84. [PMID: 16154094 PMCID: PMC4689306 DOI: 10.1016/j.str.2005.06.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 06/17/2005] [Accepted: 06/19/2005] [Indexed: 11/19/2022]
Abstract
Many plant viruses encode proteins that suppress the antiviral RNA silencing response mounted by the host. The suppressors p19 from tombusvirus and p21 from Beet yellows virus appear to block silencing by directly binding siRNA, a critical mediator in the process. Here, we report the crystal structure of p21, which reveals an octameric ring architecture with a large central cavity of approximately 90 A diameter. The all alpha-helical p21 monomer consists of N- and C-terminal domains that associate with their neighboring counterparts through symmetric head-to-head and tail-to-tail interactions. A putative RNA binding surface is identified in the conserved, positive-charged inner surface of the ring. In contrast to the specific p19-siRNA duplex interaction, p21 is a general nucleic acid binding protein, interacting with 21 nt or longer single- and double-stranded RNAs in vitro. This study reveals an RNA binding structure adopted by the p21 silencing suppressor.
Collapse
Affiliation(s)
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021
| |
Collapse
|
136
|
Abstract
RNA silencing or RNA interference (RNAi) refers to the small RNA-guided gene silencing mechanism conserved in a wide range of eukaryotic organisms from plants to mammals. As part of this special issue on the biology, mechanisms and applications of RNAi, here we review the recent advances on defining a role of RNAi in the responses of invertebrate and vertebrate animals to virus infection. Approximately 40 miRNAs and 10 RNAi suppressors encoded by diverse mammalian viruses have been identified. Assays used for the identification of viral suppressors and possible biological functions of both viral miRNAs and suppressors are discussed. We propose that herpes viral miRNAs may act as specificity factors to initiate heterochromatin assembly of the latent viral DNA genome in the nucleus.
Collapse
|
137
|
Solórzano A, Webby RJ, Lager KM, Janke BH, García-Sastre A, Richt JA. Mutations in the NS1 protein of swine influenza virus impair anti-interferon activity and confer attenuation in pigs. J Virol 2005; 79:7535-43. [PMID: 15919908 PMCID: PMC1143661 DOI: 10.1128/jvi.79.12.7535-7543.2005] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been shown previously that the nonstructural protein NS1 of influenza virus is an alpha/beta interferon (IFN-alpha/beta) antagonist, both in vitro and in experimental animal model systems. However, evidence of this function in a natural host has not yet been obtained. Here we investigated the role of the NS1 protein in the virulence of a swine influenza virus (SIV) isolate in pigs by using reverse genetics. The virulent wild-type A/Swine/Texas/4199-2/98 (TX/98) virus and various mutants encoding carboxy-truncated NS1 proteins were rescued. Growth properties of TX/98 viruses with mutated NS1, induction of IFN in tissue culture, and virulence-attenuation in pigs were analyzed and compared to those of the recombinant wild-type TX/98 virus. Our results indicate that deletions in the NS1 protein decrease the ability of the TX/98 virus to prevent IFN-alpha/beta synthesis in pig cells. Moreover, all NS1 mutant viruses were attenuated in pigs, and this correlated with the amount of IFN-alpha/beta induced in vitro. These data suggest that the NS1 protein of SIV is a virulence factor. Due to their attenuation, NS1-mutated swine influenza viruses might have a great potential as live attenuated vaccine candidates against SIV infections of pigs.
Collapse
|
138
|
Wilson JA, Richardson CD. Hepatitis C virus replicons escape RNA interference induced by a short interfering RNA directed against the NS5b coding region. J Virol 2005; 79:7050-8. [PMID: 15890944 PMCID: PMC1112103 DOI: 10.1128/jvi.79.11.7050-7058.2005] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RNA interference represents an exciting new technology that could have therapeutic applications for the treatment of viral infections. Hepatitis C virus (HCV) is a major cause of chronic liver disease and affects over 270 million individuals worldwide. The HCV genome is a single-stranded RNA that functions as both an mRNA and a replication template, making it an attractive target for therapeutic approaches using short interfering RNA (siRNA). We have shown previously that double-stranded siRNA molecules designed to target the HCV genome block gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. However, we now show that this block is not complete. After several treatments with a highly effective siRNA, we have shown growth of replicon RNAs that are resistant to subsequent treatment with the same siRNA. However, these replicon RNAs were not resistant to siRNA targeting another part of the genome. Sequence analysis of the siRNA-resistant replicons showed the generation of point mutations within the siRNA target sequence. In addition, the use of a combination of two siRNAs together severely limited escape mutant evolution. This suggests that RNA interference activity could be used as a treatment to reduce the devastating effects of HCV replication on the liver and the use of multiple siRNAs could prevent the emergence of resistant viruses.
Collapse
Affiliation(s)
- Joyce A Wilson
- Ontario Cancer Institute/University Health Network, 620 University Ave., Suite 706, Toronto, Ontario, Canada M5G 2C1
| | | |
Collapse
|
139
|
Mérai Z, Kerényi Z, Molnár A, Barta E, Válóczi A, Bisztray G, Havelda Z, Burgyán J, Silhavy D. Aureusvirus P14 is an efficient RNA silencing suppressor that binds double-stranded RNAs without size specificity. J Virol 2005; 79:7217-26. [PMID: 15890960 PMCID: PMC1112109 DOI: 10.1128/jvi.79.11.7217-7226.2005] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 01/17/2005] [Indexed: 11/20/2022] Open
Abstract
RNA silencing is a conserved eukaryotic gene regulatory system in which sequence specificity is determined by small RNAs. Plant RNA silencing also acts as an antiviral mechanism; therefore, viral infection requires expression of a silencing suppressor. The mechanism and the evolution of silencing suppression are still poorly understood. Tombusvirus open reading frame (ORF) 5-encoded P19 is a size-selective double-stranded RNA (dsRNA) binding protein that suppresses silencing by sequestering double-stranded small interfering RNAs (siRNAs), the specificity determinant of the antiviral silencing system. To better understand the evolution of silencing suppression, we characterized the suppressor of the type member of Aureusviruses, the closest relatives of the genus Tombusvirus. We show that the Pothos latent virus (PoLV) ORF 5-encoded P14 is an efficient suppressor of both virus- and transgene-induced silencing. Findings that in vitro P14 binds dsRNAs and double-stranded siRNAs without obvious size selection suggest that P14, unlike P19, can suppress silencing by sequestering both long dsRNA and double-stranded siRNA components of the silencing machinery. Indeed, P14 prevents the accumulation of hairpin transcript-derived siRNAs, indicating that P14 inhibits inverted repeat-induced silencing by binding the long dsRNA precursors of siRNAs. However, viral siRNAs accumulate to high levels in PoLV-infected plants; therefore, P14 might inhibit virus-induced silencing by sequestering double-stranded siRNAs. Finally, sequence analyses suggest that P14 and P19 suppressors diverged from an ancient dsRNA binding suppressor that evolved as a nested protein within the common ancestor of aureusvirus-tombusvirus movement proteins.
Collapse
Affiliation(s)
- Zsuzsanna Mérai
- Agricultural Biotechnology Center, Plant Science Institute, P.O. Box 411, H-2101 Gödöllö, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Mak J. RNA interference: more than a research tool in the vertebrates' adaptive immunity. Retrovirology 2005; 2:35. [PMID: 15916707 PMCID: PMC1156952 DOI: 10.1186/1742-4690-2-35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 05/25/2005] [Indexed: 01/22/2023] Open
Abstract
In recent years, RNA silencing, usage of small double stranded RNAs of ~21 – 25 base pairs to regulate gene expression, has emerged as a powerful research tool to dissect the role of unknown host cell factors in this 'post-genomic' era. While the molecular mechanism of RNA silencing has not been precisely defined, the revelation that small RNA molecules are equipped with this regulatory function has transformed our thinking on the role of RNA in many facets of biology, illustrating the complexity and the dynamic interplay of cellular regulation. As plants and invertebrates lack the protein-based adaptive immunity that are found in jawed vertebrates, the ability of RNA silencing to shut down gene expression in a sequence-specific manner offers an explanation of how these organisms counteract pathogen invasions into host cells. It has been proposed that this type of RNA-mediated defence mechanism is an ancient form of immunity to offset the transgene-, transposon- and virus-mediated attack. However, whether 1) RNA silencing is a natural immune response in vertebrates to suppress pathogen invasion; or 2) vertebrate cells have evolved to counteract invasion in a 'RNA silencing' independent manner remains to be determined. A number of recent reports have provided tantalizing clues to support the view that RNA silencing functions as a physiological response to regulate viral infection in vertebrate cells. Amongst these, two manuscripts that are published in recent issues of Science and Immunity, respectively, have provided some of the first direct evidences that RNA silencing is an important component of antiviral defence in vertebrate cells. In addition to demonstrating RNA silencing to be critical to vertebrate innate immunity, these studies also highlight the potential of utilising virus-infection systems as models to refine our understanding on the molecular determinants of RNA silencing in vertebrate cells.
Collapse
Affiliation(s)
- Johnson Mak
- Virology Program, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia.
| |
Collapse
|
141
|
Te J, Melcher U, Howard A, Verchot-Lubicz J. Soilborne wheat mosaic virus (SBWMV) 19K protein belongs to a class of cysteine rich proteins that suppress RNA silencing. Virol J 2005; 2:18. [PMID: 15740624 PMCID: PMC555535 DOI: 10.1186/1743-422x-2-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 03/01/2005] [Indexed: 11/10/2022] Open
Abstract
Amino acid sequence analyses indicate that the Soilborne wheat mosaic virus (SBWMV) 19K protein is a cysteine-rich protein (CRP) and shares sequence homology with CRPs derived from furo-, hordei-, peclu- and tobraviruses. Since the hordei- and pecluvirus CRPs were shown to be pathogenesis factors and/or suppressors of RNA silencing, experiments were conducted to determine if the SBWMV 19K CRP has similar activities. The SBWMV 19K CRP was introduced into the Potato virus X (PVX) viral vector and inoculated to tobacco plants. The SBWMV 19K CRP aggravated PVX-induced symptoms and restored green fluorescent protein (GFP) expression to GFP silenced tissues. These observations indicate that the SBWMV 19K CRP is a pathogenicity determinant and a suppressor of RNA silencing.
Collapse
Affiliation(s)
- Jeannie Te
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ulrich Melcher
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Amanda Howard
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jeanmarie Verchot-Lubicz
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
142
|
Abstract
In eukaryotes, small RNA molecules engage in sequence-specific interactions to inhibit gene expression by RNA silencing. This process fulfils fundamental regulatory roles, as well as antiviral functions, through the activities of microRNAs and small interfering RNAs. As a counter-defence mechanism, viruses have evolved various anti-silencing strategies that are being progressively unravelled. These studies have not only highlighted our basic understanding of host-parasite interactions, but also provide key insights into the diversity, regulation and evolution of RNA-silencing pathways.
Collapse
Affiliation(s)
- Olivier Voinnet
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| |
Collapse
|
143
|
Affiliation(s)
- Mario Stevenson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
144
|
Bragg JN, Jackson AO. The C-terminal region of the Barley stripe mosaic virusgammab protein participates in homologous interactions and is required for suppression of RNA silencing. MOLECULAR PLANT PATHOLOGY 2004; 5:465-481. [PMID: 20565621 DOI: 10.1111/j.1364-3703.2004.00246.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY The 17-kDa, cysteine-rich gammab protein of Barley stripe mosaic virus (BSMV) is a major contributor to viral pathogenesis, although it is dispensable for replication and movement in the ND 18 strain of the virus. Within the C-terminal region of gammab, six coiled-coil heptad repeats, structures known to mediate protein-protein interactions, are predicted between amino acids 95 and 140. In this study, we have demonstrated that gammab engages in homologous interactions and that the C-terminal 67 amino acids of the protein are required for these interactions. The gammab homologous interactions were abrogated by mutations designed to disrupt the coiled-coil motifs with substitutions of glycine residues for hydrophobic residues in the a and d positions of the heptads (gammabNC). Mutations within the gammabNC derivative were also found to destroy the silencing suppression activity of gammab in an Agrobacterium-mediated transient assay. Infectivity experiments to evaluate the gammabNC derivative revealed that this mutant developed symptoms 2 days earlier than the wild-type strain in Chenopodium amaranticolor. In barley, gammabNC elicited more severe bleaching and striping symptoms, similar to those of the previously described 'bleached' phenotype that is observed when mutations are introduced into the C1 and BM motifs. These findings collectively show that gammab interactions mediated by the coiled-coil motif are critical for the virulence and counter defence activities of BSMV in both monocot and dicot hosts.
Collapse
Affiliation(s)
- Jennifer N Bragg
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|