101
|
Frascaroli G, Sinzger C. Distinct properties of human cytomegalovirus strains and the appropriate choice of strains for particular studies. Methods Mol Biol 2014; 1119:29-46. [PMID: 24639216 DOI: 10.1007/978-1-62703-788-4_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human cytomegalovirus is routinely isolated by inoculating fibroblast cultures with clinical specimens suspected of harboring HCMV and then monitoring the cultures for cytopathic effects characteristic of this virus. Initially, such clinical isolates are usually strictly cell associated, but continued propagation in cell culture increases the capacity of an HCMV isolate to release cell-free infectious progeny. Once cell-free infection is possible, genetically homogenous virus strains can be purified by limiting dilution infections. HCMV strains can differ greatly with regard to the titers that can be achieved, the tropism for certain cell types, and the degree to which nonessential genes have been lost during propagation. As there is no ideal HCMV strain for all purposes, the choice of the most appropriate strain depends on the requirements of the particular experiment or project. In this chapter, we provide information that can serve as a basis for deciding which strain may be the most appropriate for a given experiment.
Collapse
Affiliation(s)
- Giada Frascaroli
- Institute of Virology, University Medical Center Ulm, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | | |
Collapse
|
102
|
Potential for Natural Killer Cell-Mediated Antibody-Dependent Cellular Cytotoxicity for Control of Human Cytomegalovirus. Antibodies (Basel) 2013. [DOI: 10.3390/antib2040617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
103
|
Human cytomegalovirus infection of langerhans-type dendritic cells does not require the presence of the gH/gL/UL128-131A complex and is blocked after nuclear deposition of viral genomes in immature cells. J Virol 2013; 88:403-16. [PMID: 24155395 DOI: 10.1128/jvi.03062-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human cytomegalovirus (CMV) enters its host via the oral and genital mucosae. Langerhans-type dendritic cells (LC) are the most abundant innate immune cells at these sites, where they constitute a first line of defense against a variety of pathogens. We previously showed that immature LC (iLC) are remarkably resistant to CMV infection, while mature LC (mLC) are more permissive, particularly when exposed to clinical-strain-like strains of CMV, which display a pentameric complex consisting of the viral glycoproteins gH, gL, UL128, UL130, and UL131A on their envelope. This complex was recently shown to be required for the infection of immature monocyte-derived dendritic cells. We thus sought to establish if the presence of this complex is also necessary for virion penetration of LC and if defects in entry might be the source of iLC resistance to CMV. Here we report that the efficiency of LC infection is reduced, but not completely abolished, in the absence of the pentameric complex. While virion penetration and nuclear deposition of viral genomes are not impaired in iLC, the transcription of the viral immediate early genes UL122 and UL123 and of the delayed early gene UL50 is substantially lower than that in mLC. Together, these data show that the UL128, UL130, and UL131A proteins are dispensable for CMV entry into LC and that progression of the viral cycle in iLC is restricted at the step of viral gene expression.
Collapse
|
104
|
Cui X, Lee R, Adler SP, McVoy MA. Antibody inhibition of human cytomegalovirus spread in epithelial cell cultures. J Virol Methods 2013; 192:44-50. [PMID: 23669101 PMCID: PMC3774129 DOI: 10.1016/j.jviromet.2013.04.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/15/2013] [Accepted: 04/24/2013] [Indexed: 11/19/2022]
Abstract
Anti-cytomegalovirus (CMV) antibodies reduce the incidence of CMV transmission and ameliorate the severity of CMV-associated disease. Neutralizing activity, measured as the ability of antibodies to prevent entry of cell-free virus, is an important component of natural immunity. However, in vivo CMV amplification may occur mainly via spread between adjacent cells within tissues. Thus, inhibition of cell-to-cell spread may be important when evaluating therapeutic antibodies or humoral responses to infection or immunization. In vitro CMV cell-to-cell spread is largely resistant to antibodies in fibroblast cultures but sensitive in endothelial cell cultures. In the present study antibodies in CMV hyperimmuneglobulin or seropositive human sera inhibited CMV cell-to-cell spread in epithelial cell cultures. Spread inhibition activity was quantitated with a GFP reporter assay employing GFP-tagged epithelialtropic variants of CMV strains Towne or AD169. Measurement of spread inhibition provides an additional parameter for the evaluation of candidate vaccines or immunotherapeutics and to further characterize the role of antibodies in controlling CMV transmission and disease.
Collapse
Affiliation(s)
- Xiaohong Cui
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Ronzo Lee
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Stuart P. Adler
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Michael A. McVoy
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
105
|
Wagner FM, Brizic I, Prager A, Trsan T, Arapovic M, Lemmermann NAW, Podlech J, Reddehase MJ, Lemnitzer F, Bosse JB, Gimpfl M, Marcinowski L, MacDonald M, Adler H, Koszinowski UH, Adler B. The viral chemokine MCK-2 of murine cytomegalovirus promotes infection as part of a gH/gL/MCK-2 complex. PLoS Pathog 2013; 9:e1003493. [PMID: 23935483 PMCID: PMC3723581 DOI: 10.1371/journal.ppat.1003493] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 05/22/2013] [Indexed: 11/26/2022] Open
Abstract
Human cytomegalovirus (HCMV) forms two gH/gL glycoprotein complexes, gH/gL/gO and gH/gL/pUL(128,130,131A), which determine the tropism, the entry pathways and the mode of spread of the virus. For murine cytomegalovirus (MCMV), which serves as a model for HCMV, a gH/gL/gO complex functionally homologous to the HCMV gH/gL/gO complex has been described. Knock-out of MCMV gO does impair, but not abolish, virus spread indicating that also MCMV might form an alternative gH/gL complex. Here, we show that the MCMV CC chemokine MCK-2 forms a complex with the glycoprotein gH, a complex which is incorporated into the virion. We could additionally show that mutants lacking both, gO and MCK-2 are not able to produce infectious virus. Trans-complementation of these double mutants with either gO or MCK-2 showed that both proteins can promote infection of host cells, although through different entry pathways. MCK-2 has been extensively studied in vivo by others. It has been shown to be involved in attracting cells for virus dissemination and in regulating antiviral host responses. We now show that MCK-2, by forming a complex with gH, strongly promotes infection of macrophages in vitro and in vivo. Thus, MCK-2 may play a dual role in MCMV infection, as a chemokine regulating the host response and attracting specific target cells and as part of a glycoprotein complex promoting entry into cells crucial for virus dissemination. Several human herpesviruses form alternative gH/gL complexes which determine the tropism for different cell types. For murine cytomegalovirus (MCMV), a gH/gL/gO complex has recently been characterized. Here, we present the identification and characterization of an alternative gH/gL/MCK-2 complex which promotes MCMV spread and is important for efficient infection of macrophages in vitro and in vivo. Association of the MCMV CC chemokine MCK-2 with a glycoprotein complex promoting virus entry is a novel function for the well-characterized MCK-2. Virus mutants lacking MCK-2 have been shown to exhibit a reduced capacity to attract leukocytes and a disregulated T cell control of the MCMV infection in vivo. These defects can be attributed to the chemokine function of MCK-2. Yet, the observation that MCK-2 knock-out mutants additionally are impaired in infecting leukocytes in vivo is consistent with our new finding that MCK-2 forms a glycoprotein complex promoting entry into monocytic cells. gH/gL complexes associating with multifunctional proteins add a new level of complexity to the interpretation of infection phenotypes of the respective knock-out herpesviruses.
Collapse
Affiliation(s)
- Felicia M. Wagner
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ilija Brizic
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Adrian Prager
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tihana Trsan
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Maja Arapovic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Frederic Lemnitzer
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Bernhard Bosse
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martina Gimpfl
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lisa Marcinowski
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Margaret MacDonald
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, New York, United States of America
| | - Heiko Adler
- Research Unit Gene Vectors, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Ulrich H. Koszinowski
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Barbara Adler
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
106
|
Impact of sequence variation in the UL128 locus on production of human cytomegalovirus in fibroblast and epithelial cells. J Virol 2013; 87:10489-500. [PMID: 23885075 PMCID: PMC3807394 DOI: 10.1128/jvi.01546-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) virion envelope contains a complex consisting of glycoproteins gH and gL plus proteins encoded by the UL128 locus (UL128L): pUL128, pUL130, and pUL131A. UL128L is necessary for efficient infection of myeloid, epithelial, and endothelial cells but limits replication in fibroblasts. Consequently, disrupting mutations in UL128L are rapidly selected when clinical isolates are cultured in fibroblasts. In contrast, bacterial artificial chromosome (BAC)-cloned strains TB40-BAC4, FIX, and TR do not contain overt disruptions in UL128L, yet no virus reconstituted from them has been reported to acquire mutations in UL128L in vitro. We performed BAC mutagenesis and reconstitution experiments to test the hypothesis that these strains contain subtle mutations in UL128L that were acquired during passage prior to BAC cloning. Compared to strain Merlin containing wild-type UL128L, all three strains produced higher yields of cell-free virus. Moreover, TB40-BAC4 and FIX spread cell to cell more rapidly than wild-type Merlin in fibroblasts but more slowly in epithelial cells. The differential growth properties of TB40-BAC4 and FIX (but not TR) were mapped to single-nucleotide substitutions in UL128L. The substitution in TB40-BAC4 reduced the splicing efficiency of UL128, and that in FIX resulted in an amino acid substitution in UL130. Introduction of these substitutions into Merlin dramatically increased yields of cell-free virus and increased cell-to-cell spread in fibroblasts but reduced the abundance of pUL128 in the virion and the efficiency of epithelial cell infection. These substitutions appear to represent mutations in UL128L that permit virus to be propagated in fibroblasts while retaining epithelial cell tropism.
Collapse
|
107
|
Nogalski MT, Chan GCT, Stevenson EV, Collins-McMillen DK, Yurochko AD. The HCMV gH/gL/UL128-131 complex triggers the specific cellular activation required for efficient viral internalization into target monocytes. PLoS Pathog 2013; 9:e1003463. [PMID: 23853586 PMCID: PMC3708883 DOI: 10.1371/journal.ppat.1003463] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/13/2013] [Indexed: 12/18/2022] Open
Abstract
We have established that HCMV acts as a specific ligand engaging and activating cellular integrins on monocytes. As a result, integrin signaling via Src activation leads to the functional activation of paxillin required for efficient viral entry and for the biological changes in monocytes needed for viral dissemination. These biological/molecular changes allow HCMV to use monocytes as "vehicles" for systemic spread and the establishment of lifelong persistence. However, it remains unresolved how HCMV specifically induces this observed monocyte activation. It was previously demonstrated that the HCMV gH/gL/UL128-131 glycoprotein complex facilitates viral entry into biologically relevant cell types. Nevertheless, the mechanism by which the gH/gL/UL128-131 complex promotes this process is unknown. We now show that only HCMV virions possessing the gH/gL/UL128-131 complex are capable of activating integrin/Src/paxillin-signaling in monocytes. In fibroblasts, this signaling is reversed, such that virus lacking the gH/gL/UL128-131 complex is the only virus able to induce the paxillin activation cascade. The presence of the gH/gL/UL128-131 complex also may have an inhibitory effect on integrin-mediated signaling pathway in fibroblasts. Furthermore, we demonstrate that the presence of the gH/gL/UL128-131 complex on the viral envelope, through its activation of the integrin/Src/paxillin pathway, is necessary for efficient HCMV internalization into monocytes and that appropriate actin and dynamin regulation is critical for this entry process. Importantly, productive infection in monocyte-derived macrophages was seen only in cells exposed to HCMV expressing the gH/gL/UL128-131 complex. From our data, the HCMV gH/gL/U128-131 complex emerges as the specific ligand driving the activation of the receptor-mediated signaling required for the regulation of the actin cytoskeleton and, consequently, for efficient and productive internalization of HCMV into monocytes. To our knowledge, our studies demonstrate a possible molecular mechanism for why the gH/gL/UL128-131 complex dictates HCMV tropism and why the complex is lost as clinical isolates are passaged in the laboratory.
Collapse
Affiliation(s)
- Maciej T. Nogalski
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Gary C. T. Chan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Emily V. Stevenson
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Donna K. Collins-McMillen
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Andrew D. Yurochko
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| |
Collapse
|
108
|
Jacob CL, Lamorte L, Sepulveda E, Lorenz IC, Gauthier A, Franti M. Neutralizing antibodies are unable to inhibit direct viral cell-to-cell spread of human cytomegalovirus. Virology 2013; 444:140-7. [PMID: 23849792 DOI: 10.1016/j.virol.2013.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/03/2013] [Accepted: 06/05/2013] [Indexed: 12/17/2022]
Abstract
Infection with human cytomegalovirus (CMV) during pregnancy is the most common cause of congenital disorders, and can lead to severe life-long disabilities with associated high cost of care. Since there is no vaccine or effective treatment, current efforts are focused on identifying potent neutralizing antibodies. A panel of CMV monoclonal antibodies identified from patent applications, was synthesized and expressed in order to reproduce data from the literature showing that anti-glycoprotein B antibodies neutralized virus entry into all cell types and that anti-pentameric complex antibodies are highly potent in preventing virus entry into epithelial cells. It had not been established whether antibodies could prevent subsequent rounds of infection that are mediated primarily by direct cell-to-cell transmission. A thorough validation of a plaque reduction assay to monitor cell-to-cell spread led to the conclusion that neutralizing antibodies do not significantly inhibit plaque formation or reduce plaque size when they are added post-infection.
Collapse
Affiliation(s)
- Christian L Jacob
- Boehringer Ingelheim (Canada) Ltd., 2100 Rue Cunard, Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
109
|
Comparative analysis of gO isoforms reveals that strains of human cytomegalovirus differ in the ratio of gH/gL/gO and gH/gL/UL128-131 in the virion envelope. J Virol 2013; 87:9680-90. [PMID: 23804643 DOI: 10.1128/jvi.01167-13] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Herpesvirus glycoprotein complex gH/gL provides a core entry function through interactions with the fusion protein gB and can also influence tropism through receptor interactions. The Epstein-Barr virus gH/gL and gH/gL/gp42 serve both functions for entry into epithelial and B cells, respectively. Human cytomegalovirus (HCMV) gH/gL can be bound by the UL128-131 proteins or gO. The phenotypes of gO and UL128-131 mutants suggest that gO-gH/gL interactions are necessary for the core entry function on all cell types, whereas the binding of UL128-131 to gH/gL likely relates to a distinct receptor-binding function for entry into some specific cell types (e.g., epithelial) but not others (e.g., fibroblasts and neurons). There are at least eight isoforms of gO that differ by 10 to 30% of amino acids, and previous analysis of two HCMV strains suggested that some isoforms of gO function like chaperones, disassociating during assembly to leave unbound gH/gL in the virion envelope, while others remain bound to gH/gL. For the current report, we analyzed the gH/gL complexes present in the virion envelope of several HCMV strains, each of which encodes a distinct gO isoform. Results indicate that all strains of HCMV contain stable gH/gL/gO trimers and gH/gL/UL128-131 pentamers and little, if any, unbound gH/gL. TR, TB40/e, AD169, and PH virions contained vastly more gH/gL/gO than gH/gL/UL128-131, whereas Merlin virions contained mostly gH/gL/UL128-131, despite abundant unbound gO remaining in the infected cells. Suppression of UL128-131 expression during Merlin replication dramatically shifted the ratio toward gH/gL/gO. These data suggest that Merlin gO is less efficient than other gO isoforms at competing with UL128-131 for binding to gH/gL. Thus, gO diversity may influence the pathogenesis of HCMV through effects on the assembly of the core versus tropism gH/gL complexes.
Collapse
|
110
|
The ULb' region of the human cytomegalovirus genome confers an increased requirement for the viral protein kinase UL97. J Virol 2013; 87:6359-76. [PMID: 23536674 DOI: 10.1128/jvi.03477-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We report a requirement for the viral protein kinase UL97 in human cytomegalovirus (HCMV) replication that maps to the ULb' region of the viral genome. A UL97-null (Δ97) mutant of strain TB40/E, which encodes a full-length ULb' region, exhibited replication defects, particularly in production of cell-free virus, that were more severe than those seen with a Δ97 mutant of laboratory strain AD169, which harbors extensive deletions in its ULb' region. These differences were recapitulated with additional HCMV strains by treatment with a UL97 kinase inhibitor, 1-(β-L-ribofuranosyl)-2-isopropylamino-5,6-dichlorobenzimidazole (maribavir). We observed lower levels of viral DNA synthesis and an increased requirement for UL97 in viral late gene expression in strains with full-length ULb' regions. Analysis of UL97-deficient TB40/E infections by electron microscopy revealed fewer C-capsids in nuclei, unusual viral particles in the cytoplasmic assembly compartment, and defective viral nuclear egress. Partial inhibition of viral DNA synthesis caused defects in production of cell-free virus that were up to ≈ 100-fold greater than those seen with cell-associated virus in strains TB40/E and TR, suggesting that UL97-dependent defects in cell-free virus production in strains with full-length ULb' regions were secondary to DNA synthesis defects. Accordingly, a chimeric virus in which the ULb' region of TB40/E was replaced with that of AD169 showed reduced effects of UL97 inhibition on viral DNA synthesis, late gene expression, and production of cell-free virus compared to parental TB40/E. Together, these results argue that the ULb' region encodes a factor(s) which invokes an increased requirement for UL97 during viral DNA synthesis.
Collapse
|
111
|
Noriega V, Redmann V, Gardner T, Tortorella D. Diverse immune evasion strategies by human cytomegalovirus. Immunol Res 2013; 54:140-51. [PMID: 22454101 DOI: 10.1007/s12026-012-8304-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Members of the Herpesviridae family have the capacity to undergo both lytic and latent infection to establish a lifelong relationship with their host. Following primary infection, human cytomegalovirus (HCMV) can persist as a subclinical, recurrent infection for the lifetime of an individual. This quiescent portion of its life cycle is termed latency and is associated with periodic bouts of reactivation during times of immunosuppression, inflammation, or stress. In order to exist indefinitely and establish infection, HCMV encodes a multitude of immune modulatory mechanisms devoted to escaping the host antiviral response. HCMV has become a paradigm for studies of viral immune evasion of antigen presentation by both major histocompatibility complex (MHC) class I and II molecules. By restricting the presentation of viral antigens during both productive and latent infection, HCMV limits elimination by the human immune system. This review will focus on understanding how the virus manipulates the pathways of antigen presentation in order to modulate the host response to infection.
Collapse
Affiliation(s)
- Vanessa Noriega
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
| | | | | | | |
Collapse
|
112
|
An endothelial cell-specific requirement for the UL133-UL138 locus of human cytomegalovirus for efficient virus maturation. J Virol 2013; 87:3062-75. [PMID: 23283945 DOI: 10.1128/jvi.02510-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV) infects a variety of cell types in humans, resulting in a varied pathogenesis in the immunocompromised host. Endothelial cells (ECs) are considered an important target of HCMV infection that may contribute to viral pathogenesis. Although the viral determinants important for entry into ECs are well defined, the molecular determinants regulating postentry tropism in ECs are not known. We previously identified the UL133-UL138 locus encoded within the clinical strain-specific ULb' region of the HCMV genome as important for the latent infection in CD34(+) hematopoietic progenitor cells (HPCs). Interestingly, this locus, while dispensable for replication in fibroblasts, was required for efficient replication in ECs infected with the TB40E or fusion-inducing factor X (FIX) HCMV strains. ECs infected with a virus lacking the entire locus (UL133-UL138(NULL) virus) complete the immediate-early and early phases of infection but are defective for infectious progeny virus production. ECs infected with UL133-UL138(NULL) virus exhibited striking differences in the organization of intracellular membranes and in the assembly of mature virions relative to ECs infected with wild-type (WT) virus. In UL133-UL138(NULL) virus-infected ECs, Golgi stacks were disrupted, and the viral assembly compartment characteristic of HCMV infection failed to form. Further, progeny virions in UL133-UL138(NULL) virus-infected ECs inefficiently acquired the virion tegument and secondary envelope. These defects were specific to infection in ECs and not observed in fibroblasts infected with UL133-UL138(NULL) virus, suggesting an EC-specific requirement for the UL133-UL138 locus for late stages of replication. To our knowledge, the UL133-UL138 locus represents the first cell-type-dependent, postentry tropism determinant required for viral maturation.
Collapse
|
113
|
Sampaio KL, Jahn G, Sinzger C. Applications for a dual fluorescent human cytomegalovirus in the analysis of viral entry. Methods Mol Biol 2013; 1064:201-209. [PMID: 23996259 DOI: 10.1007/978-1-62703-601-6_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The existence of cell type-specific entry pathways of human cytomegalovirus is an unresolved question as the course of viral entry in different cell types is still not fully understood. To gain more insight into these processes, we generated a dual fluorescent HCMV, where the capsid-associated tegument protein pp150 is labelled with EGFP and the envelope glycoprotein gM with mCherry. This dual labelled virus allows for the separate tracking of the viral envelope fusing with a cellular membrane and the viral capsid during its movement from the cellular membrane to the nucleus. We describe two applications for this virus in the analysis of viral entry: (a) Dynamic live-cell imaging allows for the visualization of viral de-envelopment and transport processes within the living cell. (b) Imaging of cell cultures fixed at different time points after infection enables a more comprehensive statistical analysis of the kinetics of viral entry events such as adsorption, fusion, and nuclear translocation. The techniques are described on the example of fibroblasts and endothelial cells, but can be adapted to other cell types as well. Furthermore, these protocols could provide suggestions for the establishment of live cell applications to other viruses.
Collapse
Affiliation(s)
- Kerstin Laib Sampaio
- Institute of Medical Virology and Epidemiology of Virus Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | | | | |
Collapse
|
114
|
A vaccine based on the rhesus cytomegalovirus UL128 complex induces broadly neutralizing antibodies in rhesus macaques. J Virol 2012; 87:1322-32. [PMID: 23152525 DOI: 10.1128/jvi.01669-12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutralizing antibodies (NAb) are important for interfering with horizontal transmission of human cytomegalovirus (HCMV) leading to primary and congenital HCMV infection. Recent findings have shown that a pentameric virion complex formed by the glycoproteins gH/gL, UL128, UL130, and UL131A (UL128C) is required for HCMV entry into epithelial/endothelial cells (Epi/EC) and is the target of potent NAb in HCMV-seropositive individuals. Using bacterial artificial chromosome technology, we have generated a modified vaccinia Ankara virus (MVA) that stably coexpresses all 5 rhesus CMV (RhCMV) proteins homologous to HCMV UL128C, termed MVA-RhUL128C. Coimmunoprecipitation confirmed the interaction of RhgH with the other 4 RhCMV subunits of the pentameric complex. All 8 RhCMV-naïve rhesus macaques (RM) vaccinated with MVA-RhUL128C developed NAb that blocked infection of monkey kidney epithelial cells (MKE) and rhesus fibroblasts. NAb titers induced by MVA-RhUL128C measured on both cell types at 2 to 6 weeks postvaccination were comparable to levels observed in naturally infected RM. In contrast, MVA expressing a subset of RhUL128C proteins or RhgB glycoprotein only minimally stimulated NAb that inhibited infection of MKE. In addition, following subcutaneous RhCMV challenge at 8 weeks postvaccination, animals vaccinated with MVA-RhUL128C showed reduced plasma viral loads. These results indicate that MVA expressing the RhUL128C induces NAb inhibiting RhCMV entry into both Epi/EC and fibroblasts and limits RhCMV replication in RM. This novel approach is the first step in developing a prophylactic HCMV vaccine designed to interfere with virus entry into major cell types permissive for viral replication, a required property of an effective vaccine.
Collapse
|
115
|
PDGF receptor-α does not promote HCMV entry into epithelial and endothelial cells but increased quantities stimulate entry by an abnormal pathway. PLoS Pathog 2012; 8:e1002905. [PMID: 23028311 PMCID: PMC3441672 DOI: 10.1371/journal.ppat.1002905] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/01/2012] [Indexed: 12/02/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor-α (PDGFRα) were reported to mediate entry of HCMV, including HCMV lab strain AD169. AD169 cannot assemble gH/gL/UL128–131, a glycoprotein complex that is essential for HCMV entry into biologically important epithelial cells, endothelial cells, and monocyte-macrophages. Given this, it appeared incongruous that EGFR and PDGFRα play widespread roles in HCMV entry. Thus, we investigated whether PDGFRα and EGFR could promote entry of wild type HCMV strain TR. EGFR did not promote HCMV entry into any cell type. PDGFRα–transduction of epithelial and endothelial cells and several non-permissive cells markedly enhanced HCMV TR entry and surprisingly, promoted entry of HCMV mutants lacking gH/gL/UL128–131 into epithelial and endothelial cells. Entry of HCMV was not blocked by a panel of PDGFRα antibodies or the PDGFR ligand in fibroblasts, epithelial, or endothelial cells or by shRNA silencing of PDGFRα in epithelial cells. Moreover, HCMV glycoprotein induced cell-cell fusion was not increased when PDGFRα was expressed in cells. Together these results suggested that HCMV does not interact directly with PDGFRα. Instead, the enhanced entry produced by PDGFRα resulted from a novel entry pathway involving clathrin-independent, dynamin-dependent endocytosis of HCMV followed by low pH-independent fusion. When PDGFRα was expressed in cells, an HCMV lab strain escaped endosomes and tegument proteins reached the nucleus, but without PDGFRα virions were degraded. By contrast, wild type HCMV uses another pathway to enter epithelial cells involving macropinocytosis and low pH-dependent fusion, a pathway that lab strains (lacking gH/gL/UL128–131) cannot follow. Thus, PDGFRα does not act as a receptor for HCMV but increased PDGFRα alters cells, facilitating virus entry by an abnormal pathway. Given that PDGFRα increased infection of some cells to 90%, PDGFRα may be very useful in overcoming inefficient HCMV entry (even of lab strains) into the many difficult-to-infect cell types. Human cytomegalovirus (HCMV) causes substantial morbidity and mortality in immunocompromised patients and in developing infants. HCMV pathogenesis involves the capacity to infect many different cell types by multiple distinct entry pathways. Among the biologically important cell types infected in vivo are epithelial and endothelial cells. HCMV specifically requires the viral glycoprotein gH/gL/UL128–131 to enter these cells. Previous studies suggested that platelet derived growth factor receptor-α (PDGFRα) was important for HCMV entry into cells. We characterized whether PDGFRα was important for HCMV entry. Increased expression of PDGFRα in cells markedly augmented entry of wild type and gH/gL/UL128–131-mutant HCMV into epithelial and endothelial cells, however, other experiments showed that endogenous PDGFRα did not normally mediate HCMV entry into these cell types. Instead, the increased expression of PDGFRα increased HCMV entry by an abnormal pathway involving clathrin-independent endocytosis and low pH-independent fusion with endosomes. HCMV normally enters these cells by macropinocytosis and low pH-dependent fusion. Therefore, PDGFRα is not normally an HCMV entry mediator in these cells, but increased expression of PDGFRα can promote entry by a different pathway. PDGFRα transduction of cells may be very useful because many cells are poorly infected by HCMV and entry represents a major hurdle.
Collapse
|
116
|
Tabata T, Petitt M, Fang-Hoover J, Rivera J, Nozawa N, Shiboski S, Inoue N, Pereira L. Cytomegalovirus impairs cytotrophoblast-induced lymphangiogenesis and vascular remodeling in an in vivo human placentation model. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1540-59. [PMID: 22959908 DOI: 10.1016/j.ajpath.2012.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/13/2012] [Accepted: 08/01/2012] [Indexed: 01/30/2023]
Abstract
We investigated human cytomegalovirus pathogenesis by comparing infection with the low-passage, endotheliotropic strain VR1814 and the attenuated laboratory strain AD169 in human placental villi as explants in vitro and xenografts transplanted into kidney capsules of SCID mice (ie, mice with severe combined immunodeficiency). In this in vivo human placentation model, human cytotrophoblasts invade the renal parenchyma, remodel resident arteries, and induce a robust lymphangiogenic response. VR1814 replicated in villous and cell column cytotrophoblasts and reduced formation of anchoring villi in vitro. In xenografts, infected cytotrophoblasts had a severely diminished capacity to invade and remodel resident arteries. Infiltrating lymphatic endothelial cells proliferated, aggregated, and failed to form lymphatic vessels. In contrast, AD169 grew poorly in cytotrophoblasts in explants, and anchoring villi formed normally in vitro. Likewise, viral replication was impaired in xenografts, and cytotrophoblasts retained invasive capacity, but some partially remodeled blood vessels incorporated lymphatic endothelial cells and were permeable to blood. The expression of both vascular endothelial growth factor (VEGF)-C and basic fibroblast growth factor increased in VR1814-infected explants, whereas VEGF-A and soluble VEGF receptor-3 increased in those infected with AD169. Our results suggest that viral replication and paracrine factors could undermine vascular remodeling and cytotrophoblast-induced lymphangiogenesis, contributing to bleeding, hypoxia, and edema in pregnancies complicated by congenital human cytomegalovirus infection.
Collapse
Affiliation(s)
- Takako Tabata
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, USA
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Ma Y, Wang N, Li M, Gao S, Wang L, Zheng B, Qi Y, Ruan Q. Human CMV transcripts: an overview. Future Microbiol 2012; 7:577-93. [PMID: 22568714 DOI: 10.2217/fmb.12.32] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human CMV (HCMV) genome consists of an approximately 230-kb dsDNA and is predicted to contain over 165 open reading frames. Although the entire sequence of the laboratory-adapted AD169 strain of HCMV was first available in 1991, the precise number and nature of viral genes and gene products are still unclear. Fewer than 100 predicted genes have been convincingly elucidated with respect to their expression patterns, transcript structure and transcription characteristics. The high gene number of HCMV creates a crowded genome with many overlapping transcriptional units. 3´- or 5´-coterminal overlapping polycistronic transcripts could use a common promoter element or a poly-A signal. 3´-coterminal monocistronic transcripts could encode 'nested' open reading frames, which possess different initiation but the same termination sites. As a virus with eukaryotic cells as the host, HCMV has the capacity to splice out introns during transcription. Major alternately spliced mRNA species of HCMV originate primarily, but not exclusively, from the immediate early gene regions. Alternate splicing patterns of the mRNAs could encode a number of gene products with different sizes. In recent years, some antisense and noncoding transcripts of HCMV have been reported. These RNAs probably have functions in genomic replication or the regulation of gene expression.
Collapse
Affiliation(s)
- Yanping Ma
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning of PR China, China
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Sanchez V, Dong JJ, Battley J, Jackson KN, Dykes BC. Human cytomegalovirus infection of THP-1 derived macrophages reveals strain-specific regulation of actin dynamics. Virology 2012; 433:64-72. [PMID: 22874068 DOI: 10.1016/j.virol.2012.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/21/2012] [Accepted: 07/16/2012] [Indexed: 01/01/2023]
Abstract
Human cytomegalovirus (HCMV) remains latent in cells of the myeloid lineage after primary infection. The THP-1 monocytic cell line is conditionally permissive for infection and has been used primarily to study the process of HCMV reactivation when the cells are induced to differentiate. In the present report, we characterized lytic infection in THP-1 derived macrophages using two strains of HCMV, Towne and BAC-derived TR. Our findings indicate that these cells express viral genes of all three kinetic classes and produce extracellular virus, but that there is a delay in these processes relative to productively infected fibroblasts. Importantly, our studies in THP-1 derived macrophages revealed strain-specific differences in pp65 trafficking and actin dynamics. Based on these observations, our studies indicate that differentiated THP-1 cells can serve as a valuable model for lytic infection.
Collapse
Affiliation(s)
- V Sanchez
- Texas A&M Health Science Center, College of Medicine, Department of Microbial and Molecular Pathogenesis, College Station, TX 77843, USA.
| | | | | | | | | |
Collapse
|
119
|
Vogel JU, Otte J, Koch F, Gümbel H, Doerr HW, Cinatl J. Role of human cytomegalovirus genotype polymorphisms in AIDS patients with cytomegalovirus retinitis. Med Microbiol Immunol 2012; 202:37-47. [PMID: 22669631 DOI: 10.1007/s00430-012-0244-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/08/2012] [Indexed: 12/20/2022]
Abstract
Although several host factors have been identified to influence the course of HCMV infection, it still remains unclear why in AIDS patients without highly active antiretroviral therapy human cytomegalovirus (HCMV) retinitis is one of the most common opportunistic infections, whereas in other immunosuppressed individuals it has a low incidence. It was suggested that HCMV glycoprotein B strains may be suitable as marker for virulence and HCMV retinitis. Moreover, UL144 ORF, a member of the TNF-α receptor superfamily, may play a crucial role in innate defences and adaptive immune response of HCMV infection. Furthermore, sequence analyses of HCMV genes UL128, UL130, and UL131A as major determinants of virus entry and replication in epithelial and other cell types were performed. To evaluate the association of sequence variability of depicted viral genes with HCMV retinitis and in vitro growth properties in retinal pigment epithelial cells (RPE) and human foreskin fibroblasts (HFF), we compared 14 HCMV isolates obtained from vitreous fluid and urine of AIDS patients with clinically proven HCMV retinitis. Isolates were analyzed by PCR cycle sequencing and phylogenetic analysis. In addition, sequences of HCMV strains AF1, U8, U11, VR1814, and its cell culture adapted derivates were included. Sequence analysis of gB yielded three genetic subtypes (gB type 1 (5 isolates), gB type 2 (12 isolates), and gB type 3 (5 Isolates)), whereas sequence analysis of UL144 showed a greater diversity (7 isolates type 1A, 2 isolates type 1C, 7 isolates type 2, and 3 isolates type 3). In contrast, the UL128, UL130, and UL131A genes of all low-passage isolates were highly conserved and showed no preferential clustering. Moreover, in HFF and RPE cells, all of our HCMV isolates replicated efficiently independently of their genetic subtype. In conclusion, beside a possible link between the gB subtype 2 and HCMV retinitis, our study found no direct evidence for a connection between UL144/UL128/UL130/UL131A genotypes and the incidence of HCMV retinitis in AIDS patients.
Collapse
Affiliation(s)
- Jens-Uwe Vogel
- Institute of Medical Virology, Goethe University Hospital, Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
120
|
Vanarsdall AL, Johnson DC. Human cytomegalovirus entry into cells. Curr Opin Virol 2012; 2:37-42. [PMID: 22440964 DOI: 10.1016/j.coviro.2012.01.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/22/2011] [Accepted: 01/05/2012] [Indexed: 12/26/2022]
Affiliation(s)
- Adam L Vanarsdall
- Oregon Health & Sciences University, Portland, OR 97239, United States
| | | |
Collapse
|
121
|
Schuessler A, Sampaio KL, Straschewski S, Sinzger C. Mutational mapping of pUL131A of human cytomegalovirus emphasizes its central role for endothelial cell tropism. J Virol 2012; 86:504-12. [PMID: 22031943 PMCID: PMC3255870 DOI: 10.1128/jvi.05354-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/14/2011] [Indexed: 12/12/2022] Open
Abstract
The UL131A protein is part of a pentameric variant of the gcIII complex in the virion envelope of human cytomegalovirus (HCMV), which has been found essential for efficient entry into endothelial cells (ECs). Using a systematic mutational scanning approach, we aimed to define peptide motifs within the UL131A protein that contribute to EC infection. Mutant viruses were generated in which charged amino acids within frames of 2 to 6 amino acids were replaced with alanines. The resulting viruses were evaluated with regard to their potential to infect EC cultures. Four clusters of charged amino acids essential for EC infection were identified (amino acids 22 to 27, 32 to 35, 64 to 69, and 116 to 121). Mutations of individual charge clusters within amino acids 72 to 104 caused minor reductions of EC tropism, but these effects were additive in a combined mutation, showing that this region also contributes to EC tropism. Only charge clusters within amino acids 46 to 58 were found irrelevant for EC infection. In conclusion, the unusual sensitivity to mutations, together with the remarkable conservation of the UL131A protein, emphasizes its particular role for EC tropism of HCMV.
Collapse
Affiliation(s)
- Andrea Schuessler
- Institute of Medical Virology and Epidemiology of Virus Diseases, University of Tuebingen, Tuebingen, Germany
| | - Kerstin Laib Sampaio
- Institute of Medical Virology and Epidemiology of Virus Diseases, University of Tuebingen, Tuebingen, Germany
| | | | | |
Collapse
|
122
|
UL74 of human cytomegalovirus reduces the inhibitory effect of gH-specific and gB-specific antibodies. Arch Virol 2011; 156:2145-55. [DOI: 10.1007/s00705-011-1105-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 09/04/2011] [Indexed: 01/20/2023]
|
123
|
Human cytomegalovirus glycoprotein gO complexes with gH/gL, promoting interference with viral entry into human fibroblasts but not entry into epithelial cells. J Virol 2011; 85:11638-45. [PMID: 21880752 DOI: 10.1128/jvi.05659-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A complex of five human cytomegalovirus virus (HCMV) proteins, gH, gL, UL128, UL130, and UL131 (gH/gL/UL128-131), is essential for virus entry into epithelial cells. We previously showed that gH/gL/UL128-131 expressed in epithelial cells interferes with subsequent HCMV entry into cells. There was no interference with only gH/gL or gB. We concluded that the expression of gH/gL/UL128-131 causes a mislocalization or downregulation of epithelial cell proteins that HCMV requires for entry. In contrast, gH/gL/UL128-131 expression in fibroblasts did not produce interference, suggesting a different mechanism for entry. Here, we show that the coexpression of another HCMV glycoprotein, gO, with gH/gL in human fibroblasts interferes with HCMV entry into fibroblasts but not epithelial cells. However, the coexpression of gO with gH/gL did not increase the cell surface expression level of gH/gL and did not enhance cell-cell fusion, a process that depends upon cell surface gH/gL. Instead, gO promoted the export of gH/gL from the endoplasmic reticulum (ER) and the accumulation of gH/gL in the trans-Golgi network. Thus, interference with gH/gL or gH/gL/gO, i.e., the mislocalization or blocking of entry mediators, occurs in cytoplasmic membranes and not in cell surface membranes of fibroblasts. Together, the results provide additional support for our hypotheses that epithelial cells express putative gH/gL/UL128-1331 receptors important for HCMV entry and that fibroblasts express distinct gH/gL receptors.
Collapse
|
124
|
Neutralizing activity of saliva against cytomegalovirus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1536-42. [PMID: 21795465 DOI: 10.1128/cvi.05128-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Congenital cytomegalovirus (CMV) disease is the leading cause of permanent disability in neonates in the United States. Neutralizing antibodies in saliva may protect against maternal CMV infection by blocking viral entry into oral epithelial cells, but the antibody response to CMV in the saliva following natural infection is not well characterized. Saliva specimens from naturally infected individuals were tested for CMV-neutralizing activity using epithelial and fibroblast cells. Saliva from seronegative adults had no inherent anti-CMV activity. Neutralizing activity of saliva from naturally infected adults was not detectable using fibroblast cells, and saliva from young children, adolescents, and Towne vaccine recipients did not have activity using either cell type. However, when using epithelial cells, neutralizing activity was present in saliva from 50% of seropositive adults, correlated with serum-neutralizing activity, and was more prevalent in mothers of children in day care than in non-day care-associated adults. Three day care mothers with high salivary neutralizing activities (>1:20) had exceptionally high serum-neutralizing titers (3- to 8-fold higher than typical seropositives) and were immunoblot positive for serum antibodies to the epithelial entry mediator UL130. These results suggest that salivary neutralizing activities are attainable by induction of high serum IgG levels and could be utilized to evaluate candidate cytomegalovirus vaccines.
Collapse
|
125
|
Open reading frames carried on UL/b' are implicated in shedding and horizontal transmission of rhesus cytomegalovirus in rhesus monkeys. J Virol 2011; 85:5105-14. [PMID: 21389128 DOI: 10.1128/jvi.02631-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Implicit with the use of animal models to test human cytomegalovirus (HCMV) vaccines is the assumption that the viral challenge of vaccinated animals reflects the anticipated virus-host interactions following exposure of vaccinated humans to HCMV. Variables of animal vaccine studies include the route of exposure to and the titer of challenge virus, as well as the genomic coding content of the challenge virus. This study was initiated to provide a better context for conducting vaccine trials with nonhuman primates by determining whether the in vivo phenotype of culture-passaged strains of rhesus cytomegalovirus (RhCMV) is comparable to that of wild-type RhCMV (RhCMV-WT), particularly in relation to the shedding of virus into bodily fluids and the potential for horizontal transmission. Results of this study demonstrate that two strains containing a full-length UL/b' region of the RhCMV genome, which encodes proteins involved in epithelial tropism and immune evasion, were persistently shed in large amounts in bodily fluids and horizontally transmitted, whereas a strain lacking a complete UL/b' region was not shed or transmitted to cagemates. Shedding patterns exhibited by strains encoding a complete UL/b' region were consistent with patterns observed in naturally infected monkeys, the majority of whom persistently shed high levels of virus in saliva for extended periods of time after seroconversion. Frequent viral shedding contributed to a high rate of infection, with RhCMV-infected monkeys transmitting virus to one naïve animal every 7 weeks after introduction of RhCMV-WT into an uninfected cohort. These results demonstrate that the RhCMV model can be designed to rigorously reflect the challenges facing HCMV vaccine trials, particularly those related to horizontal transmission.
Collapse
|
126
|
Protein pUL128 of human cytomegalovirus is necessary for monocyte infection and blocking of migration. J Virol 2011; 85:5150-8. [PMID: 21367908 DOI: 10.1128/jvi.02100-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have previously shown that only endotheliotropic strains of human cytomegalovirus (HCMV), such as TB40E, infect monocytes and impair their chemokine-driven migration. The proteins encoded by the UL128-131A region (UL128, UL130, and UL131A) of the HCMV genome, which assemble into a pentameric gH-gL-UL128-UL130-UL131A envelope complex, have been recognized as determinants for HCMV endothelial cell tropism. The genes for these proteins are typically inactivated by mutations in all fibroblast-adapted strains that have lost the diversified tropism of clinical isolates. By using mutant HCMV reconstituted from TB40E-derived bacterial artificial chromosomes (BAC) encoding a wild-type (wt) or mutated form of UL128, we show here that UL128-131A products are essential determinants of infection in monocytes and that pUL128, in particular, can block chemokine-driven motility. The virus BAC4, encoding wt UL128, established infection in monocytes, induced the intracellular retention of several chemokine receptors, and rendered monocytes unresponsive to different chemokines. In contrast, the virus BAC1, encoding a mutated UL128, failed to infect monocytes and to downregulate chemokine receptors. BAC1-exposed monocytes did not express immediate-early (IE) products, retained virions in cytoplasmic vesicles, and exhibited normal chemokine responsiveness. A potential role of second-site mutations in the observed phenotype was excluded by using the revertant viruses BAC1rep and BAC4mut. By incubating noninfected monocytes with soluble recombinant pUL128, we observed both the block of migration and the chemokine receptor internalization. We propose that among the gH-gL-UL128-UL130-UL131A complex subunits, the UL128 protein is the one that triggers monocyte paralysis.
Collapse
|
127
|
Peptides from cytomegalovirus UL130 and UL131 proteins induce high titer antibodies that block viral entry into mucosal epithelial cells. Vaccine 2011; 29:2705-11. [PMID: 21310190 DOI: 10.1016/j.vaccine.2011.01.079] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/18/2011] [Accepted: 01/25/2011] [Indexed: 11/23/2022]
Abstract
Cytomegalovirus infections are an important cause of disease for which no licensed vaccine exists. Recent studies have focused on the gH/gL/UL128-131 complex as antibodies to gH/gL/UL128-131 neutralize viral entry into epithelial cells. Prior studies have used cells from the retinal pigment epithelium, while to prevent transmission, vaccine-induced antibodies may need to block viral infection of epithelial cells of the oral or genital mucosa. We found that gH/gL/UL128-131 is necessary for efficient viral entry into epithelial cells derived from oral and genital mucosa, that short peptides from UL130 and UL131 elicit high titer neutralizing antibodies in rabbits, and that such antibodies neutralize viral entry into epithelial cells derived from these relevant tissues. These results suggest that single subunits or peptides may be sufficient to elicit potent epithelial entry neutralizing responses and that secretory antibodies to such neutralizing epitopes have the potential to provide sterilizing immunity by blocking initial mucosal infection.
Collapse
|
128
|
HCMV spread and cell tropism are determined by distinct virus populations. PLoS Pathog 2011; 7:e1001256. [PMID: 21249233 PMCID: PMC3020925 DOI: 10.1371/journal.ppat.1001256] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 12/13/2010] [Indexed: 11/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) can infect many different cell types in vivo. Two gH/gL complexes are used for entry into cells. gH/gL/pUL(128,130,131A) shows no selectivity for its host cell, whereas formation of a gH/gL/gO complex only restricts the tropism mainly to fibroblasts. Here, we describe that depending on the cell type in which virus replication takes place, virus carrying the gH/gL/pUL(128,130,131A) complex is either released or retained cell-associated. We observed that virus spread in fibroblast cultures was predominantly supernatant-driven, whereas spread in endothelial cell (EC) cultures was predominantly focal. This was due to properties of virus released from fibroblasts and EC. Fibroblasts released virus which could infect both fibroblasts and EC. In contrast, EC released virus which readily infected fibroblasts, but was barely able to infect EC. The EC infection capacities of virus released from fibroblasts or EC correlated with respectively high or low amounts of gH/gL/pUL(128,130,131A) in virus particles. Moreover, we found that focal spread in EC cultures could be attributed to EC-tropic virus tightly associated with EC and not released into the supernatant. Preincubation of fibroblast-derived virus progeny with EC or beads coated with pUL131A-specific antibodies depleted the fraction that could infect EC, and left a fraction that could predominantly infect fibroblasts. These data strongly suggest that HCMV progeny is composed of distinct virus populations. EC specifically retain the EC-tropic population, whereas fibroblasts release EC-tropic and non EC-tropic virus. Our findings offer completely new views on how HCMV spread may be controlled by its host cells. gH/gL complexes of herpesviruses are supposed to promote fusion of the viral envelope with cellular membranes. The gH/gL core complex associates with additional proteins which define the tropism for certain cell types by promoting binding to specific receptors. Two alternative gH/gL complexes of human cytomegalovirus (HCMV) define the cell tropism, the entry pathway and the spread of virus. Formation of a gH/gL/gO complex during infection determines release of infectious virus into the supernatant. The gH/gL/pUL(128,130,131A) complex determines the tropism for endothelial cells (EC) and promotes focal spread. Here, we could show that HCMV-infected cells produce EC-tropic and non EC-tropic virus populations. While fibroblasts release both populations into the supernatant, EC predominantly release the non EC-tropic population. Different host cells of HCMV thus may direct the distribution of virus progeny.
Collapse
|
129
|
Nyholm JL, Schleiss MR. Prevention of maternal cytomegalovirus infection: current status and future prospects. Int J Womens Health 2010; 2:23-35. [PMID: 21072294 PMCID: PMC2971724 DOI: 10.2147/ijwh.s5782] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Indexed: 11/23/2022] Open
Abstract
Human cytomegalovirus (CMV) infection is the most common cause of perinatal viral infection in the developed world, resulting in approximately 40,000 congenitally infected infants in the United States each year. Congenital CMV infection can produce varying degrees of neurodevelopmental disabilities. The significant impact of congenital CMV has led the Institute of Medicine to rank development of a CMV vaccine as a top priority. Vaccine development has been ongoing; however no licensed CMV vaccine is currently available. Treatment of pregnant women with CMV hyperimmune globulin has shown promising results, but has not been studied in randomized controlled trials. Education on methods to prevent CMV transmission, particularly among young women of child-bearing age, should continue until a CMV vaccine becomes available. The epidemiology, clinical manifestations, prevention strategies, and treatment of CMV infections are reviewed.
Collapse
Affiliation(s)
| | - Mark R Schleiss
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN, USA
| |
Collapse
|
130
|
Stanton RJ, Baluchova K, Dargan DJ, Cunningham C, Sheehy O, Seirafian S, McSharry BP, Neale ML, Davies JA, Tomasec P, Davison AJ, Wilkinson GWG. Reconstruction of the complete human cytomegalovirus genome in a BAC reveals RL13 to be a potent inhibitor of replication. J Clin Invest 2010; 120:3191-208. [PMID: 20679731 DOI: 10.1172/jci42955] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 06/23/2010] [Indexed: 01/14/2023] Open
Abstract
Human cytomegalovirus (HCMV) in clinical material cannot replicate efficiently in vitro until it has adapted by mutation. Consequently, wild-type HCMV differ fundamentally from the passaged strains used for research. To generate a genetically intact source of HCMV, we cloned strain Merlin into a self-excising BAC. The Merlin BAC clone had mutations in the RL13 gene and UL128 locus that were acquired during limited replication in vitro prior to cloning. The complete wild-type HCMV gene complement was reconstructed by reference to the original clinical sample. Characterization of viruses generated from repaired BACs revealed that RL13 efficiently repressed HCMV replication in multiple cell types; moreover, RL13 mutants rapidly and reproducibly emerged in transfectants. Virus also acquired mutations in genes UL128, UL130, or UL131A, which inhibited virus growth specifically in fibroblast cells in wild-type form. We further report that RL13 encodes a highly glycosylated virion envelope protein and thus has the potential to modulate tropism. To overcome rapid emergence of mutations in genetically intact HCMV, we developed a system in which RL13 and UL131A were conditionally repressed during virus propagation. This technological advance now permits studies to be undertaken with a clonal, characterized HCMV strain containing the complete wild-type gene complement and promises to enhance the clinical relevance of fundamental research on HCMV.
Collapse
Affiliation(s)
- Richard J Stanton
- Section of Medical Microbiology, Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Revello MG, Gerna G. Human cytomegalovirus tropism for endothelial/epithelial cells: scientific background and clinical implications. Rev Med Virol 2010; 20:136-55. [PMID: 20084641 DOI: 10.1002/rmv.645] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human cytomegalovirus (HCMV) has been routinely isolated from and propagated in vitro in human embryonic lung fibroblast (HELF) cell cultures, while in vivo it is known to infect predominantly endothelial and epithelial cells. In recent years, genetic determinants of the HCMV tropism for endothelial/epithelial cells were identified in the UL131A/UL130/UL128 locus of HCMV genome of wild-type strains. UL131A-UL128 gene products form a complex with glycoprotein H (gH) and L (gL) resulting in a gH/gL/UL131A-UL128 complex that is required for HCMV entry into endothelial/epithelial cells. In contrast, virus entry into fibroblasts has its genetic determinants in the complex gH/gL/gO (or gH/gL). During primary HCMV infection, the neutralising antibody response measured in endothelial cells (EC) is potent, occurs very early and is directed mostly against combinations of two or three gene products of the UL131A-128 locus. On the contrary, neutralising antibodies measured in fibroblasts appear late, are relatively weak in potency and are directed against gH and gB. The T-cell immune response to UL131A-UL128 gene products remains to be investigated. Recently, a role has been proposed for neutralising antibody in conferring prevention/protection against HCMV infection/disease in pregnant women with primary HCMV infection. However, the level of cooperation between humoral immunity and the well-established T-cell protection remains to be defined.
Collapse
Affiliation(s)
- M Grazia Revello
- Servizio di Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | | |
Collapse
|
132
|
Mutational mapping of UL130 of human cytomegalovirus defines peptide motifs within the C-terminal third as essential for endothelial cell infection. J Virol 2010; 84:9019-26. [PMID: 20592093 DOI: 10.1128/jvi.00572-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The UL130 gene is one of the major determinants of endothelial cell (EC) tropism of human cytomegalovirus (HCMV). In order to define functionally important peptides within this protein, we have performed a charge-cluster-to-alanine (CCTA) mutational scanning of UL130 in the genetic background of a bacterial artificial chromosome-cloned endotheliotropic HCMV strain. A total of 10 charge clusters were defined, and in each of them two or three charged amino acids were replaced with alanines. While the six N-terminal clusters were phenotypically irrelevant, mutation of the four C-terminal clusters each caused a reduction of EC tropism. The importance of this protein domain was further emphasized by the fact that the C-terminal pentapeptide PNLIV was essential for infection of ECs, and the cell tropism could not be rescued by a scrambled version of this sequence. We conclude that the C terminus of the UL130 protein serves an important function for infection of ECs by HCMV. This makes UL130 a promising molecular target for antiviral strategies, e.g., the development of antiviral peptides.
Collapse
|
133
|
Dargan DJ, Douglas E, Cunningham C, Jamieson F, Stanton RJ, Baluchova K, McSharry BP, Tomasec P, Emery VC, Percivalle E, Sarasini A, Gerna G, Wilkinson GWG, Davison AJ. Sequential mutations associated with adaptation of human cytomegalovirus to growth in cell culture. J Gen Virol 2010; 91:1535-46. [PMID: 20479471 PMCID: PMC3052722 DOI: 10.1099/vir.0.018994-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mutations that occurred during adaptation of human cytomegalovirus to cell culture were monitored by isolating four strains from clinical samples, passaging them in various cell types and sequencing ten complete virus genomes from the final passages. Mutational dynamics were assessed by targeted sequencing of intermediate passages and the original clinical samples. Gene RL13 and the UL128 locus (UL128L, consisting of genes UL128, UL130 and UL131A) mutated in all strains. Mutations in RL13 occurred in fibroblast, epithelial and endothelial cells, whereas those in UL128L were limited to fibroblasts and detected later than those in RL13. In addition, a region containing genes UL145, UL144, UL142, UL141 and UL140 mutated in three strains. All strains exhibited numerous mutations in other regions of the genome, with a preponderance in parts of the inverted repeats. An investigation was carried out on the kinetic growth yields of viruses derived from selected passages that were predominantly non-mutated in RL13 and UL128L (RL13+UL128L+), or that were largely mutated in RL13 (RL13−UL128L+) or both RL13 and UL128L (RL13−UL128L−). RL13−UL128L− viruses produced greater yields of infectious progeny than RL13−UL128L+ viruses, and RL13−UL128L+ viruses produced greater yields than RL13+UL128L+ viruses. These results suggest strongly that RL13 and UL128L exert at least partially independent suppressive effects on growth in fibroblasts. As all isolates proved genetically unstable in all cell types tested, caution is advised in choosing and monitoring strains for experimental studies of vulnerable functions, particularly those involved in cell tropism, immune evasion or growth temperance.
Collapse
Affiliation(s)
- Derrick J Dargan
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Schleiss MR, McVoy MA. Guinea Pig Cytomegalovirus (GPCMV): A Model for the Study of the Prevention and Treatment of Maternal-Fetal Transmission. Future Virol 2010; 5:207-217. [PMID: 23308078 DOI: 10.2217/fvl.10.8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A major public health challenge today is the problem of congenital cytomegalovirus (CMV) transmission. Maternal-fetal CMV infections are common, occurring in 0.5-2% of pregnancies, and these infections often lead to long-term injury of the newborn infant. In spite of the well-recognized burden that these infections place on society, there are as yet no clearly established interventions available to prevent transmission of CMV. In order to study potential interventions, such as vaccines or antiviral therapies, an animal model of congenital CMV transmission is required. The best small animal model of CMV transmission is the guinea pig cytomegalovirus (GPCMV) model. This article summarizes the GPCMV model, putting it into the larger context of how studies in this system have relevance to human health. An emphasis is placed on how the vertical transmission of GPCMV recapitulates the pathogenesis of congenital CMV in infants, making this a uniquely well-suited model for the study of potential CMV vaccines.
Collapse
Affiliation(s)
- Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, 2001 6 Street SE, Minneapolis, MN 55455,
| | | |
Collapse
|
135
|
The m74 gene product of murine cytomegalovirus (MCMV) is a functional homolog of human CMV gO and determines the entry pathway of MCMV. J Virol 2010; 84:4469-80. [PMID: 20181688 DOI: 10.1128/jvi.02441-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The glycoprotein gO (UL74) of human cytomegalovirus (HCMV) forms a complex with gH/gL. Virus mutants with a deletion of gO show a defect in secondary envelopment with the consequence that virus spread is restricted to a cell-associated pathway. Here we report that the positional homolog of HCMV gO, m74 of mouse CMV (MCMV), codes for a glycosylated protein which also forms a complex with gH (M75). m74 knockout mutants of MCMV show the same spread phenotype as gO knockout mutants of HCMV, namely, a shift from supernatant-driven to cell-associated spread. We could show that this phenotype is due to a reduction of infectious virus particles in cell culture supernatants. m74 knockout mutants enter fibroblasts via an energy-dependent and pH-sensitive pathway, whereas in the presence of an intact m74 gene product, entry is neither energy dependent nor pH sensitive. This entry phenotype is shared by HCMV expressing or lacking gO. Our data indicate that the m74 and UL74 gene products both codetermine CMV spread and CMV entry into cells. We postulate that MCMV, like HCMV, expresses alternative gH/gL complexes which govern cell-to-cell spread of the virus.
Collapse
|
136
|
Human cytomegalovirus TR strain glycoprotein O acts as a chaperone promoting gH/gL incorporation into virions but is not present in virions. J Virol 2009; 84:2597-609. [PMID: 20032193 DOI: 10.1128/jvi.02256-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human cytomegalovirus (HCMV) produces the following two gH/gL complexes: gH/gL/gO and gH/gL/UL128-131. Entry into epithelial and endothelial cells requires gH/gL/UL128-131, and we have provided evidence that gH/gL/UL128-131 binds saturable epithelial cell receptors to mediate entry. HCMV does not require gH/gL/UL128-131 to enter fibroblasts, and laboratory adaptation to fibroblasts results in mutations in the UL128-131 genes, abolishing infection of epithelial and endothelial cells. HCMV gO-null mutants produce very small plaques on fibroblasts yet can spread on endothelial cells. Thus, one prevailing model suggests that gH/gL/gO mediates infection of fibroblasts, while gH/gL/UL128-131 mediates entry into epithelial/endothelial cells. Most biochemical studies of gO have involved the HCMV lab strain AD169, which does not assemble gH/gL/UL128-131 complexes. We examined gO produced by the low-passage clinical HCMV strain TR. Surprisingly, TR gO was not detected in purified extracellular virus particles. In TR-infected cells, gO remained sensitive to endoglycosidase H, suggesting that the protein was not exported from the endoplasmic reticulum (ER). However, TR gO interacted with gH/gL in the ER and promoted export of gH/gL from the ER to the Golgi apparatus. Pulse-chase experiments showed that a fraction of gO remained bound to gH/gL for relatively long periods, but gO eventually dissociated or was degraded and was not found in extracellular virions or secreted from cells. The accompanying report by P. T. Wille et al. (J. Virol., 84:2585-2596, 2010) showed that a TR gO-null mutant failed to incorporate gH/gL into virions and that the mutant was unable to enter fibroblasts and epithelial and endothelial cells. We concluded that gO acts as a molecular chaperone, increasing gH/gL ER export and incorporation into virions. It appears that gO competes with UL128-131 for binding onto gH/gL but is released from gH/gL, so that gH/gL (lacking UL128-131) is incorporated into virions. Thus, our revised model suggests that both gH/gL and gH/gL/UL128-131 are required for entry into epithelial and endothelial cells.
Collapse
|
137
|
A human cytomegalovirus gO-null mutant fails to incorporate gH/gL into the virion envelope and is unable to enter fibroblasts and epithelial and endothelial cells. J Virol 2009; 84:2585-96. [PMID: 20032184 DOI: 10.1128/jvi.02249-09] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human cytomegalovirus (HCMV) depends upon a five-protein complex, gH/gL/UL128-131, to enter epithelial and endothelial cells. A separate HCMV gH/gL-containing complex, gH/gL/gO, has been described. Our prevailing model is that gH/gL/UL128-131 is required for entry into biologically important epithelial and endothelial cells and that gH/gL/gO is required for infection of fibroblasts. Genes encoding UL128-131 are rapidly mutated during laboratory propagation of HCMV on fibroblasts, apparently related to selective pressure for the fibroblast entry pathway. Arguing against this model in the accompanying paper by B. J. Ryckman et al. (J. Virol., 84:2597-2609, 2010), we describe evidence that clinical HCMV strain TR expresses a gO molecule that acts to promote endoplasmic reticulum (ER) export of gH/gL and that gO is not stably incorporated into the virus envelope. This was different from results involving fibroblast-adapted HCMV strain AD169, which incorporates gO into the virion envelope. Here, we constructed a TR gO-null mutant, TRDeltagO, that replicated to low titers, spread poorly among fibroblasts, but produced normal quantities of extracellular virus particles. TRDeltagO particles released from fibroblasts failed to infect fibroblasts and epithelial and endothelial cells, but the chemical fusogen polyethylene glycol (PEG) could partially overcome defects in infection. Therefore, TRDeltagO is defective for entry into all three cell types. Defects in entry were explained by observations showing that TRDeltagO incorporated about 5% of the quantities of gH/gL in extracellular virus particles compared with that in wild-type virions. Although TRDeltagO particles could not enter cells, cell-to-cell spread involving epithelial and endothelial cells was increased relative to TR, apparently resulting from increased quantities of gH/gL/UL128-131 in virions. Together, our data suggest that TR gO acts as a chaperone to promote ER export and the incorporation of gH/gL complexes into the HCMV envelope. Moreover, these data suggest that it is gH/gL, and not gH/gL/gO, that is present in virions and is required for infection of fibroblasts and epithelial and endothelial cells. Our observations that both gH/gL and gH/gL/UL128-131 are required for entry into epithelial/endothelial cells differ from models for other beta- and gammaherpesviruses that use one of two different gH/gL complexes to enter different cells.
Collapse
|
138
|
Isolation of human monoclonal antibodies that potently neutralize human cytomegalovirus infection by targeting different epitopes on the gH/gL/UL128-131A complex. J Virol 2009; 84:1005-13. [PMID: 19889756 DOI: 10.1128/jvi.01809-09] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a widely circulating pathogen that causes severe disease in immunocompromised patients and infected fetuses. By immortalizing memory B cells from HCMV-immune donors, we isolated a panel of human monoclonal antibodies that neutralized at extremely low concentrations (90% inhibitory concentration [IC(90)] values ranging from 5 to 200 pM) HCMV infection of endothelial, epithelial, and myeloid cells. With the single exception of an antibody that bound to a conserved epitope in the UL128 gene product, all other antibodies bound to conformational epitopes that required expression of two or more proteins of the gH/gL/UL128-131A complex. Antibodies against gB, gH, or gM/gN were also isolated and, albeit less potent, were able to neutralize infection of both endothelial-epithelial cells and fibroblasts. This study describes unusually potent neutralizing antibodies against HCMV that might be used for passive immunotherapy and identifies, through the use of such antibodies, novel antigenic targets in HCMV for the design of immunogens capable of eliciting previously unknown neutralizing antibody responses.
Collapse
|
139
|
Yamada S, Nozawa N, Katano H, Fukui Y, Tsuda M, Tsutsui Y, Kurane I, Inoue N. Characterization of the guinea pig cytomegalovirus genome locus that encodes homologs of human cytomegalovirus major immediate-early genes, UL128, and UL130. Virology 2009; 391:99-106. [PMID: 19559454 DOI: 10.1016/j.virol.2009.05.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 11/30/2022]
Abstract
We reported previously that the guinea pig cytomegalovirus (CMV) stock purchased from the American Type Culture Collection contained two types of strains, one containing and the other lacking a 1.6 kb locus, and that the 1.6 kb locus was required for efficient viral growth in animals but not in cell culture. In this study, we characterized the genetic contents of the locus, and found that i) the 1.6 kb locus encodes homologs of human CMV UL128 and UL130, GP129 and GP131, respectively, ii) these genes are expressed with late gene kinetics, iii) GP131 protein (pGP131) localized to cell surface only in the presence of glycoproteins H and L, and iv) pGP131 is a virion component. Therefore, it is plausible that pGP131 forms a complex with glycoproteins H and L and becomes a virion component as does UL130 protein (pUL130). Since pUL130 is one of the glycoproteins essential for infection of endothelial and epithelial cells in human and primates, functional and immunological analyses of this GPCMV homolog of pUL130 may help to illuminate the in vivo role of pUL130.
Collapse
Affiliation(s)
- Souichi Yamada
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Burkhardt C, Himmelein S, Britt W, Winkler T, Mach M. Glycoprotein N subtypes of human cytomegalovirus induce a strain-specific antibody response during natural infection. J Gen Virol 2009; 90:1951-1961. [PMID: 19420160 DOI: 10.1099/vir.0.010967-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes several highly polymorphic envelope glycoproteins; however, the biological relevance of this polymorphism is unclear. Glycoprotein N (gN) is one member of this polymorphic protein family. Four major gN genotypes (gN1-4) have been identified. We have tested the hypothesis that the gN polymorphism represents a mechanism to evade a neutralizing antiviral antibody response. Four recombinant viruses that differed only in the expression of the gN genotype were constructed on the genetic background of HCMV strain AD169. Exchange of gN genotypes had a minor detectable influence on virus replication, gN expression and gN-gM complex formation. Randomly selected human sera were analysed for neutralizing activity against the recombinant viruses. Of these, 70 % showed no difference in neutralizing titre between the viruses, whereas 30 % showed strain-specific neutralization. Differences in 50 % neutralization titre reached >8-fold. Viruses expressing the gN4 genotype were neutralized significantly better than those expressing the other gN genotypes. Strain specificity, or lack thereof, could not be attributed to the presence or absence of anti-gN antibodies, as all sera contained antibodies reacting with gN (as determined by ELISA). Thus, polymorphism of gN could contribute to evasion of an efficient neutralizing-antibody response and facilitate reinfection in previously seropositive individuals.
Collapse
Affiliation(s)
- Christiane Burkhardt
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Susanne Himmelein
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - William Britt
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas Winkler
- Nikolaus-Fiebiger-Zentrum für Molekulare Medizin, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Michael Mach
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
141
|
Onset of human cytomegalovirus replication in fibroblasts requires the presence of an intact vimentin cytoskeleton. J Virol 2009; 83:7015-28. [PMID: 19403668 DOI: 10.1128/jvi.00398-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Like all viruses, herpesviruses extensively interact with the host cytoskeleton during entry. While microtubules and microfilaments appear to facilitate viral capsid transport toward the nucleus, evidence for a role of intermediate filaments in herpesvirus entry is lacking. Here, we examined the function of vimentin intermediate filaments in fibroblasts during the initial phase of infection of two genotypically distinct strains of human cytomegalovirus (CMV), one with narrow (AD169) and one with broad (TB40/E) cell tropism. Chemical disruption of the vimentin network with acrylamide, intermediate filament bundling in cells from a patient with giant axonal neuropathy, and absence of vimentin in fibroblasts from vimentin(-/-) mice severely reduced entry of either strain. In vimentin null cells, viral particles remained in the cytoplasm longer than in vimentin(+/+) cells. TB40/E infection was consistently slower than that of AD169 and was more negatively affected by the disruption or absence of vimentin. These findings demonstrate that an intact vimentin network is required for CMV infection onset, that intermediate filaments may function during viral entry to facilitate capsid trafficking and/or docking to the nuclear envelope, and that maintenance of a broader cell tropism is associated with a higher degree of dependence on the vimentin cytoskeleton.
Collapse
|
142
|
Chbab N, Chabanne-Vautherot D, Francineau A, Osterrieder N, Denesvre C, Vautherot JF. The Marek's disease virus (MDV) protein encoded by the UL17 ortholog is essential for virus growth. Vet Res 2009; 40:28. [PMID: 19284966 PMCID: PMC2695128 DOI: 10.1051/vetres/2009012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 03/12/2009] [Indexed: 11/21/2022] Open
Abstract
Marek’s disease virus type 1 (MDV-1) shows a strict dependency on the direct cell-to-cell spread for its propagation in cell culture. As MDV-1 shows an impaired nuclear egress in cell culture, we wished to address the characterization of capsid/tegument genes which may intervene in the maturation of intranuclear capsids. Orthologs of UL17 are present in all herpesviruses and, in all reported case, were shown to be essential for viral growth, playing a role in capsid maturation and DNA packaging. As only HSV-1 and PrV UL17 proteins have been characterized so far, we wished to examine the role of MDV-1 pUL17 in virus replication. To analyze MDV-1 UL17 gene function, we created deletion mutants or point mutated the open reading frame (ORF) to interrupt its coding phase. We established that a functional ORF UL17 is indispensable for MDV-1 growth. We chose to characterize the virally encoded protein by tagging the 729 amino-acid long protein with a repeat of the HA peptide that was fused to its C-terminus. Protein pUL17 was identified in infected cell extracts as an 82 kDa protein which localized to the nucleus, colocalizing with VP5, the major capsid protein, and VP13/14, a major tegument protein. By using green fluorescent protein fusion and HA tagged proteins expressed under the cytomegalovirus IE gene enhancer/promoter (PCMV IE), we showed that MDV-1 pUL17 nuclear distribution in infected cells is not an intrinsic property. Although our results strongly suggest that another viral protein retains (or relocate) pUL17 to the nucleus, we report that none of the tegument protein tested so far were able to mediate pUL17 relocation to the nucleus.
Collapse
Affiliation(s)
- Najat Chbab
- Laboratoire de Virologie Moléculaire, Nouzilly, France - Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
143
|
Neuropathogenesis of congenital cytomegalovirus infection: disease mechanisms and prospects for intervention. Clin Microbiol Rev 2009; 22:99-126, Table of Contents. [PMID: 19136436 DOI: 10.1128/cmr.00023-08] [Citation(s) in RCA: 333] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Congenital cytomegalovirus (CMV) infection is the leading infectious cause of mental retardation and hearing loss in the developed world. In recent years, there has been an improved understanding of the epidemiology, pathogenesis, and long-term disabilities associated with CMV infection. In this review, current concepts regarding the pathogenesis of neurological injury caused by CMV infections acquired by the developing fetus are summarized. The pathogenesis of CMV-induced disabilities is considered in the context of the epidemiology of CMV infection in pregnant women and newborn infants, and the clinical manifestations of brain injury are reviewed. The prospects for intervention, including antiviral therapies and vaccines, are summarized. Priorities for future research are suggested to improve the understanding of this common and disabling illness of infancy.
Collapse
|
144
|
Efficient replication of rhesus cytomegalovirus variants in multiple rhesus and human cell types. Proc Natl Acad Sci U S A 2008; 105:19950-5. [PMID: 19064925 DOI: 10.1073/pnas.0811063106] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Rhesus cytomegalovirus infection of rhesus macaques has emerged as a model for human cytomegalovirus pathogenesis. The UL128-UL131 locus of the human virus is a primary determinant for viral entry into epithelial cells, an important cell type during cytomegalovirus infection. Rhesus cytomegalovirus strain 68-1 spreads slowly when grown in cultured rhesus epithelial cells, and it does not code for ORFs corresponding to UL128 and the second exon of UL130. We repaired the UL128-UL131 locus of strain 68-1, using rhesus cytomegalovirus strain 180.92 as template, to generate BRh68-1.1. We also repaired a mutation in the UL36 ORF in BRh68-1.1 to make BRh68-1.2. Both repaired derivatives replicate much more efficiently than parental 68-1 virus in rhesus epithelial cells, suggesting that strain 68-1 may be attenuated. Intriguingly, BRh68-1.1 and BRh68-1.2 replicate efficiently in cultured human epithelial cells and endothelial cells. The extended human cell host range of the repaired viruses raises the possibility that rhesus cytomegalovirus-like viruses will be found in humans.
Collapse
|
145
|
Human cytomegalovirus glycoproteins gB and gH/gL mediate epithelial cell-cell fusion when expressed either in cis or in trans. J Virol 2008; 82:11837-50. [PMID: 18815310 DOI: 10.1128/jvi.01623-08] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Herpesviruses use a cascade of interactions with different cell surface molecules to gain entry into cells. In many cases, this involves binding to abundant glycosaminoglycans or integrins followed by interactions with more limited cell surface proteins, leading to fusion with cellular membranes. Human cytomegalovirus (HCMV) has the ability to infect a wide variety of human cell types in vivo. However, very little is known about which HCMV glycoproteins mediate entry into various cell types, including relevant epithelial and endothelial cells. For other herpesviruses, studies of cell-cell fusion induced by viral proteins have provided substantial information about late stages of entry. In this report, we describe the fusion of epithelial, endothelial, microglial, and fibroblast cells in which HCMV gB and gH/gL were expressed from nonreplicating adenovirus vectors. Fusion frequently involved the majority of cells, and gB and gH/gL were both necessary and sufficient for fusion, whereas no fusion occurred when either glycoprotein was omitted. Coexpression of UL128, UL130, and UL131 did not enhance fusion. We concluded that the HCMV core fusion machinery consists of gB and gH/gL. Coimmunoprecipitation indicated that HCMV gB and gH/gL can interact. Importantly, expression of gB and gH/gL in trans (gB-expressing cells mixed with other gH/gL-expressing cells) resulted in substantial fusion. We believe that this is the first description of a multicomponent viral fusion machine that can be split between cells. If gB and gH/gL must interact for fusion, then these molecules must reach across the space between apposing cells. Expression of gB and gH/gL in trans with different cell types revealed surface molecules that are required for fusion on HCMV-permissive cells but not on nonpermissive cells.
Collapse
|
146
|
HCMV gH/gL/UL128-131 interferes with virus entry into epithelial cells: evidence for cell type-specific receptors. Proc Natl Acad Sci U S A 2008; 105:14118-23. [PMID: 18768787 DOI: 10.1073/pnas.0804365105] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) forms two different membrane protein complexes, gH/gL/gO and gH/gL/UL128/UL130/UL131, that function in different cell types. gH/gL/gO appears to be important for HCMV entry into or spread between fibroblasts, processes that occur at neutral pH. We demonstrated that HCMV entry into epithelial and endothelial cells requires gH/gL/UL128-131 and involves endocytosis and low pH. A complex of all five HCMV proteins, gH, gL, UL128, UL130, and UL131, is the functionally important mediator of this entry pathway into epithelial/endothelial cells. Here, we report that expression of gH/gL/UL128-131 in ARPE-19 epithelial cells causes the cells to be resistant to HCMV infection. Another HCMV glycoprotein, gB, did not interfere, and expression of all five gH/gL/UL128-131 proteins was required for this interference. gH/gL/UL128-131 interference was at the stage of virus entry into cells rather than the initial adsorption onto cell surfaces or after-entry defects. By contrast, expression of gH/gL/UL128-131 in primary human fibroblasts did not block HCMV infection. Previously, interference by retrovirus and herpes-simplex-virus entry mediators resulted from sequestration or obstruction of receptors. We concluded that epithelial cells express gH/gL/UL128-131 receptors that mediate HCMV entry. Fibroblasts either lack the gH/gL/UL128-131 receptors, the receptors are more numerous, or fibroblasts express other functional receptors.
Collapse
|
147
|
Charge cluster-to-alanine scanning of UL128 for fine tuning of the endothelial cell tropism of human cytomegalovirus. J Virol 2008; 82:11239-46. [PMID: 18768970 DOI: 10.1128/jvi.01069-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The viral genes UL128, UL130, and UL131A have been identified as major determinants of endothelial cell (EC) tropism of human cytomegalovirus (HCMV), with deletion of either gene causing a null phenotype. We hypothesized that a functional scanning of these genes by minor genetic modifications would allow for the generation of mutants with an intermediate phenotype. By combining charge cluster-to-alanine (CCTA) mutagenesis with markerless mutagenesis of a bacterial artificial chromosome-cloned endotheliotropic HCMV strain, we analyzed UL128 in order to identify functional sites and hence enable targeted modulation of the EC tropism of HCMV. A total of nine mutations in eight charge clusters were tested. Three of the CCTA mutations severely reduced EC tropism, three were irrelevant, two had a weak effect on cell tropism, and one mutation in the most C-terminal cluster caused an intermediate phenotype. All of the highly effective mutations were located in a core region (amino acids 72 to 106) which appears to be particularly crucial for EC tropism. The intermediate effect of mutations in the C-terminal cluster could be modulated by varying the number of amino acids replaced with alanine. This study provides a rational approach for targeted modulation of HCMV cell tropism, which may aid in the development of HCMV strains with a desired degree of attenuation.
Collapse
|
148
|
Cytomegalovirus vaccines fail to induce epithelial entry neutralizing antibodies comparable to natural infection. Vaccine 2008; 26:5760-6. [PMID: 18718497 DOI: 10.1016/j.vaccine.2008.07.092] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/24/2008] [Accepted: 07/28/2008] [Indexed: 01/08/2023]
Abstract
Antibodies that neutralize cytomegalovirus (CMV) entry into fibroblasts are predominantly directed against epitopes within virion glycoproteins that are required for attachment and entry. However, the mechanism of CMV entry into epithelial and endothelial cells differs from fibroblast entry. Using assays that simultaneously measured neutralizing activities against CMV entry into fibroblasts and epithelial cells, we found that human immune sera and CMV-hyperimmuneglobulins have on on average 48-fold higher neutralizing activities against epithelial cell entry compared to fibroblast entry, suggesting that natural CMV infections elicit neutralizing antibodies that are epithelial entry-specific. This activity could not be adsorbed with recombinant gB. The Towne vaccine and the gB/MF59 subunit vaccine induced epithelial entry-specific neutralizing activities that were on on average 28-fold (Towne) or 15-fold (gB/MF59) lower than those observed following natural infection. These results suggest that CMV vaccine efficacy may be enhanced by the induction of epithelial entry-specific neutralizing antibodies.
Collapse
|
149
|
Abstract
The human cytomegalovirus (HCMV) can infect a remarkably broad cell range within its host, including parenchymal cells and connective tissue cells of virtually any organ and various hematopoietic cell types. Epithelial cells, endothelial cells, fibroblasts and smooth muscle cells are the predominant targets for virus replication. The pathogenesis of acute HCMV infections is greatly influenced by this broad target cell range. Infection of epithelial cells presumably contributes to inter-host transmission. Infection of endothelial cells and hematopoietic cells facilitates systemic spread within the host. Infection of ubiquitous cell types such as fibroblasts and smooth muscle cells provides the platform for efficient proliferation of the virus. The tropism for endothelial cells, macrophages and dendritic cells varies greatly among different HCMV strains, mostly dependent on alterations within the UL128-131 gene locus. In line with the classification of the respective proteins as structural components of the viral envelope, interstrain differences concerning the infectivity in endothelial cells and macrophages are regulated on the level of viral entry.
Collapse
|
150
|
Nozawa N, Yamamoto Y, Fukui Y, Katano H, Tsutsui Y, Sato Y, Yamada S, Inami Y, Nakamura K, Yokoi M, Kurane I, Inoue N. Identification of a 1.6 kb genome locus of guinea pig cytomegalovirus required for efficient viral growth in animals but not in cell culture. Virology 2008; 379:45-54. [PMID: 18656220 DOI: 10.1016/j.virol.2008.06.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 03/10/2008] [Accepted: 06/10/2008] [Indexed: 11/17/2022]
Abstract
Guinea pig cytomegalovirus (GPCMV) provides a useful model for studies of congenital CMV infection. During characterization of the GPCMV genome sequence, we identified two types of strains in a virus stock purchased from ATCC. One of them, GPCMV/del, lacks a 1.6 kb locus that positionally corresponds to murine CMV (MCMV) M129-M133. Growth of GPCMV/del in cell culture was marginally better than that of the other strain, GPCMV/full, which harbors the 1.6 kb locus. However, in animals infected intraperitoneally with virus stocks containing both strains, GPCMV/full disseminated more efficiently than GPCMV/del, including 200-fold greater viral load in salivary glands. Viral DNA, transcripts of the immediate-early 2 gene homolog, and viral antigens were more abundant in animals infected with GPCMV/full than in those infected with GPCMV/del. Although the observed phenomena have some similarity with the growth properties of MCMV strains defective in mck-1/mck-2(M129/131) and those defective in sgg(M132), no M129-M132 homologs were found in the 1.6 kb locus. Since one of the ORFs in the locus has a weak sequence similarity with HCMV UL130, which relates to cell tropism, further studies will be required to learn the mechanism for efficient GPCMV growth in animal.
Collapse
Affiliation(s)
- Naoki Nozawa
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|