101
|
He X, Fan HY, Garlick JD, Kingston RE. Diverse regulation of SNF2h chromatin remodeling by noncatalytic subunits. Biochemistry 2008; 47:7025-33. [PMID: 18553938 DOI: 10.1021/bi702304p] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
SNF2h-based ATP-dependent chromatin remodeling complexes diverge in composition, nuclear localization, and biological function. Such differences have led to the hypothesis that SNF2h complexes differ mechanistically. One proposal is that the complexes have different functional interactions with the naked DNA adjacent to the nucleosome. We have used a series of templates with defined nucleosomal position and differing amounts and placement of adjacent DNA to compare the relative activities of SNF2h and SNF2h complexes. The complexes hACF, CHRAC, WICH, and RSF all displayed differences in functional interactions with these templates, which we attribute to the differences in the noncatalytic subunit. We suggest that the ability to sense adjacent DNA is a general property of the binding partners of SNF2h and that each partner provides distinct regulation that contributes to distinct cellular function.
Collapse
Affiliation(s)
- Xi He
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
102
|
Schnitzler GR. Control of Nucleosome Positions by DNA Sequence and Remodeling Machines. Cell Biochem Biophys 2008; 51:67-80. [DOI: 10.1007/s12013-008-9015-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2008] [Indexed: 12/24/2022]
|
103
|
The chromatin remodelling factor dATRX is involved in heterochromatin formation. PLoS One 2008; 3:e2099. [PMID: 18461125 PMCID: PMC2324200 DOI: 10.1371/journal.pone.0002099] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 03/27/2008] [Indexed: 01/25/2023] Open
Abstract
Despite extensive study of heterochromatin, relatively little is known about the mechanisms by which such a structure forms. We show that the Drosophila homologue of the human α-thalassemia and mental retardation X-linked protein (dATRX), is important in the formation or maintenance of heterochromatin through modification of position effect variegation. We further show that there are two isoforms of the dATRX protein, the longer of which interacts directly with heterochromatin protein 1 (dHP-1) through a CxVxL motif both in vitro and in vivo. These two proteins co-localise at heterochromatin in a manner dependent on this motif. Consistent with this observation, the long isoform of the dATRX protein localises primarily to the heterochromatin at the chromocentre on salivary gland polytene chromosomes, whereas the short isoform binds to many sites along the chromosome arms. We suggest that the establishment of a regular nucleosomal organisation may be common to heterochromatin and transcriptionally repressed chromatin in other locations, and may require the action of ATP dependent chromatin remodelling factors.
Collapse
|
104
|
Hanai K, Furuhashi H, Yamamoto T, Akasaka K, Hirose S. RSF governs silent chromatin formation via histone H2Av replacement. PLoS Genet 2008; 4:e1000011. [PMID: 18454204 PMCID: PMC2265536 DOI: 10.1371/journal.pgen.1000011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 01/25/2008] [Indexed: 12/20/2022] Open
Abstract
Human remodeling and spacing factor (RSF) consists of a heterodimer of Rsf-1 and hSNF2H, a counterpart of Drosophila ISWI. RSF possesses not only chromatin remodeling activity but also chromatin assembly activity in vitro. While no other single factor can execute the same activities as RSF, the biological significance of RSF remained unknown. To investigate the in vivo function of RSF, we generated a mutant allele of Drosophila Rsf-1 (dRsf-1). The dRsf-1 mutant behaved as a dominant suppressor of position effect variegation. In dRsf-1 mutant, the levels of histone H3K9 dimethylation and histone H2A variant H2Av were significantly reduced in an euchromatic region juxtaposed with heterochromatin. Furthermore, using both genetic and biochemical approaches, we demonstrate that dRsf-1 interacts with H2Av and the H2Av-exchanging machinery Tip60 complex. These results suggest that RSF contributes to histone H2Av replacement in the pathway of silent chromatin formation. As DNA is packaged into chromatin in the nucleus, every DNA transaction requires alteration of the chromatin structure. RSF, a heterodimer of Rsf-1 and ISWI/SNF2H, is a unique chromatin remodeling factor that can assemble regularly spaced nucleosome arrays without the aid of histone chaperons, but its biological function is not clear. Using Drosophila melanogaster as a model organism, we investigated the in vivo role of RSF in gene expression. The loss of RSF function reduces the levels of histone variant H2Av and histone H3-K9 methylation, and suppresses silencing of transcription in an euchromatic region neighboring the centromeric heterochromatin. We also observed that Rsf-1 interacts with histone H2Av and the H2Av-exchanging machinery Tip60 complex. Based on these findings, we propose that RSF plays a role in silent chromatin formation by promoting histone H2Av replacement.
Collapse
Affiliation(s)
- Kazuma Hanai
- Department of Developmental Genetics, National Institute of Genetics, Shizuoka-ken, Japan
- Department of Mathematical and Life Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hirofumi Furuhashi
- Department of Developmental Genetics, National Institute of Genetics, Shizuoka-ken, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Koji Akasaka
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Susumu Hirose
- Department of Developmental Genetics, National Institute of Genetics, Shizuoka-ken, Japan
- * E-mail:
| |
Collapse
|
105
|
Chromatin remodelling at promoters suppresses antisense transcription. Nature 2008; 450:1031-5. [PMID: 18075583 DOI: 10.1038/nature06391] [Citation(s) in RCA: 323] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 10/18/2007] [Indexed: 01/14/2023]
Abstract
Chromatin allows the eukaryotic cell to package its DNA efficiently. To understand how chromatin structure is controlled across the Saccharomyces cerevisiae genome, we have investigated the role of the ATP-dependent chromatin remodelling complex Isw2 in positioning nucleosomes. We find that Isw2 functions adjacent to promoter regions where it repositions nucleosomes at the interface between genic and intergenic sequences. Nucleosome repositioning by Isw2 is directional and results in increased nucleosome occupancy of the intergenic region. Loss of Isw2 activity leads to inappropriate transcription, resulting in the generation of both coding and noncoding transcripts. Here we show that Isw2 repositions nucleosomes to enforce directionality on transcription by preventing transcription initiation from cryptic sites. Our analyses reveal how chromatin is organized on a global scale and advance our understanding of how transcription is regulated.
Collapse
|
106
|
Corona DFV, Siriaco G, Armstrong JA, Snarskaya N, McClymont SA, Scott MP, Tamkun JW. ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo. PLoS Biol 2007; 5:e232. [PMID: 17760505 PMCID: PMC1951781 DOI: 10.1371/journal.pbio.0050232] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 06/29/2007] [Indexed: 12/17/2022] Open
Abstract
Imitation SWI (ISWI) and other ATP-dependent chromatin-remodeling factors play key roles in transcription and other processes by altering the structure and positioning of nucleosomes. Recent studies have also implicated ISWI in the regulation of higher-order chromatin structure, but its role in this process remains poorly understood. To clarify the role of ISWI in vivo, we examined defects in chromosome structure and gene expression resulting from the loss of Iswi function in Drosophila. Consistent with a broad role in transcriptional regulation, the expression of a large number of genes is altered in Iswi mutant larvae. The expression of a dominant-negative form of ISWI leads to dramatic alterations in higher-order chromatin structure, including the apparent decondensation of both mitotic and polytene chromosomes. The loss of ISWI function does not cause obvious defects in nucleosome assembly, but results in a significant reduction in the level of histone H1 associated with chromatin in vivo. These findings suggest that ISWI plays a global role in chromatin compaction in vivo by promoting the association of the linker histone H1 with chromatin. Chromatin-remodeling factors such as ISWI play a role in transcription and other nuclear processes by altering the structure and positioning of nucleosomes (the protein–DNA complexes that organize chromatin). Recent studies have suggested that chromatin-remodeling factors can also influence higher-order chromatin structure, but how they do this is not well understood. Using Drosophila melanogaster as a model organism, we investigated the role of ISWI in gene expression and the regulation of chromosome structure in higher eukaryotes. Loss of ISWI alters the expression of a large number of genes. The loss of ISWI function also causes dramatic alterations in higher-order chromatin structure—including the decondensation of mitotic and polytene chromosomes—accompanied by a striking reduction in the amount of the linker histone H1 associated with chromatin. Based on these findings, we propose that ISWI plays a global role in chromosome compaction by promoting the association of a linker histone with chromatin. ISWI is a chromatin-remodeling factor that recruits linker histone H1 into chromatin, thus altering the structure and positioning of nucleosomes and the degree of chromatin compaction.
Collapse
Affiliation(s)
- Davide F. V Corona
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Giorgia Siriaco
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jennifer A Armstrong
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Natalia Snarskaya
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stephanie A McClymont
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Matthew P Scott
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - John W Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
107
|
Abstract
Chromatin structure plays a vital role in the transmission of heritable gene expression patterns. The recent application of mass spectrometry to histone biology provides several striking insights into chromatin regulation. The continuing identification of new histone post-translational modifications is revolutionizing the ways in which we think about how access to genomic DNA is controlled. While post-translational modifications of the flexible histone tails continue to be an active area of investigation, the recent discovery of multiple modifications in the structured globular domains of histones provides new insights into how the nucleosome works. Recent experiments underscore the importance of a subgroup of these modifications: those that regulate histone-DNA interactions on the lateral surface of the nucleosome. This information highlights an emerging new paradigm in chromatin control, that of the epigenetic regulation of nucleosome mobility.
Collapse
Affiliation(s)
- Michael S Cosgrove
- Syracuse University, Department of Biology, Syracuse, New York, NY 13244, USA.
| |
Collapse
|
108
|
Keuling A, Yang F, Hanna S, Wang H, Tully T, Burnham A, Locke J, McDermid HE. Mutation analysis of Drosophila dikar/CG32394, homologue of the chromatin-remodelling gene CECR2. Genome 2007; 50:767-77. [PMID: 17893736 DOI: 10.1139/g07-050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mammalian CECR2 protein contains a highly conserved bromodomain and forms a chromatin-remodelling complex with the ISWI homologue SNF2L. Mutation of the mouse CECR2 homologue results in a neural tube defect. Here we describe the characterization of the Drosophila melanogaster homologue of CECR2. Originally annotated as 2 genes, dikar and CG32394 now appear to encode both a long dikar/CG32394 transcript homologous to CECR2 and a truncated transcript missing the bromodomain. This truncated transcript may be specific to Diptera, as it is predicted from the genomic sequences of several other dipteran species but it is not predicted in the honey bee, Apis mellifera, and it is not found in mammals. Five different P element-mediated 5' deletions of the Drosophila dikar gene were generated. All mutants were homozygous-viable and the 3 mutants examined further displayed continued, albeit aberrant, transcription of dikar/CG32394. In a previous study, a dikar insertion mutation was associated with long-term memory deficits. However, the 2 deletion mutants tested here showed normal long-term memory, suggesting that the memory deficit associated with the dikar P element insertion is not due to disruption of dikar. No genetic interaction was seen between Iswi and dikar mutations. This study therefore suggests that the lack of a visible phenotype in dikar mutants is due to compensation by a second gene, possibly acf1.
Collapse
Affiliation(s)
- Angela Keuling
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Ferreira R, Eberharter A, Bonaldi T, Chioda M, Imhof A, Becker PB. Site-specific acetylation of ISWI by GCN5. BMC Mol Biol 2007; 8:73. [PMID: 17760996 PMCID: PMC2045673 DOI: 10.1186/1471-2199-8-73] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 08/30/2007] [Indexed: 11/20/2022] Open
Abstract
Background The tight organisation of eukaryotic genomes as chromatin hinders the interaction of many DNA-binding regulators. The local accessibility of DNA is regulated by many chromatin modifying enzymes, among them the nucleosome remodelling factors. These enzymes couple the hydrolysis of ATP to disruption of histone-DNA interactions, which may lead to partial or complete disassembly of nucleosomes or their sliding on DNA. The diversity of nucleosome remodelling factors is reflected by a multitude of ATPase complexes with distinct subunit composition. Results We found further diversification of remodelling factors by posttranslational modification. The histone acetyltransferase GCN5 can acetylate the Drosophila remodelling ATPase ISWI at a single, conserved lysine, K753, in vivo and in vitro. The target sequence is strikingly similar to the N-terminus of histone H3, where the corresponding lysine, H3K14, can also be acetylated by GCN5. The acetylated form of ISWI represents a minor species presumably associated with the nucleosome remodelling factor NURF. Conclusion Acetylation of histone H3 and ISWI by GCN5 is explained by the sequence similarity between the histone and ISWI around the acetylation site. The common motif RKT/SxGx(Kac)xPR/K differs from the previously suggested GCN5/PCAF recognition motif GKxxP. This raises the possibility of co-regulation of a nucleosome remodelling factor and its nucleosome substrate through acetylation of related epitopes and suggests a direct crosstalk between two distinct nucleosome modification principles.
Collapse
Affiliation(s)
- Roger Ferreira
- Adolf-Butenandt-Institut, Molekularbiologie, 80336 München, Germany
- European Patent Office – Biotechnology, D-80339 München, Germany
| | - Anton Eberharter
- Adolf-Butenandt-Institut, Molekularbiologie, 80336 München, Germany
| | - Tiziana Bonaldi
- Adolf-Butenandt-Institut, Molekularbiologie, 80336 München, Germany
- Max-Planck Institut für Biochemie, D-82152 Martinsried, Germany
| | | | - Axel Imhof
- Adolf-Butenandt-Institut, Molekularbiologie, 80336 München, Germany
| | - Peter B Becker
- Adolf-Butenandt-Institut, Molekularbiologie, 80336 München, Germany
| |
Collapse
|
110
|
Abstract
Inheritance and maintenance of the DNA sequence and its organization into chromatin are central for eukaryotic life. To orchestrate DNA-replication and -repair processes in the context of chromatin is a challenge, both in terms of accessibility and maintenance of chromatin organization. To meet the challenge of maintenance, cells have evolved efficient nucleosome-assembly pathways and chromatin-maturation mechanisms that reproduce chromatin organization in the wake of DNA replication and repair. The aim of this Review is to describe how these pathways operate and to highlight how the epigenetic landscape may be stably maintained even in the face of dramatic changes in chromatin structure.
Collapse
Affiliation(s)
- Anja Groth
- Laboratory of Nuclear Dynamics and Genome Plasticity, UMR 218 CNRS/Institut Curie, 26 rue d'Ulm, 75248 Paris, Cedex 5, France
| | | | | | | |
Collapse
|
111
|
Koizumi K, Higashida H, Yoo S, Islam MS, Ivanov AI, Guo V, Pozzi P, Yu SH, Rovescalli AC, Tang D, Nirenberg M. RNA interference screen to identify genes required for Drosophila embryonic nervous system development. Proc Natl Acad Sci U S A 2007; 104:5626-31. [PMID: 17376868 PMCID: PMC1838491 DOI: 10.1073/pnas.0611687104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RNA interference (RNAi) has been shown to be a powerful method to study the function of genes in vivo by silencing endogenous mRNA with double-stranded (ds) RNA. Previously, we performed in vivo RNAi screening and identified 43 Drosophila genes, including 18 novel genes required for the development of the embryonic nervous system. In the present study, 22 additional genes affecting embryonic nervous system development were found. Novel RNAi-induced phenotypes affecting nervous system development were found for 16 of the 22 genes. Seven of the genes have unknown functions. Other genes found encode transcription factors, a chromatin-remodeling protein, membrane receptors, signaling molecules, and proteins involved in cell adhesion, RNA binding, and ion transport. Human orthologs were identified for proteins encoded by 16 of the genes. The total number of dsRNAs that we have tested for an RNAi-induced phenotype affecting the embryonic nervous system, including our previous study, is 7,312, which corresponds to approximately 50% of the genes in the Drosophila genome.
Collapse
Affiliation(s)
- Keita Koizumi
- *Kanazawa University, 21st Century Centers of Excellence Program on Innovative Brain Science on Development, Learning, and Memory, Kanazawa 920-8640, Japan
- Advanced Science Research Center, Kanazawa University, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- *Kanazawa University, 21st Century Centers of Excellence Program on Innovative Brain Science on Development, Learning, and Memory, Kanazawa 920-8640, Japan
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan; and
| | - Siuk Yoo
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mohamad Saharul Islam
- *Kanazawa University, 21st Century Centers of Excellence Program on Innovative Brain Science on Development, Learning, and Memory, Kanazawa 920-8640, Japan
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan; and
| | - Andrej I. Ivanov
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Vicky Guo
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Paola Pozzi
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shu-Hua Yu
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alessandra C. Rovescalli
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Derek Tang
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Marshall Nirenberg
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
112
|
Eckey M, Hong W, Papaioannou M, Baniahmad A. The nucleosome assembly activity of NAP1 is enhanced by Alien. Mol Cell Biol 2007; 27:3557-68. [PMID: 17339334 PMCID: PMC1899999 DOI: 10.1128/mcb.01106-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly of nucleosomes into chromatin is essential for the compaction of DNA and inactivation of the DNA template to modulate and repress gene expression. The nucleosome assembly protein 1, NAP1, assembles nucleosomes independent of DNA synthesis and was shown to enhance coactivator-mediated gene expression, suggesting a role for NAP1 in transcriptional regulation. Here, we show that Alien, known to harbor characteristics of a corepressor of nuclear hormone receptors such as of the vitamin D receptor (VDR), binds in vivo and in vitro to NAP1 and modulates its activity by enhancing NAP1-mediated nucleosome assembly on DNA. Furthermore, Alien reduces the accessibility of the histones H3 and H4 for NAP1-promoted assembly reaction. This indicates that Alien sustains and reinforces the formation of nucleosomes. Employing deletion mutants of Alien suggests that different regions of Alien are involved in enhancement of NAP1-mediated nucleosome assembly and in inhibiting the accessibility of the histones H3 and H4. In addition, we provide evidence that Alien is associated with chromatin and with micrococcus nuclease-prepared nucleosome fractions and interacts with the histones H3 and H4. Furthermore, chromatin immunoprecipitation and reimmunoprecipitation experiments suggest that NAP1 and Alien localize to the endogenous CYP24 promoter in vivo, a VDR target gene. Based on these findings, we present here a novel pathway linking corepressor function with nucleosome assembly activity.
Collapse
Affiliation(s)
- Maren Eckey
- Institute of Human Genetics and Anthropology, Friedrich Schiller University, 07740 Jena, Germany
| | | | | | | |
Collapse
|
113
|
Zlatanova J, Seebart C, Tomschik M. Nap1: taking a closer look at a juggler protein of extraordinary skills. FASEB J 2007; 21:1294-310. [PMID: 17317729 DOI: 10.1096/fj.06-7199rev] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nucleosome assembly protein Nap1 is used extensively in the chromatin field to reconstitute nucleosomal templates for structural and functional studies. Beyond its role in facilitating experimental investigation of nucleosomes, the highly conserved Nap1 is one of the best-studied members of the histone chaperone group. Here we review its numerous functions, focusing mainly on its roles in assembly and disassembly of the nucleosome particle, and its interactions with chromatin remodeling factors. Its presumed role in transcription through chromatin is also reviewed in detail. An attempt is made to clearly discriminate between fact and fiction, and to formulate the unresolved questions that need further attention. It is beyond doubt that the numerous, seemingly unrelated functions of this juggler protein have to be precisely channeled, coordinated, and regulated. Why nature endowed this specific protein with so many functions may remain a mystery. We are aware of the enormous challenge to the scientific community that understanding the mechanisms underlying these activities presents.
Collapse
Affiliation(s)
- Jordanka Zlatanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| | | | | |
Collapse
|
114
|
Stephens GE, Xiao H, Lankenau DH, Wu C, Elgin SCR. Heterochromatin protein 2 interacts with Nap-1 and NURF: a link between heterochromatin-induced gene silencing and the chromatin remodeling machinery in Drosophila. Biochemistry 2007; 45:14990-9. [PMID: 17154536 PMCID: PMC2534143 DOI: 10.1021/bi060983y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterochromatin protein 2 (HP2) is a nonhistone chromosomal protein from Drosophila melanogaster that binds to heterochromatin protein 1 (HP1) and has been implicated in heterochromatin-induced gene silencing. Heretofore, HP1 has been the only known binding partner of HP2, a large protein devoid of sequence motifs other than a pair of AT hooks. In an effort to identify proteins that interact with HP2 and assign functions to its various domains, nuclear proteins were fractionated under nondenaturing conditions. On separation of nuclear proteins, nucleosome assembly protein 1 (Nap-1) has an overlapping elution profile with HP2 (assayed by Western blot) and has been identified by mass spectrometry in fractions with HP2. Upon probing fractions in which HP2 and Nap-1 are both present, we find that the nucleosome remodeling factor (NURF), an ISWI-dependent chromatin remodeling complex, is also present. Results from coimmunoprecipitation experiments suggest that HP2 interacts with Nap-1 as well as with NURF; NURF appears to interact directly with both HP2 and Nap-1. Three distinct domains within HP2 mediate the interaction with NURF, allowing us to assign NURF binding domains in addition to the AT hooks and HP1 binding domains already mapped in HP2. Mutations in Nap-1 are shown to suppress position effect variegation, suggesting that Nap-1 functions to help to assemble chromatin into a closed form, as does HP2. On the basis of these interactions, we speculate that HP2 may cooperate with these factors in the remodeling of chromatin for silencing.
Collapse
Affiliation(s)
- Gena E. Stephens
- Department of Biology, Washington University, CB-1229, St. Louis, MO 63130
- Correspondence to be sent to: Gena E. Stephens, Telephone: 314-935-6837, Fax: 314-935-5125, E-mail:
| | - Hua Xiao
- Laboratory of Molecular Cell Biology, National Cancer Institute, Building 37, Room 6068, National Institutes of Health, Bethesda, Maryland 20892
| | - Dirk-H. Lankenau
- University of Heidelberg, Institute of Zoology, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany
| | - Carl Wu
- Laboratory of Molecular Cell Biology, National Cancer Institute, Building 37, Room 6068, National Institutes of Health, Bethesda, Maryland 20892
| | - Sarah C. R. Elgin
- Department of Biology, Washington University, CB-1229, St. Louis, MO 63130
| |
Collapse
|
115
|
Gangaraju VK, Bartholomew B. Mechanisms of ATP dependent chromatin remodeling. Mutat Res 2007; 618:3-17. [PMID: 17306844 PMCID: PMC2584342 DOI: 10.1016/j.mrfmmm.2006.08.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 08/14/2006] [Indexed: 11/21/2022]
Abstract
The inter-relationship between DNA repair and ATP dependent chromatin remodeling has begun to become very apparent with recent discoveries. ATP dependent remodeling complexes mobilize nucleosomes along DNA, promote the exchange of histones, or completely displace nucleosomes from DNA. These remodeling complexes are often categorized based on the domain organization of their catalytic subunit. The biochemical properties and structural information of several of these remodeling complexes are reviewed. The different models for how these complexes are able to mobilize nucleosomes and alter nucleosome structure are presented incorporating several recent findings. Finally the role of histone tails and their respective modifications in ATP-dependent remodeling are discussed.
Collapse
Affiliation(s)
- Vamsi K Gangaraju
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL. 62901-4413, USA
| | | |
Collapse
|
116
|
Linger JG, Tyler JK. Chromatin disassembly and reassembly during DNA repair. Mutat Res 2007; 618:52-64. [PMID: 17303193 PMCID: PMC2593076 DOI: 10.1016/j.mrfmmm.2006.05.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 05/13/2006] [Indexed: 10/23/2022]
Abstract
Current research is demonstrating that the packaging of the eukaryotic genome together with histone proteins into chromatin is playing a fundamental role in DNA repair and the maintenance of genomic integrity. As is well established to be the case for transcription, the chromatin structure dynamically changes during DNA repair. Recent studies indicate that the complete removal of histones from DNA and their subsequent reassembly onto DNA accompanies DNA repair. This review will present evidence indicating that chromatin disassembly and reassembly occur during DNA repair and that these are critical processes for cell survival after DNA repair. Concomitantly, candidate proteins utilized for these processes will be highlighted.
Collapse
Affiliation(s)
| | - Jessica K. Tyler
- Correspondence should be addressed to Jessica Tyler, Mail Stop 8101, PO Box 6511, Aurora, CO 80045 USA. Phone: 303 724 3224; Fax: 303 724 3221;
| |
Collapse
|
117
|
Woodhouse MR, Freeling M, Lisch D. Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol 2007; 4:e339. [PMID: 16968137 PMCID: PMC1563492 DOI: 10.1371/journal.pbio.0040339] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 08/16/2006] [Indexed: 11/19/2022] Open
Abstract
Paramutation and transposon silencing are two epigenetic phenomena that have intrigued and puzzled geneticists for decades. Each involves heritable changes in gene activity without changes in DNA sequence. Here we report the cloning of a gene whose activity is required for the maintenance of both silenced transposons and paramutated color genes in maize. We show that this gene, Mop1 (Mediator of paramutation1) codes for a putative RNA-dependent RNA polymerase, whose activity is required for the production of small RNAs that correspond to the MuDR transposon sequence. We also demonstrate that although Mop1 is required to maintain MuDR methylation and silencing, it is not required for the initiation of heritable silencing. In contrast, we present evidence that a reduction in the transcript level of a maize homolog of the nucleosome assembly protein 1 histone chaperone can reduce the heritability of MuDR silencing. Together, these data suggest that the establishment and maintenance of MuDR silencing have distinct requirements.
Collapse
Affiliation(s)
- Margaret Roth Woodhouse
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Michael Freeling
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Damon Lisch
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
118
|
Eskeland R, Eberharter A, Imhof A. HP1 binding to chromatin methylated at H3K9 is enhanced by auxiliary factors. Mol Cell Biol 2006; 27:453-65. [PMID: 17101786 PMCID: PMC1800810 DOI: 10.1128/mcb.01576-06] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large portion of the eukaryotic genome is packaged into transcriptionally silent heterochromatin. Several factors that play important roles during the establishment and maintenance of this condensed form have been identified. Methylation of lysine 9 within histone H3 and the subsequent binding of the chromodomain protein heterochromatin protein 1 (HP1) are thought to initiate heterochromatin formation in vivo and to propagate a heterochromatic state lasting through several cell divisions. For the present study we analyzed the binding of HP1 to methylated chromatin in a fully reconstituted system. In contrast to its strong binding to methylated peptides, HP1 binds only weakly to methylated chromatin. However, the addition of recombinant SU(VAR) protein, such as ACF1 or SU(VAR)3-9, facilitates HP1 binding to chromatin methylated at lysine 9 within the H3 N terminus (H3K9). We propose that HP1 has multiple target sites that contribute to its recognition of chromatin, only one of them being methylated at H3K9. These findings have implications for the mechanisms of recognition of specific chromatin modifications in vivo.
Collapse
Affiliation(s)
- Ragnhild Eskeland
- Histone Modifications Group, Adolf-Butenandt Institut, University of Munich, Schillerstrasse 44, 80336 Munich, Germany
| | | | | |
Collapse
|
119
|
Yang JG, Madrid TS, Sevastopoulos E, Narlikar GJ. The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat Struct Mol Biol 2006; 13:1078-83. [PMID: 17099699 DOI: 10.1038/nsmb1170] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 10/24/2006] [Indexed: 11/09/2022]
Abstract
Arrays of regularly spaced nucleosomes directly correlate with closed chromatin structures at silenced loci. The ATP-dependent chromatin-assembly factor (ACF) generates such arrays in vitro and is required for transcriptional silencing in vivo. A key unresolved question is how ACF 'measures' equal spacing between nucleosomes. We show that ACF senses flanking DNA length and transduces length information in an ATP-dependent manner to regulate the rate of nucleosome movement. Using fluorescence resonance energy transfer to follow nucleosome movement, we find that ACF can rapidly sample DNA on either side of a nucleosome and moves the longer flanking DNA across the nucleosome faster than the shorter flanking DNA. This generates a dynamic equilibrium in which nucleosomes having equal DNA on either side accumulate. Our results indicate that ACF generates the characteristic 50- to 60-base-pair internucleosomal spacing in silent chromatin by kinetically discriminating against shorter linker DNAs.
Collapse
Affiliation(s)
- Janet G Yang
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, San Francisco, California 94158, USA
| | | | | | | |
Collapse
|
120
|
Grimaud C, Nègre N, Cavalli G. From genetics to epigenetics: the tale of Polycomb group and trithorax group genes. Chromosome Res 2006; 14:363-75. [PMID: 16821133 DOI: 10.1007/s10577-006-1069-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Polycomb gene was discovered 60 years ago as a mutation inducing a particular homeotic phenotype. Subsequent work showed that Polycomb is a general repressor of homeotic genes. Other genes with similar function were identified and named Polycomb group (PcG) genes, while trithorax group (trxG) genes were shown to counteract PcG-mediated repression of homeotic genes. We now know that PcG and trxG proteins are conserved factors that regulate hundreds of different genomic loci. A sophisticated pathway is responsible for recruitment of these proteins at regulatory regions that were named PcG and trxG response elements (PRE and TRE). Once recruited to their targets, multimeric PcG and trxG protein complexes regulate transcription by modulating chromatin structure, in particular via deposition of specific post-translational histone modification marks and control of chromatin accessibility, as well as regulation of the three-dimensional nuclear organization of PRE and TRE. Here, we recapitulate the history of PcG and trxG gene discovery, we review the current evidence on their molecular function and, based on this evidence, we propose a revised classification of genes involved in PcG and trxG regulatory pathways.
Collapse
Affiliation(s)
- Charlotte Grimaud
- Institute of Human Genetics, CNRS, 141, rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | | | | |
Collapse
|
121
|
Abstract
The regulation of chromatin structure is of fundamental importance for many DNA-based processes in eukaryotes. Activation or repression of gene transcription or DNA replication depends on enzymes which can generate the appropriate chromatin environment. Several of these enzymes utilize the energy of ATP hydrolysis to alter nucleosome structure. In recent years our understanding of the multisubunit complexes within which they function, their mechanisms of action, their regulation and their in-vivo roles has increased. Much of what we have learned has been gleaned from studies in Drosophila melanogaster. Here we will review what we know about the main classes of ATP-dependent chromatin remodelers in Drosophila.
Collapse
Affiliation(s)
- Karim Bouazoune
- Massachusetts General Hospital, Department of Molecular Biology, Harvard Medical School, Department of Genetics, 185 Cambridge Street, Boston, MA 02114, USA
| | | |
Collapse
|
122
|
He X, Fan HY, Narlikar GJ, Kingston RE. Human ACF1 alters the remodeling strategy of SNF2h. J Biol Chem 2006; 281:28636-47. [PMID: 16877760 DOI: 10.1074/jbc.m603008200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human ACF chromatin-remodeling complex (hACF) contains the ATPase motor protein SNF2h and the non-catalytic hACF1 subunit. Here, we have compared the ability of SNF2h and a reconstituted hACF complex containing both SNF2h and hACF1 to remodel a series of nucleosomes containing different lengths of DNA overhang. Both SNF2h and hACF functioned in a manner consistent with sliding a canonical nucleosome. However, the non-catalytic subunit, hACF1, altered the remodeling properties of SNF2h by changing the nature of the requirement for a DNA overhang in the nucleosomal substrate and altering the DNA accessibility profile of the remodeled products. Surprisingly, addition of hACF1 to SNF2h increased the amount of DNA overhang needed to observe measurable amounts of DNA accessibility, but decreased the amount of overhang needed for a measurable binding interaction. We propose that these hACF1 functions might contribute to making the hACF complex more efficient at nucleosome spacing compared with SNF2h. In contrast, the SWI/SNF complex and its ATPase subunit BRG1 generated DNA accessibility profiles that were similar to each other, but different significantly from those of hACF and SNF2h. Thus, we observed divergent remodeling behaviors in these two remodeling families and found that the manner in which hACF1 alters the remodeling behavior of the ATPase is not shared by SWI/SNF subunits.
Collapse
Affiliation(s)
- Xi He
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
| | | | | | | |
Collapse
|
123
|
Whitehouse I, Tsukiyama T. Antagonistic forces that position nucleosomes in vivo. Nat Struct Mol Biol 2006; 13:633-40. [PMID: 16819518 DOI: 10.1038/nsmb1111] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 05/17/2006] [Indexed: 12/21/2022]
Abstract
ATP-dependent chromatin remodeling complexes are implicated in many areas of chromosome biology. However, the physiological role of many of these enzymes is still unclear. In budding yeast, the Isw2 complex slides nucleosomes along DNA. By analyzing the native chromatin structure of Isw2 targets, we have found that nucleosomes adopt default, DNA-directed positions when ISW2 is deleted. We provide evidence that Isw2 targets contain DNA sequences that are inhibitory to nucleosome formation and that these sequences facilitate the formation of nuclease-accessible open chromatin in the absence of Isw2. Our data show that the biological function of Isw2 is to position nucleosomes onto unfavorable DNA. These results reveal that antagonistic forces of Isw2 and the DNA sequence can control nucleosome positioning and genomic access in vivo.
Collapse
Affiliation(s)
- Iestyn Whitehouse
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
124
|
Abstract
The imitation switch (ISWI) family of chromatin remodelling ATPases is found in organisms ranging from yeast to mammals. ISWI ATPases assemble chromatin and slide and space nucleosomes, making the chromatin template fluid and allowing appropriate regulation of events such as transcription, DNA replication, recombination and repair. The site of action of the ATPases is determined, in part by the tissue type in which the enzyme is expressed and in part by the nature of the proteins associated with the enzyme. The ISWI complexes are generally conserved in composition and function across species. Roles in gene expression and DNA replication in heterochromatin, gene activation and repression in euchromatin, and functions related to maintaining chromosome architecture are associated with different complexes. Defects in ISWI-associated proteins may be associated with neurodegenerative disease, anencephaly, William's syndrome and melanotic tumours. Finally, the mechanism by which yeast Isw Ib influences gene transcription is discussed.
Collapse
Affiliation(s)
- J Mellor
- Department of Biochemistry, Oxford, UK.
| |
Collapse
|
125
|
Polo SE, Almouzni G. Chromatin assembly: a basic recipe with various flavours. Curr Opin Genet Dev 2006; 16:104-11. [PMID: 16504499 DOI: 10.1016/j.gde.2006.02.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 02/13/2006] [Indexed: 10/25/2022]
Abstract
Packaging of eukaryotic genomes into chromatin is a hierarchical mechanism, starting with histone deposition onto DNA to produce nucleosome arrays, which then further fold and ultimately form functional domains. Recent studies provide interesting insight into how nucleosome assembly is coordinated with histone and DNA metabolism and underline the combined contribution of histone chaperones and chromatin remodelers. How these factors operate at a molecular level is a matter of current investigation. New data highlight the importance of histone dimers as deposition entities for de novo nucleosome assembly and identify dedicated machineries involved in histone variant deposition.
Collapse
Affiliation(s)
- Sophie E Polo
- Laboratory of Nuclear Dynamics and Genome Plasticity, UMR 218 CNRS/Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 5, France
| | | |
Collapse
|
126
|
Neves-Costa A, Varga-Weisz P. The roles of chromatin remodelling factors in replication. Results Probl Cell Differ 2006; 41:91-107. [PMID: 16909892 DOI: 10.1007/400_007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dynamic changes of chromatin structure control DNA-dependent events, including DNA replication. Along with DNA, chromatin organization must be replicated to maintain genetic and epigenetic information through cell generations. Chromatin remodelling is important for several steps in replication: determination and activation of origins of replication, replication machinery progression, chromatin assembly and DNA repair. Histone chaperones such as the FACT complex assist DNA replication within chromatin, probably by facilitating both nucleosome disassembly and reassembly. ATP-dependent nucleosome remodelling enzymes of the SWI/SNF family, in particular imitation switch (ISWI)-containing complexes, have been linked to DNA and chromatin replication. They are targeted to replication sites to facilitate DNA replication and subsequent chromatin assembly.
Collapse
|
127
|
Qian C, Zhang Q, Li S, Zeng L, Walsh MJ, Zhou MM. Structure and chromosomal DNA binding of the SWIRM domain. Nat Struct Mol Biol 2005; 12:1078-85. [PMID: 16299514 DOI: 10.1038/nsmb1022] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 09/19/2005] [Indexed: 01/19/2023]
Abstract
The evolutionarily conserved Swi3p, Rsc8p and Moira (SWIRM) domain is found in many chromosomal proteins involved in chromatin modifications or remodeling. Here we report the three-dimensional solution structure of the SWIRM domain from the human transcriptional adaptor ADA2alpha. The structure reveals a five-helix bundle consisting of two helix-turn-helix motifs connected by a central long helix, reminiscent of the histone fold. Using structural and biochemical analyses, we showed that the SWIRM domains of human ADA2alpha and SMARC2 bind to double-stranded and nucleosomal DNA, and we identified amino acid residues required for this function. We demonstrated that the ADA2alpha SWIRM domain is colocalized with lysine-acetylated histone H3 in the cell nucleus and that it potentiates the ACF remodeling activity by enhancing accessibility of nucleosomal linker DNA bound to histone H1. These data suggest a functional role of the SWIRM domain in chromatin remodeling.
Collapse
Affiliation(s)
- Chengmin Qian
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, One Gustave L. Levy Place, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
128
|
Wallace JA, Orr-Weaver TL. Replication of heterochromatin: insights into mechanisms of epigenetic inheritance. Chromosoma 2005; 114:389-402. [PMID: 16220346 DOI: 10.1007/s00412-005-0024-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 08/13/2005] [Accepted: 08/15/2005] [Indexed: 12/20/2022]
Abstract
Heterochromatin is composed of tightly condensed chromatin in which the histones are deacetylated and methylated, and specific nonhistone proteins are bound. Additionally, in vertebrates and plants, the DNA within heterochromatin is methylated. As the heterochromatic state is stably inherited, replication of heterochromatin requires not only duplication of the DNA but also a reinstallment of the appropriate protein and DNA modifications. Thus replication of heterochromatin provides a framework for understanding mechanisms of epigenetic inheritance. In recent studies, roles have been identified for replication factors in reinstating heterochromatin, particularly functions for origin recognition complex, proliferating cell nuclear antigen, and chromatin-assembly factor 1 in recruiting the heterochromatin binding protein HP1, a histone methyltransferase, a DNA methyltransferase, and a chromatin remodeling complex. Potential mechanistic links between these factors are discussed. In some cells, replication of the heterochromatin is blocked, and in Drosophila this inhibition is mediated by a chromatin binding protein SuUR.
Collapse
|
129
|
Badenhorst P, Xiao H, Cherbas L, Kwon SY, Voas M, Rebay I, Cherbas P, Wu C. The Drosophila nucleosome remodeling factor NURF is required for Ecdysteroid signaling and metamorphosis. Genes Dev 2005; 19:2540-5. [PMID: 16264191 PMCID: PMC1276728 DOI: 10.1101/gad.1342605] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 08/26/2005] [Indexed: 01/29/2023]
Abstract
Drosophila NURF is an ISWI-containing ATP-dependent chromatin remodeling complex that regulates transcription by catalyzing nucleosome sliding. To determine in vivo gene targets of NURF, we performed whole genome expression analysis on mutants lacking the NURF-specific subunit NURF301. Strikingly, a large set of ecdysone-responsive targets is included among several hundred NURF-regulated genes. Null Nurf301 mutants do not undergo larval to pupal metamorphosis, and also enhance dominant-negative mutations in ecdysone receptor. Moreover, purified NURF binds EcR in an ecdysone-dependent manner, suggesting it is a direct effector of nuclear receptor activity. The conservation of NURF in mammals has broad implications for steroid signaling.
Collapse
Affiliation(s)
- Paul Badenhorst
- Laboratory of Molecular Cell Biology, National Cancer Institute, NIH, Bethesda, Maryland 20814, USA.
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
Advances in the past couple of years have brought important new knowledge on the mechanisms by which Polycomb-group proteins regulate gene expression and on the consequences of their actions. The discovery of histone methylation imprints specific for Polycomb and Trithorax complexes has provided mechanistic insight on how this ancient epigenetic memory system acts to repress and indicates that it may share mechanistic aspects with other silencing and genome-protective processes, such as RNA interference.
Collapse
Affiliation(s)
- Anders H Lund
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | | |
Collapse
|
131
|
Becker PB. The chromatin accessibility complex: chromatin dynamics through nucleosome sliding. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 69:281-7. [PMID: 16117660 DOI: 10.1101/sqb.2004.69.281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- P B Becker
- Adolf-Butenandt-Institut, Molekularbiologie, Ludwig-Maximilians-Universität, 80336 München, Germany
| |
Collapse
|
132
|
Varga-Weisz P. Chromatin remodeling factors and DNA replication. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:1-30. [PMID: 15881889 DOI: 10.1007/3-540-27310-7_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chromatin structures have to be precisely duplicated during DNA replication to maintain tissue-specific gene expression patterns and specialized domains, such as the centromeres. Chromatin remodeling factors are key components involved in this process and include histone chaperones, histone modifying enzymes and ATP-dependent chromatin remodeling complexes. Several of these factors interact directly with components of the replication machinery. Histone variants are also important to mark specific chromatin domains. Because chromatin remodeling factors render chromatin dynamic, they may also be involved in facilitating the DNA replication process through condensed chromatin domains.
Collapse
|
133
|
Gelbart ME, Bachman N, Delrow J, Boeke JD, Tsukiyama T. Genome-wide identification of Isw2 chromatin-remodeling targets by localization of a catalytically inactive mutant. Genes Dev 2005; 19:942-54. [PMID: 15833917 PMCID: PMC1080133 DOI: 10.1101/gad.1298905] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Isw2 ATP-dependent chromatin-remodeling activity is targeted to early meiotic and MATa-specific gene promoters in Saccharomyces cerevisiae. Unexpectedly, preferential cross-linking of wild-type Isw2p was not detected at these loci. Instead, the catalytically inactive Isw2p-K215R mutant is enriched at Isw2 targets, suggesting that Isw2p-K215R, but not wild-type Isw2p, is a sensitive chromatin immunoprecipitation (ChIP) reagent for marking sites of Isw2 activity in vivo. Genome-wide ChIP analyses confirmed this conclusion and identified tRNA genes (tDNAs) as a new class of Isw2 targets. Loss of Isw2p disrupted the periodic pattern of Ty1 integration upstream of tDNAs, but did not affect transcription of tDNAs or the associated Ty1 retrotransposons. In addition to identifying new Isw2 targets, our localization studies have important implications for the mechanism of Isw2 association with chromatin in vivo. Target-specific enrichment of Isw2p-K215R, not wild-type Isw2p, suggests that Isw2 is recruited transiently to remodel chromatin structure at these sites. In contrast, we found no evidence for Isw2 function at sites preferentially enriched by wild-type Isw2p, leading to our proposal that wild-type Isw2p cross-linking reveals a scanning mode of the complex as it surveys the genome for its targets.
Collapse
Affiliation(s)
- Marnie E Gelbart
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
134
|
Hernández-Muñoz I, Lund AH, van der Stoop P, Boutsma E, Muijrers I, Verhoeven E, Nusinow DA, Panning B, Marahrens Y, van Lohuizen M. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc Natl Acad Sci U S A 2005; 102:7635-40. [PMID: 15897469 PMCID: PMC1140410 DOI: 10.1073/pnas.0408918102] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
X inactivation involves the stable silencing of one of the two X chromosomes in XX female mammals. Initiation of this process occurs during early development and involves Xist (X-inactive-specific transcript) RNA coating and the recruitment of Polycomb repressive complex (PRC) 2 and PRC1 proteins. This recruitment results in an inactive state that is initially labile but is further locked in by epigenetic marks such as DNA methylation, histone hypoacetylation, and MACROH2A deposition. Here, we report that the E3 ubiquitin ligase consisting of SPOP and CULLIN3 is able to ubiquitinate the Polycomb group protein BMI1 and the variant histone MACROH2A. We find that in addition to MACROH2A, PRC1 is recruited to the inactivated X chromosome in somatic cells in a highly dynamic, cell cycle-regulated manner. Importantly, RNAi-mediated knock-down of CULLIN3 or SPOP results in loss of MACROH2A1 from the inactivated X chromosome (Xi), leading to reactivation of the Xi in the presence of inhibitors of DNA methylation and histone deacetylation. Likewise, Xi reactivation is also seen on MacroH2A1 RNAi under these conditions. Hence, we propose that the PRC1 complex is involved in the maintenance of X chromosome inactivation in somatic cells. We further demonstrate that MACROH2A1 deposition is regulated by the CULLIN3/SPOP ligase complex and is actively involved in stable X inactivation, likely through the formation of an additional layer of epigenetic silencing.
Collapse
|
135
|
Zhou J, Chau CM, Deng Z, Shiekhattar R, Spindler MP, Schepers A, Lieberman PM. Cell cycle regulation of chromatin at an origin of DNA replication. EMBO J 2005; 24:1406-17. [PMID: 15775975 PMCID: PMC1142536 DOI: 10.1038/sj.emboj.7600609] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 02/08/2005] [Indexed: 01/01/2023] Open
Abstract
Selection and licensing of mammalian DNA replication origins may be regulated by epigenetic changes in chromatin structure. The Epstein-Barr virus (EBV) origin of plasmid replication (OriP) uses the cellular licensing machinery to regulate replication during latent infection of human cells. We found that the minimal replicator sequence of OriP, referred to as the dyad symmetry (DS), is flanked by nucleosomes. These nucleosomes were subject to cell cycle-dependent chromatin remodeling and histone modifications. Restriction enzyme accessibility assay indicated that the DS-bounded nucleosomes were remodeled in late G1. Remarkably, histone H3 acetylation of DS-bounded nucleosomes decreased during late G1, coinciding with nucleosome remodeling and MCM3 loading, and preceding the onset of DNA replication. The ATP-dependent chromatin-remodeling factor SNF2h was also recruited to DS in late G1, and formed a stable complex with HDAC2 at DS. siRNA depletion of SNF2h reduced G1-specific nucleosome remodeling, histone deacetylation, and MCM3 loading at DS. We conclude that an SNF2h-HDAC1/2 complex coordinates G1-specific chromatin remodeling and histone deacetylation with the DNA replication initiation process at OriP.
Collapse
Affiliation(s)
- Jing Zhou
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Zhong Deng
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Mark-Peter Spindler
- Department of Gene Vectors, GSF-National Research Center for Environment and Health, Munich, Germany
| | - Aloys Schepers
- Department of Gene Vectors, GSF-National Research Center for Environment and Health, Munich, Germany
| | - Paul M Lieberman
- The Wistar Institute, Philadelphia, PA, USA
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA. Tel.: +1 215 898 9491; Fax: +1 215 898 0663; E-mail:
| |
Collapse
|
136
|
Abstract
The yeast SWI/SNF ATP-dependent chromatin remodeling complex was first identified and characterized over 10 years ago (F. Winston and M. Carlson. 1992. Trends Genet. 8: 387-391.) Since then, the number of distinct ATP-dependent chromatin remodeling complexes and the variety of roles they play in nuclear processes have become dizzying (J.A. Martens and F. Winston. 2003. Curr. Opin. Genet. Dev. 13: 136-142; A. Vacquero et al. 2003. Sci. Aging Knowledge Environ. 2003: RE4)--and that does not even include the companion suite of histone modifying enzymes, which exhibit a comparable diversity in both number of complexes and variety of functions (M.J. Carrozza et al. 2003. Trends Genet. 19: 321-329; W. Fischle et al. 2003. Curr. Opin. Cell Biol. 15: 172-183; M. Iizuka and M.M. Smith. 2003. Curr. Opin. Genet. Dev. 13: 1529-1539). This vast complexity is hardly surprising, given that all nuclear processes that involve DNA--transcription, replication, repair, recombination, sister chromatid cohesion, etc.--must all occur in the context of chromatin. The SWI/SNF-related ATP-dependent remodelers are divided into a number of subfamilies, all related by the SWI2/SNF2 ATPase at their catalytic core. In nearly every species where researchers have looked for them, one or more members of each subfamily have been identified. Even the budding yeast, with its comparatively small genome, contains eight different chromatin remodelers in five different subfamilies. This review will focus on just one subfamily, the Imitation Switch (ISWI) family, which is proving to be one of the most diverse groups of chromatin remodelers in both form and function.
Collapse
Affiliation(s)
- Sara S Dirscherl
- Dept. of Biological Sciences, University of Alaska Anchorage, 99508, USA
| | | |
Collapse
|
137
|
Harikrishnan KN, Chow MZ, Baker EK, Pal S, Bassal S, Brasacchio D, Wang L, Craig JM, Jones PL, Sif S, El-Osta A. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat Genet 2005; 37:254-64. [PMID: 15696166 DOI: 10.1038/ng1516] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 01/11/2005] [Indexed: 11/08/2022]
Abstract
Transcriptional repression of methylated genes can be mediated by the methyl-CpG binding protein MeCP2. Here we show that human Brahma (Brm), a catalytic component of the SWI/SNF-related chromatin-remodeling complex, associates with MeCP2 in vivo and is functionally linked with repression. We used a number of different molecular approaches and chromatin immunoprecipitation strategies to show a unique cooperation between Brm, BAF57 and MeCP2. We show that Brm and MeCP2 assembly on chromatin occurs on methylated genes in cancer and the gene FMR1 in fragile X syndrome. These experimental findings identify a new role for SWI/SNF in gene repression by MeCP2.
Collapse
Affiliation(s)
- K N Harikrishnan
- The Alfred Medical Research and Education Precinct, Baker Medical Research Institute, Epigenetics in Human Health and Disease Laboratory, Second Floor, Commercial Road, Prahran, Victoria 3181, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Lusser A, Urwin DL, Kadonaga JT. Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat Struct Mol Biol 2005; 12:160-6. [PMID: 15643425 DOI: 10.1038/nsmb884] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 11/22/2004] [Indexed: 11/09/2022]
Abstract
CHD1 is a chromodomain-containing protein in the SNF2-like family of ATPases. Here we show that CHD1 exists predominantly as a monomer and functions as an ATP-utilizing chromatin assembly factor. This reaction involves purified CHD1, NAP1 chaperone, core histones and relaxed DNA. CHD1 catalyzes the ATP-dependent transfer of histones from the NAP1 chaperone to the DNA by a processive mechanism that yields regularly spaced nucleosomes. The comparative analysis of CHD1 and ACF revealed that CHD1 assembles chromatin with a shorter nucleosome repeat length than ACF. In addition, ACF, but not CHD1, can assemble chromatin containing histone H1, which is involved in the formation of higher-order chromatin structure and transcriptional repression. These results suggest a role for CHD1 in the assembly of active chromatin and a function of ACF in the assembly of repressive chromatin.
Collapse
Affiliation(s)
- Alexandra Lusser
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0347, USA
| | | | | |
Collapse
|
139
|
Schwanbeck R, Xiao H, Wu C. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J Biol Chem 2004; 279:39933-41. [PMID: 15262970 DOI: 10.1074/jbc.m406060200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleosome remodeling factor NURF is a four-subunit, ISWI-containing chromatin remodeling complex that catalyzes nucleosome sliding in an ATP-dependent fashion, thereby modulating the accessibility of the DNA. To elucidate the mechanism of nucleosome sliding, we have investigated by hydroxyl radical footprinting how NURF makes initial contact with a nucleosome positioned at one end of a DNA fragment. NURF binds to two separate locations on the nucleosome: a continuous stretch of linker DNA up to the nucleosome entry site and a region asymmetrically surrounding the nucleosome dyad within the minor grooves, close to residues of the histone H4 tail that have been implicated in the activation of ISWI activity. Kinetic analysis reveals that nucleosome sliding occurs in apparent increments or steps of 10 bp. Furthermore, single nucleoside gaps as well as nicks about two helical turns before the dyad interfere with sliding, indicating that structural stress at this region assists the relative movement of DNA. These findings support a sliding model in which the position-specific tethering of NURF forces a translocating ISWI ATPase to pump a DNA distortion over the histone octamer, thereby changing the translational position of the nucleosome.
Collapse
Affiliation(s)
- Ralf Schwanbeck
- Laboratory of Molecular Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | |
Collapse
|