101
|
Lwin AK, Bertolini E, Pè ME, Zuccolo A. Genomic skimming for identification of medium/highly abundant transposable elements in Arundo donax and Arundo plinii. Mol Genet Genomics 2016; 292:157-171. [PMID: 27778102 DOI: 10.1007/s00438-016-1263-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/17/2016] [Indexed: 11/29/2022]
Abstract
Transposable elements (TEs) are the most abundant genetic material for almost all eukaryotic genomes. Their effects on the host genomes range from an extensive size variation to the regulation of gene expression, altering gene function and creating new genes. Because of TEs pivotal contribute to the host genome structure and regulation, their identification and characterization provide a wealth of useful data for gaining an in-depth understanding of host genome functioning. The giant reed (Arundo donax) is a perennial rhizomatous C3 grass, octadecaploid, with an estimated nuclear genome size of 2744 Mbp. It is a promising feedstock for second-generation biofuels and biomethane production. To identify and characterize the most repetitive TEs in the genomes of A. donax and its ancestral A. plinii species, we carried out low-coverage whole genome shotgun sequencing for both species. Using a de novo repeat identification approach, 33,041 and 28,237 non-redundant repetitive sequences were identified and characterized in A. donax and A. plinii genomes, representing 37.55 and 31.68% of each genome, respectively. Comparative phylogenetic analyses, including the major TE classes identified in A. donax and A. plinii, together with rice and maize TE paralogs, were carried out to understand the evolutionary relationship of the most abundant TE classes. Highly conserved copies of RIRE1-like Ty1-Copia elements were discovered in two Arundo spp. in which they represented nearly 3% of each genomic sequence. We identified and characterized the medium/highly repetitive TEs in two unexplored polyploid genomes, thus generating useful information for the study of the genomic structure, composition, and functioning of these two non-model species. We provided a valuable resource that could be exploited in any effort aimed at sequencing and assembling these two genomes.
Collapse
Affiliation(s)
- Aung Kyaw Lwin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127, Pisa, Italy.,Sugarcane Research and Seed Farm, Pyinmana, Nay Pyi Taw, Myanmar
| | - Edoardo Bertolini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127, Pisa, Italy
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127, Pisa, Italy
| | - Andrea Zuccolo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127, Pisa, Italy.
| |
Collapse
|
102
|
Negi P, Rai AN, Suprasanna P. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:1448. [PMID: 27777577 PMCID: PMC5056178 DOI: 10.3389/fpls.2016.01448] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/12/2016] [Indexed: 05/02/2023]
Abstract
The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original 'Controlling Element' hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as "distributed genomic control modules." According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement.
Collapse
Affiliation(s)
| | | | - Penna Suprasanna
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research CentreTrombay, India
| |
Collapse
|
103
|
Wang X, Liu X. Close ecological relationship among species facilitated horizontal transfer of retrotransposons. BMC Evol Biol 2016; 16:201. [PMID: 27717306 PMCID: PMC5055719 DOI: 10.1186/s12862-016-0767-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/27/2016] [Indexed: 01/01/2023] Open
Abstract
Background Horizontal transfer (HT) of genetic materials is increasingly being found in both animals and plants and mainly concerns transposable elements (TEs). Many crustaceans have big genome sizes and are thus likely to harbor high TE contents. Their habitat might offer them ample opportunities to exchange genetic materials with organisms that are ecologically close but taxonomically distant to them. Results In this study, we analyzed the transcriptome of Pacific white shrimp (Litopenaeus vannamei), an important economic crustacean, to explore traces of HT events. From a collection of newly assembled transcripts, we identified 395 high reliable TE transcripts, most of which were retrotransposon transcripts. One hundred fifty-seven of those transcripts showed highest similarity to sequences from non-arthropod organisms, including ray-finned fishes, mollusks and putative parasites. In total, 16 already known L. vannamei TE families are likely to be involved in horizontal transfer events. Phylogenetic analyses of 10 L. vannamei TE families and their homologues (protein sequences) revealed that L. vannamei TE families were generally more close to sequences from aquatic species. Furthermore, TEs from other aquatic species also tend to group together, although they are often distantly related in taxonomy. Sequences from parasites and microorganisms were also widely present, indicating their possible important roles in HT events. Expression profile analyses of transcripts in two NCBI BioProjects revealed that transcripts involved in HT events are likely to play important roles in antiviral immunity. More specifically, those transcripts might act as inhibitors of antiviral immunity. Conclusions Close ecological relationship, especially predation, might greatly facilitate HT events among aquatic species. This could be achieved through exchange of parasites and microorganisms, or through direct DNA flow. The occurrence of HT events may be largely incidental, but the effects could be beneficial for recipients. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0767-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianzong Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xiaolin Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
104
|
Sun T, Renner SS, Xu Y, Qin Y, Wu J, Sun G. Two hAT transposon genes were transferred from Brassicaceae to broomrapes and are actively expressed in some recipients. Sci Rep 2016; 6:30192. [PMID: 27452947 PMCID: PMC4958966 DOI: 10.1038/srep30192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/30/2016] [Indexed: 11/23/2022] Open
Abstract
A growing body of evidence is pointing to an important role of horizontal gene transfer (HGT) in the evolution of higher plants. However, reports of HGTs of transposable elements (TEs) in plants are still scarce, and only one case is known of a class II transposon horizontally transferred between grasses. To investigate possible TE transfers in dicots, we performed transcriptome screening in the obligate root parasite Phelipanche aegyptiaca (Orobanchaceae), data-mining in the draft genome assemblies of four other Orobanchaceae, gene cloning, gene annotation in species with genomic information, and a molecular phylogenetic analysis. We discovered that the broomrape genera Phelipanche and Orobanche acquired two related nuclear genes (christened BO transposase genes), a new group of the hAT superfamily of class II transposons, from Asian Sisymbrieae or a closely related tribe of Brassicaceae, by HGT. The collinearity of the flanking genes, lack of a classic border structure, and low expression levels suggest that BO transposase genes cannot transpose in Brassicaceae, whereas they are highly expressed in P. aegyptiaca.
Collapse
Affiliation(s)
- Ting Sun
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475004, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Susanne S. Renner
- Systematic Botany and Mycology, University of Munich (LMU), Munich 80638, Germany
| | - Yuxing Xu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yan Qin
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jianqiang Wu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guiling Sun
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475004, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
105
|
Fawcett JA, Innan H. High Similarity between Distantly Related Species of a Plant SINE Family Is Consistent with a Scenario of Vertical Transmission without Horizontal Transfers. Mol Biol Evol 2016; 33:2593-604. [PMID: 27436006 DOI: 10.1093/molbev/msw130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Many transposable element (TE) families show surprisingly high levels of similarity between distantly related species. This high similarity, coupled with a "patchy" phylogenetic distribution, has often been attributed to frequent horizontal transfers of TEs between species, even though the mechanistic basis tends to be speculative. Here, we studied the evolution of the Au SINE (Short INterspersed Element) family, in which high similarity between distantly related plant species has been reported. We were able to identify several copies present in orthologous regions of various species, including species that diverged ∼90 Ma, thereby confirming the presence of Au SINE at multiple evolutionary time points. We also found that the Au SINE has been degenerating and is en route to disappearing in many species, indicating that the loss of Au SINE is common. Our results suggest that the evolution of the Au SINE can be readily explained by a scenario of vertical transmission without having to invoke hypothetical scenarios of rampant horizontal transfers. The Au SINE was likely present in the common ancestor of all angiosperms and was retained in some lineages while lost from others. The high level of conservation is probably because the sequences were important for ensuring their transpositional activity. This model of TE evolution should provide a basic framework for understanding the evolution of TEs in general.
Collapse
Affiliation(s)
- Jeffrey A Fawcett
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Hideki Innan
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| |
Collapse
|
106
|
Horizontal transfers of transposable elements in eukaryotes: The flying genes. C R Biol 2016; 339:296-9. [PMID: 27234293 DOI: 10.1016/j.crvi.2016.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 04/14/2016] [Indexed: 12/31/2022]
Abstract
Transposable elements (TEs) are the major components of eukaryotic genomes. Their propensity to densely populate and in some cases invade the genomes of plants and animals is in contradiction with the fact that transposition is strictly controlled by several molecular pathways acting at either transcriptional or post-transcriptional levels. Horizontal transfers, defined as the transmission of genetic material between sexually isolated species, have long been considered as rare phenomena. Here, we show that the horizontal transfers of transposable elements (HTTs) are very frequent in ecosystems. The exact mechanisms of such transfers are not well understood, but species involved in close biotic interactions, like parasitism, show a propensity to exchange genetic material horizontally. We propose that HTTs allow TEs to escape the silencing machinery of their host genome and may therefore be an important mechanism for their survival and their dissemination in eukaryotes.
Collapse
|
107
|
Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making. SUSTAINABILITY 2016. [DOI: 10.3390/su8050495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
108
|
Lin X, Faridi N, Casola C. An Ancient Transkingdom Horizontal Transfer of Penelope-Like Retroelements from Arthropods to Conifers. Genome Biol Evol 2016; 8:1252-66. [PMID: 27190138 PMCID: PMC4860704 DOI: 10.1093/gbe/evw076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants.
Collapse
Affiliation(s)
- Xuan Lin
- Department of Ecosystem Science and Management, Texas A&M University
| | - Nurul Faridi
- Department of Ecosystem Science and Management, Texas A&M University Southern Institute of Forest Genetics, USDA Forest Service Southern Research Station, Saucier, Mississippi
| | - Claudio Casola
- Department of Ecosystem Science and Management, Texas A&M University
| |
Collapse
|
109
|
Yoshida S, Cui S, Ichihashi Y, Shirasu K. The Haustorium, a Specialized Invasive Organ in Parasitic Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:643-67. [PMID: 27128469 DOI: 10.1146/annurev-arplant-043015-111702] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Parasitic plants thrive by infecting other plants. Flowering plants evolved parasitism independently at least 12 times, in all cases developing a unique multicellular organ called the haustorium that forms upon detection of haustorium-inducing factors derived from the host plant. This organ penetrates into the host stem or root and connects to its vasculature, allowing exchange of materials such as water, nutrients, proteins, nucleotides, pathogens, and retrotransposons between the host and the parasite. In this review, we focus on the formation and function of the haustorium in parasitic plants, with a specific emphasis on recent advances in molecular studies of root parasites in the Orobanchaceae and stem parasites in the Convolvulaceae.
Collapse
Affiliation(s)
- Satoko Yoshida
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; , , ,
| | - Songkui Cui
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; , , ,
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; , , ,
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; , , ,
| |
Collapse
|
110
|
Parrish NF, Tomonaga K. Endogenized viral sequences in mammals. Curr Opin Microbiol 2016; 31:176-183. [PMID: 27128186 DOI: 10.1016/j.mib.2016.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 12/13/2022]
Abstract
Reverse-transcribed RNA molecules compose a significant portion of the human genome. Many of these RNA molecules were retrovirus genomes either infecting germline cells or having done so in a previous generation but retaining transcriptional activity. This mechanism itself accounts for a quarter of the genomic sequence information of mammals for which there is data. We understand relatively little about the causes and consequences of retroviral endogenization. This review highlights functions ascribed to sequences of viral origin endogenized into mammalian genomes and suggests some of the most pressing questions raised by these observations.
Collapse
Affiliation(s)
- Nicholas F Parrish
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| | - Keizo Tomonaga
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
111
|
Bousios A, Gaut BS. Mechanistic and evolutionary questions about epigenetic conflicts between transposable elements and their plant hosts. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:123-33. [PMID: 26950253 DOI: 10.1016/j.pbi.2016.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 05/02/2023]
Abstract
Transposable elements (TEs) constitute the majority of plant genomes, but most are epigenetically inactivated by their host. Research over the last decade has elucidated many of the molecular components that are required for TE silencing. In contrast, the evolutionary dynamics between TEs and silencing pathways are less clear. Here, we discuss current information about these dynamics from both mechanistic and evolutionary perspectives. We highlight new evidence that palindromic sequences within TEs may act as signals for host recognition and that cis-regulatory regions of TEs may be sites of ongoing arms races with host defenses. We also discuss patterns of TE aging after they are silenced; while there is not yet a consensus, it appears that TEs are removed more rapidly near genes, such that older TE insertions tend to be farther from genes. We conclude by discussing the energetic costs for maintaining silencing pathways, which appear to be substantive. The maintenance of silencing pathways across many species suggests that epigenetic emergencies are frequent.
Collapse
Affiliation(s)
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
112
|
Abstract
The Mutator system of transposable elements (TEs) is a highly mutagenic family of transposons in maize. Because they transpose at high rates and target genic regions, these transposons can rapidly generate large numbers of new mutants, which has made the Mutator system a favored tool for both forward and reverse mutagenesis in maize. Low copy number versions of this system have also proved to be excellent models for understanding the regulation and behavior of Class II transposons in plants. Notably, the availability of a naturally occurring locus that can heritably silence autonomous Mutator elements has provided insights into the means by which otherwise active transposons are recognized and silenced. This chapter will provide a review of the biology, regulation, evolution and uses of this remarkable transposon system, with an emphasis on recent developments in our understanding of the ways in which this TE system is recognized and epigenetically silenced as well as recent evidence that Mu-like elements (MULEs) have had a significant impact on the evolution of plant genomes.
Collapse
|
113
|
Springer NM, Lisch D, Li Q. Creating Order from Chaos: Epigenome Dynamics in Plants with Complex Genomes. THE PLANT CELL 2016; 28:314-25. [PMID: 26869701 PMCID: PMC4790878 DOI: 10.1105/tpc.15.00911] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/10/2016] [Indexed: 05/02/2023]
Abstract
Flowering plants have strikingly distinct genomes, although they contain a similar suite of expressed genes. The diversity of genome structures and organization is largely due to variation in transposable elements (TEs) and whole-genome duplication (WGD) events. We review evidence that chromatin modifications and epigenetic regulation are intimately associated with TEs and likely play a role in mediating the effects of WGDs. We hypothesize that the current structure of a genome is the result of various TE bursts and WGDs and it is likely that the silencing mechanisms and the chromatin structure of a genome have been shaped by these events. This suggests that the specific mechanisms targeting chromatin modifications and epigenomic patterns may vary among different species. Many crop species have likely evolved chromatin-based mechanisms to tolerate silenced TEs near actively expressed genes. These interactions of heterochromatin and euchromatin are likely to have important roles in modulating gene expression and variability within species.
Collapse
Affiliation(s)
- Nathan M Springer
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota 55108
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Qing Li
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota 55108
| |
Collapse
|
114
|
Gebre YG, Bertolini E, Pè ME, Zuccolo A. Identification and characterization of abundant repetitive sequences in Eragrostis tef cv. Enatite genome. BMC PLANT BIOLOGY 2016; 16:39. [PMID: 26833063 PMCID: PMC4736629 DOI: 10.1186/s12870-016-0725-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Eragrostis tef is an allotetraploid (2n = 4 × = 40) annual, C4 grass with an estimated nuclear genome size of 730 Mbp. It is widely grown in Ethiopia, where it provides basic nutrition for more than half of the population. Although a draft assembly of the E. tef genome was made available in 2014, characterization of the repetitive portion of the E. tef genome has not been a subject of a detailed analysis. Repetitive sequences constitute most of the DNA in eukaryotic genomes. Transposable elements are usually the most abundant repetitive component in plant genomes. They contribute to genome size variation, cause mutations, can result in chromosomal rearrangements, and influence gene regulation. An extensive and in depth characterization of the repetitive component is essential in understanding the evolution and function of the genome. RESULTS Using new paired-end sequence data and a de novo repeat identification strategy, we identified the most repetitive elements in the E. tef genome. Putative repeat sequences were annotated based on similarity to known repeat groups in other grasses. Altogether we identified 1,389 medium/highly repetitive sequences that collectively represent about 27% of the teff genome. Phylogenetic analyses of the most important classes of TEs were carried out in a comparative framework including paralog elements from rice and maize. Finally, an abundant tandem repeat accounting for more than 4% of the whole genome was identified and partially characterized. CONCLUSIONS Analyzing a large sample of randomly sheared reads we obtained a library of the repetitive sequences of E. tef. The approach we used was designed to avoid underestimation of repeat contribution; such underestimation is characteristic of whole genome assembly projects. The data collected represent a valuable resource for further analysis of the genome of this important orphan crop.
Collapse
Affiliation(s)
- Yohannes Gedamu Gebre
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33-56127, Pisa, Italy.
- Department of Dryland Crop and Horticultural Sciences, College of Dryland Agriculture and Natural Resources, Mekelle University, P.O.Box 231, Mekelle, Ethiopia.
| | - Edoardo Bertolini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33-56127, Pisa, Italy.
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33-56127, Pisa, Italy.
| | - Andrea Zuccolo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33-56127, Pisa, Italy.
| |
Collapse
|
115
|
Hsu YC, Wang CS, Lin YR, Wu YP. Structural Diversity of a Novel LTR Retrotransposon, RTPOSON, in the Genus Oryza. Evol Bioinform Online 2016; 12:29-40. [PMID: 26819544 PMCID: PMC4718150 DOI: 10.4137/ebo.s35158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/08/2015] [Accepted: 11/16/2015] [Indexed: 11/16/2022] Open
Abstract
Retrotransposons with long terminal repeats (LTRs) are the most abundant transposable elements in plant genomes. A novel LTR retrotransposon named RTPOSON primarily occurs in the genus Oryza and in several species of the Poaceae family. RTPOSON has been identified in the Ty1-copia group of retrotransposons because two of its open reading frames encode an uncharacterized protein and UBN2_2 and zinc knuckle, respectively. More than 700 RTPOSONs were identified in Oryza genomes; 127 RTPOSONs with LTRs and gag-pol elements were classified into three subgroups. The subgroup RTPOSON_sub3 had the smallest DNA size and 97% (32/33) of RTPOSON elements from Oryza punctata are classified in this group. The insertion time of these RTPOSONs varied and their proliferation occurred within the last 8 Mya, with two bursting periods within the last 1.5–5.0 Mya. A total of 37 different orthologous insertions of RTPOSONs, with different nested transposable elements and gene fragments, were identified by comparing the genomes of ssp. japonica cv. Nipponbare and ssp. indica cv. 93–11. A part of intact RTPOSON elements was evolved independently after the divergence of indica and japonica. In addition, intact RTPOSONs and homologous fragments were preferentially retained or integrated in genic regions. This novel LTR retrotransposon, RTPOSON, might have an impact on genome evolution, genic innovation, and genetic variation.
Collapse
Affiliation(s)
- Yu-Chia Hsu
- Department of Agronomy, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, Chiayi, Taiwan
| | - Chang-Sheng Wang
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Yann-Rong Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yong-Pei Wu
- Department of Agronomy, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, Chiayi, Taiwan
| |
Collapse
|
116
|
Roffler S, Menardo F, Wicker T. The making of a genomic parasite - the Mothra family sheds light on the evolution of Helitrons in plants. Mob DNA 2015; 6:23. [PMID: 26688693 PMCID: PMC4683698 DOI: 10.1186/s13100-015-0054-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/04/2015] [Indexed: 11/29/2022] Open
Abstract
Background Helitrons are Class II transposons which are highly abundant in almost all eukaryotes. However, most Helitrons lack protein coding sequence. These non-autonomous elements are thought to hijack recombinase/helicase (RepHel) and possibly further enzymes from related, autonomous elements. Interestingly, many plant Helitrons contain an additional gene encoding a single-strand binding protein homologous to Replication Factor A (RPA), a highly conserved, single-copy gene found in all eukaryotes. Results Here, we describe the analysis of DHH_Mothra, a high-copy non-autonomous Helitron in the genome of rice (Oryza sativa). Mothra has a low GC-content and consists of two distinct blocs of tandem repeats. Based on homology between their termini, we identified a putative mother element which encodes an RPA-like protein but has no RepHel gene. Additionally, we found a putative autonomous sister-family with strong homology to the Mothra mother element in the RPA protein and terminal sequences, which we propose provides the RepHel domain for the Mothra family. Furthermore, we phylogenetically analyzed the evolutionary history of RPA-like proteins. Interestingly, plant Helitron RPAs (PHRPAs) are only found in monocotyledonous and dicotyledonous plants and they form a monophyletic group which branched off before the eukaryotic “core” RPAs. Conclusions Our data show how erosion of autonomous Helitrons can lead to different “levels” of autonomy within Helitron families and can create highly successful subfamilies of non-autonomous elements. Most importantly, our phylogenetic analysis showed that the PHRPA gene was most likely acquired via horizontal gene transfer from an unknown eukaryotic donor at least 145–300 million years ago in the common ancestor of monocotyledonous and dicotyledonous plants. This might have led to the evolution of a separate branch of the Helitron superfamily in plants. Electronic supplementary material The online version of this article (doi:10.1186/s13100-015-0054-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Roffler
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, Zürich, CH-8008 Switzerland
| | - Fabrizio Menardo
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, Zürich, CH-8008 Switzerland
| | - Thomas Wicker
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, Zürich, CH-8008 Switzerland
| |
Collapse
|
117
|
Zhao D, Ferguson AA, Jiang N. What makes up plant genomes: The vanishing line between transposable elements and genes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:366-80. [PMID: 26709091 DOI: 10.1016/j.bbagrm.2015.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023]
Abstract
The ultimate source of evolution is mutation. As the largest component in plant genomes, transposable elements (TEs) create numerous types of mutations that cannot be mimicked by other genetic mechanisms. When TEs insert into genomic sequences, they influence the expression of nearby genes as well as genes unlinked to the insertion. TEs can duplicate, mobilize, and recombine normal genes or gene fragments, with the potential to generate new genes or modify the structure of existing genes. TEs also donate their transposase coding regions for cellular functions in a process called TE domestication. Despite the host defense against TE activity, a subset of TEs survived and thrived through discreet selection of transposition activity, target site, element size, and the internal sequence. Finally, TEs have established strategies to reduce the efficacy of host defense system by increasing the cost of silencing TEs. This review discusses the recent progress in the area of plant TEs with a focus on the interaction between TEs and genes.
Collapse
Affiliation(s)
- Dongyan Zhao
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA
| | - Ann A Ferguson
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA
| | - Ning Jiang
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA.
| |
Collapse
|
118
|
Epigenetic changes in the developing brain: Effects on behavior. Proc Natl Acad Sci U S A 2015; 112:6789-95. [PMID: 26034282 DOI: 10.1073/pnas.1501482112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
119
|
Fultz D, Choudury SG, Slotkin RK. Silencing of active transposable elements in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:67-76. [PMID: 26164237 DOI: 10.1016/j.pbi.2015.05.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 05/04/2023]
Abstract
In plant genomes the vast majority of transposable elements (TEs) are found in a transcriptionally silenced state that is epigenetically propagated from generation to generation. Although the mechanism of this maintenance of silencing has been well studied, it is now clear that the pathways responsible for maintaining TEs in a silenced state differ from the pathways responsible for initially targeting the TE for silencing. Recently, attention in this field has focused on investigating the molecular mechanisms that initiate and establish TE silencing. Here we review the current models of how TEs are triggered for silencing, the data supporting each model, and the key future questions in this fast moving field.
Collapse
Affiliation(s)
- Dalen Fultz
- Department of Molecular Genetics, The Ohio State University, United States
| | - Sarah G Choudury
- Department of Molecular Genetics, The Ohio State University, United States
| | - R Keith Slotkin
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States.
| |
Collapse
|
120
|
Markova DN, Mason-Gamer RJ. The Role of Vertical and Horizontal Transfer in the Evolutionary Dynamics of PIF-Like Transposable Elements in Triticeae. PLoS One 2015; 10:e0137648. [PMID: 26355747 PMCID: PMC4565680 DOI: 10.1371/journal.pone.0137648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/20/2015] [Indexed: 11/19/2022] Open
Abstract
PIF-like transposable elements are members of the PIF/Harbinger superfamily of DNA transposons found in the genomes of many plants, animals, and fungi. The evolution of the gene that encodes the transposase responsible for mobilizing PIF-like elements has been studied in both plants and animals, but the elements' history in flowering plants remains poorly known. In this work, we describe the phylogenetic distribution and evolution of PIF-like elements in the genomes of 21 diploid species from the wheat tribe, Triticeae, and we present the first convincing evidence of horizontal transfer of PIF elements in plant genomes. A phylogenetic analysis of 240 PIF sequences based on the conserved region of the transposase domain revealed at least four main transposase lineages. Their complex evolutionary history can be best explained by a combination of vertical transmission with differential evolutionary success among lineages, and occasional horizontal transfer between phylogenetically distant Triticeae genera. In addition, we identified 127 potentially functional transposase sequences indicating possible recent activity of PIF.
Collapse
Affiliation(s)
- Dragomira N. Markova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Roberta J. Mason-Gamer
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
121
|
Dias ES, Hatt C, Hamon S, Hamon P, Rigoreau M, Crouzillat D, Carareto CMA, de Kochko A, Guyot R. Large distribution and high sequence identity of a Copia-type retrotransposon in angiosperm families. PLANT MOLECULAR BIOLOGY 2015; 89:83-97. [PMID: 26245353 DOI: 10.1007/s11103-015-0352-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/28/2015] [Indexed: 06/04/2023]
Abstract
Retrotransposons are the main component of plant genomes. Recent studies have revealed the complexity of their evolutionary dynamics. Here, we have identified Copia25 in Coffea canephora, a new plant retrotransposon belonging to the Ty1-Copia superfamily. In the Coffea genomes analyzed, Copia25 is present in relatively low copy numbers and transcribed. Similarity sequence searches and PCR analyses show that this retrotransposon with LTRs (Long Terminal Repeats) is widely distributed among the Rubiaceae family and that it is also present in other distantly related species belonging to Asterids, Rosids and monocots. A particular situation is the high sequence identity found between the Copia25 sequences of Musa, a monocot, and Ixora, a dicot species (Rubiaceae). Our results reveal the complexity of the evolutionary dynamics of the ancient element Copia25 in angiosperm, involving several processes including sequence conservation, rapid turnover, stochastic losses and horizontal transfer.
Collapse
Affiliation(s)
- Elaine Silva Dias
- IRD UMR DIADE, EVODYN, BP 64501, 34394, Montpellier Cedex 5, France.
- Department of Biology, UNESP-Univ. Estadual Paulista, São José do Rio Preto, Araraquara, SP, Brazil.
| | - Clémence Hatt
- IRD UMR DIADE, EVODYN, BP 64501, 34394, Montpellier Cedex 5, France.
| | - Serge Hamon
- IRD UMR DIADE, EVODYN, BP 64501, 34394, Montpellier Cedex 5, France.
| | - Perla Hamon
- IRD UMR DIADE, EVODYN, BP 64501, 34394, Montpellier Cedex 5, France.
| | - Michel Rigoreau
- Nestlé R&D Tours, 101 AV. G. Eiffel, Notre Dame d'Oé, BP 49716, 37097, Tours, Cedex 2, France.
| | - Dominique Crouzillat
- Nestlé R&D Tours, 101 AV. G. Eiffel, Notre Dame d'Oé, BP 49716, 37097, Tours, Cedex 2, France.
| | | | | | - Romain Guyot
- Institut de Recherche pour le Développement (IRD), UMR IPME, BP 64501, 34394, Montpellier Cedex 5, France.
| |
Collapse
|
122
|
Tran TD, Cao HX, Jovtchev G, Novák P, Vu GTH, Macas J, Schubert I, Fuchs J. Chromatin organization and cytological features of carnivorous Genlisea species with large genome size differences. FRONTIERS IN PLANT SCIENCE 2015; 6:613. [PMID: 26347752 PMCID: PMC4542322 DOI: 10.3389/fpls.2015.00613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/24/2015] [Indexed: 05/07/2023]
Abstract
The monophyletic carnivorous genus Genlisea (Lentibulariaceae) is characterized by a bi-directional genome size evolution resulting in a 25-fold difference in nuclear DNA content. This is one of the largest ranges found within a genus so far and makes Genlisea an interesting subject to study mechanisms of genome and karyotype evolution. Genlisea nigrocaulis, with 86 Mbp one of the smallest plant genomes, and the 18-fold larger genome of G. hispidula (1,550 Mbp) possess identical chromosome numbers (2n = 40) but differ considerably in chromatin organization, nuclear and cell size. Interphase nuclei of G. nigrocaulis and of related species with small genomes, G. aurea (133 Mbp, 2n ≈ 104) and G. pygmaea (179 Mbp, 2n = 80), are hallmarked by intensely DAPI-stained chromocenters, carrying typical heterochromatin-associated methylation marks (5-methylcytosine, H3K9me2), while in G. hispidula and surprisingly also in the small genome of G. margaretae (184 Mbp, 2n = 38) the heterochromatin marks are more evenly distributed. Probes of tandem repetitive sequences together with rDNA allow the unequivocal discrimination of 13 out of 20 chromosome pairs of G. hispidula. One of the repetitive sequences labeled half of the chromosome set almost homogenously supporting an allopolyploid status of G. hispidula and its close relative G. subglabra (1,622 Mbp, 2n = 40). In G. nigrocaulis 11 chromosome pairs could be individualized using a combination of rDNA and unique genomic probes. The presented data provide a basis for future studies of karyotype evolution within the genus Genlisea.
Collapse
Affiliation(s)
- Trung D. Tran
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Hieu X. Cao
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Gabriele Jovtchev
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Petr Novák
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of SciencesČeské Budějovice, Czech Republic
| | - Giang T. H. Vu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Jiří Macas
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of SciencesČeské Budějovice, Czech Republic
| | - Ingo Schubert
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
- Central European Institute of Technology and Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Joerg Fuchs
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| |
Collapse
|
123
|
Encapsidation of Host RNAs by Cucumber Necrosis Virus Coat Protein during both Agroinfiltration and Infection. J Virol 2015; 89:10748-61. [PMID: 26269190 DOI: 10.1128/jvi.01466-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Next-generation sequence analysis of virus-like particles (VLPs) produced during agroinfiltration of cucumber necrosis virus (CNV) coat protein (CP) and of authentic CNV virions was conducted to assess if host RNAs can be encapsidated by CNV CP. VLPs containing host RNAs were found to be produced during agroinfiltration, accumulating to approximately 1/60 the level that CNV virions accumulated during infection. VLPs contained a variety of host RNA species, including the major rRNAs as well as cytoplasmic, chloroplast, and mitochondrial mRNAs. The most predominant host RNA species encapsidated in VLPs were chloroplast encoded, consistent with the efficient targeting of CNV CP to chloroplasts during agroinfiltration. Interestingly, droplet digital PCR analysis showed that the CNV CP mRNA expressed during agroinfiltration was the most efficiently encapsidated mRNA, suggesting that the CNV CP open reading frame may contain a high-affinity site or sites for CP binding and thus contribute to the specificity of CNV RNA encapsidation. Approximately 0.09% to 0.7% of the RNA derived from authentic CNV virions contained host RNA, with chloroplast RNA again being the most prominent species. This is consistent with our previous finding that a small proportion of CNV CP enters chloroplasts during the infection process and highlights the possibility that chloroplast targeting is a significant aspect of CNV infection. Remarkably, 6 to 8 of the top 10 most efficiently encapsidated nucleus-encoded RNAs in CNV virions correspond to retrotransposon or retrotransposon-like RNA sequences. Thus, CNV could potentially serve as a vehicle for horizontal transmission of retrotransposons to new hosts and thereby significantly influence genome evolution. IMPORTANCE Viruses predominantly encapsidate their own virus-related RNA species due to the possession of specific sequences and/or structures on viral RNA which serve as high-affinity binding sites for the coat protein. In this study, we show, using next-generation sequence analysis, that CNV also encapsidates host RNA species, which account for ∼0.1% of the RNA packaged in CNV particles. The encapsidated host RNAs predominantly include chloroplast RNAs, reinforcing previous observations that CNV CP enters chloroplasts during infection. Remarkably, the most abundantly encapsidated cytoplasmic mRNAs consisted of retrotransposon-like RNA sequences, similar to findings recently reported for flock house virus (A. Routh, T. Domitrovic, and J. E. Johnson, Proc Natl Acad Sci U S A 109:1907-1912, 2012). Encapsidation of retrotransposon sequences may contribute to their horizontal transmission should CNV virions carrying retrotransposons infect a new host. Such an event could lead to large-scale genomic changes in a naive plant host, thus facilitating host evolutionary novelty.
Collapse
|
124
|
Davis CC, Xi Z. Horizontal gene transfer in parasitic plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:14-19. [PMID: 26051213 DOI: 10.1016/j.pbi.2015.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
Horizontal gene transfer (HGT) between species has been a major focus of plant evolutionary research during the past decade. Parasitic plants, which establish a direct connection with their hosts, have provided excellent examples of how these transfers are facilitated via the intimacy of this symbiosis. In particular, phylogenetic studies from diverse clades indicate that parasitic plants represent a rich system for studying this phenomenon. Here, HGT has been shown to be astonishingly high in the mitochondrial genome, and appreciable in the nuclear genome. Although explicit tests remain to be performed, some transgenes have been hypothesized to be functional in their recipient species, thus providing a new perspective on the evolution of novelty in parasitic plants.
Collapse
Affiliation(s)
- Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA.
| | - Zhenxiang Xi
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
125
|
El Baidouri M, Kim KD, Abernathy B, Arikit S, Maumus F, Panaud O, Meyers BC, Jackson SA. A new approach for annotation of transposable elements using small RNA mapping. Nucleic Acids Res 2015; 43:e84. [PMID: 25813049 PMCID: PMC4513842 DOI: 10.1093/nar/gkv257] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/10/2015] [Accepted: 03/15/2015] [Indexed: 12/31/2022] Open
Abstract
Transposable elements (TEs) are mobile genomic DNA sequences found in most organisms. They so densely populate the genomes of many eukaryotic species that they are often the major constituents. With the rapid generation of many plant genome sequencing projects over the past few decades, there is an urgent need for improved TE annotation as a prerequisite for genome-wide studies. Analogous to the use of RNA-seq for gene annotation, we propose a new method for de novo TE annotation that uses as a guide 24 nt-siRNAs that are a part of TE silencing pathways. We use this new approach, called TASR (for Transposon Annotation using Small RNAs), for de novo annotation of TEs in Arabidopsis, rice and soybean and demonstrate that this strategy can be successfully applied for de novo TE annotation in plants.Executable PERL is available for download from: http://tasr-pipeline.sourceforge.net/.
Collapse
Affiliation(s)
- Moaine El Baidouri
- Center for Applied Genetic Technologies. University of Georgia, 111, Riverbend Dr., Athens, GA 30602, USA
| | - Kyung Do Kim
- Center for Applied Genetic Technologies. University of Georgia, 111, Riverbend Dr., Athens, GA 30602, USA
| | - Brian Abernathy
- Center for Applied Genetic Technologies. University of Georgia, 111, Riverbend Dr., Athens, GA 30602, USA
| | - Siwaret Arikit
- Delaware Biotechnology Institute and Department of Plant & Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Florian Maumus
- INRA, UR1164 URGI-Research Unit in Genomics-Info, INRA de Versailles-Grignon, Route de Saint-Cyr, Versailles 78026, France
| | - Olivier Panaud
- Université de Perpignan Via Domitia. Laboratoire Génome et Développement des Plantes. UMR5096 CNRS/UPVD., 52, avenue Paul Alduy. 66860 Perpignan Cedex, France
| | - Blake C Meyers
- Delaware Biotechnology Institute and Department of Plant & Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies. University of Georgia, 111, Riverbend Dr., Athens, GA 30602, USA
| |
Collapse
|
126
|
Zuccolo A, Scofield DG, De Paoli E, Morgante M. The Ty1-copia LTR retroelement family PARTC is highly conserved in conifers over 200 MY of evolution. Gene 2015; 568:89-99. [PMID: 25982862 DOI: 10.1016/j.gene.2015.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/06/2015] [Accepted: 05/11/2015] [Indexed: 11/26/2022]
Abstract
Long Terminal Repeat retroelements (LTR-RTs) are a major component of many plant genomes. Although well studied and described in angiosperms, their features and dynamics are poorly understood in gymnosperms. Representative complete copies of a Ty1-copia element isolate in Picea abies and named PARTC were identified in six other conifer species (Picea glauca, Pinus sylvestris, Pinus taeda, Abies sibirica, Taxus baccata and Juniperus communis) covering more than 200 million years of evolution. Here we characterized the structure of this element, assessed its abundance across conifers, studied the modes and timing of its amplification, and evaluated the degree of conservation of its extant copies at nucleotide level over distant species. We demonstrated that the element is ancient, abundant, widespread and its paralogous copies are present in the genera Picea, Pinus and Abies as an LTR-RT family. The amplification leading to the extant copies of PARTC occurred over long evolutionary times spanning 10s of MY and mostly took place after the speciation of the conifers analyzed. The level of conservation of PARTC is striking and may be explained by low substitution rates and limited removal mechanisms for LTR-RTs. These PARTC features and dynamics are representative of a more general scenario for LTR-RTs in gymnosperms quite different from that characterizing the vast majority of LTR-RT elements in angiosperms.
Collapse
Affiliation(s)
- Andrea Zuccolo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy; Istituto di Genomica Applicata, Via J. Linussio 51, 33100 Udine, Italy.
| | - Douglas G Scofield
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-75236 Uppsala, Sweden
| | - Emanuele De Paoli
- Università degli Studi di Udine, Via delle Scienze 208, 33100 Udine, Italy
| | - Michele Morgante
- Istituto di Genomica Applicata, Via J. Linussio 51, 33100 Udine, Italy; Università degli Studi di Udine, Via delle Scienze 208, 33100 Udine, Italy
| |
Collapse
|
127
|
Elliott TA, Gregory TR. Do larger genomes contain more diverse transposable elements? BMC Evol Biol 2015; 15:69. [PMID: 25896861 PMCID: PMC4438587 DOI: 10.1186/s12862-015-0339-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 03/25/2015] [Indexed: 01/15/2023] Open
Abstract
Background The genomes of eukaryotes vary enormously in size, with much of this diversity driven by differences in the abundances of transposable elements (TEs). There is also substantial structural and phylogenetic diversity among TEs, such that they can be classified into distinct classes, superfamilies, and families. Possible relationships between TE diversity (and not just abundance) and genome size have not been investigated to date, though there are reasons to expect either a positive or a negative correlation. This study compares data from 257 species of animals, plants, fungi, and “protists” to determine whether TE diversity at the superfamily level is related to genome size. Results No simple relationship was found between TE diversity and genome size. There is no significant correlation across all eukaryotes, but there is a positive correlation for genomes below 500Mbp and a negative correlation among land plants. No relationships were found across animals or within vertebrates. Some TE superfamilies tend to be present across all major groups of eukaryotes, but there is considerable variance in TE diversity in different taxa. Conclusions Differences in genome size are thought to arise primarily through accumulation of TEs, but beyond a certain point (~500 Mbp), TE diversity does not increase with genome size. Several possible explanations for these complex patterns are discussed, and recommendations to facilitate future analyses are provided. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0339-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tyler A Elliott
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - T Ryan Gregory
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
128
|
Ma B, Li T, Xiang Z, He N. MnTEdb, a collective resource for mulberry transposable elements. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav004. [PMID: 25725060 PMCID: PMC4343074 DOI: 10.1093/database/bav004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mulberry has been used as an economically important food crop for the domesticated silkworm for thousands of years, resulting in one of the oldest and well-known plant-herbivore interactions. The genome of Morus notabilis has now been sequenced and there is an opportunity to mine the transposable element (TE) data. To better understand the roles of TEs in structural, functional and evolutionary dynamics of the mulberry genome, a specific, comprehensive and user-friendly web-based database, MnTEdb, was constructed. It was built based on a detailed and accurate identification of all TEs in mulberry. A total of 5925 TEs belonging to 13 superfamilies and 1062 families were deposited in this database. MnTEdb enables users to search, browse and download the mulberry TE sequences. Meanwhile, data mining tools, including BLAST, GetORF, HMMER, Sequence Extractor and JBrowse were also integrated into MnTEdb. MnTEdb will assist researchers to efficiently take advantage of our newly annotated TEs, which facilitate their studies in the origin, amplification and evolution of TEs, as well as the comparative analysis among the different species. Database URL:http://morus.swu.edu.cn/mntedb/
Collapse
Affiliation(s)
- Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| |
Collapse
|
129
|
Ustyantsev K, Novikova O, Blinov A, Smyshlyaev G. Convergent evolution of ribonuclease h in LTR retrotransposons and retroviruses. Mol Biol Evol 2015; 32:1197-207. [PMID: 25605791 PMCID: PMC4408406 DOI: 10.1093/molbev/msv008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ty3/Gypsy long terminals repeat (LTR) retrotransposons are structurally and phylogenetically close to retroviruses. Two notable structural differences between these groups of genetic elements are 1) the presence in retroviruses of an additional envelope gene, env, which mediates infection, and 2) a specific dual ribonuclease H (RNH) domain encoded by the retroviral pol gene. However, similar to retroviruses, many Ty3/Gypsy LTR retrotransposons harbor additional env-like genes, promoting concepts of the infective mode of these retrotransposons. Here, we provide a further line of evidence of similarity between retroviruses and some Ty3/Gypsy LTR retrotransposons. We identify that, together with their additional genes, plant Ty3/Gypsy LTR retrotransposons of the Tat group have a second RNH, as do retroviruses. Most importantly, we show that the resulting dual RNHs of Tat LTR retrotransposons and retroviruses emerged independently, providing strong evidence for their convergent evolution. The convergent resemblance of Tat LTR retrotransposons and retroviruses may indicate similar selection pressures acting on these diverse groups of elements and reveal potential evolutionary constraints on their structure. We speculate that dual RNH is required to accelerate retrotransposon evolution through increased rates of strand transfer events and subsequent recombination events.
Collapse
Affiliation(s)
- Kirill Ustyantsev
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany
| | - Alexander Blinov
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Georgy Smyshlyaev
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
130
|
Sarilar V, Bleykasten-Grosshans C, Neuvéglise C. Evolutionary dynamics of hAT DNA transposon families in Saccharomycetaceae. Genome Biol Evol 2014; 7:172-90. [PMID: 25532815 PMCID: PMC4316626 DOI: 10.1093/gbe/evu273] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Transposable elements (TEs) are widespread in eukaryotes but uncommon in yeasts of the Saccharomycotina subphylum, in terms of both host species and genome fraction. The class II elements are especially scarce, but the hAT element Rover is a noteworthy exception that deserves further investigation. Here, we conducted a genome-wide analysis of hAT elements in 40 ascomycota. A novel family, Roamer, was found in three species, whereas Rover was detected in 15 preduplicated species from Kluyveromyces, Eremothecium, and Lachancea genera, with up to 41 copies per genome. Rover acquisition seems to have occurred by horizontal transfer in a common ancestor of these genera. The detection of remote Rover copies in Naumovozyma dairenensis and in the sole Saccharomyces cerevisiae strain AWRI1631, without synteny, suggests that two additional independent horizontal transfers took place toward these genomes. Such patchy distribution of elements prevents any anticipation of TE presence in incoming sequenced genomes, even closely related ones. The presence of both putative autonomous and defective Rover copies, as well as their diversification into five families, indicate particular dynamics of Rover elements in the Lachancea genus. Especially, we discovered the first miniature inverted-repeat transposable elements (MITEs) to be described in yeasts, together with their parental autonomous copies. Evidence of MITE insertion polymorphism among Lachancea waltii strains suggests their recent activity. Moreover, 40% of Rover copies appeared to be involved in chromosome rearrangements, showing the large structural impact of TEs on yeast genome and opening the door to further investigations to understand their functional and evolutionary consequences.
Collapse
Affiliation(s)
- Véronique Sarilar
- INRA, UMR 1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Claudine Bleykasten-Grosshans
- CNRS, UMR 7156, Laboratoire de Génétique Moléculaire, Génomique et Microbiologie, Université de Strasbourg, Strasbourg, France
| | - Cécile Neuvéglise
- INRA, UMR 1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| |
Collapse
|
131
|
Schnell J, Steele M, Bean J, Neuspiel M, Girard C, Dormann N, Pearson C, Savoie A, Bourbonnière L, Macdonald P. A comparative analysis of insertional effects in genetically engineered plants: considerations for pre-market assessments. Transgenic Res 2014; 24:1-17. [PMID: 25344849 PMCID: PMC4274372 DOI: 10.1007/s11248-014-9843-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/16/2014] [Indexed: 01/20/2023]
Abstract
During genetic engineering, DNA is inserted into a plant’s genome, and such insertions are often accompanied by the insertion of additional DNA, deletions and/or rearrangements. These genetic changes are collectively known as insertional effects, and they have the potential to give rise to unintended traits in plants. In addition, there are many other genetic changes that occur in plants both spontaneously and as a result of conventional breeding practices. Genetic changes similar to insertional effects occur in plants, namely as a result of the movement of transposable elements, the repair of double-strand breaks by non-homologous end-joining, and the intracellular transfer of organelle DNA. Based on this similarity, insertional effects should present a similar level of risk as these other genetic changes in plants, and it is within the context of these genetic changes that insertional effects must be considered. Increased familiarity with genetic engineering techniques and advances in molecular analysis techniques have provided us with a greater understanding of the nature and impact of genetic changes in plants, and this can be used to refine pre-market assessments of genetically engineered plants and food and feeds derived from genetically engineered plants.
Collapse
Affiliation(s)
- Jaimie Schnell
- Plant and Biotechnology Risk Assessment Unit, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, ON, K1A 0Y9, Canada,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, Alberti A, Anthony F, Aprea G, Aury JM, Bento P, Bernard M, Bocs S, Campa C, Cenci A, Combes MC, Crouzillat D, Da Silva C, Daddiego L, De Bellis F, Dussert S, Garsmeur O, Gayraud T, Guignon V, Jahn K, Jamilloux V, Joët T, Labadie K, Lan T, Leclercq J, Lepelley M, Leroy T, Li LT, Librado P, Lopez L, Muñoz A, Noel B, Pallavicini A, Perrotta G, Poncet V, Pot D, Priyono, Rigoreau M, Rouard M, Rozas J, Tranchant-Dubreuil C, VanBuren R, Zhang Q, Andrade AC, Argout X, Bertrand B, de Kochko A, Graziosi G, Henry RJ, Jayarama, Ming R, Nagai C, Rounsley S, Sankoff D, Giuliano G, Albert VA, Wincker P, Lashermes P. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 2014; 345:1181-4. [PMID: 25190796 DOI: 10.1126/science.1255274] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Coffee is a valuable beverage crop due to its characteristic flavor, aroma, and the stimulating effects of caffeine. We generated a high-quality draft genome of the species Coffea canephora, which displays a conserved chromosomal gene order among asterid angiosperms. Although it shows no sign of the whole-genome triplication identified in Solanaceae species such as tomato, the genome includes several species-specific gene family expansions, among them N-methyltransferases (NMTs) involved in caffeine production, defense-related genes, and alkaloid and flavonoid enzymes involved in secondary compound synthesis. Comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin.
Collapse
Affiliation(s)
- France Denoeud
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Université d'Evry, UMR 8030, CP5706, Evry, France
| | - Lorenzo Carretero-Paulet
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo (State University of New York), Buffalo, NY 14260, USA
| | - Alexis Dereeper
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France
| | - Gaëtan Droc
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Romain Guyot
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Marco Pietrella
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA) Casaccia Research Center, Via Anguillarese 301, 00123 Roma, Italy
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Adriana Alberti
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - François Anthony
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France
| | - Giuseppe Aprea
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA) Casaccia Research Center, Via Anguillarese 301, 00123 Roma, Italy
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Pascal Bento
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Maria Bernard
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Stéphanie Bocs
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Claudine Campa
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Alberto Cenci
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France. Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Marie-Christine Combes
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France
| | - Dominique Crouzillat
- Nestlé Research and Development Centre, 101 Avenue Gustave Eiffel, Notre-Dame-d'Oé, BP 49716, 37097 Tours Cedex 2, France
| | - Corinne Da Silva
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | | | - Fabien De Bellis
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Stéphane Dussert
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Olivier Garsmeur
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Thomas Gayraud
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Valentin Guignon
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Katharina Jahn
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada. Center for Biotechnology, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany. AG Genominformatik, Technische Fakultät, Universität Bielefeld, 33594 Bielefeld, Germany
| | - Véronique Jamilloux
- Institut National de la Recherche Agronomique (INRA), Unité de Recherches en Génomique-Info (UR INRA 1164), Centre de Recherche de Versailles, 78026 Versailles Cedex, France
| | - Thierry Joët
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Karine Labadie
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Tianying Lan
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo (State University of New York), Buffalo, NY 14260, USA. Department of Biology, Chongqing University of Science and Technology, 4000042 Chongqing, China
| | - Julie Leclercq
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Maud Lepelley
- Nestlé Research and Development Centre, 101 Avenue Gustave Eiffel, Notre-Dame-d'Oé, BP 49716, 37097 Tours Cedex 2, France
| | - Thierry Leroy
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Lei-Ting Li
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Pablo Librado
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, Barcelona 08028, Spain
| | | | - Adriana Muñoz
- Department of Mathematics, University of Maryland, Mathematics Building 084, University of Maryland, College Park, MD 20742, USA. School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Benjamin Noel
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | | | - Valérie Poncet
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - David Pot
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Priyono
- Indonesian Coffee and Cocoa Institute, Jember, East Java, Indonesia
| | - Michel Rigoreau
- Nestlé Research and Development Centre, 101 Avenue Gustave Eiffel, Notre-Dame-d'Oé, BP 49716, 37097 Tours Cedex 2, France
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, Barcelona 08028, Spain
| | - Christine Tranchant-Dubreuil
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Robert VanBuren
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qiong Zhang
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alan C Andrade
- Laboratório de Genética Molecular, Núcleo de Biotecnologia (NTBio), Embrapa Recursos Genéticos e Biotecnologia, Final Av. W/5 Norte, Parque Estação Biológia, Brasília-DF 70770-917, Brazil
| | - Xavier Argout
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Benoît Bertrand
- CIRAD, UMR RPB (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Alexandre de Kochko
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Giorgio Graziosi
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy. DNA Analytica Srl, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia 4072, Australia
| | - Jayarama
- Central Coffee Research Institute, Coffee Board, Coffee Research Station (Post) - 577 117 Chikmagalur District, Karnataka State, India
| | - Ray Ming
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chifumi Nagai
- Hawaii Agriculture Research Center, Post Office Box 100, Kunia, HI 96759-0100, USA
| | - Steve Rounsley
- BIO5 Institute, University of Arizona, 1657 Helen Street, Tucson, AZ 85721, USA
| | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA) Casaccia Research Center, Via Anguillarese 301, 00123 Roma, Italy
| | - Victor A Albert
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo (State University of New York), Buffalo, NY 14260, USA.
| | - Patrick Wincker
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Université d'Evry, UMR 8030, CP5706, Evry, France.
| | - Philippe Lashermes
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France.
| |
Collapse
|
133
|
Parisot N, Pelin A, Gasc C, Polonais V, Belkorchia A, Panek J, El Alaoui H, Biron DG, Brasset E, Vaury C, Peyret P, Corradi N, Peyretaillade É, Lerat E. Microsporidian genomes harbor a diverse array of transposable elements that demonstrate an ancestry of horizontal exchange with metazoans. Genome Biol Evol 2014; 6:2289-300. [PMID: 25172905 PMCID: PMC4202319 DOI: 10.1093/gbe/evu178] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Microsporidian genomes are the leading models to understand the streamlining in response to a pathogenic lifestyle; they are gene-poor and often possess small genomes. In this study, we show a feature of microsporidian genomes that contrasts this pattern of genome reduction. Specifically, genome investigations targeted at Anncaliia algerae, a human pathogen with a genome size of 23 Mb, revealed the presence of a hitherto undetected diversity in transposable elements (TEs). A total of 240 TE families per genome were identified, exceeding that found in many free-living fungi, and searches of microsporidian species revealed that these mobile elements represent a significant portion of their coding repertoire. Their phylogenetic analysis revealed that many cases of ancestry involve recent and bidirectional horizontal transfers with metazoans. The abundance and horizontal transfer origin of microsporidian TEs highlight a novel dimension of genome evolution in these intracellular pathogens, demonstrating that factors beyond reduction are at play in their diversification.
Collapse
Affiliation(s)
- Nicolas Parisot
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France CNRS, UMR 6023, LMGE, Aubière, France
| | - Adrian Pelin
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ontario, Canada
| | - Cyrielle Gasc
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France
| | - Valérie Polonais
- CNRS, UMR 6023, LMGE, Aubière, France Clermont Université, Université d'Auvergne, Laboratoire "Microorganismes: Génome et Environnement," Clermont-Ferrand, France
| | - Abdel Belkorchia
- CNRS, UMR 6023, LMGE, Aubière, France Clermont Université, Université d'Auvergne, Laboratoire "Microorganismes: Génome et Environnement," Clermont-Ferrand, France
| | - Johan Panek
- CNRS, UMR 6023, LMGE, Aubière, France Clermont Université, Université d'Auvergne, Laboratoire "Microorganismes: Génome et Environnement," Clermont-Ferrand, France
| | - Hicham El Alaoui
- CNRS, UMR 6023, LMGE, Aubière, France Clermont Université, Université d'Auvergne, Laboratoire "Microorganismes: Génome et Environnement," Clermont-Ferrand, France
| | - David G Biron
- CNRS, UMR 6023, LMGE, Aubière, France Clermont Université, Université d'Auvergne, Laboratoire "Microorganismes: Génome et Environnement," Clermont-Ferrand, France
| | - Emilie Brasset
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France, Inserm; U 1103, Clermont-Ferrand, France, CNRS; UMR 6293, Clermont-Ferrand, France
| | - Chantal Vaury
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France, Inserm; U 1103, Clermont-Ferrand, France, CNRS; UMR 6293, Clermont-Ferrand, France
| | - Pierre Peyret
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France
| | - Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ontario, Canada
| | - Éric Peyretaillade
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France
| | - Emmanuelle Lerat
- Université de Lyon; Université Lyon 1; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, F-69622 Villeurbanne, France
| |
Collapse
|