101
|
van Galen P, Viny AD, Ram O, Ryan RJH, Cotton MJ, Donohue L, Sievers C, Drier Y, Liau BB, Gillespie SM, Carroll KM, Cross MB, Levine RL, Bernstein BE. A Multiplexed System for Quantitative Comparisons of Chromatin Landscapes. Mol Cell 2016; 61:170-80. [PMID: 26687680 PMCID: PMC4707994 DOI: 10.1016/j.molcel.2015.11.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/18/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
Abstract
Genome-wide profiling of histone modifications can provide systematic insight into the regulatory elements and programs engaged in a given cell type. However, conventional chromatin immunoprecipitation and sequencing (ChIP-seq) does not capture quantitative information on histone modification levels, requires large amounts of starting material, and involves tedious processing of each individual sample. Here, we address these limitations with a technology that leverages DNA barcoding to profile chromatin quantitatively and in multiplexed format. We concurrently map relative levels of multiple histone modifications across multiple samples, each comprising as few as a thousand cells. We demonstrate the technology by monitoring dynamic changes following inhibition of p300, EZH2, or KDM5, by linking altered epigenetic landscapes to chromatin regulator mutations, and by mapping active and repressive marks in purified human hematopoietic stem cells. Hence, this technology enables quantitative studies of chromatin state dynamics across rare cell types, genotypes, environmental conditions, and drug treatments.
Collapse
Affiliation(s)
- Peter van Galen
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aaron D Viny
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Oren Ram
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Russell J H Ryan
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Matthew J Cotton
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Laura Donohue
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Cem Sievers
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yotam Drier
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Brian B Liau
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shawn M Gillespie
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Kaitlin M Carroll
- Department of Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, NY 10021, USA
| | - Michael B Cross
- Department of Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, NY 10021, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Bradley E Bernstein
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
102
|
Developmental Dynamics of X-Chromosome Dosage Compensation by the DCC and H4K20me1 in C. elegans. PLoS Genet 2015; 11:e1005698. [PMID: 26641248 PMCID: PMC4671695 DOI: 10.1371/journal.pgen.1005698] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/03/2015] [Indexed: 11/19/2022] Open
Abstract
In Caenorhabditis elegans, the dosage compensation complex (DCC) specifically binds to and represses transcription from both X chromosomes in hermaphrodites. The DCC is composed of an X-specific condensin complex that interacts with several proteins. During embryogenesis, DCC starts localizing to the X chromosomes around the 40-cell stage, and is followed by X-enrichment of H4K20me1 between 100-cell to comma stage. Here, we analyzed dosage compensation of the X chromosome between sexes, and the roles of dpy-27 (condensin subunit), dpy-21 (non-condensin DCC member), set-1 (H4K20 monomethylase) and set-4 (H4K20 di-/tri-methylase) in X chromosome repression using mRNA-seq and ChIP-seq analyses across several developmental time points. We found that the DCC starts repressing the X chromosomes by the 40-cell stage, but X-linked transcript levels remain significantly higher in hermaphrodites compared to males through the comma stage of embryogenesis. Dpy-27 and dpy-21 are required for X chromosome repression throughout development, but particularly in early embryos dpy-27 and dpy-21 mutations produced distinct expression changes, suggesting a DCC independent role for dpy-21. We previously hypothesized that the DCC increases H4K20me1 by reducing set-4 activity on the X chromosomes. Accordingly, in the set-4 mutant, H4K20me1 increased more from the autosomes compared to the X, equalizing H4K20me1 level between X and autosomes. H4K20me1 increase on the autosomes led to a slight repression, resulting in a relative effect of X derepression. H4K20me1 depletion in the set-1 mutant showed greater X derepression compared to equalization of H4K20me1 levels between X and autosomes in the set-4 mutant, indicating that H4K20me1 level is important, but X to autosomal balance of H4K20me1 contributes slightly to X-repression. Thus H4K20me1 is not only a downstream effector of the DCC [corrected].In summary, X chromosome dosage compensation starts in early embryos as the DCC localizes to the X, and is strengthened in later embryogenesis by H4K20me1.
Collapse
|
103
|
Hu B, Petela N, Kurze A, Chan KL, Chapard C, Nasmyth K. Biological chromodynamics: a general method for measuring protein occupancy across the genome by calibrating ChIP-seq. Nucleic Acids Res 2015; 43:e132. [PMID: 26130708 PMCID: PMC4787748 DOI: 10.1093/nar/gkv670] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 01/26/2023] Open
Abstract
Sequencing DNA fragments associated with proteins following in vivo cross-linking with formaldehyde (known as ChIP-seq) has been used extensively to describe the distribution of proteins across genomes. It is not widely appreciated that this method merely estimates a protein's distribution and cannot reveal changes in occupancy between samples. To do this, we tagged with the same epitope orthologous proteins in Saccharomyces cerevisiae and Candida glabrata, whose sequences have diverged to a degree that most DNA fragments longer than 50 bp are unique to just one species. By mixing defined numbers of C. glabrata cells (the calibration genome) with S. cerevisiae samples (the experimental genomes) prior to chromatin fragmentation and immunoprecipitation, it is possible to derive a quantitative measure of occupancy (the occupancy ratio - OR) that enables a comparison of occupancies not only within but also between genomes. We demonstrate for the first time that this 'internal standard' calibration method satisfies the sine qua non for quantifying ChIP-seq profiles, namely linearity over a wide range. Crucially, by employing functional tagged proteins, our calibration process describes a method that distinguishes genuine association within ChIP-seq profiles from background noise. Our method is applicable to any protein, not merely highly conserved ones, and obviates the need for the time consuming, expensive, and technically demanding quantification of ChIP using qPCR, which can only be performed on individual loci. As we demonstrate for the first time in this paper, calibrated ChIP-seq represents a major step towards documenting the quantitative distributions of proteins along chromosomes in different cell states, which we term biological chromodynamics.
Collapse
Affiliation(s)
- Bin Hu
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Naomi Petela
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Alexander Kurze
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Kok-Lung Chan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Christophe Chapard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Kim Nasmyth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
104
|
Bonhoure N, Byrnes A, Moir RD, Hodroj W, Preitner F, Praz V, Marcelin G, Chua SC, Martinez-Lopez N, Singh R, Moullan N, Auwerx J, Willemin G, Shah H, Hartil K, Vaitheesvaran B, Kurland I, Hernandez N, Willis IM. Loss of the RNA polymerase III repressor MAF1 confers obesity resistance. Genes Dev 2015; 29:934-47. [PMID: 25934505 PMCID: PMC4421982 DOI: 10.1101/gad.258350.115] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.
Collapse
Affiliation(s)
- Nicolas Bonhoure
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ashlee Byrnes
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Wassim Hodroj
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Frédéric Preitner
- Mouse Metabolic Evaluation Facility, Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Genevieve Marcelin
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Streamson C Chua
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Nuria Martinez-Lopez
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Rajat Singh
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Norman Moullan
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gilles Willemin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Mouse Metabolic Evaluation Facility, Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hardik Shah
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Kirsten Hartil
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Bhavapriya Vaitheesvaran
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Irwin Kurland
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA;
| |
Collapse
|
105
|
Myers KS, Park DM, Beauchene NA, Kiley PJ. Defining bacterial regulons using ChIP-seq. Methods 2015; 86:80-8. [PMID: 26032817 DOI: 10.1016/j.ymeth.2015.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/22/2015] [Accepted: 05/23/2015] [Indexed: 11/28/2022] Open
Abstract
Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is a powerful method that identifies protein-DNA binding sites in vivo. Recent studies have illustrated the value of ChIP-seq in studying transcription factor binding in various bacterial species under a variety of growth conditions. These results show that in addition to identifying binding sites, correlation of ChIP-seq data with expression data can reveal important information about bacterial regulons and regulatory networks. In this chapter, we provide an overview of the current state of knowledge about ChIP-seq methodology in bacteria, from sample preparation to raw data analysis. We also describe visualization and various bioinformatic analyses of processed ChIP-seq data.
Collapse
Affiliation(s)
- Kevin S Myers
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI 53706, USA; Great Lakes Bioenergy Research Center, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Dan M Park
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Nicole A Beauchene
- Department of Biomolecular Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA; Great Lakes Bioenergy Research Center, University of Wisconsin - Madison, Madison, WI 53706, USA.
| |
Collapse
|
106
|
Grzybowski AT, Chen Z, Ruthenburg AJ. Calibrating ChIP-Seq with Nucleosomal Internal Standards to Measure Histone Modification Density Genome Wide. Mol Cell 2015; 58:886-99. [PMID: 26004229 DOI: 10.1016/j.molcel.2015.04.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 03/09/2015] [Accepted: 03/25/2015] [Indexed: 02/01/2023]
Abstract
Chromatin immunoprecipitation (ChIP) serves as a central experimental technique in epigenetics research, yet there are serious drawbacks: it is a relative measurement, which untethered to any external scale obscures fair comparison among experiments; it employs antibody reagents that have differing affinities and specificities for target epitopes that vary in abundance; and it is frequently not reproducible. To address these problems, we developed Internal Standard Calibrated ChIP (ICeChIP), wherein a native chromatin sample is spiked with nucleosomes reconstituted from recombinant and semisynthetic histones on barcoded DNA prior to immunoprecipitation. ICeChIP measures local histone modification densities on a biologically meaningful scale, enabling unbiased trans-experimental comparisons, and reveals unique insight into the nature of bivalent domains. This technology provides in situ assessment of the immunoprecipitation step, accommodating for many experimental pitfalls as well as providing a critical examination of untested assumptions inherent to conventional ChIP.
Collapse
Affiliation(s)
- Adrian T Grzybowski
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Zhonglei Chen
- Department of Chemistry, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
107
|
Ulahannan N, Greally JM. Genome-wide assays that identify and quantify modified cytosines in human disease studies. Epigenetics Chromatin 2015; 8:5. [PMID: 25788985 PMCID: PMC4363328 DOI: 10.1186/1756-8935-8-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/05/2015] [Indexed: 12/23/2022] Open
Abstract
The number of different assays that has been published to study DNA methylation is extensive, complemented by recently described assays that test modifications of cytosine other than the most abundant 5-methylcytosine (5mC) variant. In this review, we describe the considerations involved in choosing how to study 5mC throughout the genome, with an emphasis on the common application of testing for epigenetic dysregulation in human disease. While microarray studies of 5mC continue to be commonly used, these lack the additional qualitative information from sequencing-based approaches that is increasingly recognized to be valuable. When we test the representation of functional elements in the human genome by several current assay types, we find that no survey approach interrogates anything more than a small minority of the nonpromoter cis-regulatory sites where DNA methylation variability is now appreciated to influence gene expression and to be associated with human disease. However, whole-genome bisulphite sequencing (WGBS) adds a substantial representation of loci at which DNA methylation changes are unlikely to be occurring with transcriptional consequences. Our assessment is that the most effective approach to DNA methylation studies in human diseases is to use targeted bisulphite sequencing of the cis-regulatory loci in a cell type of interest, using a capture-based or comparable system, and that no single design of a survey approach will be suitable for all cell types.
Collapse
Affiliation(s)
- Netha Ulahannan
- Department of Genetics, Albert Einstein College of Medicine, Center for Epigenomics and Division of Computational Genetics, 1301 Morris Park Avenue, Bronx, NY 10461 USA
| | - John M Greally
- Department of Genetics, Albert Einstein College of Medicine, Center for Epigenomics and Division of Computational Genetics, 1301 Morris Park Avenue, Bronx, NY 10461 USA
| |
Collapse
|
108
|
Brunelle M, Coulombe C, Poitras C, Robert MA, Markovits AN, Robert F, Jacques PÉ. Aggregate and Heatmap Representations of Genome-Wide Localization Data Using VAP, a Versatile Aggregate Profiler. Methods Mol Biol 2015; 1334:273-298. [PMID: 26404157 DOI: 10.1007/978-1-4939-2877-4_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the analysis of experimental data corresponding to the signal enrichment of chromatin features such as histone modifications throughout the genome, it is often useful to represent the signal over known regions of interest, such as genes, using aggregate or individual profiles. In the present chapter, we describe and explain the best practices on how to generate such profiles as well as other usages of the versatile aggregate profiler (VAP) tool (Coulombe et al., Nucleic Acids Res 42:W485-W493, 2014), with a particular focus on the new functionalities introduced in version 1.1.0 of VAP.
Collapse
Affiliation(s)
- Mylène Brunelle
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, Canada, J1K 2R1
| | - Charles Coulombe
- Département d'informatique, Faculté des sciences, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, Canada, J1K 2R1
| | - Christian Poitras
- Institut de recherches cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC, Canada, H2W 1R7
| | - Marc-Antoine Robert
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, Canada, J1K 2R1
| | - Alexei Nordell Markovits
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, Canada, J1K 2R1
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC, Canada, H2W 1R7
- Département de médecine, Faculté de médecine, Université de Montréal, 2900 boul. Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Pierre-Étienne Jacques
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, Canada, J1K 2R1.
- Département d'informatique, Faculté des sciences, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, Canada, J1K 2R1.
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada, J1H 5N4.
| |
Collapse
|
109
|
Orlando DA, Chen MW, Brown VE, Solanki S, Choi YJ, Olson ER, Fritz CC, Bradner JE, Guenther MG. Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. Cell Rep 2014; 9:1163-70. [PMID: 25437568 DOI: 10.1016/j.celrep.2014.10.018] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/24/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022] Open
Abstract
Epigenomic profiling by chromatin immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq) is a prevailing methodology used to investigate chromatin-based regulation in biological systems such as human disease, but the lack of an empirical methodology to enable normalization among experiments has limited the precision and usefulness of this technique. Here, we describe a method called ChIP with reference exogenous genome (ChIP-Rx) that allows one to perform genome-wide quantitative comparisons of histone modification status across cell populations using defined quantities of a reference epigenome. ChIP-Rx enables the discovery and quantification of dynamic epigenomic profiles across mammalian cells that would otherwise remain hidden using traditional normalization methods. We demonstrate the utility of this method for measuring epigenomic changes following chemical perturbations and show how reference normalization of ChIP-seq experiments enables the discovery of disease-relevant changes in histone modification occupancy.
Collapse
Affiliation(s)
- David A Orlando
- Syros Pharmaceuticals, 480 Arsenal Street, Watertown, MA 02472, USA.
| | - Mei Wei Chen
- Syros Pharmaceuticals, 480 Arsenal Street, Watertown, MA 02472, USA
| | - Victoria E Brown
- Syros Pharmaceuticals, 480 Arsenal Street, Watertown, MA 02472, USA
| | | | - Yoon J Choi
- Syros Pharmaceuticals, 480 Arsenal Street, Watertown, MA 02472, USA
| | - Eric R Olson
- Syros Pharmaceuticals, 480 Arsenal Street, Watertown, MA 02472, USA
| | | | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
110
|
Meyer CA, Liu XS. Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat Rev Genet 2014; 15:709-21. [PMID: 25223782 DOI: 10.1038/nrg3788] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) technologies have been used in diverse ways to investigate various aspects of chromatin biology by identifying genomic loci that are bound by transcription factors, occupied by nucleosomes or accessible to nuclease cleavage, or loci that physically interact with remote genomic loci. However, reaching sound biological conclusions from such NGS enrichment profiles requires many potential biases to be taken into account. In this Review, we discuss common ways in which biases may be introduced into NGS chromatin profiling data, approaches to diagnose these biases and analytical techniques to mitigate their effect.
Collapse
Affiliation(s)
- Clifford A Meyer
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA; and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA; and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|