101
|
Xu X, Jiang X, Gao Q, Yang L, Sun X, Wang Z, Li D, Cui B, Liu D. Enhanced photoelectric performance of MoSSe/MoS 2 van der Waals heterostructures with tunable multiple band alignment. Phys Chem Chem Phys 2022; 24:29882-29890. [PMID: 36468446 DOI: 10.1039/d2cp03761k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Janus MoSSe with mirror asymmetry has recently emerged as a new two-dimensional (2D) material with a sizeable out-of-plane dipole moment. Here, based on first-principles calculations, we theoretically investigate the electronic properties of two patterns of 2D MoSSe/MoS2 van der Waals heterostructures (vdWHs). The electronic properties of MoSSe can be tuned by the intrinsic out-of-plane dipole field. When the Se side of the Janus layer faces the MoS2 layer, the dipole field points from the MoSSe layer towards the MoS2 layer, and the vdWH possesses a type-I band alignment which is desirable for light emission applications. With a reversal of the Janus layer, the intrinsic field inverts accordingly, and the band alignment becomes a typical type-II band alignment, which benefits carrier separation. Moreover, it possesses superior optical absorption (∼105 cm-1), and the calculated photocurrent density under visible-light radiation is up to 0.9 mA cm-2 in the MoSSe/MoS2 vdWH. Meanwhile, an external electric field and vertical strain can remarkably modulate the band alignment to switch it between type-I and type-II. Thus, MoSSe/MoS2 vdWHs have promising applications in next-generation photovoltaic devices.
Collapse
Affiliation(s)
- Xuhui Xu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Xinxin Jiang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Quan Gao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Lei Yang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Xuelian Sun
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Zhikuan Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Dongmei Li
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Bin Cui
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Desheng Liu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China. .,Department of Physics, Jining University, Qufu 273155, China
| |
Collapse
|
102
|
Ye X, Wu J, Liang J, Sun Y, Ren X, Ouyang X, Wu D, Li Y, Zhang L, Hu J, Zhang Q, Liu J. Locally Fluorinated Electrolyte Medium Layer for High-Performance Anode-Free Li-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53788-53797. [PMID: 36441596 DOI: 10.1021/acsami.2c15452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Low cycling Coulombic efficiency (CE) and messy Li dendrite growth problems have greatly hindered the development of anode-free Li-metal batteries (AFLBs). Thus, functional electrolytes for uniform lithium deposition and lithium/electrolyte side reaction suppression are desired. Here, we report a locally fluorinated electrolyte (LFE) medium layer surrounding Cu foils to tailor the chemical compositions of the solid-electrolyte interphase (SEI) in AFLBs for inhibiting the immoderate Li dendrite growth and to suppress the interfacial reaction. This LFE consists of highly concentrated LiTFSI dissolved in a fluoroethylene carbonate and/or succinonitrile plastic mixture. The CE of Cu||LiNi0.8Co0.1Mn0.1O2 (NCM811) AFLB increased to a high level of 99% as envisaged, and the cycling ability was also highly improved. These improvements are facilitated by the formation of a uniform, dense, and LiF-rich SEI. LiF possesses high interfacial energy at the LiF/Li interface, resulting in a more uniform Li deposition process as proved by density functional theory (DFT) calculation results. This work provides a simple yet utility tech for the enhancement of future high-energy-density AFLBs.
Collapse
Affiliation(s)
- Xue Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong518060, China
- College of Energy Engineering, Zhejiang University, Hangzhou310058, China
| | - Jing Wu
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen518055, China
| | - Jianneng Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong518060, China
| | - Yipeng Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, 1151 Richmond St, London, OntarioN6A 3K7, Canada
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong518060, China
| | - Xiaoping Ouyang
- College of Energy Engineering, Zhejiang University, Hangzhou310058, China
| | - Dazhuan Wu
- College of Energy Engineering, Zhejiang University, Hangzhou310058, China
| | - Yongliang Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong518060, China
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong518060, China
| | - Jiangtao Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong518060, China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong518060, China
| | - Jianhong Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong518060, China
| |
Collapse
|
103
|
Zhao J, Xu Y, Ding X. An in-depth understanding of the solvation effect of methanol on the anisotropy of electrochemical corrosion of Ta. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
104
|
Zhou L, Li Y, Lu Y, Wang S, Zou Y. pH-Induced selective electrocatalytic hydrogenation of furfural on Cu electrodes. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
105
|
Grover S, Butler KT, Waghmare UV, Grau‐Crespo R. Co‐Substituted BiFeO
3
: Electronic, Ferroelectric, and Thermodynamic Properties from First Principles. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Shivani Grover
- Department of Chemistry University of Reading Whiteknights Reading RG6 6DX UK
| | - Keith T. Butler
- Materials Research Institute, School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS UK
| | - Umesh V. Waghmare
- Theoretical Sciences Unit, Jawaharlal Nehru Center for Advanced Scientific Research Bangalore Karnataka 560064 India
| | - Ricardo Grau‐Crespo
- Department of Chemistry University of Reading Whiteknights Reading RG6 6DX UK
| |
Collapse
|
106
|
Wexler RB, Carter EA. Oxygen‐Chlorine Chemisorption Scaling for Seawater Electrolysis on Transition Metals: The Role of Redox. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Robert B. Wexler
- Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment Princeton University Princeton NJ 08544‐5263 USA
| | - Emily A. Carter
- Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment Princeton University Princeton NJ 08544‐5263 USA
| |
Collapse
|
107
|
Sovizi S, Tosoni S, Szoszkiewicz R. MoS 2 oxidative etching caught in the act: formation of single (MoO 3) n molecules. NANOSCALE ADVANCES 2022; 4:4517-4525. [PMID: 36341303 PMCID: PMC9595104 DOI: 10.1039/d2na00374k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
We report the presence of sub-nm MoO x clusters formed on basal planes of the 2H MoS2 crystals during thermal oxidative etching in air at a temperature of 370 °C. Using high resolution non-contact atomic force microscopy (AFM) we provide a histogram of their preferred heights. The AFM results combined with density functional theory (DFT) simulations show remarkably well that the MoO x clusters are predominantly single MoO3 molecules and their dimers at the sulfur vacancies. Additional Raman spectroscopy, and energy and wavelength dispersive X-ray spectroscopies as well as Kelvin probe AFM investigations confirmed the presence of the MoO3/MoO x species covering the MoS2 surface only sparsely. The X-ray absorption near edge spectroscopy data confirm the MoO3 stoichiometry. Taken together, our results show that oxidative etching and removal of Mo atoms at the atomic level follow predominantly via formation of single MoO3 molecules. Such findings confirm the previously only proposed oxidative etching stoichiometry.
Collapse
Affiliation(s)
- Saeed Sovizi
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki I Wigury 101 02-089 Warsaw Poland
| | - Sergio Tosoni
- Dipartimento di Scienza dei materiali, Università di Milano-Bicocca via Roberto Cozzi 55 20125 Milan Italy
| | - Robert Szoszkiewicz
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki I Wigury 101 02-089 Warsaw Poland
| |
Collapse
|
108
|
Ke C, Lin Z, Liu S. Three-Dimensional Activity Volcano Plot under an External Electric Field. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Changming Ke
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou310024, Zhejiang, China
| | - Zijing Lin
- Hefei National Laboratory for Physical Sciences at Microscales, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei230026, China
| | - Shi Liu
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou310024, Zhejiang, China
| |
Collapse
|
109
|
Yao W, Li D, Wei S, Liu X, Liu X, Wang W. Density Functional Theory Study on the Enhancement Mechanism of the Photocatalytic Properties of the g-C 3N 4/BiOBr(001) Heterostructure. ACS OMEGA 2022; 7:36479-36488. [PMID: 36278081 PMCID: PMC9583644 DOI: 10.1021/acsomega.2c04298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The van der Waals heterostructures fabricated in two semiconductors are currently attracting considerable attention in various research fields. Our study uses density functional theory calculations within the Heyd-Scuseria-Ernzerhof hybrid functional to analyze the geometric structure and electronic structure of the g-C3N4/BiOBr(001) heterojunction in order to gain a better understanding of its photocatalytic properties. The calculated band alignments show that g-C3N4/BiOBr can function as a type-II heterojunction. In this heterojunction, the electrons and holes can effectively be separated at the interface. Moreover, we find that the electronic structure and band alignment of g-C3N4/BiOBr(001) can be tuned using external electric fields. It is also noteworthy that the optical absorption peak in the visible region is enhanced under the action of the electric field. The electric field may even improve the optical properties of the g-C3N4/BiOBr(001) heterostructure. Given the results of our calculations, it seems that g-C3N4/BiOBr(001) may be significantly superior to visible light photocatalysis.
Collapse
Affiliation(s)
- Wenzhi Yao
- Department
of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou450011, China
| | - Dongying Li
- Department
of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou450011, China
| | - Shuai Wei
- Department
of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou450011, China
| | - Xiaoqing Liu
- Department
of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou450011, China
| | - Xuefei Liu
- College
of Physics and Electronic Science, Guizhou
Normal University, Guiyang550025, China
| | - Wentao Wang
- College
of Physics and Electronic Science, Guizhou
Normal University, Guiyang550025, China
- Guizhou
Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang550018, China
| |
Collapse
|
110
|
Li Y, Chen YX, Liu ZF. OH -···Au Hydrogen Bond and Its Effect on the Oxygen Reduction Reaction on Au(100) in Alkaline Media. J Phys Chem Lett 2022; 13:9035-9043. [PMID: 36150066 DOI: 10.1021/acs.jpclett.2c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Using ab initio molecular dynamics simulations with fully solvated ions, we demonstrate that solvated OH- forms a stable hydrogen bond with Au(100). Unlike the hydrogen bond between H2O and Au reported previously, which is more favorable for negatively charged Au, the OH-···Au interaction is stabilized when a small positive charge is added to the metal slab. For electro-catalysis, this means that while OH2···Au plays a significant role in the hydrogen evolution reaction, OH-···Au could be a significant factor in the oxygen reduction reaction in alkaline media. It also points to a fundamental difference in the mechanism of oxygen reduction between gold and platinum electrodes.
Collapse
Affiliation(s)
- Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| | - Yan-Xia Chen
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Feng Liu
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
- CUHK Shenzhen Research Institute, No. 10, 2nd Yuexing Road, Nanshan District, Shenzhen 518057, China
| |
Collapse
|
111
|
Liu Z, Lai X, Zhou Y, Deng F, Song J, Yang Z, Peng C, Ding F, Zhao F, Hu Z, Liang Y. Enhancing the anti-oxidation stability of vapor-crystallized arsenic crystals via introducing iodine. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129573. [PMID: 35863226 DOI: 10.1016/j.jhazmat.2022.129573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/06/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The oxidation of arsenic restricts its application in high-performance electronic devices and functional materials. Herein, a removable iodine-regulation method was proposed for the first time to enhance the anti-oxidation behavior of arsenic. In a gradient of 500-650 ℃, the introduction of 0.6-5.0 at% iodine into arsenic vapor could regulate an arsenic crystal. The oxygen content on the regulated arsenic crystal surface was lowered below 2.5 at% after exposure to ambient conditions for 96 h, reducing over 90% compared with the control group. The residual iodine barrier, which was mainly in the As-I2 state, suppressed the long-term oxidation of arsenic. First-principles calculation suggested that the adsorbed I2 weakened the delocalization of lone-pair electrons and inhibited charge transfer from the arsenic surface. Iodine regulation stabilized arsenic surface, which preferred (003) or (012) facets. Their surface energies were 22.4 meV and 47.6 meV, respectively. The synergistic effect of surface stabilization and I2 passivation lowered the surface energy and continuously slowed the oxidation of arsenic. Therefore, iodine regulation comprehensively enhanced the anti-oxidation properties of arsenic. Moreover, heating at 200 ℃ left the arsenic surface iodine content below 0.1 at% with little variation in structure. The improved anti-oxidation property of arsenic preserves resources for further advanced applications.
Collapse
Affiliation(s)
- Zhenxing Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xinting Lai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yuan Zhou
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Fangjie Deng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jiaqi Song
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Cong Peng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Fenghua Ding
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zhan Hu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yanjie Liang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China.
| |
Collapse
|
112
|
Cuono G, Autieri C. Mott Insulator Ca 2RuO 4 under External Electric Field. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6657. [PMID: 36234000 PMCID: PMC9570850 DOI: 10.3390/ma15196657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
We have investigated the structural, electronic and magnetic properties of the Mott insulator Ca2RuO4 under the application of a static external electric field in two regimes: bulk systems at small fields and thin films at large electric fields. Ca2RuO4 presents S- and L-Pbca phases with short and long c lattice constants and with large and small band gaps, respectively. Using density functional perturbation theory, we have calculated the Born effective charges as response functions. Once we break the inversion symmetry by off-centering the Ru atoms, we calculate the piezoelectric properties of the system that suggest an elongation of the system under an electric field. Finally, we investigated a four-unit cell slab in larger electric fields, and we found insulator-metal transitions induced by the electric field. By looking at the local density of states, we have found that the gap gets closed on surface layers while the rest of the sample is insulating. Correlated to the electric-field-driven gap closure, there is an increase in the lattice constant c. Regarding the magnetic properties, we have identified two phase transitions in the magnetic moments with one surface that gets completely demagnetized at the largest field investigated. In all cases, the static electric field increases the lattice constant c and reduces the band gap of Ca2RuO4, playing a role in the competition between the L-phase and the S-phase.
Collapse
Affiliation(s)
| | - Carmine Autieri
- International Research Centre Magtop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
113
|
Wang Y, Wang H, Li Y, Zhang M, Zheng Y. Designing a 0D/1D S-Scheme Heterojunction of Cadmium Selenide and Polymeric Carbon Nitride for Photocatalytic Water Splitting and Carbon Dioxide Reduction. Molecules 2022; 27:molecules27196286. [PMID: 36234822 PMCID: PMC9572265 DOI: 10.3390/molecules27196286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Constructing photocatalysts to promote hydrogen evolution and carbon dioxide photoreduction into solar fuels is of vital importance. The design and establishment of an S-scheme heterojunction system is one of the most feasible approaches to facilitate the separation and transfer of photogenerated charge carriers and obtain powerful photoredox capabilities for boosting photocatalytic performance. Herein, a zero-dimensional/one-dimensional S-scheme heterojunction composed of CdSe quantum dots and polymeric carbon nitride nanorods (CdSe/CN) is created and constructed via a linker-assisted hybridization approach. The CdSe/CN composites exhibit superior photocatalytic activity in water splitting and promoted carbon dioxide conversion performance compared with CN nanorods and CdSe quantum dots. The best efficiency in photocatalytic water splitting (10.2% apparent quantum yield at 420 nm irradiation, 20.1 mmol g−1 h−1 hydrogen evolution rate) and CO2 reduction (0.77 mmol g−1 h−1 CO production rate) was achieved by 5%CdSe/CN composites. The significantly improved photocatalytic reactivity of CdSe/CN composites primarily originates from the emergence of an internal electric field in the zero-dimensional/one-dimensional S-scheme heterojunction, which could greatly improve the photoinduced charge-carrier separation. This work underlines the possibility of employing polymeric carbon nitride nanostructures as appropriate platforms to establish highly active S-scheme heterojunction photocatalysts for solar fuel production.
Collapse
Affiliation(s)
- Yayun Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Haotian Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Mingwen Zhang
- Fujian Provincial Key Lab of Coastal Basin Environment, School of Materials and Environment Engineering, Fujian Polytechnic Normal University, Fuzhou 350300, China
| | - Yun Zheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
114
|
Castro G, Valente JS, Galván M, Ireta J. Activated layered double hydroxides: assessing the surface anion basicity and its connection with the catalytic activity in the cyanoethylation of alcohols. Phys Chem Chem Phys 2022; 24:23507-23516. [PMID: 36129120 DOI: 10.1039/d2cp02704f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Layered double hydroxides (LDHs) act as catalysts in several reactions like in the cyanoethylation of alcohols with acrylonitrile to produce alkoxypropionitriles. Here we report an experimental and theoretical study in which it is shown that the experimental catalytic activity of LDHs in the cyanoethylation of 2-propanol and methanol correlates with the predicted strength of the basicity of the adsorbed surface species. First, it is shown that using activated LDHs containing Mg2+ and Al3+ (MgAl-LDH), Mg2+ and Ga3+ (MgGa-LDH), and Mg2+, Al3+ and Ga3+ (MgAlGa-LDH) great conversions to alkoxypropionitriles in high yields are obtained. Next, the basicity of these LDHs is estimated by means of the local softness, a local reactivity index calculated using density functional theory and appropriate surface models. For that, the adsorption of hydroxide and methoxide anions at the (001) surface of MgAl and MgGa-LDHs is investigated. We include LDHs containing Zn2+ and Al3+ (ZnAl-LDH) and Zn2+ and Ga3+ (ZnGa-LDH) in this part of the study to account for the effect of changing the divalent and trivalent metal composition on the basicity. It is found that hydroxide anions adsorbed on the MgGa-LDH surface and methoxide anions adsorbed on the MgAl-LDH surface are the most basic ones. This basicity trend correlates with our experimental findings about the catalytic activity of the activated LDHs. Further analyzing the connection between the LDH composition and the anion basicity, it is argued that the key steps dictating the LDH catalytic activity are the alcohol deprotonation in the cyanoethylation of 2-propanol, as it has been previously suggested, and the methoxide anion attack to the acrylonitrile double bond in the methanol cyanoethylation reaction.
Collapse
Affiliation(s)
- Guadalupe Castro
- Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, CP 09310, Ciudad de México, Mexico.
| | - Jaime S Valente
- Instituto Mexicano del Petróleo, CP 07730, Ciudad de México, Mexico
| | - Marcelo Galván
- Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, CP 09310, Ciudad de México, Mexico.
| | - Joel Ireta
- Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, CP 09310, Ciudad de México, Mexico.
| |
Collapse
|
115
|
Cox SJ. A theory for the stabilization of polar crystal surfaces by a liquid environment. J Chem Phys 2022; 157:094701. [PMID: 36075740 DOI: 10.1063/5.0097531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polar crystal surfaces play an important role in the functionality of many materials and have been studied extensively over many decades. In this article, a theoretical framework is presented that extends existing theories by placing the surrounding solution environment on an equal footing with the crystal itself; this is advantageous, e.g., when considering processes such as crystal growth from solution. By considering the polar crystal as a stack of parallel plate capacitors immersed in a solution environment, the equilibrium adsorbed surface charge density is derived by minimizing the free energy of the system. In analogy to the well-known diverging surface energy of a polar crystal surface at zero temperature, for a crystal in solution it is shown that the "polar catastrophe" manifests as a diverging free energy cost to perturb the system from equilibrium. Going further than existing theories, the present formulation predicts that fluctuations in the adsorbed surface charge density become increasingly suppressed with increasing crystal thickness. We also show how, in the slab geometry often employed in both theoretical and computational studies of interfaces, an electric displacement field emerges as an electrostatic boundary condition, the origins of which are rooted in the slab geometry itself, rather than the use of periodic boundary conditions. This aspect of the work provides a firmer theoretical basis for the recent observation that standard "slab corrections" fail to correctly describe, even qualitatively, polar crystal surfaces in solution.
Collapse
Affiliation(s)
- Stephen J Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
116
|
Chen MF, Chen Y, Jia Lim Z, Wah Wong M. Adsorption of Imidazolium-Based Ionic Liquids on the Fe(100) Surface for Corrosion Inhibition: Physisorption or Chemisorption? J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
117
|
Persulfate activation by copper tailings with hydroxylamine: efficiency, mechanism and DFT calculations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
118
|
Bao N, Gold JI, Sheavly JK, Schauer JJ, Zavala VM, Van Lehn RC, Mavrikakis M, Abbott NL. Ordering Transitions of Liquid Crystals Triggered by Metal Oxide-catalyzed Reactions of Sulfur Oxide Species. J Am Chem Soc 2022; 144:16378-16388. [PMID: 36047705 DOI: 10.1021/jacs.2c03424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liquid crystals (LCs), when supported on reactive surfaces, undergo changes in ordering that can propagate over distances of micrometers, thus providing a general and facile mechanism to amplify atomic-scale transformations on surfaces into the optical scale. While reactions on organic and metal substrates have been coupled to LC-ordering transitions, metal oxide substrates, which offer unique catalytic activities for reactions involving atmospherically important chemical species such as oxidized sulfur species, have not been explored. Here, we investigate this opportunity by designing LCs that contain 4'-cyanobiphenyl-4-carboxylic acid (CBCA) and respond to surface reactions triggered by parts-per-billion concentrations of SO2 gas on anatase (101) substrates. We used electronic structure calculations to predict that the carboxylic acid group of CBCA binds strongly to anatase (101) in a perpendicular orientation, a prediction that we validated in experiments in which CBCA (0.005 mol %) was doped into an LC (4'-n-pentyl-4-biphenylcarbonitrile). Both experiment and computational modeling further demonstrated that SO3-like species, produced by a surface-catalyzed reaction of SO2 with H2O on anatase (101), displace CBCA from the anatase surface, resulting in an orientational transition of the LC. Experiments also reveal the LC response to be highly selective to SO2 over other atmospheric chemical species (including H2O, NH3, H2S, and NO2), in agreement with our computational predictions for anatase (101) surfaces. Overall, we establish that the catalytic activities of metal oxide surfaces offer the basis of a new class of substrates that trigger LCs to undergo ordering transitions in response to chemical species of relevance to atmospheric chemistry.
Collapse
Affiliation(s)
- Nanqi Bao
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jake I Gold
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jonathan K Sheavly
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - James J Schauer
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Victor M Zavala
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
119
|
Peng J, Li C, Dong H, Wu F. Intrinsic type-II van der Waals heterostructures based on graphdiyne and XSSe (X = Mo, W): a first-principles study. Phys Chem Chem Phys 2022; 24:21331-21336. [PMID: 36043389 DOI: 10.1039/d2cp02801h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Typical transition-metal dichalcogenides (TMDs) and graphdiyne (GDY) often form type-I heterojunctions, which will limit their applications in optoelectronic devices. Here, type-II heterojunctions based on GDY and TMDs are constructed by introducing Janus structures. An intrinsic type-II heterojunction is presented when the GDY is in contact with a Se-terminated layer, but a type-I heterojunction would appear when it is in contact with the S-terminated surface. Such a difference in band alignment can be attributed to the interaction between the dipole moment formed by the Janus structure and the graphdiyne layer. Furthermore, for heterojunctions in contact with the S-terminated layer, they can be converted into type-II heterojunctions by a small external electric field (for WSSe, only 0.05 V A-1 is required). This approach can suggest a convenient design strategy for the application of graphdiyne in a wider range of applications.
Collapse
Affiliation(s)
- Junhao Peng
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Chuyu Li
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Huafeng Dong
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China. .,Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Fugen Wu
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China.,School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
120
|
Santos-Carballal D, de Leeuw NH. Catalytic formation of oxalic acid on the partially oxidised greigite Fe 3S 4(001) surface. Phys Chem Chem Phys 2022; 24:20104-20124. [PMID: 35983830 DOI: 10.1039/d2cp00333c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Greigite (Fe3S4), with its ferredoxin-like 4Fe-4S redox centres, is a naturally occurring mineral capable of acting as a catalyst in the conversion of carbon dioxide (CO2) into low molecular-weight organic acids (LMWOAs), which are of paramount significance in several soil and plant processes as well as in the chemical industry. In this paper, we report the reaction between CO2 and water (H2O) to form oxalic acid (H2C2O4) on the partially oxidised greigite Fe3S4(001) surface by means of spin-polarised density functional theory calculations with on-site Coulomb corrections and long-range dispersion interactions (DFT+U-D2). We have calculated the bulk phase of Fe3S4 and the two reconstructed Tasker type 3 terminations of its (001) surface, whose properties are in good agreement with available experimental data. We have obtained the relevant phase diagram, showing that the Fe3S4(001) surface becomes 62.5% partially oxidised, by replacing S by O atoms, in the presence of water at the typical conditions of calcination [Mitchell et al. Faraday Discuss. 2021, 230, 30-51]. The adsorption and co-adsorption of the reactants on the partially oxidised Fe3S4(001) surface are exothermic processes. We have considered three mechanistic pathways to explain the formation of H2C2O4, showing that the coupling of the C-C bond and second protonation are the elementary steps with the largest energy penalty. Our calculations suggest that the partially oxidised Fe3S4(001) surface is a mineral phase that can catalyse the formation of H2C2O4 under favourable conditions, which has important implications for natural ecosystems and is a process that can be harnessed for the industrial manufacture of this organic acid.
Collapse
Affiliation(s)
| | - Nora H de Leeuw
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK. .,Department of Earth Sciences, Utrecht University, Princetonplein 8A, 3584 CD Utrecht, The Netherlands.
| |
Collapse
|
121
|
Bhateja Y, Ghosh R, Sponer J, Majumdar S, Cassone G. A Cr 2O 3-doped graphene sensor for early diagnosis of liver cirrhosis: a first-principles study. Phys Chem Chem Phys 2022; 24:21372-21380. [PMID: 36043859 DOI: 10.1039/d2cp01793h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liver cirrhosis is among the leading causes of death worldwide. Because of its asymptomatic evolution, timely diagnosis of liver cirrhosis via non-invasive techniques is currently under investigation. Among the diagnostic methods employing volatile organic compounds directly detectable from breath, sensing of limonene (C10H16) represents one of the most promising strategies for diagnosing alcohol liver diseases, including cirrhosis. In the present work, by means of state-of-the-art Density Functional Theory calculations including the U correction, we present an investigation on the sensing capabilities of a chromium-oxide-doped graphene (i.e., Cr2O3-graphene) structure toward limonene detection. In contrast with other structures such as g-triazobenzol (g-C6N6) monolayers and germanane, which revealed their usefulness in detecting limonene via physisorption, the proposed Cr2O3-graphene heterostructure is capable of undergoing chemisorption upon molecular approaching of limonene over its surface. In fact, a high adsorption energy is recorded (∼-1.6 eV). Besides, a positive Moss-Burstein effect is observed upon adsorption of limomene on the Cr2O3-graphene heterostructure, resulting in a net increase of the bandgap (∼50%), along with a sizeable shift of the Fermi level toward the conduction band. These findings pave the way toward the experimental validation of such predictions and the employment of Cr2O3-graphene heterostructures as sensors of key liver cirrhosis biomarkers.
Collapse
Affiliation(s)
- Yuvam Bhateja
- Dept. of Physics, Politecnico Di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy.
| | - Ritam Ghosh
- Nil Ratan Sircar Medical College and Hospital, Raja Bazar 138, 700014 Kolkata, India
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czechia
| | - Sanhita Majumdar
- Center of Excellence for Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Botanical Garden Road, 711103 Howrah, India.
| | - Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council of Italy, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy.
| |
Collapse
|
122
|
Patra KK, Liu Z, Lee H, Hong S, Song H, Abbas HG, Kwon Y, Ringe S, Oh J. Boosting Electrochemical CO 2 Reduction to Methane via Tuning Oxygen Vacancy Concentration and Surface Termination on a Copper/Ceria Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kshirodra Kumar Patra
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
- Catalysis Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Zhu Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Hojeong Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seungwon Hong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hakhyeon Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hafiz Ghulam Abbas
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Youngkook Kwon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Stefan Ringe
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jihun Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
123
|
Westermayr J, Chaudhuri S, Jeindl A, Hofmann OT, Maurer RJ. Long-range dispersion-inclusive machine learning potentials for structure search and optimization of hybrid organic-inorganic interfaces. DIGITAL DISCOVERY 2022; 1:463-475. [PMID: 36091414 PMCID: PMC9358753 DOI: 10.1039/d2dd00016d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/03/2022] [Indexed: 12/16/2022]
Abstract
The computational prediction of the structure and stability of hybrid organic-inorganic interfaces provides important insights into the measurable properties of electronic thin film devices, coatings, and catalyst surfaces and plays an important role in their rational design. However, the rich diversity of molecular configurations and the important role of long-range interactions in such systems make it difficult to use machine learning (ML) potentials to facilitate structure exploration that otherwise requires computationally expensive electronic structure calculations. We present an ML approach that enables fast, yet accurate, structure optimizations by combining two different types of deep neural networks trained on high-level electronic structure data. The first model is a short-ranged interatomic ML potential trained on local energies and forces, while the second is an ML model of effective atomic volumes derived from atoms-in-molecules partitioning. The latter can be used to connect short-range potentials to well-established density-dependent long-range dispersion correction methods. For two systems, specifically gold nanoclusters on diamond (110) surfaces and organic π-conjugated molecules on silver (111) surfaces, we train models on sparse structure relaxation data from density functional theory and show the ability of the models to deliver highly efficient structure optimizations and semi-quantitative energy predictions of adsorption structures.
Collapse
Affiliation(s)
- Julia Westermayr
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Shayantan Chaudhuri
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Centre for Doctoral Training in Diamond Science and Technology, University of Warwick Coventry CV4 7AL UK
| | - Andreas Jeindl
- Institute of Solid State Physics, Graz University of Technology 8010 Graz Austria
| | - Oliver T Hofmann
- Institute of Solid State Physics, Graz University of Technology 8010 Graz Austria
| | | |
Collapse
|
124
|
Skachkov D, Liu SL, Chen J, Christou G, Hebard AF, Zhang XG, Trickey SB, Cheng HP. Dipole Switching by Intramolecular Electron Transfer in Single-Molecule Magnetic Complex [Mn 12O 12(O 2CR) 16(H 2O) 4]. J Phys Chem A 2022; 126:5265-5272. [PMID: 35939333 DOI: 10.1021/acs.jpca.2c02585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We study intramolecular electron transfer in the single-molecule magnetic complex [Mn12O12(O2CR)16 (H2O)4] for R = -H, -CH3, -CHCl2, -C6H5, and -C6H4F ligands as a mechanism for switching of the molecular dipole moment. Energetics is obtained using the density functional theory (DFT) with onsite Coulomb energy correction (DFT + U). Lattice distortions are found to be critical for localizing an extra electron on one of the easy sites on the outer ring in which localized states can be stabilized. We find that the lowest-energy path for charge transfer is for the electron to go through the center via superexchange-mediated tunneling. The energy barrier for such a path ranges from 0.4 to 54 meV depending on the ligands and the isomeric form of the complex. The electric field strength needed to move the charge from one end to the other, thus reversing the dipole moment, is 0.01-0.04 V/Å.
Collapse
Affiliation(s)
- Dmitry Skachkov
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Shuang-Long Liu
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Jia Chen
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - George Christou
- The M2QM Center, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Arthur F Hebard
- The M2QM Center, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Xiao-Guang Zhang
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Samuel B Trickey
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Hai-Ping Cheng
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
125
|
Dong J, Li Y, Zhou Y, Schwartzman A, Xu H, Azhar B, Bennett J, Li J, Jaramillo R. Giant and Controllable Photoplasticity and Photoelasticity in Compound Semiconductors. PHYSICAL REVIEW LETTERS 2022; 129:065501. [PMID: 36018671 DOI: 10.1103/physrevlett.129.065501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
We show that the wide-band gap compound semiconductors ZnO, ZnS, and CdS feature large photoplastic and photoelastic effects that are mediated by point defects. We measure the mechanical properties of ceramics and single crystals using nanoindentation, and we find that elasticity and plasticity vary strongly with moderate illumination. For instance, the elastic stiffness of ZnO can increase by greater than 40% due to blue illumination of intensity 1.4 mW/cm^{2}. Above-band-gap illumination (e.g., uv light) has the strongest effect, and the relative effect of subband gap illumination varies between samples-a clear sign of defect-mediated processes. We show giant optomechanical effects can be tuned by materials processing, and that processing dependence can be understood within a framework of point defect equilibrium. The photoplastic effect can be understood by a long-established theory of charged dislocation motion. The photoelastic effect requires a new theoretical framework which we present using density functional theory to study the effect of point defect ionization on local lattice structure and elastic tensors. Our results update the longstanding but lesser-studied field of semiconductor optomechanics, and suggest interesting applications.
Collapse
Affiliation(s)
- Jiahao Dong
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yifei Li
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yuying Zhou
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Alan Schwartzman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Haowei Xu
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bilal Azhar
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Joseph Bennett
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | - Ju Li
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - R Jaramillo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
126
|
Bhasker-Ranganath S, Xu Y. Hydrolysis of Acetamide on Low-Index CeO 2 Surfaces: Ceria as a Deamidation and General De-esterification Catalyst. ACS Catal 2022; 12:10222-10234. [PMID: 36033367 PMCID: PMC9397537 DOI: 10.1021/acscatal.2c02514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/12/2022] [Indexed: 11/28/2022]
Abstract
![]()
Using DFT calculations and acetamide as the main example,
we show
that ceria is a potential catalyst for the hydrolysis of amide and
similar bonds. The overall reaction is endergonic in the gas phase,
yielding acetic acid and ammonia, but is slightly exergonic in the
aqueous phase, which facilitates ionization of the products (CH3COO– and NH4+). Neighboring
Ce and O sites on the CeO2(111), (110), and (100) facets
are conducive to the formation of an activated metastable tetrahedral
intermediate (TI) complex, followed by C–N bond scission. With
van der Waals and solvation effects taken into account, the overall
reaction energetics is found to be most favorable on the (111) facet
as desorption of acetic acid is much more uphill energetically on
(110) and (100). We further suggest that the Ce–O–Ce
sites on ceria surfaces can activate X(=Y)–Z type bonds
in amides, amidines, and carboxylate and phosphate esters, among many
others that we term “generalized esters”. A Brønsted-Evans–Polanyi
relationship is identified correlating the stability of the transition
and final states of the X–Z generalized ester bond scission.
A simple descriptor (ΣΔχ) based on the electronegativity
of the atoms that constitute the bond (X, Y, Z) versus those of the
catalytic site (O, Ce, Ce) captures the trend in the stability of
the transition state of generalized ester bond scission and suggests
a direction for modifying ceria for targeting specific organic substrates.
Collapse
Affiliation(s)
- Suman Bhasker-Ranganath
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Ye Xu
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
127
|
Apergi S, Koch C, Brocks G, Olthof S, Tao S. Decomposition of Organic Perovskite Precursors on MoO 3: Role of Halogen and Surface Defects. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34208-34219. [PMID: 35107986 PMCID: PMC9353771 DOI: 10.1021/acsami.1c20847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the rapid progress in perovskite solar cells, their commercialization is still hindered by issues regarding long-term stability, which can be strongly affected by metal oxide-based charge extraction layers next to the perovskite material. With MoO3 being one of the most successful hole transport layers in organic photovoltaics, the disastrous results of its combination with perovskite films came as a surprise but was soon attributed to severe chemical instability at the MoO3/perovskite interface. To discover the atomistic origin of this instability, we combine density functional theory (DFT) calculations and X-ray photoelectron spectroscopy (XPS) measurements to investigate the interaction of MoO3 with the perovskite precursors MAI, MABr, FAI, and FABr. From DFT calculations we suggest a scenario that is based upon oxygen vacancies playing a key role in interface degradation reactions. Not only do these vacancies promote decomposition reactions of perovskite precursors, but they also constitute the reaction centers for redox reactions leading to oxidation of the halides and reduction of Mo. Specifically iodides are proposed to be reactive, while bromides do not significantly affect the oxide. XPS measurements reveal a severe reduction of Mo and a loss of the halide species when the oxide is interfaced with I-containing precursors, which is consistent with the proposed scenario. In line with the latter, experimentally observed effects are much less pronounced in case of Br-containing precursors. We further find that the reactivity of the MoO3 substrate can be moderated by reducing the number of oxygen vacancies through a UV/ozone treatment, though it cannot be fully eliminated.
Collapse
Affiliation(s)
- Sofia Apergi
- Materials
Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Center
for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Christine Koch
- Department
of Chemistry, University of Cologne, Greinstraße 4-6, 50939 Cologne, Germany
| | - Geert Brocks
- Materials
Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Center
for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Computational
Materials Science, Faculty of Science and Technology and MESA+, Institute
for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Selina Olthof
- Department
of Chemistry, University of Cologne, Greinstraße 4-6, 50939 Cologne, Germany
| | - Shuxia Tao
- Materials
Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Center
for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
128
|
Eshete YA, Kang K, Kang S, Kim Y, Nguyen PL, Cho DY, Kim Y, Lee J, Cho S, Yang H. Atomic and Electronic Manipulation of Robust Ferroelectric Polymorphs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202633. [PMID: 35730715 DOI: 10.1002/adma.202202633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Polymorphism allows the symmetry of the lattice and spatial charge distributions of atomically thin materials to be designed. While various polymorphs for superconducting, magnetic, and topological states have been extensively studied, polymorphic control is a challenge for robust ferroelectricity in atomically thin geometries. Here, the atomic and electric manipulation of ferroelectric polymorphs in Mo1- x Wx Te2 is reported. Atomic manipulation for polymorphic control via chemical pressure (substituting tungsten for molybdenum atoms) and charge density modulation can realize tunable polar lattice structures and robust ferroelectricity up to T = 400 K with a constant coercive field in an atomically thin material. Owing to the effective inversion symmetry breaking, the ferroelectric switching withstands a charge carrier density of up to 1.1 × 1013 cm-2 , developing an original diagram for ferroelectric switching in atomically thin materials.
Collapse
Affiliation(s)
| | - Kyungrok Kang
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Seunghun Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yejin Kim
- IPIT and Department of Physics, Jeonbuk National University, Jeonju, 54896, Korea
| | | | - Deok-Yong Cho
- IPIT and Department of Physics, Jeonbuk National University, Jeonju, 54896, Korea
| | - Yunseok Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Jaekwang Lee
- Department of Physics, Pusan National University, Busan, 46241, Korea
| | - Suyeon Cho
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, ELTEC College of Engineering, Ewha Womans University, Seoul, 03760, Korea
| | - Heejun Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| |
Collapse
|
129
|
Theoretical insights into the oxygen supply performance of α-Fe2O3 in the chemical-looping reforming of methane. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
130
|
Yuan X, Liu X. g-C 3N 4/TiO 2-B{100} heterostructures used as promising photocatalysts for water splitting from a hybrid density functional study. Phys Chem Chem Phys 2022; 24:17703-17715. [PMID: 35838206 DOI: 10.1039/d2cp01507b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fabrication of heterostructures has been shown to be a good strategy to improve photocatalytic performance. By using first-principles calculation based on hybrid density functionals, the photocatalytic mechanism of g-C3N4/TiO2-B{100} heterostructures is investigated to understand the process of water decomposition. We find that the reduction of the band gap of g-C3N4/TiO2-B{100} heterostructures enhances the visible light response range. g-C3N4/TiO2-B{100} heterostructures have direct band gaps, staggered band alignment, electron flow from g-C3N4 to TiO2-B{100} surfaces and straddling water decomposition potential, and are potential Z-scheme photocatalysts. Photoinduced carriers can be effectively separated using the Z-scheme photocatalytic mechanism. Our results demonstrate that g-C3N4/TiO2-B{100} heterostructures can enhance light absorption, prolong the life of photoinduced carriers, and further improve the photocatalytic activity. We believe that our findings can provide a reference for explaining the enhancement mechanism of the g-C3N4/TiO2 photocatalyst as observed in the experiment.
Collapse
Affiliation(s)
- Xiaojia Yuan
- Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun, 130117, China.
| | - Xiaojie Liu
- Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun, 130117, China. .,Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Educations, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
131
|
Haags A, Yang X, Egger L, Brandstetter D, Kirschner H, Bocquet FC, Koller G, Gottwald A, Richter M, Gottfried JM, Ramsey MG, Puschnig P, Soubatch S, Tautz FS. Momentum space imaging of σ orbitals for chemical analysis. SCIENCE ADVANCES 2022; 8:eabn0819. [PMID: 35867796 PMCID: PMC9307240 DOI: 10.1126/sciadv.abn0819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Tracing the modifications of molecules in surface chemical reactions benefits from the possibility to image their orbitals. While delocalized frontier orbitals with π character are imaged routinely with photoemission orbital tomography, they are not always sensitive to local chemical modifications, particularly the making and breaking of bonds at the molecular periphery. For such bonds, σ orbitals would be far more revealing. Here, we show that these orbitals can indeed be imaged in a remarkably broad energy range and that the plane wave approximation, an important ingredient of photoemission orbital tomography, is also well fulfilled for these orbitals. This makes photoemission orbital tomography a unique tool for the detailed analysis of surface chemical reactions. We demonstrate this by identifying the reaction product of a dehalogenation and cyclodehydrogenation reaction.
Collapse
Affiliation(s)
- Anja Haags
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany
- Experimentalphysik IV A, RWTH Aachen University, Aachen, Germany
| | - Xiaosheng Yang
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany
- Experimentalphysik IV A, RWTH Aachen University, Aachen, Germany
| | - Larissa Egger
- Institut für Physik, Karl-Franzens-Universität Graz, NAWI Graz, Graz, Austria
| | | | - Hans Kirschner
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - François C. Bocquet
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany
| | - Georg Koller
- Institut für Physik, Karl-Franzens-Universität Graz, NAWI Graz, Graz, Austria
| | | | - Mathias Richter
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | | | - Michael G. Ramsey
- Institut für Physik, Karl-Franzens-Universität Graz, NAWI Graz, Graz, Austria
| | - Peter Puschnig
- Institut für Physik, Karl-Franzens-Universität Graz, NAWI Graz, Graz, Austria
| | - Serguei Soubatch
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany
| | - F. Stefan Tautz
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany
- Experimentalphysik IV A, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
132
|
Arcudia J, Emrem B, Heine T, Merino G. The structural and electronic richness of buckled honeycomb AsP bilayers. NANOSCALE 2022; 14:10136-10142. [PMID: 35796078 DOI: 10.1039/d1nr08433j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The sixteen different high-symmetry stacking configurations in buckled honeycomb AsP bilayers were identified using block diagrams and studied through several high-level computations, including the adiabatic-connection fluctuation-dissipation theorem in the random phase approximation (ACFDT-RPA). The lowest-lying energy form is an AA-type stacking, which is an indirect bandgap semiconductor, according to the G0W0 approach. All bilayers are indirect wide bandgap semiconductors, except for two systems, a narrow bandgap semiconductor and one with metallic behavior. This study shows the richness of structural and electronic properties in AsP hetero-bilayers with configurations found over a broad spectrum of interlayer distances and bandgaps.
Collapse
Affiliation(s)
- Jessica Arcudia
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Antigua carretera a Progreso Km 6, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - Birkan Emrem
- Technische Universität Dresden, Fakultät für Chemie und Lebensmittelchemie, Bergstraße 66c, 01062 Dresden, Germany.
| | - Thomas Heine
- Technische Universität Dresden, Fakultät für Chemie und Lebensmittelchemie, Bergstraße 66c, 01062 Dresden, Germany.
- Helmholtz Zentrum Dresden-Rossendorf, Leipzig Research Branch, Permoserstr 15, 04318 Leipzig, Germany
- Department of Chemisytry, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Antigua carretera a Progreso Km 6, Cordemex, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
133
|
Lorber K, Zavašnik J, Arčon I, Huš M, Teržan J, Likozar B, Djinović P. CO 2 Activation over Nanoshaped CeO 2 Decorated with Nickel for Low-Temperature Methane Dry Reforming. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31862-31878. [PMID: 35801412 PMCID: PMC9305712 DOI: 10.1021/acsami.2c05221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dry reforming of methane (DRM) is a promising way to convert methane and carbon dioxide into H2 and CO (syngas). CeO2 nanorods, nanocubes, and nanospheres were decorated with 1-4 wt % Ni. The materials were structurally characterized using TEM and in situ XANES/EXAFS. The CO2 activation was analyzed by DFT and temperature-programmed techniques combined with MS-DRIFTS. Synthesized CeO2 morphologies expose {111} and {100} terminating facets, varying the strength of the CO2 interaction and redox properties, which influence the CO2 activation. Temperature-programmed CO2 DRIFTS analysis revealed that under hydrogen-lean conditions mono- and bidentate carbonates are hydrogenated to formate intermediates, which decompose to H2O and CO. In excess hydrogen, methane is the preferred reaction product. The CeO2 cubes favor the formation of a polydentate carbonate species, which is an inert spectator during DRM at 500 °C. Polydentate covers a considerable fraction of ceria's surface, resulting in less-abundant surface sites for CO2 dissociation.
Collapse
Affiliation(s)
- Kristijan Lorber
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- University
of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Janez Zavašnik
- Jožef
Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Iztok Arčon
- University
of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
- Jožef
Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Matej Huš
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Association
for Technical Culture (ZOTKS), Zaloška 65, 1000 Ljubljana, Slovenia
| | - Janvit Teržan
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Blaž Likozar
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Petar Djinović
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- University
of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| |
Collapse
|
134
|
Tian Y, Hong J, Cao D, You S, Song Y, Cheng B, Wang Z, Guan D, Liu X, Zhao Z, Li XZ, Xu LM, Guo J, Chen J, Wang EG, Jiang Y. Visualizing Eigen/Zundel cations and their interconversion in monolayer water on metal surfaces. Science 2022; 377:315-319. [DOI: 10.1126/science.abo0823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nature of hydrated proton on solid surfaces is of vital importance in electrochemistry, proton channels, and hydrogen fuel cells but remains unclear because of the lack of atomic-scale characterization. We directly visualized Eigen- and Zundel-type hydrated protons within the hydrogen bonding water network on Au(111) and Pt(111) surfaces, using cryogenic qPlus-based atomic force microscopy under ultrahigh vacuum. We found that the Eigen cations self-assembled into monolayer structures with local order, and the Zundel cations formed long-range ordered structures stabilized by nuclear quantum effects. Two Eigen cations could combine into one Zundel cation accompanied with a simultaneous proton transfer to the surface. Moreover, we revealed that the Zundel configuration was preferred over the Eigen on Pt(111), and such a preference was absent on Au(111).
Collapse
Affiliation(s)
- Ye Tian
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Jiani Hong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Duanyun Cao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Sifan You
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yizhi Song
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Bowei Cheng
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Zhichang Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Dong Guan
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Xinmeng Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Zhengpu Zhao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Xin-Zheng Li
- School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Li-Mei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Jing Guo
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ji Chen
- School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - En-Ge Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
- Songshan Lake Materials Lab, Institute of Physics, CAS and School of Physics, Liaoning University, Shenyang 110036, China
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
135
|
Tunable green syngas generation from CO 2 and H 2O with sunlight as the only energy input. Proc Natl Acad Sci U S A 2022; 119:e2121174119. [PMID: 35727969 DOI: 10.1073/pnas.2121174119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The carbon-neutral synthesis of syngas from CO2 and H2O powered by solar energy holds grand promise for solving critical issues such as global warming and the energy crisis. Here we report photochemical reduction of CO2 with H2O into syngas using core/shell Au@Cr2O3 dual cocatalyst-decorated multistacked InGaN/GaN nanowires (NWs) with sunlight as the only energy input. First-principle density functional theory calculations revealed that Au and Cr2O3 are synergetic in deforming the linear CO2 molecule to a bent state with an O-C-O angle of 116.5°, thus significantly reducing the energy barrier of CO2RR compared with that over a single component of Au or Cr2O3. Hydrogen evolution reaction was promoted by the same cocatalyst simultaneously. By combining the cooperative catalytic properties of Au@Cr2O3 with the distinguished optoelectronic virtues of the multistacked InGaN NW semiconductor, the developed photocatalyst demonstrated high syngas activity of 1.08 mol/gcat/h with widely tunable H2/CO ratios between 1.6 and 9.2 under concentrated solar light illumination. Nearly stoichiometric oxygen was evolved from water splitting at a rate of 0.57 mol/gcat/h, and isotopic testing confirmed that syngas originated from CO2RR. The solar-to-syngas energy efficiency approached 0.89% during overall CO2 reduction coupled with water splitting. The work paves a way for carbon-neutral synthesis of syngas with the sole inputs of CO2, H2O, and solar light.
Collapse
|
136
|
Fogarty RM, Li BX, Harrison NM, Horsfield AP. Structure and interactions at the Mg(0001)/water interface: An ab initio study. J Chem Phys 2022; 156:244702. [DOI: 10.1063/5.0093562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A molecular level understanding of metal/bulk water interface structure is key for a wide range of processes, including aqueous corrosion, which is our focus, but their buried nature makes experimental investigation difficult and we must mainly rely on simulations. We investigate the Mg(0001)/water interface using second generation Car–Parrinello molecular dynamics (MD) to gain structural information, combined with static density functional theory calculations to probe the atomic interactions and electronic structure (e.g., calculating the potential of zero charge). By performing detailed structural analyses of both metal–surface atoms and the near-surface water, we find that, among other insights: (i) water adsorption causes significant surface roughening (the planar distribution for top-layer Mg has two peaks separated by [Formula: see text]), (ii) strongly adsorbed water covers only [Formula: see text] of available surface sites, and (iii) adsorbed water avoids clustering on the surface. Static calculations are used to gain a deeper understanding of the structuring observed in MD. For example, we use an energy decomposition analysis combined with calculated atomic charges to show that adsorbate clustering is unfavorable due to Coulombic repulsion between adsorption site surface atoms. Results are discussed in the context of previous simulations carried out on other metal/water interfaces. The largest differences for the Mg(0001)/water system appear to be the high degree of surface distortion and the minimal difference between the metal work function and metal/water potential of zero charge (at least compared to other interfaces with similar metal–water interaction strengths). The structural information, in this paper, is important for understanding aqueous Mg corrosion, as the Mg(0001)/water interface is the starting point for key reactions. Furthermore, our focus on understanding the driving forces behind this structuring leads to important insights for general metal/water interfaces.
Collapse
Affiliation(s)
- R. M. Fogarty
- Department of Materials and Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - B. X. Li
- Department of Materials and Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - N. M. Harrison
- Department of Materials and Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - A. P. Horsfield
- Department of Materials and Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
137
|
Wan M, Yue H, Notarangelo J, Liu H, Che F. Deep Learning-Assisted Investigation of Electric Field-Dipole Effects on Catalytic Ammonia Synthesis. JACS AU 2022; 2:1338-1349. [PMID: 35783174 PMCID: PMC9241008 DOI: 10.1021/jacsau.2c00003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 05/21/2023]
Abstract
External electric fields can modify binding energies of reactive surface species and enhance catalytic performance of heterogeneously catalyzed reactions. In this work, we used density functional theory (DFT) calculations-assisted and accelerated by a deep learning algorithm-to investigate the extent to which ruthenium-catalyzed ammonia synthesis would benefit from application of such external electric fields. This strategy allows us to determine which electronic properties control a molecule's degree of interaction with external electric fields. Our results show that (1) field-dependent adsorption/reaction energies are closely correlated to the dipole moments of intermediates over the surface, (2) a positive field promotes ammonia synthesis by lowering the overall energetics and decreasing the activation barriers of the potential rate-limiting steps (e.g., NH2 hydrogenation) over Ru, (3) a positive field (>0.6 V/Å) favors the reaction mechanism by avoiding kinetically unfavorable N≡N bond dissociation over Ru(1013), and (4) local adsorption environments (i.e., dipole moments of the intermediates in the gas phase, surface defects, and surface coverage of intermediates) influence the resulting surface adsorbates' dipole moments and further modify field-dependent reaction energetics. The deep learning algorithm developed here accelerates field-dependent energy predictions with acceptable accuracies by five orders of magnitudes compared to DFT alone and has the capacity of transferability, which can predict field-dependent energetics of other catalytic surfaces with high-quality performance using little training data.
Collapse
Affiliation(s)
- Mingyu Wan
- Department
of Chemical Engineering, University of Massachusetts
Lowell, Lowell 01854, United States
| | - Han Yue
- Michtom
School of Computer Science, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Jaime Notarangelo
- Department
of Chemical Engineering, University of Massachusetts
Lowell, Lowell 01854, United States
| | - Hongfu Liu
- Michtom
School of Computer Science, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Fanglin Che
- Department
of Chemical Engineering, University of Massachusetts
Lowell, Lowell 01854, United States
| |
Collapse
|
138
|
Qi R, Zhu B, Han Z, Gao Y. High-Throughput Screening of Stable Single-Atom Catalysts in CO 2 Reduction Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rui Qi
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 China
- University of Chinese Academy of Sciences, Beijing 100049 China
| | - Beien Zhu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 China
- Interdisciplinary Research Center, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China
| | - Zhongkang Han
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Yi Gao
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 China
- Interdisciplinary Research Center, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China
| |
Collapse
|
139
|
Xue Q, Zhong M, Zhou J, Jena P. Rational Design of Endohedral Superhalogens without Using Metal Cations and Electron Counting Rules. J Phys Chem A 2022; 126:3536-3542. [PMID: 35616635 DOI: 10.1021/acs.jpca.2c02530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Superhalogens, predicted 40 years ago, have attracted considerable attention due to their potential as building blocks of novel materials with various applications. While a large number of superhalogen clusters have been theoretically predicted and experimentally synthesized, they either require the use of a metal cation or electron counting rules. In particular, very rare endohedral cage clusters in defiance of the above requirements have been found to be superhalogens. In this work, motivated by recent experimental advances in endohedral cage clusters, we present a rational design principle for creating a new class of such superhalogens. Focusing on the chemical formula of A@Si20X20 (A = F, Cl, Br, I, BH4, BF4; X = H, F, Cl, Br, I, BO, CN, SCN, CH3), we use first-principles calculations to study 54 different clusters and show that these clusters possess electron affinities as high as 8.5 eV. Some of these clusters with X = BO and CN can even be stable as dianions, with large second electron affinity ∼2 eV. Similarly, Cl@C60 is found to be a superhalogen. This class of superhalogens is different from the conventional ones with chemical formula MXk+1, where X is a halogen and M is a cation with a formal +k oxidation state. Interestingly, the electron affinities of A@Si20X20 are almost independent of the central A moiety, but are guided by the functional group X. The potential of these endohedral superhalogens as electrolytes in Li-ion batteries is discussed.
Collapse
Affiliation(s)
- Qianqian Xue
- Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingmin Zhong
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Jian Zhou
- Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Puru Jena
- Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
140
|
Willhelm D, Wilson N, Arroyave R, Qian X, Cagin T, Pachter R, Qian X. Predicting Van der Waals Heterostructures by a Combined Machine Learning and Density Functional Theory Approach. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25907-25919. [PMID: 35622945 DOI: 10.1021/acsami.2c04403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Van der Waals (vdW) heterostructures are constructed by different two-dimensional (2D) monolayers vertically stacked and weakly coupled by van der Waals interactions. VdW heterostructures often possess rich physical and chemical properties that are unique to their constituent monolayers. As many 2D materials have been recently identified, the combinatorial configuration space of vdW-stacked heterostructures grows exceedingly large, making it difficult to explore through traditional experimental or computational approaches in a trial-and-error manner. Here, we present a computational framework that combines first-principles electronic structure calculations, 2D material database, and supervised machine learning methods to construct efficient data-driven models capable of predicting electronic and structural properties of vdW heterostructures from their constituent monolayer properties. We apply this approach to predict the band gap, band edges, interlayer distance, and interlayer binding energy of vdW heterostructures. Our data-driven model will open avenues for efficient screening and discovery of low-dimensional vdW heterostructures and moiré superlattices with desired electronic and optical properties for targeted device applications.
Collapse
Affiliation(s)
- Daniel Willhelm
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Nathan Wilson
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Raymundo Arroyave
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Xiaoning Qian
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Tahir Cagin
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Ruth Pachter
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Xiaofeng Qian
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
141
|
Seyedraoufi S, Berland K. Improved proton-transfer barriers with van der Waals density functionals: Role of repulsive non-local correlation. J Chem Phys 2022; 156:244106. [DOI: 10.1063/5.0095128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proton-transfer (PT) between organic complexes is a common and important biochemical process. Unfortunately, PT energy barriers are difficult to accurately predict using density functional theory (DFT); in particular, using the generalized gradient approximation (GGA) tends to underestimate PT barriers. Moreover, PT typically occurs in environments where dispersion forces contribute to the cohesion of the system; thus, a suitable exchange-correlation functional should accurately describe both dispersion forces and PT barriers. This paper provides benchmark results for the PT barriers of several density functionals including several variants of the van der Waals density functional (vdW-DF).The benchmark set comprises small organic molecules with inter- and intra-molecular PT. The results show that replacing GGA correlation with a fully non-local vdW-DF correlation increases the PT barriers, making it closer to the quantum chemical reference values.In contrast, including non-local correlations with the Vydrov-Voorhis (VV) method or dispersion-corrections at the DFT-D3 or the Tkatchenko-Scheffler (TS) levelhas barely any impact on the PT barriers.Hybrid functionals also increase and improve the energies,resulting in excellent performance of hybrid versions of the van der Waals density functionals vdW-DF-cx and vdW-DF2-B86R. For the formic acid dimer PT system, we analyzed the GGA exchange and non-local correlation contributions. The analysis shows that the repulsive part of the non-local correlation kernel plays a key role in the PT energy barriers predicted with vdW-DF.
Collapse
Affiliation(s)
| | - Kristian Berland
- Department of Mechanical Engineering and Technology Management, NMBU, Norway
| |
Collapse
|
142
|
Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction. Nat Commun 2022; 13:3158. [PMID: 35672315 PMCID: PMC9174297 DOI: 10.1038/s41467-022-30819-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
Electrocatalytic CO2 reduction to value-added hydrocarbon products using metallic copper (Cu) catalysts is a potentially sustainable approach to facilitate carbon neutrality. However, Cu metal suffers from unavoidable and uncontrollable surface reconstruction during electrocatalysis, which can have either adverse or beneficial effects on its electrocatalytic performance. In a break from the current catalyst design path, we propose a strategy guiding the reconstruction process in a favorable direction to improve the performance. Typically, the controlled surface reconstruction is facilely realized using an electrolyte additive, ethylenediamine tetramethylenephosphonic acid, to substantially promote CO2 electroreduction to CH4 for commercial polycrystalline Cu. As a result, a stable CH4 Faradaic efficiency of 64% with a partial current density of 192 mA cm−2, thus enabling an impressive CO2-to-CH4 conversion rate of 0.25 µmol cm−2 s−1, is achieved in an alkaline flow cell. We believe our study will promote the exploration of electrochemical reconstruction and provide a promising route for the discovery of high-performance electrocatalysts. Cu metal suffers from unavoidable and uncontrollable surface reconstruction during electrocatalysis. The authors here guide the reconstruction process in a favorable direction using trace amount of electrolyte additives, promoting CO2 electroreduction to CH4.
Collapse
|
143
|
Shi Y, Elnabawy AO, Gilroy KD, Hood ZD, Chen R, Wang C, Mavrikakis M, Xia Y. Decomposition Kinetics of H2O2 on Pd Nanocrystals with Different Shapes and Surface Strains. ChemCatChem 2022. [DOI: 10.1002/cctc.202200475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yifeng Shi
- Georgia Institute of Technology Chemical and Biomolecular Engineering UNITED STATES
| | - Ahmed O Elnabawy
- University of Wisconsin-Madison Chemical and Biological Engineering UNITED STATES
| | - Kyle D Gilroy
- Georgia Institute of Technology The Wallace H. Coulter Department of Biomedical Engineering UNITED STATES
| | - Zachary D Hood
- Georgia Institute of Technology Chemistry and Biochemistry UNITED STATES
| | - Ruhui Chen
- Georgia Institute of Technology Chemistry and Biochemistry UNITED STATES
| | - Chenxiao Wang
- Georgia Institute of Technology Chemistry and Biochemistry UNITED STATES
| | - Manos Mavrikakis
- University of Wisconsin-Madison Chemical and Biological Engineering UNITED STATES
| | - Younan Xia
- Georgia Institute of Technology Biomedical Engineering 901 Atlantic DriveMoSE 3100J 30332 Atlanta UNITED STATES
| |
Collapse
|
144
|
Electronic Processes at the Carbon-Covered (100) Collector Tungsten Surface. MICROMACHINES 2022; 13:mi13060888. [PMID: 35744502 PMCID: PMC9230544 DOI: 10.3390/mi13060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023]
Abstract
We have performed density functional VASP calculations of a pure and of a carbon-covered (100) tungsten surface under the presence of an electric field E directed away from the surface. Our aim is to answer the question of an increased penetrability of electrons at the collector side of a nanometric tunnel diode when covered by carbon atoms, a purely quantum mechanical effect related to the value of the workfunction Φ. To obtain Φ at a non-zero electric field we have extrapolated back to the electrical surface the straight line representing the linear increase in the potential energy with distance outside the metal-vacuum interface. We have found that under the presence of E the workfunction Φ = Evac − EF of the (100) pure tungsten surface has a minor dependence on E. However, the carbon-covered tungsten (100) surface workfunction Φ(C − W) has a stronger E dependence. Φ(C − W) decreases continuously with the electric field. This decrease is ΔΦ = 0.08 eV when E = 1 V/nm. This ΔΦ is explained by our calculated changes with electric field of the electronic density of both pure and carbon-covered tungsten. The observed phenomena may be relevant to other surfaces of carbon-covered tungsten and may explain the reported collector dependence of current in Scanning Field Emission Microscopy.
Collapse
|
145
|
Rogée L, Wang L, Zhang Y, Cai S, Wang P, Chhowalla M, Ji W, Lau SP. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science 2022; 376:973-978. [PMID: 35617404 DOI: 10.1126/science.abm5734] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Two-dimensional materials with out-of-plane (OOP) ferroelectric and piezoelectric properties are highly desirable for the realization of ultrathin ferro- and piezoelectronic devices. We demonstrate unexpected OOP ferroelectricity and piezoelectricity in untwisted, commensurate, and epitaxial MoS2/WS2 heterobilayers synthesized by scalable one-step chemical vapor deposition. We show d33 piezoelectric constants of 1.95 to 2.09 picometers per volt that are larger than the natural OOP piezoelectric constant of monolayer In2Se3 by a factor of ~6. We demonstrate the modulation of tunneling current by about three orders of magnitude in ferroelectric tunnel junction devices by changing the polarization state of MoS2/WS2 heterobilayers. Our results are consistent with density functional theory, which shows that both symmetry breaking and interlayer sliding give rise to the unexpected properties without the need for invoking twist angles or moiré domains.
Collapse
Affiliation(s)
- Lukas Rogée
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Lvjin Wang
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Renmin University of China, Beijing 100872, P. R. China
| | - Yi Zhang
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Songhua Cai
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Peng Wang
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Manish Chhowalla
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Wei Ji
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Renmin University of China, Beijing 100872, P. R. China
| | - Shu Ping Lau
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
146
|
Osiecki JR, Suto S, Chutia A. Periodic corner holes on the Si(111)-7×7 surface can trap silver atoms. Nat Commun 2022; 13:2973. [PMID: 35624114 PMCID: PMC9142567 DOI: 10.1038/s41467-022-29768-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 03/29/2022] [Indexed: 11/09/2022] Open
Abstract
Advancement in nanotechnology to a large extent depends on the ability to manipulate materials at the atomistic level, including positioning single atoms on the active sites of the surfaces of interest, promoting strong chemical bonding. Here, we report a long-time confinement of a single Ag atom inside a corner hole (CH) of the technologically relevant Si(111)-7×7 surface, which has comparable size as a fullerene C60 molecule with a single dangling bond at the bottom center. Experiments reveal that a set of 17 Ag atoms stays entrapped in the CH for the entire duration of experiment, 4 days and 7 h. Warming up the surface to about 150 °C degrees forces the Ag atoms out of the CH within a few minutes. The processes of entrapment and diffusion are temperature dependent. Theoretical calculations based on density functional theory support the experimental results confirming the highest adsorption energy at the CH for the Ag atom, and suggest that other elements such as Li, Na, Cu, Au, F and I may display similar behavior. The capability of atomic manipulation at room temperature makes this effect particularly attractive for building single atom devices and possibly developing new engineering and nano-manufacturing methods. Positioning and trapping single atoms at specific sites of surfaces is a challenging goal that can advance the development of single atom devices. Here the authors demonstrate that single Ag atoms are trapped inside corner holes of the Si(111)-7×7 surface for more than 4 days at room temperature, and suggest that this behavior may be shared by other elements.
Collapse
Affiliation(s)
- Jacek R Osiecki
- MAX IV Laboratory, Lund University, SE22100, Lund, Sweden. .,Department of Physics, Tohoku University, Sendai, 980-8578, Japan.
| | - Shozo Suto
- Department of Physics, Tohoku University, Sendai, 980-8578, Japan.
| | - Arunabhiram Chutia
- School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, United Kingdom.
| |
Collapse
|
147
|
Say Z, Kaya M, Kaderoğlu Ç, Koçak Y, Ercan KE, Sika-Nartey AT, Jalal A, Turk AA, Langhammer C, Jahangirzadeh Varjovi M, Durgun E, Ozensoy E. Unraveling Molecular Fingerprints of Catalytic Sulfur Poisoning at the Nanometer Scale with Near-Field Infrared Spectroscopy. J Am Chem Soc 2022; 144:8848-8860. [PMID: 35486918 PMCID: PMC9121382 DOI: 10.1021/jacs.2c03088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 11/28/2022]
Abstract
Fundamental understanding of catalytic deactivation phenomena such as sulfur poisoning occurring on metal/metal-oxide interfaces is essential for the development of high-performance heterogeneous catalysts with extended lifetimes. Unambiguous identification of catalytic poisoning species requires experimental methods simultaneously delivering accurate information regarding adsorption sites and adsorption geometries of adsorbates with nanometer-scale spatial resolution, as well as their detailed chemical structure and surface functional groups. However, to date, it has not been possible to study catalytic sulfur poisoning of metal/metal-oxide interfaces at the nanometer scale without sacrificing chemical definition. Here, we demonstrate that near-field nano-infrared spectroscopy can effectively identify the chemical nature, adsorption sites, and adsorption geometries of sulfur-based catalytic poisons on a Pd(nanodisk)/Al2O3 (thin-film) planar model catalyst surface at the nanometer scale. The current results reveal striking variations in the nature of sulfate species from one nanoparticle to another, vast alterations of sulfur poisoning on a single Pd nanoparticle as well as at the assortment of sulfate species at the active metal-metal-oxide support interfacial sites. These findings provide critical molecular-level insights crucial for the development of long-lifetime precious metal catalysts resistant toward deactivation by sulfur.
Collapse
Affiliation(s)
- Zafer Say
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06510 Ankara, Turkey
- Department
of Physics, Chalmers University of Technology, SE-412-96 Gothenburg, Sweden
| | - Melike Kaya
- Institute
of Acceleration Technologies, Ankara University, 06830 Ankara, Turkey
- Turkish
Accelerator and Radiation Laboratory (TARLA), 06830 Ankara, Turkey
| | - Çağıl Kaderoğlu
- Turkish
Accelerator and Radiation Laboratory (TARLA), 06830 Ankara, Turkey
- Department
of Physics Engineering, Ankara University, 06100 Ankara, Turkey
| | - Yusuf Koçak
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Kerem Emre Ercan
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | | | - Ahsan Jalal
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Ahmet Arda Turk
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Christoph Langhammer
- Department
of Physics, Chalmers University of Technology, SE-412-96 Gothenburg, Sweden
| | | | - Engin Durgun
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Bilkent, Ankara, Turkey
| | - Emrah Ozensoy
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Bilkent, Ankara, Turkey
| |
Collapse
|
148
|
Ni X, Li H, Brédas JL. Organic self-assembled monolayers on superconducting NbSe 2: interfacial electronic structure and energetics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:294003. [PMID: 35483349 DOI: 10.1088/1361-648x/ac6b75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
While organic self-assembled monolayers (SAMs) have been widely used to modify the work function of metal and metal-oxide surfaces, their application to tune the critical temperature of a superconductor has only been considered recently when SAMs were deposited on NbSe2monolayers (Calavalle et al 2021Nano Lett.21136-143). Here, we describe the results of density functional theory calculations performed on the experimentally reported organic/NbSe2systems. Our objectives are: (i) to determine how the organic layers impact the NbSe2work function and electronic density of states; (ii) to understand the possible correlation with the experimental variations in superconducting behavior upon SAM deposition. We find that, upon adsorption of the organic monolayers, the work-function modulation induced by the SAM and interface dipoles is consistent with the experimental results. However, there occurs no significant difference in the electronic density of states near the Fermi level, a consequence of the absence of any charge transfer across the organic/NbSe2interfaces. Therefore, our results indicate that it is not a SAM-induced tuning of the NbSe2density of states near the Fermi level that leads to the tuning of the superconducting critical temperature. This calls for further explorations, both experimentally and theoretically, of the mechanism underlying the superconducting critical temperature variation upon formation of SAM/NbSe2interfaces.
Collapse
Affiliation(s)
- Xiaojuan Ni
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0088, United States of America
| | - Hong Li
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0088, United States of America
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0088, United States of America
| |
Collapse
|
149
|
Berger R, Jeindl A, Hörmann L, Hofmann OT. Role of Adatoms for the Adsorption of F4TCNQ on Au(111). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:7718-7727. [PMID: 35558824 PMCID: PMC9082607 DOI: 10.1021/acs.jpcc.2c00994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Organic adlayers on inorganic substrates often contain adatoms, which can be incorporated within the adsorbed molecular species, forming two-dimensional metal-organic frameworks at the substrate surface. The interplay between native adatoms and adsorbed molecules significantly changes various adlayer properties such as the adsorption geometry, the bond strength between the substrate and the adsorbed species, or the work function at the interface. Here, we use dispersion-corrected density functional theory to gain insight into the energetics that drive the incorporation of native adatoms within molecular adlayers based on the prototypical, experimentally well-characterized system of F4TCNQ on Au(111). We explain the adatom-induced modifications in the adsorption geometry and the adsorption energy based on the electronic structure and charge transfer at the interface.
Collapse
Affiliation(s)
- Richard
K. Berger
- Institute of Solid State Physics, Graz University of Technology, 8010 Graz, Austria
| | - Andreas Jeindl
- Institute of Solid State Physics, Graz University of Technology, 8010 Graz, Austria
| | - Lukas Hörmann
- Institute of Solid State Physics, Graz University of Technology, 8010 Graz, Austria
| | - Oliver T. Hofmann
- Institute of Solid State Physics, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
150
|
Niman JW, Kamerin BS, Villers TH, Linker TM, Nakano A, Kresin VV. Probing the presence and absence of metal-fullerene electron transfer reactions in helium nanodroplets by deflection measurements. Phys Chem Chem Phys 2022; 24:10378-10383. [PMID: 35438706 DOI: 10.1039/d2cp00751g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-fullerene compounds are characterized by significant electron transfer to the fullerene cage, giving rise to an electric dipole moment. We use the method of electrostatic beam deflection to verify whether such reactions take place within superfluid helium nanodroplets between an embedded C60 molecule and either alkali (heliophobic) or rare-earth (heliophilic) atoms. The two cases lead to distinctly different outcomes: C60Nan (n = 1-4) display no discernable dipole moment, while C60Yb is strongly polar. This suggests that the fullerene and small alkali clusters fail to form a charge-transfer bond in the helium matrix despite their strong van der Waals attraction. The C60Yb dipole moment, on the other hand, is in agreement with the value expected for an ionic complex.
Collapse
Affiliation(s)
- John W Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA.
| | - Benjamin S Kamerin
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA.
| | - Thomas H Villers
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA.
| | - Thomas M Linker
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
| | - Aiichiro Nakano
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
| | - Vitaly V Kresin
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA.
| |
Collapse
|