101
|
Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev SI. Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. PHOTOSYNTHESIS RESEARCH 2015; 126:449-63. [PMID: 25829027 DOI: 10.1007/s11120-015-0121-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/12/2015] [Indexed: 05/19/2023]
Abstract
It was previously found that photosystem I (PSI) photoinhibition represents mostly irreversible damage with a slow recovery; however, its physiological significance has not been sufficiently characterized. The aim of the study was to assess the effect of PSI photoinhibition on photosynthesis in vivo. The inactivation of PSI was done by a series of short light saturation pulses applied by fluorimeter in darkness (every 10 s for 15 min), which led to decrease of both PSI (~60 %) and photosystem II (PSII) (~15 %) photochemical activity. No PSI recovery was observed within 2 days, whereas the PSII was fully recovered. Strongly limited PSI electron transport led to an imbalance between PSII and PSI photochemistry, with a high excitation pressure on PSII acceptor side and low oxidation of the PSI donor side. Low and delayed light-induced NPQ and P700(+) rise in inactivated samples indicated a decrease in formation of transthylakoid proton gradient (ΔpH), which was confirmed also by analysis of electrochromic bandshift (ECSt) records. In parallel with photochemical parameters, the CO2 assimilation was also strongly inhibited, more in low light (~70 %) than in high light (~45 %); the decrease was not caused by stomatal closure. PSI electron transport limited the CO2 assimilation at low to moderate light intensities, but it seems not to be directly responsible for a low CO2 assimilation at high light. In this regard, the possible effects of PSI photoinhibition on the redox signaling in chloroplast and its role in downregulation of Calvin cycle activity are discussed.
Collapse
Affiliation(s)
- Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic.
| | - Kristyna Kunderlikova
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Oksana Sytar
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
- Department of Plant Physiology and Ecology, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv, 01601, Ukraine
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119991, Russia.
| |
Collapse
|
102
|
Thormählen I, Meitzel T, Groysman J, Öchsner AB, von Roepenack-Lahaye E, Naranjo B, Cejudo FJ, Geigenberger P. Thioredoxin f1 and NADPH-Dependent Thioredoxin Reductase C Have Overlapping Functions in Regulating Photosynthetic Metabolism and Plant Growth in Response to Varying Light Conditions. PLANT PHYSIOLOGY 2015; 169:1766-86. [PMID: 26338951 PMCID: PMC4634086 DOI: 10.1104/pp.15.01122] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/03/2015] [Indexed: 05/21/2023]
Abstract
Two different thiol redox systems exist in plant chloroplasts, the ferredoxin-thioredoxin (Trx) system, which depends on ferredoxin reduced by the photosynthetic electron transport chain and, thus, on light, and the NADPH-dependent Trx reductase C (NTRC) system, which relies on NADPH and thus may be linked to sugar metabolism in the dark. Previous studies suggested, therefore, that the two different systems may have different functions in plants. We now report that there is a previously unrecognized functional redundancy of Trx f1 and NTRC in regulating photosynthetic metabolism and growth. In Arabidopsis (Arabidopsis thaliana) mutants, combined, but not single, deficiencies of Trx f1 and NTRC led to severe growth inhibition and perturbed light acclimation, accompanied by strong impairments of Calvin-Benson cycle activity and starch accumulation. Light activation of key enzymes of these pathways, fructose-1,6-bisphosphatase and ADP-glucose pyrophosphorylase, was almost completely abolished. The subsequent increase in NADPH-NADP(+) and ATP-ADP ratios led to increased nitrogen assimilation, NADP-malate dehydrogenase activation, and light vulnerability of photosystem I core proteins. In an additional approach, reporter studies show that Trx f1 and NTRC proteins are both colocalized in the same chloroplast substructure. Results provide genetic evidence that light- and NADPH-dependent thiol redox systems interact at the level of Trx f1 and NTRC to coordinately participate in the regulation of the Calvin-Benson cycle, starch metabolism, and growth in response to varying light conditions.
Collapse
Affiliation(s)
- Ina Thormählen
- Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany (I.T., J.G., A.B.Ö., E.v.R.-L., P.G.);Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (T.M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, University of Seville and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain (B.N., F.J.C.)
| | - Tobias Meitzel
- Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany (I.T., J.G., A.B.Ö., E.v.R.-L., P.G.);Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (T.M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, University of Seville and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain (B.N., F.J.C.)
| | - Julia Groysman
- Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany (I.T., J.G., A.B.Ö., E.v.R.-L., P.G.);Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (T.M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, University of Seville and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain (B.N., F.J.C.)
| | - Alexandra Bianca Öchsner
- Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany (I.T., J.G., A.B.Ö., E.v.R.-L., P.G.);Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (T.M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, University of Seville and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain (B.N., F.J.C.)
| | - Edda von Roepenack-Lahaye
- Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany (I.T., J.G., A.B.Ö., E.v.R.-L., P.G.);Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (T.M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, University of Seville and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain (B.N., F.J.C.)
| | - Belén Naranjo
- Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany (I.T., J.G., A.B.Ö., E.v.R.-L., P.G.);Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (T.M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, University of Seville and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain (B.N., F.J.C.)
| | - Francisco J Cejudo
- Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany (I.T., J.G., A.B.Ö., E.v.R.-L., P.G.);Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (T.M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, University of Seville and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain (B.N., F.J.C.)
| | - Peter Geigenberger
- Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany (I.T., J.G., A.B.Ö., E.v.R.-L., P.G.);Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (T.M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, University of Seville and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain (B.N., F.J.C.)
| |
Collapse
|
103
|
Gollan PJ, Tikkanen M, Aro EM. Photosynthetic light reactions: integral to chloroplast retrograde signalling. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:180-91. [PMID: 26318477 DOI: 10.1016/j.pbi.2015.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 05/07/2023]
Abstract
Chloroplast retrograde signalling is ultimately dependent on the function of the photosynthetic light reactions and not only guides the acclimation of the photosynthetic apparatus to changing environmental and metabolic cues, but has a much wider influence on the growth and development of plants. New information generated during the past few years about regulation of photosynthetic light reactions and identification of the underlying regulatory proteins has paved the way towards better understanding of the signalling molecules produced in chloroplasts upon changes in the environment. Likewise, the availability of various mutants lacking regulatory functions has made it possible to address the role of excitation energy distribution and electron flow in the thylakoid membrane in inducing the retrograde signals from chloroplasts to the nucleus. Such signalling molecules also induce and interact with hormonal signalling cascades to provide comprehensive information from chloroplasts to the nucleus.
Collapse
Affiliation(s)
- Peter J Gollan
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland.
| |
Collapse
|
104
|
Suorsa M, Rantala M, Mamedov F, Lespinasse M, Trotta A, Grieco M, Vuorio E, Tikkanen M, Järvi S, Aro EM. Light acclimation involves dynamic re-organization of the pigment-protein megacomplexes in non-appressed thylakoid domains. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:360-73. [PMID: 26332430 DOI: 10.1111/tpj.13004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 05/24/2023]
Abstract
Thylakoid energy metabolism is crucial for plant growth, development and acclimation. Non-appressed thylakoids harbor several high molecular mass pigment-protein megacomplexes that have flexible compositions depending upon the environmental cues. This composition is important for dynamic energy balancing in photosystems (PS) I and II. We analysed the megacomplexes of Arabidopsis wild type (WT) plants and of several thylakoid regulatory mutants. The stn7 mutant, which is defective in phosphorylation of the light-harvesting complex (LHC) II, possessed a megacomplex composition that was strikingly different from that of the WT. Of the nine megacomplexes in total for the non-appressed thylakoids, the largest megacomplex in particular was less abundant in the stn7 mutant under standard growth conditions. This megacomplex contains both PSI and PSII and was recently shown to allow energy spillover between PSII and PSI (Nat. Commun., 6, 2015, 6675). The dynamics of the megacomplex composition was addressed by exposing plants to different light conditions prior to thylakoid isolation. The megacomplex pattern in the WT was highly dynamic. Under darkness or far red light it showed low levels of LHCII phosphorylation and resembled the stn7 pattern; under low light, which triggers LHCII phosphorylation, it resembled that of the tap38/pph1 phosphatase mutant. In contrast, solubilization of the entire thylakoid network with dodecyl maltoside, which efficiently solubilizes pigment-protein complexes from all thylakoid compartments, revealed that the pigment-protein composition remained stable despite the changing light conditions or mutations that affected LHCII (de)phosphorylation. We conclude that the composition of pigment-protein megacomplexes specifically in non-appressed thylakoids undergoes redox-dependent changes, thus facilitating maintenance of the excitation balance between the two photosystems upon changes in light conditions.
Collapse
Affiliation(s)
- Marjaana Suorsa
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Marjaana Rantala
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Maija Lespinasse
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Andrea Trotta
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Michele Grieco
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Eerika Vuorio
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Mikko Tikkanen
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Sari Järvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
105
|
Suorsa M. Cyclic electron flow provides acclimatory plasticity for the photosynthetic machinery under various environmental conditions and developmental stages. FRONTIERS IN PLANT SCIENCE 2015; 6:800. [PMID: 26442093 PMCID: PMC4585005 DOI: 10.3389/fpls.2015.00800] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/14/2015] [Indexed: 05/03/2023]
Abstract
Photosynthetic electron flow operates in two modes, linear and cyclic. In cyclic electron flow (CEF), electrons are recycled around photosystem I. As a result, a transthylakoid proton gradient (ΔpH) is generated, leading to the production of ATP without concomitant production of NADPH, thus increasing the ATP/NADPH ratio within the chloroplast. At least two routes for CEF exist: a PROTON GRADIENT REGULATION5-PGRL1-and a chloroplast NDH-like complex mediated pathway. This review focuses on recent findings concerning the characteristics of both CEF routes in higher plants, with special emphasis paid on the crucial role of CEF in under challenging environmental conditions and developmental stages.
Collapse
Affiliation(s)
- Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| |
Collapse
|
106
|
Szyszka-Mroz B, Pittock P, Ivanov AG, Lajoie G, Hüner NPA. The Antarctic Psychrophile Chlamydomonas sp. UWO 241 Preferentially Phosphorylates a Photosystem I-Cytochrome b6/f Supercomplex. PLANT PHYSIOLOGY 2015; 169:717-36. [PMID: 26169679 PMCID: PMC4577404 DOI: 10.1104/pp.15.00625] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/10/2015] [Indexed: 05/05/2023]
Abstract
Chlamydomonas sp. UWO 241 (UWO 241) is a psychrophilic green alga isolated from Antarctica. A unique characteristic of this algal strain is its inability to undergo state transitions coupled with the absence of photosystem II (PSII) light-harvesting complex protein phosphorylation. We show that UWO 241 preferentially phosphorylates specific polypeptides associated with an approximately 1,000-kD pigment-protein supercomplex that contains components of both photosystem I (PSI) and the cytochrome b₆/f (Cyt b₆/f) complex. Liquid chromatography nano-tandem mass spectrometry was used to identify three major phosphorylated proteins associated with this PSI-Cyt b₆/f supercomplex, two 17-kD PSII subunit P-like proteins and a 70-kD ATP-dependent zinc metalloprotease, FtsH. The PSII subunit P-like protein sequence exhibited 70.6% similarity to the authentic PSII subunit P protein associated with the oxygen-evolving complex of PSII in Chlamydomonas reinhardtii. Tyrosine-146 was identified as a unique phosphorylation site on the UWO 241 PSII subunit P-like polypeptide. Assessment of PSI cyclic electron transport by in vivo P700 photooxidation and the dark relaxation kinetics of P700(+) indicated that UWO 241 exhibited PSI cyclic electron transport rates that were 3 times faster and more sensitive to antimycin A than the mesophile control, Chlamydomonas raudensis SAG 49.72. The stability of the PSI-Cyt b₆/f supercomplex was dependent upon the phosphorylation status of the PsbP-like protein and the zinc metalloprotease FtsH as well as the presence of high salt. We suggest that adaptation of UWO 241 to its unique low-temperature and high-salt environment favors the phosphorylation of a PSI-Cyt b₆/f supercomplex to regulate PSI cyclic electron transport rather than the regulation of state transitions through the phosphorylation of PSII light-harvesting complex proteins.
Collapse
Affiliation(s)
- Beth Szyszka-Mroz
- Biology Department and Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada N6A 5B7 (B.S.-M., A.G.I., N.P.A.H.); andDepartment of Biochemistry and Biological Mass Spectrometry Laboratory, University of Western Ontario, London, Ontario, Canada N6G 2V4 (P.P., G.L.)
| | - Paula Pittock
- Biology Department and Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada N6A 5B7 (B.S.-M., A.G.I., N.P.A.H.); andDepartment of Biochemistry and Biological Mass Spectrometry Laboratory, University of Western Ontario, London, Ontario, Canada N6G 2V4 (P.P., G.L.)
| | - Alexander G Ivanov
- Biology Department and Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada N6A 5B7 (B.S.-M., A.G.I., N.P.A.H.); andDepartment of Biochemistry and Biological Mass Spectrometry Laboratory, University of Western Ontario, London, Ontario, Canada N6G 2V4 (P.P., G.L.)
| | - Gilles Lajoie
- Biology Department and Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada N6A 5B7 (B.S.-M., A.G.I., N.P.A.H.); andDepartment of Biochemistry and Biological Mass Spectrometry Laboratory, University of Western Ontario, London, Ontario, Canada N6G 2V4 (P.P., G.L.)
| | - Norman P A Hüner
- Biology Department and Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada N6A 5B7 (B.S.-M., A.G.I., N.P.A.H.); andDepartment of Biochemistry and Biological Mass Spectrometry Laboratory, University of Western Ontario, London, Ontario, Canada N6G 2V4 (P.P., G.L.)
| |
Collapse
|
107
|
Gururani MA, Venkatesh J, Tran LSP. Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition. MOLECULAR PLANT 2015; 8:1304-20. [PMID: 25997389 DOI: 10.1016/j.molp.2015.05.005] [Citation(s) in RCA: 354] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 05/18/2023]
Abstract
Plants as sessile organisms are continuously exposed to abiotic stress conditions that impose numerous detrimental effects and cause tremendous loss of yield. Abiotic stresses, including high sunlight, confer serious damage on the photosynthetic machinery of plants. Photosystem II (PSII) is one of the most susceptible components of the photosynthetic machinery that bears the brunt of abiotic stress. In addition to the generation of reactive oxygen species (ROS) by abiotic stress, ROS can also result from the absorption of excessive sunlight by the light-harvesting complex. ROS can damage the photosynthetic apparatus, particularly PSII, resulting in photoinhibition due to an imbalance in the photosynthetic redox signaling pathways and the inhibition of PSII repair. Designing plants with improved abiotic stress tolerance will require a comprehensive understanding of ROS signaling and the regulatory functions of various components, including protein kinases, transcription factors, and phytohormones, in the responses of photosynthetic machinery to abiotic stress. Bioenergetics approaches, such as chlorophyll a transient kinetics analysis, have facilitated our understanding of plant vitality and the assessment of PSII efficiency under adverse environmental conditions. This review discusses the current understanding and indicates potential areas of further studies on the regulation of the photosynthetic machinery under abiotic stress.
Collapse
Affiliation(s)
| | - Jelli Venkatesh
- Department of Bioresource and Food Science, Konkuk University, Seoul 143-701, Korea
| | - Lam Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
108
|
Gururani MA, Mohanta TK, Bae H. Current Understanding of the Interplay between Phytohormones and Photosynthesis under Environmental Stress. Int J Mol Sci 2015; 16:19055-85. [PMID: 26287167 PMCID: PMC4581286 DOI: 10.3390/ijms160819055] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/30/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022] Open
Abstract
Abiotic stress accounts for huge crop losses every year across the globe. In plants, the photosynthetic machinery gets severely damaged at various levels due to adverse environmental conditions. Moreover, the reactive oxygen species (ROS) generated as a result of stress further promote the photosynthetic damage by inhibiting the repair system of photosystem II. Earlier studies have suggested that phytohormones are not only required for plant growth and development, but they also play a pivotal role in regulating plants’ responses to different abiotic stress conditions. Although, phytohormones have been studied in great detail in the past, their influence on the photosynthetic machinery under abiotic stress has not been studied. One of the major factors that limits researchers fromelucidating the precise roles of phytohormones is the highly complex nature of hormonal crosstalk in plants. Another factor that needs to be elucidated is the method used for assessing photosynthetic damage in plants that are subjected to abiotic stress. Here, we review the current understanding on the role of phytohormones in the photosynthetic machinery under various abiotic stress conditions and discuss the potential areas for further research.
Collapse
Affiliation(s)
| | - Tapan Kumar Mohanta
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook 712-749, Korea.
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook 712-749, Korea.
| |
Collapse
|
109
|
Brestic M, Zivcak M, Kunderlikova K, Sytar O, Shao H, Kalaji HM, Allakhverdiev SI. Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. PHOTOSYNTHESIS RESEARCH 2015; 125:151-66. [PMID: 25648638 DOI: 10.1007/s11120-015-0093-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/22/2015] [Indexed: 05/07/2023]
Abstract
In vivo analyses of electron and proton transport-related processes as well as photoprotective responses were carried out at different stages of growth in chlorophyll b (Chl b)-deficient mutant lines (ANK-32A and ANK-32B) and wild type (WT) of wheat (Triticum aestivum L.). In addition to a high Chl a-b ratio, ANK mutants had a lower content of photo-oxidizable photosystem I (PSI, P m), and several parameters indicated a low PSI/PSII ratio. Moreover, simultaneous measurements of Chl fluorescence and P700 indicated a shift of balance between redox poise of the PSII acceptor side and the PSII donor side, with preferential reduction of the plastoquinone pool, resulting in an over reduced PSI acceptor side (high Φ NA values). This was the probable reason for PSI inactivation observed in the ANK mutants, but not in WT. In later growth phases, we observed partial relief of "chlorina symptoms," toward WT. Measurements of ΔA 520 decay confirmed that, in early growth stages, the ANK mutants with low PSI content had a limited capacity to build up the transthylakoid proton gradient (ΔpH) needed to trigger non-photochemical quenching (NPQ) and to regulate the electron transport by cytochrome b 6/f. Later, the increase in the PSI/PSII ratio enabled ANK mutants to reach full NPQ, but neither over reduction of the PSI acceptor side nor PSI photoinactivation due to imbalance between the activity of PSII and PSI was mitigated. Thus, our results support the crucial role of proper regulation of linear electron transport in the protection of PSI against photoinhibition. Moreover, the ANK mutants of wheat showing the dynamic developmental changes in the PSI/PSII ratio are presented here as very useful models for further studies.
Collapse
Affiliation(s)
- Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic,
| | | | | | | | | | | | | |
Collapse
|
110
|
Mekala NR, Suorsa M, Rantala M, Aro EM, Tikkanen M. Plants Actively Avoid State Transitions upon Changes in Light Intensity: Role of Light-Harvesting Complex II Protein Dephosphorylation in High Light. PLANT PHYSIOLOGY 2015; 168:721-34. [PMID: 25902812 PMCID: PMC4453798 DOI: 10.1104/pp.15.00488] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/21/2015] [Indexed: 05/04/2023]
Abstract
Photosystem II (PSII) core and light-harvesting complex II (LHCII) proteins in plant chloroplasts undergo reversible phosphorylation upon changes in light intensity (being under control of redox-regulated STN7 and STN8 kinases and TAP38/PPH1 and PSII core phosphatases). Shift of plants from growth light to high light results in an increase of PSII core phosphorylation, whereas LHCII phosphorylation concomitantly decreases. Exactly the opposite takes place when plants are shifted to lower light intensity. Despite distinct changes occurring in thylakoid protein phosphorylation upon light intensity changes, the excitation balance between PSII and photosystem I remains unchanged. This differs drastically from the canonical-state transition model induced by artificial states 1 and 2 lights that concomitantly either dephosphorylate or phosphorylate, respectively, both the PSII core and LHCII phosphoproteins. Analysis of the kinase and phosphatase mutants revealed that TAP38/PPH1 phosphatase is crucial in preventing state transition upon increase in light intensity. Indeed, tap38/pph1 mutant revealed strong concomitant phosphorylation of both the PSII core and LHCII proteins upon transfer to high light, thus resembling the wild type under state 2 light. Coordinated function of thylakoid protein kinases and phosphatases is shown to secure balanced excitation energy for both photosystems by preventing state transitions upon changes in light intensity. Moreover, proton gradient regulation5 (PGR5) is required for proper regulation of thylakoid protein kinases and phosphatases, and the pgr5 mutant mimics phenotypes of tap38/pph1. This shows that there is a close cooperation between the redox- and proton gradient-dependent regulatory mechanisms for proper function of the photosynthetic machinery.
Collapse
Affiliation(s)
- Nageswara Rao Mekala
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Marjaana Rantala
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
111
|
Goldschmidt-Clermont M, Bassi R. Sharing light between two photosystems: mechanism of state transitions. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:71-8. [PMID: 26002067 DOI: 10.1016/j.pbi.2015.04.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/17/2015] [Accepted: 04/30/2015] [Indexed: 05/19/2023]
Abstract
In the thylakoid membrane, the two photosystems act in series to promote linear electron flow, with the concomitant production of ATP and reducing equivalents such as NADPH. Photosystem I, which is preferentially activated in far-red light, also energizes cyclic electron flow which generates only ATP. Thus, changes in light quality and cellular metabolic demand require a rapid regulation of the activity of the two photosystems. At low light intensities, this is mediated by state transitions. They allow the dynamic allocation of light harvesting antennae to the two photosystems, regulated through protein phosphorylation by a kinase and phosphatase pair that respond to the redox state of the electron transfer chain. Phosphorylation of the antennae leads to remodeling of the photosynthetic complexes.
Collapse
Affiliation(s)
- Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva 4, Switzerland.
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 15, strada Le Grazie, 37134 Verona, Italy
| |
Collapse
|
112
|
Allahverdiyeva Y, Suorsa M, Tikkanen M, Aro EM. Photoprotection of photosystems in fluctuating light intensities. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2427-36. [PMID: 25468932 DOI: 10.1093/jxb/eru463] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Oxygenic photosynthetic organisms experience strong fluctuations in light intensity in their natural terrestrial and aquatic growth environments. Recent studies with both plants and cyanobacteria have revealed that Photosystem (PS) I is the potential target of damage upon abrupt changes in light intensity. Photosynthetic organisms have, however, developed powerful mechanisms in order to protect their photosynthetic apparatus against such potentially hazardous light conditions. Although the electron transfer chain has remained relatively unchanged in both plant chloroplasts and their cyanobacterial ancestors, the photoprotective and regulatory mechanisms of photosynthetic light reactions have experienced conspicuous evolutionary changes. In cyanobacteria, the specific flavodiiron proteins (Flv1 and Flv3) are responsible for safeguarding PSI under rapidly fluctuating light intensities, whilst the thylakoid located terminal oxidases are involved in the protection of PSII during 12h diurnal cycles involving abrupt, square-wave, changes from dark to high light. Higher plants such as Arabidopsis thaliana have evolved different protective mechanisms. In particular, the PGR5 protein controls electron flow during sudden changes in light intensity by allowing the regulation mostly via the Cytochrome b6f complex. Besides the function of PGR5, plants have also acquired other dynamic regulatory mechanisms, among them the STN7-related LHCII protein phosphorylation that is similarly responsible for protection against rapid changes in the light environment. The green alga Chlamydomonas reinhardtii, as an evolutionary intermediate between cyanobacteria and higher plants, probably possesses both protective mechanisms. In this review, evolutionarily different photoprotective mechanisms under fluctuating light conditions are described and their contributions to cyanobacterial and plant photosynthesis are discussed.
Collapse
Affiliation(s)
- Yagut Allahverdiyeva
- Molecular Plant Biology laboratory, Department of Biochemistry, University of Turku, Turku 20520, Finland
| | - Marjaana Suorsa
- Molecular Plant Biology laboratory, Department of Biochemistry, University of Turku, Turku 20520, Finland
| | - Mikko Tikkanen
- Molecular Plant Biology laboratory, Department of Biochemistry, University of Turku, Turku 20520, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology laboratory, Department of Biochemistry, University of Turku, Turku 20520, Finland
| |
Collapse
|
113
|
Grieco M, Suorsa M, Jajoo A, Tikkanen M, Aro EM. Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery - including both photosystems II and I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:607-19. [PMID: 25843550 DOI: 10.1016/j.bbabio.2015.03.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 01/31/2023]
Abstract
In plant chloroplasts, the two photosystems (PSII and PSI) are enriched in different thylakoid domains and, according to the established view, are regarded as energetically segregated from each other. A specific fraction of the light harvesting complex II (LHCII) has been postulated to get phosphorylated by the STN7 kinase and subsequently to migrate from PSII to PSI as part of a process called 'state transition'. Nevertheless, the thylakoid membrane incorporates a large excess of LHCII not present in the isolatable PSII-LHCII and PSI-LHCII complexes. Moreover, LHCII phosphorylation is not limited to a specific LHCII pool and "state 2" condition, but is found in all thylakoid domains in any constant light condition. Here, using a targeted solubilization of pigment-protein complexes from different thylakoid domains, we demonstrate that even a minor detachment of LHCII leads to markedly increased fluorescence emission from LHCII and PSII both in grana core and non-appressed thylakoid membranes and the effect of the detergent to detach LHCII is enhanced in the absence of LHCII phosphorylation. These findings provide evidence that PSII and PSI are energy traps embedded in the same energetically connected LHCII lake. In the lake, PSI and LHCII are energetically connected even in the absence of LHCII phosphorylation, yet the phosphorylation enhances the interaction required for efficient energy transfer to PSI in the grana margin regions.
Collapse
Affiliation(s)
- Michele Grieco
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Anjana Jajoo
- School of Life Science, Devi Ahilya University, Indore 452017, MP, India
| | - Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland.
| |
Collapse
|
114
|
A megacomplex composed of both photosystem reaction centres in higher plants. Nat Commun 2015; 6:6675. [PMID: 25809225 DOI: 10.1038/ncomms7675] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/19/2015] [Indexed: 11/08/2022] Open
Abstract
Throughout the history of oxygen evolution, two types of photosystem reaction centres (PSI and PSII) have worked in a coordinated manner. The oxygen evolving centre is an integral part of PSII, and extracts an electron from water. PSI accepts the electron, and accumulates reducing power. Traditionally, PSI and PSII are thought to be spatially dispersed. Here, we show that about half of PSIIs are physically connected to PSIs in Arabidopsis thaliana. In the PSI-PSII complex, excitation energy is transferred efficiently between the two closely interacting reaction centres. PSII diverts excitation energy to PSI when PSII becomes closed-state in the PSI-PSII complex. The formation of PSI-PSII complexes is regulated by light conditions. Quenching of excess energy by PSI might be one of the physiological functions of PSI-PSII complexes.
Collapse
|
115
|
Kim E, Ahn TK, Kumazaki S. Changes in Antenna Sizes of Photosystems during State Transitions in Granal and Stroma-Exposed Thylakoid Membrane of Intact Chloroplasts in Arabidopsis Mesophyll Protoplasts. ACTA ACUST UNITED AC 2015; 56:759-68. [DOI: 10.1093/pcp/pcv004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/13/2015] [Indexed: 11/13/2022]
|
116
|
Yang H, Liu J, Wen X, Lu C. Molecular mechanism of photosystem I assembly in oxygenic organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:838-48. [PMID: 25582571 DOI: 10.1016/j.bbabio.2014.12.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/27/2014] [Accepted: 12/30/2014] [Indexed: 11/26/2022]
Abstract
Photosystem I, an integral membrane and multi-subunit complex, catalyzes the oxidation of plastocyanin and the reduction of ferredoxin by absorbed light energy. Photosystem I participates in photosynthetic acclimation processes by being involved in cyclic electron transfer and state transitions for sustaining efficient photosynthesis. The photosystem I complex is highly conserved from cyanobacteria to higher plants and contains the light-harvesting complex and the reaction center complex. The assembly of the photosystem I complex is highly complicated and involves the concerted assembly of multiple subunits and hundreds of cofactors. A suite of regulatory factors for the assembly of photosystem I subunits and cofactors have been identified that constitute an integrative network regulating PSI accumulation. This review aims to discuss recent findings in the field relating to how the photosystem I complex is assembled in oxygenic organisms. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Huixia Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jun Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaogang Wen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
117
|
Tikkanen M, Rantala S, Aro EM. Electron flow from PSII to PSI under high light is controlled by PGR5 but not by PSBS. FRONTIERS IN PLANT SCIENCE 2015; 6:521. [PMID: 26217370 PMCID: PMC4495676 DOI: 10.3389/fpls.2015.00521] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/26/2015] [Indexed: 05/19/2023]
Abstract
Absence of the Proton Gradient Regulation 5 (PGR5) protein from plant chloroplasts prevents the induction of strong trans-thylakoid proton gradient (ΔpH) and consequently also the thermal dissipation of excess energy (NPQ). The absence of the PSBS protein likewise prevents the formation of ΔpH-dependent NPQ. This component of NPQ is called qE, which is nearly exclusively responsible for induction of NPQ upon increase in light intensity. On the other hand, the pgr5 mutant is not only deficient in induction of strong NPQ but it also lacks the capability to oxidize P700 upon increase in light intensity. This, in turn, results from uncontrolled electron flow toward photosystem I (PSI), which has been proposed to be caused by the lack of PSII down-regulation by NPQ and by a poor control of electron flow via the Cytochrome b6f (Cyt b6f) complex. Here we asked whether NPQ really is a component of such regulation of electron flow from PSII to PSI at high light. To this end, the two NPQ mutants pgr5 and npq4, the latter lacking the PSBS protein, were characterized. It is shown that the npq4 mutant, despite its highly reduced Plastoquinone pool, does not inhibit but rather enhances the oxidation of P700 in high light as compared to wild type. This clearly demonstrates that the control of electron flow from PSII to PSI cannot be assigned, even partially, to the down-regulation of PSII by NPQ but apparently takes place solely in Cyt b6f. Moreover, it is shown that the pgr5 mutant can induce NPQ in very high light, but still remains deficient in P700 oxidation. These results challenge the suggestion that NPQ, induced by PGR5-dependent cyclic electron transfer, would have a key role in regulation of electron transfer from PSII to PSI. Instead, the results presented here are in line with our recent suggestion that both PSII and PSI function under the same light harvesting machinery regulated by ΔpH and the PSBS protein (Tikkanen and Aro, 2014; Grieco et al., 2015).
Collapse
Affiliation(s)
- Mikko Tikkanen
- *Correspondence: Eva-Mari Aro and Mikko Tikkanen, Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku 20014, Finland, ;
| | | | - Eva-Mari Aro
- *Correspondence: Eva-Mari Aro and Mikko Tikkanen, Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku 20014, Finland, ;
| |
Collapse
|
118
|
Bhuiyan NH, Friso G, Poliakov A, Ponnala L, van Wijk KJ. MET1 is a thylakoid-associated TPR protein involved in photosystem II supercomplex formation and repair in Arabidopsis. THE PLANT CELL 2015; 27:262-85. [PMID: 25587003 PMCID: PMC4330576 DOI: 10.1105/tpc.114.132787] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/09/2014] [Accepted: 12/20/2014] [Indexed: 05/18/2023]
Abstract
Photosystem II (PSII) requires constant disassembly and reassembly to accommodate replacement of the D1 protein. Here, we characterize Arabidopsis thaliana MET1, a PSII assembly factor with PDZ and TPR domains. The maize (Zea mays) MET1 homolog is enriched in mesophyll chloroplasts compared with bundle sheath chloroplasts, and MET1 mRNA and protein levels increase during leaf development concomitant with the thylakoid machinery. MET1 is conserved in C3 and C4 plants and green algae but is not found in prokaryotes. Arabidopsis MET1 is a peripheral thylakoid protein enriched in stroma lamellae and is also present in grana. Split-ubiquitin assays and coimmunoprecipitations showed interaction of MET1 with stromal loops of PSII core components CP43 and CP47. From native gels, we inferred that MET1 associates with PSII subcomplexes formed during the PSII repair cycle. When grown under fluctuating light intensities, the Arabidopsis MET1 null mutant (met1) showed conditional reduced growth, near complete blockage in PSII supercomplex formation, and concomitant increase of unassembled CP43. Growth of met1 in high light resulted in loss of PSII supercomplexes and accelerated D1 degradation. We propose that MET1 functions as a CP43/CP47 chaperone on the stromal side of the membrane during PSII assembly and repair. This function is consistent with the observed differential MET1 accumulation across dimorphic maize chloroplasts.
Collapse
Affiliation(s)
- Nazmul H Bhuiyan
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Anton Poliakov
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
119
|
Sárvári E, Mihailova G, Solti A, Keresztes A, Velitchkova M, Georgieva K. Comparison of thylakoid structure and organization in sun and shade Haberlea rhodopensis populations under desiccation and rehydration. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1591-600. [PMID: 25151128 DOI: 10.1016/j.jplph.2014.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 05/07/2023]
Abstract
The resurrection plant, Haberlea rhodopensis can survive nearly total desiccation only in its usual low irradiation environment. However, populations with similar capacity to recover were discovered recently in several sunny habitats. To reveal what kind of morphological, structural and thylakoid-level alterations play a role in the acclimation of this low-light adapted species to high-light environment and how do they contribute to the desiccation tolerance mechanisms, the structure of the photosynthetic apparatus, the most sensitive component of the chlorophyll-retaining resurrection plants, was analyzed by transmission electron microscopy, steady state low-temperature fluorescence and two-dimensional Blue-Native/SDS PAGE under desiccation and rehydration. In contrast to the great differences in the morphology of plants, the ultrastructure and the organization of thylakoids were surprisingly similar in well-hydrated shade and sun populations. A high ratio of photosystem (PS)I binding light harvesting complex (LHC)II, important in low- and fluctuating light environment, was characteristic to both shade and sun plant, and the ratios of the main chlorophyll-protein complexes were also similar. The intensive protective mechanisms, such as shading by steep leaf angle and accumulation of protective substances, probably reduced the light intensity at the chloroplast level. The significantly increased ratio of monomer to oligomer antennae in well-hydrated sun plants may be connected with the temporary high light exposure of chloroplasts. During desiccation, LHCII was removed from PSI and part of PSII supercomplexes disassembled with some loss of PSII core and LHCII. The different reorganization of antennae, possibly connected with different quenching mechanisms, involved an increased amount of monomers in shade plants but unchanged proportion of oligomers in sun plants. Desiccation-induced responses were more pronounced in sun plants which also had a greater capacity to recover due to their stress-acclimated attitude.
Collapse
Affiliation(s)
- Eva Sárvári
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary.
| | - Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, BG-1113 Sofia, Bulgaria.
| | - Adám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary.
| | - Aron Keresztes
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary.
| | - Maya Velitchkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, BG-1113 Sofia, Bulgaria.
| | - Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, BG-1113 Sofia, Bulgaria.
| |
Collapse
|
120
|
Tongra T, Bharti S, Jajoo A. Cyclic electron flow around photosystem I is enhanced at low pH. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:194-199. [PMID: 25164549 DOI: 10.1016/j.plaphy.2014.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/04/2014] [Indexed: 06/03/2023]
Abstract
Earlier studies have shown that at low pH (pH 5.5), PS II fluorescence decreases with concomitant increase in PS I fluorescence (Singh-Rawal et al., 2010). In order to shed light on the reasons of the above stated change, spinach leaf discs were treated with buffers of different pH (7.5, 6.5 and 5.5)and decrease in the photochemical quantum yield of PS II,Y(II) and increase in the photochemical quantum yield of PS I,Y(I) was observed. We observed an enhanced protection against over-reduction of PS I acceptor side at low pH (5.5) treated leaves. This was obviously achieved by the rapid build-up of trans-thylakoid pH gradient at low light intensities and was directly associated with a steep increase in non- photochemical quenching of chlorophyll fluorescence and a decrease in the electron transport rate of PS II. Our results suggested a strong stimulation of cyclic electron flow around PS I at pH 5.5 which directly supports protection against over-reduction of the PS I acceptor side.
Collapse
Affiliation(s)
- Teena Tongra
- School of Life Science, Devi Ahilya University, Indore 452 017, M.P., India
| | - Sudhakar Bharti
- School of Life Science, Devi Ahilya University, Indore 452 017, M.P., India
| | - Anjana Jajoo
- School of Life Science, Devi Ahilya University, Indore 452 017, M.P., India.
| |
Collapse
|
121
|
Pietrzykowska M, Suorsa M, Semchonok DA, Tikkanen M, Boekema EJ, Aro EM, Jansson S. The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. THE PLANT CELL 2014; 26:3646-60. [PMID: 25194026 PMCID: PMC4213150 DOI: 10.1105/tpc.114.127373] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/27/2014] [Accepted: 08/18/2014] [Indexed: 05/18/2023]
Abstract
Photosynthetic light harvesting in plants is regulated by phosphorylation-driven state transitions: functional redistributions of the major trimeric light-harvesting complex II (LHCII) to balance the relative excitation of photosystem I and photosystem II. State transitions are driven by reversible LHCII phosphorylation by the STN7 kinase and PPH1/TAP38 phosphatase. LHCII trimers are composed of Lhcb1, Lhcb2, and Lhcb3 proteins in various trimeric configurations. Here, we show that despite their nearly identical amino acid composition, the functional roles of Lhcb1 and Lhcb2 are different but complementary. Arabidopsis thaliana plants lacking only Lhcb2 contain thylakoid protein complexes similar to wild-type plants, where Lhcb2 has been replaced by Lhcb1. However, these do not perform state transitions, so phosphorylation of Lhcb2 seems to be a critical step. In contrast, plants lacking Lhcb1 had a more profound antenna remodeling due to a decrease in the amount of LHCII trimers influencing thylakoid membrane structure and, more indirectly, state transitions. Although state transitions are also found in green algae, the detailed architecture of the extant seed plant light-harvesting antenna can now be dated back to a time after the divergence of the bryophyte and spermatophyte lineages, but before the split of the angiosperm and gymnosperm lineages more than 300 million years ago.
Collapse
Affiliation(s)
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20520 Turku, Finland
| | - Dmitry A Semchonok
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20520 Turku, Finland
| | - Egbert J Boekema
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20520 Turku, Finland
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
122
|
Kangasjärvi S, Tikkanen M, Durian G, Aro EM. Photosynthetic light reactions--an adjustable hub in basic production and plant immunity signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:128-34. [PMID: 24361390 DOI: 10.1016/j.plaphy.2013.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/03/2013] [Indexed: 05/09/2023]
Abstract
Photosynthetic efficiency is a key trait that influences the sustainable utilization of plants for energy and nutrition. By now, extensive research on photosynthetic processes has underscored important structural and functional relationships among photosynthetic thylakoid membrane protein complexes, and their roles in determining the productivity and stress resistance of plants. Photosystem II photoinhibition-repair cycle, for example, has arisen vital in protecting also Photosystem I against light-induced damage. Availability of highly sophisticated genetic, biochemical and biophysical tools has greatly expanded the catalog of components that carry out photoprotective functions in plants. On thylakoid membranes, these components encompass a network of overlapping systems that allow delicate regulation of linear and cyclic electron transfer pathways, balancing of excitation energy distribution between the two photosystems and dissipation of excess light energy in the antenna system as heat. An increasing number of reports indicate that the above mentioned mechanisms also mediate important functions in the regulation of biotic stress responses in plants. Particularly the handling of excitation energy in the light harvesting II antenna complexes appears central to plant immunity signaling. Comprehensive understanding of the underlying mechanisms and regulatory cross-talk, however, still remain elusive. This review highlights the current understanding of components that regulate the function of photosynthetic light reactions and directly or indirectly also modulate disease resistance in higher plants.
Collapse
Affiliation(s)
| | - Mikko Tikkanen
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Guido Durian
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
123
|
Aldous SH, Weise SE, Sharkey TD, Waldera-Lupa DM, Stühler K, Mallmann J, Groth G, Gowik U, Westhoff P, Arsova B. Evolution of the Phosphoenolpyruvate Carboxylase Protein Kinase Family in C3 and C4 Flaveria spp. PLANT PHYSIOLOGY 2014; 165:1076-1091. [PMID: 24850859 PMCID: PMC4081323 DOI: 10.1104/pp.114.240283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/20/2014] [Indexed: 05/04/2023]
Abstract
The key enzyme for C4 photosynthesis, Phosphoenolpyruvate Carboxylase (PEPC), evolved from nonphotosynthetic PEPC found in C3 ancestors. In all plants, PEPC is phosphorylated by Phosphoenolpyruvate Carboxylase Protein Kinase (PPCK). However, differences in the phosphorylation pattern exist among plants with these photosynthetic types, and it is still not clear if they are due to interspecies differences or depend on photosynthetic type. The genus Flaveria contains closely related C3, C3-C4 intermediate, and C4 species, which are evolutionarily young and thus well suited for comparative analysis. To characterize the evolutionary differences in PPCK between plants with C3 and C4 photosynthesis, transcriptome libraries from nine Flaveria spp. were used, and a two-member PPCK family (PPCKA and PPCKB) was identified. Sequence analysis identified a number of C3- and C4-specific residues with various occurrences in the intermediates. Quantitative analysis of transcriptome data revealed that PPCKA and PPCKB exhibit inverse diel expression patterns and that C3 and C4 Flaveria spp. differ in the expression levels of these genes. PPCKA has maximal expression levels during the day, whereas PPCKB has maximal expression during the night. Phosphorylation patterns of PEPC varied among C3 and C4 Flaveria spp. too, with PEPC from the C4 species being predominantly phosphorylated throughout the day, while in the C3 species the phosphorylation level was maintained during the entire 24 h. Since C4 Flaveria spp. evolved from C3 ancestors, this work links the evolutionary changes in sequence, PPCK expression, and phosphorylation pattern to an evolutionary phase shift of kinase activity from a C3 to a C4 mode.
Collapse
Affiliation(s)
- Sophia H Aldous
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Sean E Weise
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Thomas D Sharkey
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Daniel M Waldera-Lupa
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Kai Stühler
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Julia Mallmann
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Georg Groth
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Udo Gowik
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Peter Westhoff
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Borjana Arsova
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| |
Collapse
|
124
|
Sejima T, Takagi D, Fukayama H, Makino A, Miyake C. Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves. PLANT & CELL PHYSIOLOGY 2014; 55:1184-93. [PMID: 24793753 DOI: 10.1093/pcp/pcu061] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Under field conditions, the leaves of plants are exposed to fluctuating light, as observed in sunfleck. The duration and frequency of sunfleck, which is caused by the canopy being blown by the wind, are in the ranges from 0.2 to 50 s, and from 0.004 to 1 Hz, respectively. Furthermore, >60% of the sunfleck duration ranges from 0.2 to 0.8 s. In the present research, we analyzed the effects of repetitive illumination by short-pulse (SP) light of sunflower leaves on the photosynthetic electron flow. The duration of SP light was set in the range from 10 to 300 ms. We found that repetitive illumination with SP light did not induce the oxidation of P700 in PSI, and mainly inactivated PSI. Increases in the intensity, duration and frequency of SP light enhanced PSI photoinhibition. PSI photoinhibition required the presence of O2. The inactivation of PSI suppressed the net CO2 assimilation. On the other hand, the increase in the oxidized state of P700 suppressed PSI inactivation. That is, PSI with a reduced reaction center would produce reactive oxygen species (ROS) by SP light, leading to PSI photodamage. This mechanism probably explains the PSI photodamage induced by constant light.
Collapse
Affiliation(s)
- Takehiro Sejima
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Daisuke Takagi
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Hiroshi Fukayama
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Amane Makino
- Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 JapanCREST, JST, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076 Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 JapanCREST, JST, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076 Japan
| |
Collapse
|
125
|
Schöttler MA, Tóth SZ. Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control. FRONTIERS IN PLANT SCIENCE 2014; 5:188. [PMID: 24860580 PMCID: PMC4026699 DOI: 10.3389/fpls.2014.00188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/22/2014] [Indexed: 05/02/2023]
Abstract
The composition of the photosynthetic apparatus of higher plants is dynamically adjusted to long-term changes in environmental conditions such as growth light intensity and light quality, and to changing metabolic demands for ATP and NADPH imposed by stresses and leaf aging. By changing photosynthetic complex stoichiometry, a long-term imbalance between the photosynthetic production of ATP and NADPH and their metabolic consumption is avoided, and cytotoxic side reactions are minimized. Otherwise, an excess capacity of the light reactions, relative to the demands of primary metabolism, could result in a disturbance of cellular redox homeostasis and an increased production of reactive oxygen species, leading to the destruction of the photosynthetic apparatus and the initiation of cell death programs. In this review, changes of the abundances of the different constituents of the photosynthetic apparatus in response to environmental conditions and during leaf ontogenesis are summarized. The contributions of the different photosynthetic complexes to photosynthetic flux control and the regulation of electron transport are discussed.
Collapse
Affiliation(s)
- Mark A. Schöttler
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | | |
Collapse
|
126
|
Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:89-99. [PMID: 24776379 DOI: 10.1016/j.jphotobiol.2014.02.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/19/2014] [Accepted: 02/22/2014] [Indexed: 12/26/2022]
Abstract
Light energy absorbed by chloroplasts drives photosynthesis. When absorbed light is in excess, the thermal dissipation systems of excess energy are induced and the photosynthetic electron flow is regulated, both contributing to suppression of reactive oxygen species production and photodamages. Various regulation mechanisms of the photosynthetic electron flow and energy dissipation systems have been revealed. However, most of such knowledge has been obtained by the experiments conducted under controlled conditions with constant light, whereas natural light condition is drastically fluctuated. To understand photosynthesis in nature, we need to clarify not only the mechanisms that raise photosynthetic efficiency but those for photoprotection in fluctuating light. Although these mechanisms appear to be well balanced, regulatory mechanisms achieving the balance is little understood. Recently, some pioneering studies have provided new insight into the regulatory mechanisms in fluctuating light. In this review, firstly, the possible mechanisms involved in regulation of the photosynthetic electron flow in fluctuating light are presented. Next, we introduce some recent studies focusing on the photosynthetic electron flow in fluctuating light. Finally, we discuss how plants effectively cope with fluctuating light showing our recent results.
Collapse
|
127
|
Blanco NE, Guinea-Díaz M, Whelan J, Strand Å. Interaction between plastid and mitochondrial retrograde signalling pathways during changes to plastid redox status. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130231. [PMID: 24591717 DOI: 10.1098/rstb.2013.0231] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mitochondria and chloroplasts depend upon each other; photosynthesis provides substrates for mitochondrial respiration and mitochondrial metabolism is essential for sustaining photosynthetic carbon assimilation. In addition, mitochondrial respiration protects photosynthesis against photoinhibition by dissipating excess redox equivalents from the chloroplasts. Genetic defects in mitochondrial function result in an excessive reduction and energization of the chloroplast. Thus, it is clear that the activities of mitochondria and plastids need to be coordinated, but the manner by which the organelles communicate to coordinate their activities is unknown. The regulator of alternative oxidase (rao1) mutant was isolated as a mutant unable to induce AOX1a expression in response to the inhibitor of the mitochondrial cytochrome c reductase (complex III), antimycin A. RAO1 encodes the nuclear localized cyclin-dependent kinase E1 (CDKE1). Interestingly, the rao1 mutant demonstrates a genome uncoupled phenotype also in response to redox changes in the photosynthetic electron transport chain. Thus, CDKE1 was shown to regulate both LIGHT HARVESTING COMPLEX B (LHCB) and ALTERNATIVE OXIDASE 1 (AOX1a) expression in response to retrograde signals. Our results suggest that CDKE1 is a central nuclear component integrating mitochondrial and plastid retrograde signals and plays a role in regulating energy metabolism during the response to stress.
Collapse
Affiliation(s)
- Nicolás E Blanco
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, , Umeå, Sweden
| | | | | | | |
Collapse
|
128
|
Tikkanen M, Gollan PJ, Mekala NR, Isojärvi J, Aro EM. Light-harvesting mutants show differential gene expression upon shift to high light as a consequence of photosynthetic redox and reactive oxygen species metabolism. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130229. [PMID: 24591716 DOI: 10.1098/rstb.2013.0229] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The amount of light energy that is harvested and directed to the photosynthetic machinery is regulated in order to control the production of reactive oxygen species (ROS) in leaf tissues. ROS have important roles as signalling factors that instigate and mediate a range of cellular responses, suggesting that the mechanisms regulating light-harvesting and photosynthetic energy transduction also affect cell signalling. In this study, we exposed wild-type (WT) Arabidopsis and mutants impaired in the regulation of photosynthetic light-harvesting (stn7, tap38 and npq4) to transient high light (HL) stress in order to study the role of these mechanisms for up- and downregulation of gene expression under HL stress. The mutants, all of which have disturbed regulation of excitation energy transfer and distribution, responded to transient HL treatment with surprising similarity to the WT in terms of general 'abiotic stress-regulated' genes associated with hydrogen peroxide and 12-oxo-phytodienoic acid signalling. However, we identified distinct expression profiles in each genotype with respect to induction of singlet oxygen and jasmonic acid-dependent responses. The results of this study suggest that the control of excitation energy transfer interacts with hormonal regulation. Furthermore, the photosynthetic pigment-protein complexes appear to operate as receptors that sense the energetic balance between the photosynthetic light reactions and downstream metabolism.
Collapse
Affiliation(s)
- Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, , 20014 Turku, Finland
| | | | | | | | | |
Collapse
|
129
|
Ferroni L, Angeleri M, Pantaleoni L, Pagliano C, Longoni P, Marsano F, Aro EM, Suorsa M, Baldisserotto C, Giovanardi M, Cella R, Pancaldi S. Light-dependent reversible phosphorylation of the minor photosystem II antenna Lhcb6 (CP24) occurs in lycophytes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:893-905. [PMID: 24450769 DOI: 10.1111/tpj.12437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 05/22/2023]
Abstract
Evolution of vascular plants required compromise between photosynthesis and photodamage. We analyzed representative species from two divergent lineages of vascular plants, lycophytes and euphyllophytes, with respect to the response of their photosynthesis and light-harvesting properties to increasing light intensity. In the two analyzed lycophytes, Selaginella martensii and Lycopodium squarrosum, the medium phase of non-photochemical quenching relaxation increased under high light compared to euphyllophytes. This was thought to be associated with the occurrence of a further thylakoid phosphoprotein in both lycophytes, in addition to D2, CP43 and Lhcb1-2. This protein, which showed light intensity-dependent reversible phosphorylation, was identified in S. martensii as Lhcb6, a minor LHCII antenna subunit of PSII. Lhcb6 is known to have evolved in the context of land colonization. In S. martensii, Lhcb6 was detected as a component of the free LHCII assemblies, but also associated with PSI. Most of the light-induced changes affected the amount and phosphorylation of the LHCII assemblies, which possibly mediate PSI-PSII connectivity. We propose that Lhcb6 is involved in light energy management in lycophytes, participating in energy balance between PSI and PSII through a unique reversible phosphorylation, not yet observed in other land plants.
Collapse
Affiliation(s)
- Lorenzo Ferroni
- Department of Life Sciences and Biotechnologies, University of Ferrara, Corso Ercole I d'Este 32, Ferrara, 44121, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Alterations in Structural Organization Affect the Functional Ability of Photosynthetic Apparatus. ACTA ACUST UNITED AC 2014. [DOI: 10.1201/b16675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
131
|
State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proc Natl Acad Sci U S A 2014; 111:3460-5. [PMID: 24550508 DOI: 10.1073/pnas.1319164111] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants and green algae optimize photosynthesis in changing light conditions by balancing the amount of light absorbed by photosystems I and II. These photosystems work in series to extract electrons from water and reduce NADP(+) to NADPH. Light-harvesting complexes (LHCs) are held responsible for maintaining the balance by moving from one photosystem to the other in a process called state transitions. In the green alga Chlamydomonas reinhardtii, a photosynthetic model organism, state transitions are thought to involve 80% of the LHCs. Here, we demonstrate with picosecond-fluorescence spectroscopy on C. reinhardtii cells that, although LHCs indeed detach from photosystem II in state 2 conditions, only a fraction attaches to photosystem I. The detached antenna complexes become protected against photodamage via shortening of the excited-state lifetime. It is discussed how the transition from state 1 to state 2 can protect C. reinhardtii in high-light conditions and how this differs from the situation in plants.
Collapse
|
132
|
Finazzi G, Minagawa J. High Light Acclimation in Green Microalgae. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
133
|
Tikkanen M, Aro EM. Integrative regulatory network of plant thylakoid energy transduction. TRENDS IN PLANT SCIENCE 2014; 19:10-7. [PMID: 24120261 DOI: 10.1016/j.tplants.2013.09.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 09/02/2013] [Accepted: 09/13/2013] [Indexed: 05/03/2023]
Abstract
Highly flexible regulation of photosynthetic light reactions in plant chloroplasts is a prerequisite to provide sufficient energy flow to downstream metabolism and plant growth, to protect light reactions against photodamage, and to ensure controlled cellular signaling from the chloroplast to the nucleus. Such comprehensive regulation occurs via the control of excitation energy transfer to and between the two photosystems (PSII and PSI), of the electrochemical gradient across the thylakoid membrane (ΔpH), and of electron transfer from PSII to PSI electron acceptors. In this opinion article, we propose that these regulatory mechanisms, functioning at different levels of photosynthetic energy conversion, might be interconnected and describe how the concomitant and integrated function of these mechanisms might enable plants to acclimate to a full array of environmental changes.
Collapse
Affiliation(s)
- Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland.
| |
Collapse
|
134
|
Murchie EH, Harbinson J. Non-Photochemical Fluorescence Quenching Across Scales: From Chloroplasts to Plants to Communities. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
135
|
Tikkanen M, Mekala NR, Aro EM. Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:210-5. [DOI: 10.1016/j.bbabio.2013.10.001] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/02/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
|
136
|
Liu J, Wang P, Liu B, Feng D, Zhang J, Su J, Zhang Y, Wang JF, Wang HB. A deficiency in chloroplastic ferredoxin 2 facilitates effective photosynthetic capacity during long-term high light acclimation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:861-874. [PMID: 24118453 DOI: 10.1111/tpj.12341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 06/02/2023]
Abstract
Photosynthetic electron transport is the major energy source for cellular metabolism in plants, and also has the potential to generate excess reactive oxygen species that cause irreversible damage to photosynthetic apparatus under adverse conditions. Ferredoxins (Fds), as the electron-distributing hub in the chloroplast, contribute to redox regulation and antioxidant defense. However, the steady-state levels of photosynthetic Fd decrease in plants when they are exposed to environmental stress conditions. To understand the effect of Fd down-regulation on plant growth, we characterized Arabidopsis thaliana plants lacking Fd2 (Fd2-KO) under long-term high light (HL) conditions. Unexpectedly, Fd2-KO plants exhibited efficient photosynthetic capacity and stable thylakoid protein complexes. At the transcriptional level, photoprotection-related genes were up-regulated more in the mutant plants, suggesting that knockout Fd2 lines possess a relatively effective photo-acclimatory responses involving enhanced plastid redox signaling. In contrast to the physiological characterization of Fd2-KO under short-term HL, the plastoquinone pool returned to a relatively balanced redox state via elevated PGR5-dependent cyclic electron flow during extended HL. fd2 pgr5 double mutant plants displayed severely impaired photosynthetic capacity under HL treatment, further supporting a role for PGR5 in adaptation to HL in the Fd2-KO plants. These results suggest potential benefits of reducing Fd levels in plants grown under long-term HL conditions.
Collapse
Affiliation(s)
- Jun Liu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Szechyńska-Hebda M, Karpiński S. Light intensity-dependent retrograde signalling in higher plants. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1501-16. [PMID: 23850030 DOI: 10.1016/j.jplph.2013.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 05/23/2023]
Abstract
Plants are able to acclimate to highly fluctuating light environment and evolved a short- and long-term light acclimatory responses, that are dependent on chloroplasts retrograde signalling. In this review we summarise recent evidences suggesting that the chloroplasts act as key sensors of light intensity changes in a wide range (low, high and excess light conditions) as well as sensors of darkness. They also participate in transduction and synchronisation of systemic retrograde signalling in response to differential light exposure of distinct leaves. Regulation of intra- and inter-cellular chloroplast retrograde signalling is dependent on the developmental and functional stage of the plastids. Therefore, it is discussed in following subsections: firstly, chloroplast biogenic control of nuclear genes, for example, signals related to photosystems and pigment biogenesis during early plastid development; secondly, signals in the mature chloroplast induced by changes in photosynthetic electron transport, reactive oxygen species, hormones and metabolite biosynthesis; thirdly, chloroplast signalling during leaf senescence. Moreover, with a help of meta-analysis of multiple microarray experiments, we showed that the expression of the same set of genes is regulated specifically in particular types of signals and types of light conditions. Furthermore, we also highlight the alternative scenarios of the chloroplast retrograde signals transduction and coordination linked to the role of photo-electrochemical signalling.
Collapse
Affiliation(s)
- Magdalena Szechyńska-Hebda
- Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Kraków, Poland; Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, 02-776 Warszawa, Poland
| | | |
Collapse
|
138
|
Trans-thylakoid ∆pH dependent oscillation of F(PSI)/F(PSII) under continuous irradiance in isolated thylakoids. J Bioenerg Biomembr 2013; 46:71-82. [PMID: 24214386 DOI: 10.1007/s10863-013-9533-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
Energy distribution between photosystems (PSI & PSII) under prolonged and continuous white light irradiance was assessed by monitoring the progress of their fluorescence emission (FPSI/FPSII) at 77 K. Our observations indicate FPSI/FPSII to oscillate with the progress of irradiance treatments at all intensities tested (100, 200, 500, and 800 μE m(-2) S(-1)). The amplitude of the oscillation increased with the progress, whereas the periodicity of the oscillation increased with the intensity of the incident irradiance. Spectral analysis indicated fluctuation of FPSI to be the major determinant of the observed oscillation. The first rise and fall of FPSI/FPSII overlapped with phosphorylation and dephosphorylation of LHCII, but oscillation of FPSI/FPSII continued for several cycles without any further phosphorylation of LHCII. Moreover, in presence of DCMU where linear electron flow (LEF) is suppressed and LHCII phosphorylation is completely abolished, the oscillation of FPSI/FPSII was not abolished. These data indicated that LHCII phosphorylation was not essential for the observed oscillation of energy distribution between the photosystems. In contrast, in the presence of inhibitors of cyclic electron flow (CEF) like Antimycin A (AA) and rotenone, the oscillation of FPSI/FPSII was either abolished or severely dampened. Additionally, the oscillation was also abolished in presence of uncouplers like NH4Cl and nigericin that cancels the trans-thylakoid ∆pH. Thus, trans-thylakoid ∆pH, generated through CEF, appear to be an important determinant of oscillation of FPSI/FPSII in isolated thylakoids. The phenomenon of oscillation could be associated with a CEF mediated chromatic adaptation of PSI in presence of excess irradiance.
Collapse
|
139
|
Wientjes E, Drop B, Kouřil R, Boekema EJ, Croce R. During state 1 to state 2 transition in Arabidopsis thaliana, the photosystem II supercomplex gets phosphorylated but does not disassemble. J Biol Chem 2013; 288:32821-6. [PMID: 24097972 DOI: 10.1074/jbc.m113.511691] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plants are exposed to continuous changes in light quality and quantity that challenge the performance of the photosynthetic apparatus and have evolved a series of mechanisms to face this challenge. In this work, we have studied state transitions, the process that redistributes the excitation pressure between photosystems I and II (PSI/PSII) by the reversible association of LHCII, the major antenna complex of higher plants, with either one of them upon phosphorylation/dephosphorylation. By combining biochemical analysis and electron microscopy, we have studied the effect of state transitions on the composition and organization of photosystem II in Arabidopsis thaliana. Two LHCII trimers (called trimers M and S) are part of the PSII supercomplex, whereas up to two more are loosely associated with PSII in state 1 in higher plants (called "extra" trimers). Here, we show that the LHCII from the extra pool migrates to PSI in state 2, thus leaving the PSII supercomplex and the semicrystalline PSII arrays intact. In state 2, not only is the mobile LHCII phosphorylated, but also the LHCII in the PSII supercomplexes. This demonstrates that PSII phosphorylation is not sufficient for disconnecting LHCII trimers S and M from PSII and for their migration to PSI.
Collapse
Affiliation(s)
- Emilie Wientjes
- From the Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
140
|
Evans JR. Improving photosynthesis. PLANT PHYSIOLOGY 2013; 162:1780-93. [PMID: 23812345 PMCID: PMC3729760 DOI: 10.1104/pp.113.219006] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/26/2013] [Indexed: 05/18/2023]
Abstract
Photosynthesis is the basis of plant growth, and improving photosynthesis can contribute toward greater food security in the coming decades as world population increases. Multiple targets have been identified that could be manipulated to increase crop photosynthesis. The most important target is Rubisco because it catalyses both carboxylation and oxygenation reactions and the majority of responses of photosynthesis to light, CO₂, and temperature are reflected in its kinetic properties. Oxygenase activity can be reduced either by concentrating CO₂ around Rubisco or by modifying the kinetic properties of Rubisco. The C₄ photosynthetic pathway is a CO₂-concentrating mechanism that generally enables C₄ plants to achieve greater efficiency in their use of light, nitrogen, and water than C₃ plants. To capitalize on these advantages, attempts have been made to engineer the C₄ pathway into C₃ rice (Oryza sativa). A simpler approach is to transfer bicarbonate transporters from cyanobacteria into chloroplasts and prevent CO₂ leakage. Recent technological breakthroughs now allow higher plant Rubisco to be engineered and assembled successfully in planta. Novel amino acid sequences can be introduced that have been impossible to reach via normal evolution, potentially enlarging the range of kinetic properties and breaking free from the constraints associated with covariation that have been observed between certain kinetic parameters. Capturing the promise of improved photosynthesis in greater yield potential will require continued efforts to improve carbon allocation within the plant as well as to maintain grain quality and resistance to disease and lodging.
Collapse
Affiliation(s)
- John R Evans
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| |
Collapse
|
141
|
Abstract
PPR proteins form a huge family in flowering plants and are involved in RNA maturation in plastids and mitochondria. These proteins are sequence-specific RNA-binding proteins that recruit the machinery of RNA processing. We summarize progress in the research on the functional mechanisms of divergent RNA maturation and on the mechanism by which RNA sequences are recognized. We further focus on two topics. RNA editing is an enigmatic process of RNA maturation in organelles, in which members of the PLS subfamily contribute to target site recognition. As the first topic, we speculate on why the PLS subfamily was selected by the RNA editing machinery. Second, we discuss how the regulation of plastid gene expression contributes to efficient photosynthesis. Although the molecular functions of PPR proteins have been studied extensively, information on the physiological significance of regulation by these proteins remains very limited.
Collapse
Affiliation(s)
| | - Sota Fujii
- Graduate School of Science; Kyoto University; Kyoto, Japan
| |
Collapse
|
142
|
Tikkanen M, Grieco M, Nurmi M, Rantala M, Suorsa M, Aro EM. Regulation of the photosynthetic apparatus under fluctuating growth light. Philos Trans R Soc Lond B Biol Sci 2013; 367:3486-93. [PMID: 23148275 DOI: 10.1098/rstb.2012.0067] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Safe and efficient conversion of solar energy to metabolic energy by plants is based on tightly inter-regulated transfer of excitation energy, electrons and protons in the photosynthetic machinery according to the availability of light energy, as well as the needs and restrictions of metabolism itself. Plants have mechanisms to enhance the capture of energy when light is limited for growth and development. Also, when energy is in excess, the photosynthetic machinery slows down the electron transfer reactions in order to prevent the production of reactive oxygen species and the consequent damage of the photosynthetic machinery. In this opinion paper, we present a partially hypothetical scheme describing how the photosynthetic machinery controls the flow of energy and electrons in order to enable the maintenance of photosynthetic activity in nature under continual fluctuations in white light intensity. We discuss the roles of light-harvesting II protein phosphorylation, thermal dissipation of excess energy and the control of electron transfer by cytochrome b(6)f, and the role of dynamically regulated turnover of photosystem II in the maintenance of the photosynthetic machinery. We present a new hypothesis suggesting that most of the regulation in the thylakoid membrane occurs in order to prevent oxidative damage of photosystem I.
Collapse
Affiliation(s)
- Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | | | | | | | | | | |
Collapse
|
143
|
Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light. Proc Natl Acad Sci U S A 2013; 110:4111-6. [PMID: 23431195 DOI: 10.1073/pnas.1221194110] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cyanobacterial flavodiiron proteins (FDPs; A-type flavoprotein, Flv) comprise, besides the β-lactamase-like and flavodoxin domains typical for all FDPs, an extra NAD(P)H:flavin oxidoreductase module and thus differ from FDPs in other Bacteria and Archaea. Synechocystis sp. PCC 6803 has four genes encoding the FDPs. Flv1 and Flv3 function as an NAD(P)H:oxygen oxidoreductase, donating electrons directly to O2 without production of reactive oxygen species. Here we show that the Flv1 and Flv3 proteins are crucial for cyanobacteria under fluctuating light, a typical light condition in aquatic environments. Under constant-light conditions, regardless of light intensity, the Flv1 and Flv3 proteins are dispensable. In contrast, under fluctuating light conditions, the growth and photosynthesis of the Δflv1(A) and/or Δflv3(A) mutants of Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120 become arrested, resulting in cell death in the most severe cases. This reaction is mainly caused by malfunction of photosystem I and oxidative damage induced by reactive oxygen species generated during abrupt short-term increases in light intensity. Unlike higher plants that lack the FDPs and use the Proton Gradient Regulation 5 to safeguard photosystem I, the cyanobacterial homolog of Proton Gradient Regulation 5 is shown not to be crucial for growth under fluctuating light. Instead, the unique Flv1/Flv3 heterodimer maintains the redox balance of the electron transfer chain in cyanobacteria and provides protection for photosystem I under fluctuating growth light. Evolution of unique cyanobacterial FDPs is discussed as a prerequisite for the development of oxygenic photosynthesis.
Collapse
|
144
|
Suorsa M, Grieco M, Järvi S, Gollan PJ, Kangasjärvi S, Tikkanen M, Aro EM. PGR5 ensures photosynthetic control to safeguard photosystem I under fluctuating light conditions. PLANT SIGNALING & BEHAVIOR 2013; 8:e22741. [PMID: 23221748 PMCID: PMC3745580 DOI: 10.4161/psb.22741] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/01/2012] [Indexed: 05/19/2023]
Abstract
In a plant's natural environment, the intensity of light can change rapidly due to sunflecks, cloudiness and intermittent shading. Fluctuations between high and low illumination phases expose the photosynthetic machinery to rapidly changing signals that can be overlapping or contradictory, and accordingly plants have developed astute acclimation strategies to maintain optimal photosynthetic performance in these conditions. Continuous exposure to high light induces an array of protective mechanisms at anatomical, chemical and molecular levels, but when high light phases are short, such as under fluctuating light conditions, the protective strategies that afford protection to constant high light are not employed by plants. One mechanism that is engaged under both constant and fluctuating high light is the photosynthetic control of the Cyt b 6f complex, which prevents hyper-reduction of the electron transfer chain in order to protect PSI from photodamage. The PGR5 protein was recently shown to play an indispensable role in this protective mechanism. This review revisits the findings of earlier studies into photosynthetic control and places PGR5 within the broader context of photoprotection and light acclimation strategies.
Collapse
|
145
|
Tikkanen M, Gollan PJ, Suorsa M, Kangasjärvi S, Aro EM. STN7 Operates in Retrograde Signaling through Controlling Redox Balance in the Electron Transfer Chain. FRONTIERS IN PLANT SCIENCE 2012; 3:277. [PMID: 23267361 PMCID: PMC3525998 DOI: 10.3389/fpls.2012.00277] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/23/2012] [Indexed: 05/20/2023]
Abstract
Phosphorylation of the major photosynthetic light harvesting antenna proteins by STN7 kinase balances excitation between PSII and PSI. Phosphorylation of such abundant proteins is unique, differing distinctively from conventional tasks of protein kinases in phosphorylation of low abundance proteins in signaling cascades. Excitation balance between PSII and PSI is critical for redox homeostasis between the plastoquinone and plastocyanin pools and PSI electron acceptors, determining the capacity of the thylakoid membrane to produce reactive oxygen species (ROS) that operate as signals relaying information between chloroplasts and other cellular compartments. STN7 has also been proposed to be a conventional signaling kinase, instigating the phosphorylation cascade required for coordinated expression of photosynthesis genes and assembly of the photosynthetic machinery. The absence of STN7 kinase, however, does not prevent plants from sensing redox imbalance and adjusting the stoichiometry of the photosynthetic machinery to restore redox homeostasis. This suggests that STN7 is not essential for signaling between the chloroplast and the nucleus. Here we discuss the evolution and functions of the STN7 and other thylakoid protein kinases and phosphatases, and the inherent difficulties in analyzing signaling cascades initiated from the photosynthetic machinery. Based on our analyses of literature and publicly available expression data, we conclude that STN7 exerts it signaling effect primarily by controlling chloroplast ROS homeostasis through maintaining steady-state phosphorylation of the light harvesting II proteins and the redox balance in the thylakoid membrane. ROS are important signaling molecules with a direct effect on the development of jasmonate, which in turn relays information out from the chloroplast. We propose that thylakoid membrane redox homeostasis, regulated by SNT7, sends cell-wide signals that reprogram the entire hormonal network in the cell.
Collapse
Affiliation(s)
- Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of TurkuTurku, Finland
| | - Peter J. Gollan
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of TurkuTurku, Finland
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of TurkuTurku, Finland
| | - Saijaliisa Kangasjärvi
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of TurkuTurku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of TurkuTurku, Finland
- *Correspondence: Eva-Mari Aro, Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of Turku, FIN–20014 Turku, Finland. e-mail:
| |
Collapse
|