101
|
Badia-Martinez D, Oksanen HM, Stuart DI, Abrescia NGA. Combined approaches to study virus structures. Subcell Biochem 2013; 68:203-246. [PMID: 23737053 DOI: 10.1007/978-94-007-6552-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A virus particle must work as a safe box for protecting its genome, but at the same time it has to undergo dramatic conformational changes in order to preserve itself by propagating in a cell infection. Thus, viruses are miniaturized wonders whose structural complexity requires them to be investigated by a combination of different techniques that can tackle both static and dynamic processes. In this chapter we will illustrate how major structural techniques such as X-ray crystallography and electron microscopy have been and can be combined with other techniques to determine the structure of complex viruses. The power of these hybrid method approaches are revealed through the various examples provided.
Collapse
Affiliation(s)
- Daniel Badia-Martinez
- Structural Biology Unit, CICbioGUNE, CIBERehd, Bizkaia Technology Park, 48160, Derio, Spain
| | | | | | | |
Collapse
|
102
|
Leal RMF, Bourenkov G, Russi S, Popov AN. A survey of global radiation damage to 15 different protein crystal types at room temperature: a new decay model. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:14-22. [PMID: 23254652 PMCID: PMC3943537 DOI: 10.1107/s0909049512049114] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/29/2012] [Indexed: 05/11/2023]
Abstract
The radiation damage rates to crystals of 15 model macromolecular structures were studied using an automated radiation sensitivity characterization procedure. The diffracted intensity variation with dose is described by a two-parameter model. This model includes a strong resolution-independent decay specific to room-temperature measurements along with a linear increase in overall Debye-Waller factors. An equivalent representation of sensitivity via a single parameter, normalized half-dose, is introduced. This parameter varies by an order of magnitude between the different structures studied. The data show a correlation of crystal radiation sensitivity with crystal solvent content but no dose-rate dependency was detected in the range 0.05-300 kGy s(-1). The results of the crystal characterization are suitable for either optimal planning of room-temperature data collection or in situ crystallization plate screening experiments.
Collapse
Affiliation(s)
| | - Gleb Bourenkov
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85b, Hamburg 22607, Germany
| | | | | |
Collapse
|
103
|
Garman EF, Weik M. Radiation damage to biological macromolecules: some answers and more questions. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:1-6. [PMID: 23254650 DOI: 10.1107/s0909049512050418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 06/01/2023]
Abstract
Research into radiation damage in macromolecular crystallography has matured over the last few years, resulting in a better understanding of both the processes and timescales involved. In turn this is now allowing practical recommendations for the optimization of crystal dose lifetime to be suggested. Some long-standing questions have been answered by recent investigations, and from these answers new challenges arise and areas of investigation can be proposed. Six papers published in this volume give an indication of some of the current directions of this field and also that of single-particle cryo-microscopy, and the brief summary below places them into the overall framework of ongoing research into macromolecular crystallography radiation damage.
Collapse
Affiliation(s)
- Elspeth F Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | |
Collapse
|
104
|
Lobley CMC, Aller P, Douangamath A, Reddivari Y, Bumann M, Bird LE, Nettleship JE, Brandao-Neto J, Owens RJ, O’Toole PW, Walsh MA. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1427-33. [PMID: 23192019 PMCID: PMC3509960 DOI: 10.1107/s174430911204273x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/12/2012] [Indexed: 11/10/2022]
Abstract
The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β D-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography.
Collapse
Affiliation(s)
- Carina M. C. Lobley
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, England
| | - Pierre Aller
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, England
| | - Alice Douangamath
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, England
| | - Yamini Reddivari
- Oxford Protein Production Facility UK, Research Complex at Harwell, R92 Rutherford Appleton Laboratories, Harwell, Oxfordshire OX11 0FA, England
| | - Mario Bumann
- MRC France, BM14, c/o ESRF, 6 Rue Jules Horowitz, BP 220, 38043 Grenoble France
| | - Louise E. Bird
- Oxford Protein Production Facility UK, Research Complex at Harwell, R92 Rutherford Appleton Laboratories, Harwell, Oxfordshire OX11 0FA, England
| | - Joanne E. Nettleship
- Oxford Protein Production Facility UK, Research Complex at Harwell, R92 Rutherford Appleton Laboratories, Harwell, Oxfordshire OX11 0FA, England
| | - Jose Brandao-Neto
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, England
| | - Raymond J. Owens
- Oxford Protein Production Facility UK, Research Complex at Harwell, R92 Rutherford Appleton Laboratories, Harwell, Oxfordshire OX11 0FA, England
| | - Paul W. O’Toole
- Department of Microbiology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Martin A. Walsh
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, England
- MRC France, BM14, c/o ESRF, 6 Rue Jules Horowitz, BP 220, 38043 Grenoble France
| |
Collapse
|
105
|
Smith JL, Fischetti RF, Yamamoto M. Micro-crystallography comes of age. Curr Opin Struct Biol 2012; 22:602-12. [PMID: 23021872 PMCID: PMC3478446 DOI: 10.1016/j.sbi.2012.09.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/31/2012] [Accepted: 09/03/2012] [Indexed: 11/24/2022]
Abstract
The latest revolution in macromolecular crystallography was incited by the development of dedicated, user friendly, micro-crystallography beam lines. Brilliant X-ray beams of diameter 20 μm or less, now available at most synchrotron sources, enable structure determination from samples that previously were inaccessible. Relative to traditional crystallography, crystals with one or more small dimensions have diffraction patterns with vastly improved signal-to-noise when recorded with an appropriately matched beam size. Structures can be solved from isolated, well diffracting regions within inhomogeneous samples. This review summarizes the technological requirements and approaches to producing micro-beams and how they continue to change the practice of crystallography.
Collapse
Affiliation(s)
- Janet L Smith
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
106
|
Cipriani F, Röwer M, Landret C, Zander U, Felisaz F, Márquez JA. CrystalDirect: a new method for automated crystal harvesting based on laser-induced photoablation of thin films. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1393-9. [DOI: 10.1107/s0907444912031459] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/10/2012] [Indexed: 11/10/2022]
|
107
|
Owen RL, Axford D, Nettleship JE, Owens RJ, Robinson JI, Morgan AW, Doré AS, Lebon G, Tate CG, Fry EE, Ren J, Stuart DI, Evans G. Outrunning free radicals in room-temperature macromolecular crystallography. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:810-8. [PMID: 22751666 PMCID: PMC4791751 DOI: 10.1107/s0907444912012553] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/22/2012] [Indexed: 11/13/2022]
Abstract
A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A(2A) adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macromolecular crystallography.
Collapse
Affiliation(s)
- Robin L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|