101
|
Obeidat M, Miller S, Probert K, Billington CK, Henry AP, Hodge E, Nelson CP, Stewart CE, Swan C, Wain LV, Artigas MS, Melén E, Ushey K, Hao K, Lamontagne M, Bossé Y, Postma DS, Tobin MD, Sayers I, Hall IP. GSTCD and INTS12 regulation and expression in the human lung. PLoS One 2013; 8:e74630. [PMID: 24058608 PMCID: PMC3776747 DOI: 10.1371/journal.pone.0074630] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/05/2013] [Indexed: 12/29/2022] Open
Abstract
Genome-Wide Association Study (GWAS) meta-analyses have identified a strong association signal for lung function, which maps to a region on 4q24 containing two oppositely transcribed genes: glutathione S-transferase, C-terminal domain containing (GSTCD) and integrator complex subunit 12 (INTS12). Both genes were found to be expressed in a range of human airway cell types. The promoter regions and transcription start sites were determined in mRNA from human lung and a novel splice variant was identified for each gene. We obtained the following evidence for GSTCD and INTS12 co-regulation and expression: (i) correlated mRNA expression was observed both via Q-PCR and in a lung expression quantitative trait loci (eQTL) study, (ii) induction of both GSTCD and INTS12 mRNA expression in human airway smooth muscle cells was seen in response to TGFβ1, (iii) a lung eQTL study revealed that both GSTCD and INTS12 mRNA levels positively correlate with percent predicted FEV1, and (iv) FEV1 GWAS associated SNPs in 4q24 were found to act as an eQTL for INTS12 in a number of tissues. In fixed sections of human lung tissue, GSTCD protein expression was ubiquitous, whereas INTS12 expression was predominantly in epithelial cells and pneumocytes. During human fetal lung development, GSTCD protein expression was observed to be highest at the earlier pseudoglandular stage (10-12 weeks) compared with the later canalicular stage (17-19 weeks), whereas INTS12 expression levels did not alter throughout these stages. Knowledge of the transcriptional and translational regulation and expression of GSTCD and INTS12 provides important insights into the potential role of these genes in determining lung function. Future work is warranted to fully define the functions of INTS12 and GSTCD.
Collapse
Affiliation(s)
- Ma’en Obeidat
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
- James Hogg Research Centre, Institute for Heart and Lung Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Suzanne Miller
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| | - Kelly Probert
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| | - Charlotte K. Billington
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| | - Amanda P. Henry
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| | - Emily Hodge
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| | - Carl P. Nelson
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| | - Ceri E. Stewart
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| | - Caroline Swan
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| | - Louise V. Wain
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - María Soler Artigas
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet and Sachs’ Children’s Hospital, Stockholm, Sweden
| | - Kevin Ushey
- James Hogg Research Centre, Institute for Heart and Lung Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Maxime Lamontagne
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec City, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Québec City, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec City, Canada
| | - Dirkje S. Postma
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin D. Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Ian Sayers
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| | - Ian P. Hall
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| |
Collapse
|
102
|
Structural and biochemical studies of a recombinant 25.5 kDa glutathione transferase of Taenia solium metacestode (rTs25GST1-1). Parasitol Res 2013; 112:3865-72. [PMID: 23959386 DOI: 10.1007/s00436-013-3577-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Abstract
In this work, we studied a recombinant mu-class glutathione transferase of 25.5 kDa from Taenia solium metacestode (rTs25GST1-1) that follows Michaelis–Menten kinetics with 1-chloro-2,4-dinitrobenzene (CDNB). The kinetic parameters obtained for rTs25GST1-1 with CDNB and GSH were V(max) =12.04 μmol/min/mg and K(m)=1.38 mM, and V(max) =10.20 μmol/min/mg and K(m)=0.90, respectively. The optimal activity was found at pH 8 in the 37-40 °C temperature range. Circular dichroism studies for rTs25GST1-1 at different pH showed that it maintains a typical α-helix structure between pH 6.5-7.5, but loses it between pH 8 and 8.5. Thermal CD assays showed rTs25GST1-1 barely changed its secondary structure. Unfolding/refolding assays showed that rTs25GST1-1 retained its structure up to 40 °C without loss of its activity. Additionally, exposure of rTs25GST1-1 to cumene hydroperoxide did not produce significant changes in its structure and only affected 50% of its activity.
Collapse
|
103
|
Corso G, Coletta I, Ombrato R. Murine mPGES-1 3D Structure Elucidation and Inhibitors Binding Mode Predictions by Homology Modeling and Site-Directed Mutagenesis. J Chem Inf Model 2013; 53:1804-17. [DOI: 10.1021/ci400180f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Gaia Corso
- R&D, †Computational Chemistry Lab, ‡In vitro Pharmacology Dev., Angelini Research Center, ACRAF S.p.A. P.le della Stazione, snc, I-00040 Santa Palomba, Pomezia (RM), Italy
| | - Isabella Coletta
- R&D, †Computational Chemistry Lab, ‡In vitro Pharmacology Dev., Angelini Research Center, ACRAF S.p.A. P.le della Stazione, snc, I-00040 Santa Palomba, Pomezia (RM), Italy
| | - Rosella Ombrato
- R&D, †Computational Chemistry Lab, ‡In vitro Pharmacology Dev., Angelini Research Center, ACRAF S.p.A. P.le della Stazione, snc, I-00040 Santa Palomba, Pomezia (RM), Italy
| |
Collapse
|
104
|
Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta Gen Subj 2013; 1830:3217-66. [DOI: 10.1016/j.bbagen.2012.09.018] [Citation(s) in RCA: 625] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/25/2012] [Indexed: 12/12/2022]
|
105
|
Abstract
The classical view of the glutathione (GSH) conjugation pathway involves GSH S-transferase (GST)-dependent formation of thioether conjugates between GSH and an electrophilic substrate, processing to yield the corresponding cysteine S-conjugate, which is then converted to an N-acetylcysteine conjugate (or mercapturate). Mercapturates of most GST substrates are rendered more polar and thus readily excreted in urine. In contrast, there is a growing number of GST substrates that, rather than being detoxified, are bioactivated. These substrates include several halogenated solvents, many of which are nephrotoxic because of the tissue distribution of GSH conjugation pathway enzymes and membrane transporters, and prodrugs of certain chemotherapeutic agents. Although the initiating steps are the same regardless of whether the substrate is detoxified or bioactivated, the cysteine conjugate functions as a branch point. Bioactivated cysteine S-conjugates are metabolized in the kidneys by either cysteine conjugate β-lyase or flavin-containing monooxygenase to produce a reactive intermediate.
Collapse
Affiliation(s)
- Lawrence H Lash
- Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
106
|
Ahmad S, Niegowski D, Wetterholm A, Haeggström JZ, Morgenstern R, Rinaldo-Matthis A. Catalytic Characterization of Human Microsomal Glutathione S-Transferase 2: Identification of Rate-Limiting Steps. Biochemistry 2013; 52:1755-64. [DOI: 10.1021/bi3014104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shabbir Ahmad
- Department of Medical Biochemistry
and Biophysics, Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Damian Niegowski
- Department of Medical Biochemistry
and Biophysics, Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Anders Wetterholm
- Department of Medical Biochemistry
and Biophysics, Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Z. Haeggström
- Department of Medical Biochemistry
and Biophysics, Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Ralf Morgenstern
- Institute
of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agnes Rinaldo-Matthis
- Department of Medical Biochemistry
and Biophysics, Chemistry II, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
107
|
Crystal structure of microsomal prostaglandin E2 synthase provides insight into diversity in the MAPEG superfamily. Proc Natl Acad Sci U S A 2013; 110:3806-11. [PMID: 23431194 DOI: 10.1073/pnas.1218504110] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a key mediator in inflammatory response. The main source of inducible PGE2, microsomal PGE2 synthase-1 (mPGES-1), has emerged as an interesting drug target for treatment of pain. To support inhibitor design, we have determined the crystal structure of human mPGES-1 to 1.2 Å resolution. The structure reveals three well-defined active site cavities within the membrane-spanning region in each monomer interface of the trimeric structure. An important determinant of the active site cavity is a small cytosolic domain inserted between transmembrane helices I and II. This extra domain is not observed in other structures of proteins within the MAPEG (Membrane-Associated Proteins involved in Eicosanoid and Glutathione metabolism) superfamily but is likely to be present also in microsomal GST-1 based on sequence similarity. An unexpected feature of the structure is a 16-Å-deep cone-shaped cavity extending from the cytosolic side into the membrane-spanning region. We suggest a potential role for this cavity in substrate access. Based on the structure of the active site, we propose a catalytic mechanism in which serine 127 plays a key role. We have also determined the structure of mPGES-1 in complex with a glutathione-based analog, providing insight into mPGES-1 flexibility and potential for structure-based drug design.
Collapse
|
108
|
Basu S, Nachat-Kappes R, Caldefie-Chézet F, Vasson MP. Eicosanoids and adipokines in breast cancer: from molecular mechanisms to clinical considerations. Antioxid Redox Signal 2013; 18:323-60. [PMID: 22746381 DOI: 10.1089/ars.2011.4408] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic inflammation is one of the foremost risk factors for different types of malignancies, including breast cancer. Additional risk factors of this pathology in postmenopausal women are weight gain, obesity, estrogen secretion, and an imbalance in the production of adipokines, such as leptin and adiponectin. Various signaling products of transcription factor, nuclear factor-kappaB, in particular inflammatory eicosanoids, reactive oxygen species (ROS), and cytokines, are thought to be involved in chronic inflammation-induced cancer. Together, these key components have an influence on inflammatory reactions in malignant tissue damage when their levels are deregulated endogenously. Prostaglandins (PGs) are well recognized in inflammation and cancer, and they are solely biosynthesized through cyclooxygenases (COXs) from arachidonic acid. Concurrently, ROS give rise to bioactive isoprostanes from arachidonic acid precursors that are also involved in acute and chronic inflammation, but their specific characteristics in breast cancer are less demonstrated. Higher aromatase activity, a cytochrome P-450 enzyme, is intimately connected to tumor growth in the breast through estrogen synthesis, and is interrelated to COXs that catalyze the formation of both inflammatory and anti-inflammatory PGs such as PGE(2), PGF(2α), PGD(2), and PGJ(2) synchronously under the influence of specific mediators and downstream enzymes. Some of the latter compounds upsurge the intracellular cyclic adenosine monophosphate concentration and appear to be associated with estrogen synthesis. This review discusses the role of COX- and ROS-catalyzed eicosanoids and adipokines in breast cancer, and therefore ranges from their molecular mechanisms to clinical aspects to understand the impact of inflammation.
Collapse
Affiliation(s)
- Samar Basu
- Biochemistry, Molecular Biology and Nutrition, University of Auvergne, Clermont-Ferrand, France.
| | | | | | | |
Collapse
|
109
|
Board PG, Menon D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta Gen Subj 2012. [PMID: 23201197 DOI: 10.1016/j.bbagen.2012.11.019] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The cytosolic glutathione transferases (GSTs) comprise a super family of proteins that can be categorized into multiple classes with a mixture of highly specific and overlapping functions. SCOPE OF REVIEW The review covers the genetics, structure and function of the human cytosolic GSTs with particular attention to their emerging roles in cellular metabolism. MAJOR CONCLUSIONS All the catalytically active GSTs contribute to the glutathione conjugation or glutathione dependant-biotransformation of xenobiotics and many catalyze glutathione peroxidase or thiol transferase reactions. GSTs also catalyze glutathione dependent isomerization reactions required for the synthesis of several prostaglandins and steroid hormones and the catabolism of tyrosine. An increasing body of work has implicated several GSTs in the regulation of cell signaling pathways mediated by stress-activated kinases like Jun N-terminal kinase. In addition, some members of the cytosolic GST family have been shown to form ion channels in intracellular membranes and to modulate ryanodine receptor Ca(2+) channels in skeletal and cardiac muscle. GENERAL SIGNIFICANCE In addition to their well established roles in the conjugation and biotransformation of xenobiotics, GSTs have emerged as significant regulators of pathways determining cell proliferation and survival and as regulators of ryanodine receptors that are essential for muscle function. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Philip G Board
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | |
Collapse
|
110
|
Ortiz-Rodríguez R, Dao TS, Wiegand C. Transgenerational effects of microcystin-LR on Daphnia magna. ACTA ACUST UNITED AC 2012; 215:2795-805. [PMID: 22837451 DOI: 10.1242/jeb.069211] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anthropogenic and climate factors increase the frequency of problematic cyanobacterial blooms in freshwater. Among other toxins, some cyanobacteria produce microcystins (MCs), which inhibit phosphatases type 1 and type 2A and provokes oxidative stress. Toxic cyanobacteria affect the growth, survival and reproduction of zooplankton, particularly those from the genus Daphnia, which have a central position in pelagic food webs. However, one possibility to ameliorate effects is to biotransform MC via glutathione S transferase (GST) to a less toxic glutathione conjugate. This process was hypothesised to underlie the ability of Daphnia to withstand MC and to explain the enhanced tolerance of the offspring from mothers exposed to toxic cyanobacteria. Thus we conducted multigenerational experiments with D. magna, exposing the parental generation to MC for 1 or 7 days and determining the enzyme-mediated tolerance to MC in their offspring by assessing the acute effect of MC on biotransformation and antioxidant and metabolism enzymes, and through 21 day chronic tests on toxicity and growth. Seven days of exposure of the parental generation to MC induced higher activity of GST and malate dehydrogenase in the offspring and enabled them to increment the catalase activity when challenged with MC, whereas 1 day of exposure of the parental generation did not. Offspring from non-exposed and 1-day-exposed mothers suffered decreased survival when exposed to MC compared with offspring from 7-day-exposed mothers; survival was correlated with the elevated activity of GST, malate dehydrogenase and catalase, suggesting maternal transfer of activation factors. However, increased survival occurred at the expense of individual growth. These results suggest that transgenerational effects are provoked by MC in D. magna, which may explain the observed acquirement of enhanced tolerance over generations.
Collapse
Affiliation(s)
- Rafael Ortiz-Rodríguez
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin, Germany
| | | | | |
Collapse
|
111
|
Boušová I, Skálová L. Inhibition and induction of glutathione S-transferases by flavonoids: possible pharmacological and toxicological consequences. Drug Metab Rev 2012; 44:267-86. [PMID: 22998389 DOI: 10.3109/03602532.2012.713969] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many studies reviewed herein demonstrated the potency of some flavonoids to modulate the activity and/or expression of glutathione S-transferases (GSTs). Because GSTs play a crucial role in the detoxification of xenobiotics, their inhibition or induction may significantly affect metabolism and biological effects of many drugs, industrials, and environmental contaminants. The effect of flavonoids on GSTs strongly depends on flavonoid structure, concentration, period of administration, as well as on GST isoform and origin. Moreover, the results obtained in vitro are often contrary to the vivo results. Based on these facts, the revelation of important flavonoid-drug or flavonoid-pollutant interaction has been complicated. However, it should be borne in mind that ingestion of certain flavonoids in combination with drugs or pollutants (e.g., acetaminophen, simvastatin, cyclophosphamide, cisplatine, polycyclic aromatic hydrocarbons, chlorpyrifos, acrylamide, and isocyanates), which are GST substrates, could have significant pharmacological and toxicological consequences. Although reasonable consumptions of a flavonoids-rich diet (that may lead to GST induction) are mostly beneficial, the uncontrolled intake of high concentrations of certain flavonoids (e.g., quercetin and catechins) in dietary supplements (that may cause GST inhibition) may threaten human health.
Collapse
Affiliation(s)
- Iva Boušová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic, European Union
| | | |
Collapse
|
112
|
Zhang X, Lin J, Wu X, Lin Z, Ning B, Kadlubar S, Kadlubar FF. Association between GSTM1 copy number, promoter variants and susceptibility to urinary bladder cancer. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2012; 3:228-236. [PMID: 23050053 PMCID: PMC3459215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/06/2012] [Indexed: 06/01/2023]
Abstract
This study sought to determine the role of copy number variants (CNV) combined with other genetic variants in the Glutathione S-transferases Mu class1 (GSTM1) promoter in the development of urinary bladder cancer. TaqMan real-time PCR and direct sequencing were used to determine genetic variants. Haploblocks and haplotype were constructed and estimated by Haploview and Phase, respectively. Logistic regression revealed a significantly decreased bladder cancer risk in subjects with at least 2 copies of GSTM1 (OR=0.56; 95%CI=0.39-0.81) but not in those with 1 copy of the gene. GSTM1 promoter screening revealed an insertion variant (-1543TTCT) and 14 single nucleotide polymorphisms (SNPs) (-1529C>G, -1490A>G, -1143A>G, -888A>T, -498G>C, -486C>G, -471C>T, -426G>A, -344C>T, -343A>T, -341C>T, -339C>T, -304G>A, and -164C>T). Four haploblocks were evident by Haploview. There was no significant association between any single SNP/haplotype and bladder cancer risk. However, when stratified by copy number, the two copy carriers with the -1543 insertion had decreased bladder cancer risk (OR, 0.58; 95%CI, 0.32-0.10) and similar results were found in two copy carriers with -888 A, -486G, - 344 C, -343 A, -341 C allele and haplotype INS(-1543)-C(-1529)-A(-1429) in LD block 1, A(-1143)-A(-888) in LD block 2, C(-498)-G(-486)-T(-471) in LD block 3, C(-344)-A(-343)-C(-341)-C(-339) and C(-344)-A(-343)-C(-341)-T(-339) in LD block 4. These results suggest that GSTM1 CNV is a better predictor of bladder cancer susceptibility than measuring presence/absence of GSTM1 and other genetic variants also can modify bladder cancer risk.
Collapse
Affiliation(s)
- Xuemei Zhang
- University of Arkansas for Medical SciencesLittle Rock, AR 72205
| | - Jie Lin
- The University of Texas M.D. Anderson Cancer CenterHouston, TX
| | - Xifeng Wu
- The University of Texas M.D. Anderson Cancer CenterHouston, TX
| | - Zhongning Lin
- National Center for Toxicological Research, U.S. Food and Drug AdministrationJefferson, AR
| | - Baitang Ning
- National Center for Toxicological Research, U.S. Food and Drug AdministrationJefferson, AR
| | - Susan Kadlubar
- University of Arkansas for Medical SciencesLittle Rock, AR 72205
| | - Fred F Kadlubar
- University of Arkansas for Medical SciencesLittle Rock, AR 72205
| |
Collapse
|
113
|
Ito M, Shibata A, Zhang J, Hiroshima M, Sako Y, Nakano Y, Kojima-Aikawa K, Mannervik B, Shuto S, Ito Y, Morgenstern R, Abe H. Universal caging group for the in-cell detection of glutathione transferase applied to 19F NMR and bioluminogenic probes. Chembiochem 2012; 13:1428-32. [PMID: 22689392 DOI: 10.1002/cbic.201200242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Mika Ito
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1, Hirosawa, Wako-Shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Duan J, Wu J, Liu Y, Xiao J, Zhao G, Gu Y, Jia J, Kong X. New cis-regulatory elements in the Rht-D1b locus region of wheat. Funct Integr Genomics 2012; 12:489-500. [PMID: 22592657 DOI: 10.1007/s10142-012-0283-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 01/02/2023]
|
115
|
Saranya Revathy K, Umasuthan N, Lee Y, Choi CY, Whang I, Lee J. First molluscan theta-class Glutathione S-Transferase: identification, cloning, characterization and transcriptional analysis post immune challenges. Comp Biochem Physiol B Biochem Mol Biol 2012; 162:10-23. [PMID: 22390916 DOI: 10.1016/j.cbpb.2012.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/13/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
Abstract
Glutathione S-Transferases (GSTs) are multifunctional cytosolic isoenzymes, distinctly known as phase II detoxification enzymes. GSTs play a significant role in cellular defense against toxicity and have been identified in nearly all organisms studied to date, from bacteria to mammals. In this study, we have identified a full-length cDNA of the theta class GST from Ruditapes philippinarum (RpGSTθ), an important commercial edible molluscan species. RpGSTθ was cloned and the recombinant protein expressed, in order to study its biochemical characteristics and determine its physiological activities. The cDNA comprised an ORF of 693 bp, encoding 231 amino acids with a predicted molecular mass of 27 kDa and an isoelectric point of 8.2. Sequence analysis revealed that RpGSTθ possessed characteristic conserved domains of the GST_N family, Class Theta subfamily (PSSM: cd03050) and GST_C_family Super family (PSSM: cl02776). Phylogenetic analysis showed that RpGSTθ evolutionarily linked with other theta class homologues. The recombinant protein was expressed in Escherichia coli BL21(DE3) cells and the purified enzyme showed high activity with GST substrates like CDNB and 4-NBC. Glutathione dependent peroxidase activity of GST, investigated with cumene hydroperoxide as substrate affirmed the antioxidant property of rRpGSTθ. By quantitative PCR, RpGSTθ was found to be ubiquitously expressed in all tissues examined, with the highest levels occurring in gills, mantle, and hemocytes. Since GSTs may act as detoxification enzymes to mediate immune defense, the effects of pathogen associated molecular pattern, lipopolysaccharide and intact Vibrio tapetis bacteria challenge on RpGSTθ gene transcription were studied. Furthermore, the RpGSTθ expression changes induced by immune challenges were similar to those of the antioxidant defense enzyme manganese superoxide dismutase (RpMnSOD). To our knowledge, RpGSTθ is the first molluscan theta class GST reported, and its immune-related role in Manila clam may provide insights into potential therapeutic targets for protecting this important aquaculture species.
Collapse
Affiliation(s)
- Kasthuri Saranya Revathy
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
116
|
Niu JZ, Dou W, Wang BJ, Zhang GN, Zhang R, Yin Y, Wang JJ. Purification and partial characterization of glutathione S-transferases from three field populations of Panonychus citri (Acari: Tetranychidae). EXPERIMENTAL & APPLIED ACAROLOGY 2012; 56:99-111. [PMID: 21979304 DOI: 10.1007/s10493-011-9498-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 09/12/2011] [Indexed: 05/31/2023]
Abstract
Glutathione S-transferases (GSTs) play central roles in phase II detoxification of both xenobiotics (drugs, insecticides, and herbicides) and endogenous compounds in almost all living organisms. In this study, we successfully purified the GSTs from the citrus red mite, Panonychus citri, by affinity chromatography on Glutathione Sepharose 4B and compared the biochemical characterizations of the purified GSTs from three field populations [beibei (BB), wanzhou (WZ), and zhongxian (ZX)]. SDS-PAGE revealed that the molecular weight of GSTs from three populations consisted of two subunits of 27.3 and 26.1 kDa. The specific activity of the purified GSTs from the WZ and ZX populations was increased 1.5- and 3.8-fold, respectively, compared with the BB population. Accordingly, the pyridaben susceptibility of WZ and ZX populations was less compared with BB population. Kinetic analyses showed that the WZ and ZX populations had higher substrate specificity compared with the BB population based on the values of k (cat) and k (cat) /K (m) to both reduced glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB). The in vitro inhibition studies of GSTs indicated that the I (50) values of pyridaben from WZ and ZX populations of P. citri expressed 1.6- and 4.4-fold decreases, respectively, compared to the I (50) value of pyridaben from the BB population. In conclusion, all evidence suggested that the purified GSTs may partially contribute to the susceptibility of acaricide pyridaben in field populations of P. citri.
Collapse
Affiliation(s)
- Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
Reactive oxygen species (ROS) are produced by living organisms as a result of normal cellular metabolism and environmental factors, such as air pollutants or cigarette smoke. ROS are highly reactive molecules and can damage cell structures such as carbohydrates, nucleic acids, lipids, and proteins and alter their functions. The shift in the balance between oxidants and antioxidants in favor of oxidants is termed “oxidative stress.” Regulation of reducing and oxidizing (redox) state is critical for cell viability, activation, proliferation, and organ function. Aerobic organisms have integrated antioxidant systems, which include enzymatic and nonenzymatic antioxidants that are usually effective in blocking harmful effects of ROS. However, in pathological conditions, the antioxidant systems can be overwhelmed. Oxidative stress contributes to many pathological conditions and diseases, including cancer, neurological disorders, atherosclerosis, hypertension, ischemia/perfusion, diabetes, acute respiratory distress syndrome, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. In this review, we summarize the cellular oxidant and antioxidant systems and discuss the cellular effects and mechanisms of the oxidative stress.
Collapse
|
118
|
Ferguson AD. Structure-based drug design on membrane protein targets: human integral membrane protein 5-lipoxygenase-activating protein. Methods Mol Biol 2012; 841:267-290. [PMID: 22222457 DOI: 10.1007/978-1-61779-520-6_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Leukotrienes are biologically active lipid metabolites of arachidonic acid that are involved in inflammation and play a significant role in respiratory and cardiovascular disease. The integral nuclear membrane protein 5-lipoxygenase-activating protein (FLAP) is essential for leukotriene biosynthesis in response to cellular activation. The crystal structures of human FLAP with two inhibitors were recently determined. Inhibitors are bound within the lipid-exposed portion of FLAP, and the unexpected location of the inhibitor-binding site suggests a transport mechanism for arachidonic acid and provides functional insights into leukotriene biosynthesis. This chapter describes how this human integral membrane crystal structure was solved by pushing the limits of low-resolution structure determination and refinement, demonstrating how a low-resolution structure can impact biology and chemistry, and discusses future opportunities for structure-based drug design for this therapeutic target.
Collapse
|
119
|
Schadich E, Mason D, Sin F. Co-expressed peJK genes of lobster (Jasus edwardsii). AUST J ZOOL 2012. [DOI: 10.1071/zo11105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous studies have shown that the two novel genes of southern rock lobster (Jasus edwardsii) named peJK2 and peJK3 are implicated in eyestalk hormonal regulation of the lobster moult cycle. Northern blot, in situ hybridisation studies and sequence analyses showed that their putative products might be transmembrane proteins associated with cell signal transduction of hormonal signals in the eyestalk during the intermoult phase of the moult cycle. The aim of this study was to analyse coexpression of peJK genes in different J. edwardsii tissues. Using reverse transcriptase–polymerase chain reaction (RT-PCR), the expression of peJK genes was analysed in seven different tissues (eyestalk, brain, epidermis, hepatopancreas, gill, muscle and heart) of an intermoult lobster. During RT-PCR analysis, a novel sequence was isolated, and was named peJK4. It shares 88% and 86% sequence identity with peJK2 and peJK3 respectively. The peJK2 and peJK4 genes are expressed in all tested tissues. Sequence analyses of the predicted peJK2 and peJK4 proteins revealed two common signal transduction motifs, transmembrane helices and protein kinase C. These results showed that the peJK genes of J. edwardsii are a complex group of genes and possibly involved in different signal transduction pathways.
Collapse
|
120
|
Chen J, Xiao S, Deng Y, Du X, Yu Z. Cloning of a novel glutathione S-transferase 3 (GST3) gene and expressionanalysis in pearl oyster, Pinctada martensii. FISH & SHELLFISH IMMUNOLOGY 2011; 31:823-830. [PMID: 21807100 DOI: 10.1016/j.fsi.2011.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 05/26/2011] [Accepted: 07/20/2011] [Indexed: 05/31/2023]
Abstract
Microsomal glutathione S-transferase (MGST) functions in cellular defense against xenobiotics and provides protection against the action of lipid hydroperoxides produced as a consequence of oxidative stress. In this study, a full-length cDNA encoding MGST3 (referred to as PmMGST3) was identified from the pearl oyster, Pinctada martensii by a combination of expressed sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE). The full-length cDNA of PmMGST3 is 971 bp and contains a 5' UTR of 39 bp, a 3' UTR of 491 bp with a canonical polyadenylation signal sequence (AATAAA), and an open reading frame (ORF) of 447 bp encoding a polypeptide of 146 residues. The deduced polypeptide contains a conserved motif (FNCx(1)QRx(2)H) characteristic of the MGST3 subfamily. The PmMGST3 transcript could be detected in all tissues tested, with highest transcript level seen in hepatopancreas. Cadmium treatment significantly increased PmMGST3 mRNA levels in gill and hepatopancreas, while bacterial challenge initially depressed mRNA levels and then increased its level in haemocytes, gill and hepatopancreas in a time-dependent manner. In an assay using cumene hydroperoxide as a substrate, we demonstrated that PmMGST3 possesses glutathione-dependent peroxidase activity. These results suggest that PmMGST3 plays an important role in cellular defense against oxidative stress caused by cadmium and bacteria.
Collapse
Affiliation(s)
- Jinhui Chen
- Key Laboratory of Marine Bio-resources Sustainable Utilization, CAS, Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | | | | | | | | |
Collapse
|
121
|
Smith WL, Urade Y, Jakobsson PJ. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev 2011; 111:5821-65. [PMID: 21942677 PMCID: PMC3285496 DOI: 10.1021/cr2002992] [Citation(s) in RCA: 346] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- William L Smith
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, 5301 MSRB III, Ann Arbor, Michigan 48109-5606, USA.
| | | | | |
Collapse
|
122
|
Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 2011; 111:5866-98. [PMID: 21936577 DOI: 10.1021/cr200246d] [Citation(s) in RCA: 609] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
123
|
Morgenstern R, Zhang J, Johansson K. Microsomal glutathione transferase 1: mechanism and functional roles. Drug Metab Rev 2011; 43:300-6. [PMID: 21495795 DOI: 10.3109/03602532.2011.558511] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Microsomal glutathione transferase 1 (MGST1) belongs to a superfamily named MAPEG (membrane-associated proteins in eicosanoid and glutathione metabolism). This family is represented in all life forms, except archae. Of the six human members, three are specialized in the synthesis of leukotrienes and prostaglandin E, whereas the others (MGST1-3) have potential roles in drug metabolism. MGST1 has a well-established role in the conjugation of electrophiles and oxidative stress protection, whereas MGST2 and 3 have been less studied. Here, we review the recent advances regarding the structure, mechanism, and functional roles of MGST1. Emerging data show that the enzyme is overexpressed in certain tumors and support a role for the enzyme in protecting cells from cytostatic drugs.
Collapse
Affiliation(s)
- Ralf Morgenstern
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
124
|
Saino H, Ukita Y, Ago H, Irikura D, Nisawa A, Ueno G, Yamamoto M, Kanaoka Y, Lam BK, Austen KF, Miyano M. The catalytic architecture of leukotriene C4 synthase with two arginine residues. J Biol Chem 2011; 286:16392-401. [PMID: 21454538 PMCID: PMC3091245 DOI: 10.1074/jbc.m110.150177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 01/17/2011] [Indexed: 11/20/2022] Open
Abstract
Leukotriene (LT) C(4) and its metabolites, LTD(4) and LTE(4), are involved in the pathobiology of bronchial asthma. LTC(4) synthase is the nuclear membrane-embedded enzyme responsible for LTC(4) biosynthesis, catalyzing the conjugation of two substrates that have considerably different water solubility; that amphipathic LTA(4) as a derivative of arachidonic acid and a water-soluble glutathione (GSH). A previous crystal structure revealed important details of GSH binding and implied a GSH activating function for Arg-104. In addition, Arg-31 was also proposed to participate in the catalysis based on the putative LTA(4) binding model. In this study enzymatic assay with mutant enzymes demonstrates that Arg-104 is required for the binding and activation of GSH and that Arg-31 is needed for catalysis probably by activating the epoxide group of LTA(4).
Collapse
Affiliation(s)
| | - Yoko Ukita
- From the Structural Biophysics Laboratory and
| | - Hideo Ago
- From the Structural Biophysics Laboratory and
| | | | - Atsushi Nisawa
- Research Infrastructure Group, RIKEN SPring-8
Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan and
| | - Go Ueno
- Research Infrastructure Group, RIKEN SPring-8
Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan and
| | - Masaki Yamamoto
- Research Infrastructure Group, RIKEN SPring-8
Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan and
| | - Yoshihide Kanaoka
- the Department of Medicine, Harvard Medical
School and Division of Rheumatology, Immunology, and Allergy, Brigham and
Women's Hospital, Boston, Massachusetts 02115
| | - Bing K. Lam
- the Department of Medicine, Harvard Medical
School and Division of Rheumatology, Immunology, and Allergy, Brigham and
Women's Hospital, Boston, Massachusetts 02115
| | - K. Frank Austen
- the Department of Medicine, Harvard Medical
School and Division of Rheumatology, Immunology, and Allergy, Brigham and
Women's Hospital, Boston, Massachusetts 02115
| | | |
Collapse
|
125
|
Waltenberger B, Wiechmann K, Bauer J, Markt P, Noha SM, Wolber G, Rollinger JM, Werz O, Schuster D, Stuppner H. Pharmacophore modeling and virtual screening for novel acidic inhibitors of microsomal prostaglandin E₂ synthase-1 (mPGES-1). J Med Chem 2011; 54:3163-74. [PMID: 21466167 PMCID: PMC3088311 DOI: 10.1021/jm101309g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Microsomal prostaglandin E2 synthase-1 (mPGES-1) catalyzes prostaglandin E2 formation and is considered as a potential anti-inflammatory pharmacological target. To identify novel chemical scaffolds active on this enzyme, two pharmacophore models for acidic mPGES-1 inhibitors were developed and theoretically validated using information on mPGES-1 inhibitors from literature. The models were used to screen chemical databases supplied from the National Cancer Institute (NCI) and the Specs. Out of 29 compounds selected for biological evaluation, nine chemically diverse compounds caused concentration-dependent inhibition of mPGES-1 activity in a cell-free assay with IC50 values between 0.4 and 7.9 μM, respectively. Further pharmacological characterization revealed that also 5-lipoxygenase (5-LO) was inhibited by most of these active compounds in cell-free and cell-based assays with IC50 values in the low micromolar range. Together, nine novel chemical scaffolds inhibiting mPGES-1 are presented that may possess anti-inflammatory properties based on the interference with eicosanoid biosynthesis.
Collapse
Affiliation(s)
- Birgit Waltenberger
- Institute of Pharmacy, Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Abstract
The glutathione transferases (GSTs) are one of the most important families of detoxifying enzymes in nature. The classic activity of the GSTs is conjugation of compounds with electrophilic centers to the tripeptide glutathione (GSH), but many other activities are now associated with GSTs, including steroid and leukotriene biosynthesis, peroxide degradation, double-bond cis-trans isomerization, dehydroascorbate reduction, Michael addition, and noncatalytic "ligandin" activity (ligand binding and transport). Since the first GST structure was determined in 1991, there has been an explosion in structural data across GSTs of all three families: the cytosolic GSTs, the mitochondrial GSTs, and the membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG family). In this review, the major insights into GST structure and function will be discussed.
Collapse
Affiliation(s)
- Aaron Oakley
- School of Chemistry, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
127
|
Aniya Y, Imaizumi N. Mitochondrial glutathione transferases involving a new function for membrane permeability transition pore regulation. Drug Metab Rev 2011; 43:292-9. [PMID: 21428695 DOI: 10.3109/03602532.2011.552913] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The mitochondria in mammalian cells are a predominant resource of reactive oxygen species (ROS), which are produced during respiration-coupled oxidative metabolism or various chemical stresses. End-products from membrane-lipid peroxidation caused by ROS are highly toxic, thereby their elimination/scavenging are protective of mitochondria and cells against oxidative damages. In mitochondria, soluble (kappa, alpha, mu, pi, zeta) and membrane-bound glutathione transferases (GSTs) (MGST1) are distributed. Mitochondrial GSTs display both glutathione transferase and peroxidase activities that detoxify such harmful products through glutathione (GSH) conjugation or GSH-mediated peroxide reduction. Some GST isoenzymes are induced by oxidative stress, an adaptation mechanism for the protection of cells from oxidative stress. Membrane-bound MGST1 is activated through the thiol modification in oxidative conditions. Protective action of MGST1 against oxidative stress has been confirmed using MCF7 cells highly expressed of MGST1. In recent years, mitochondria have been recognized as a regulator of cell death via both apoptosis and necrosis, where oxidative stress-induced alteration of the membrane permeability is an important step. Recent studies have shown that MGST1 in the inner mitochondrial membrane could interact with the mitochondrial permeability transition (MPT) regulator proteins, such as adenine nucleotide translocator (ANT) and/or cyclophilin D, and could contribute to oxidant-induced MPT pores. Interaction of GST alpha with ANT has also been shown. In this review, functions of the mitochondrial GSTs, including a new role for mitochondria-mediated cell death, are described.
Collapse
Affiliation(s)
- Yoko Aniya
- Laboratory of Molecular Genetics and Pharmacology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.
| | | |
Collapse
|
128
|
Board PG, Anders MW. Glutathione transferase zeta: discovery, polymorphic variants, catalysis, inactivation, and properties of Gstz1-/- mice. Drug Metab Rev 2011; 43:215-25. [PMID: 21303221 DOI: 10.3109/03602532.2010.549132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glutathione transferase zeta (GSTZ1) is a member of the GST superfamily of proteins that catalyze the reaction of glutathione with endo- and xenobiotics. GSTZ1-1 was discovered by a bioinformatics strategy that searched the human-expressed sequence-tag database with a sequence that matched a putative plant GST. A sequence that was found was expressed and termed GSTZ1-1. In common with other GSTs, GSTZ1-1 showed some peroxidase activity, but lacked activity with most known GST substrates. GSTZ1-1 was also found to be identical with maleylacetoacetate isomerase, which catalyzes the penultimate step in the tyrosine-degradation pathway. Further studies showed that dichloroacetate (DCA) and a range of α-haloalkanoates and α,α-dihaloalkanoates were substrates. A subsequent search of the human-expressed sequence-tag database showed the presence of four polymorphic alleles: 1a, 1b, 1c, and 1d; GSTZ1c was the most common and was designated as the wild-type gene. DCA was shown to be a k(cat) inactivator of human, rat, and mouse GSTZ1-1; human GSTZ1-1 was more resistant to inactivation than mouse or rat GSTZ1-1. Proteomic analysis showed that hGSTZ1-1 was inactivated when Cys-16 was modified by glutathione and the carbon skeleton of DCA. The polymorphic variants of hGSTZ1-1 differ in their susceptibility to inactivation, with 1a-1a being more resistant to inactivation than the other variants. The targeted deletion of GSTZ1 yielded mice that were not phenotypically distinctive. Phenylalanine proved, however, to be toxic to Gstz1(-/-) mice, and these mice showed evidence of organ damage and leucopenia.
Collapse
Affiliation(s)
- Philip G Board
- Molecular Genetics Group, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | |
Collapse
|
129
|
He P, Laidlaw T, Maekawa A, Kanaoka Y, Xu K, Lam BK. Oxidative stress suppresses cysteinyl leukotriene generation by mouse bone marrow-derived mast cells. J Biol Chem 2011; 286:8277-8286. [PMID: 21233206 DOI: 10.1074/jbc.m110.205567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cysteinyl leukotrienes and oxidative stress have both been implicated in bronchial asthma; however, there is no previous study that focused on the ability of oxidative stress to alter cysteinyl leukotriene generation. In this study, treatment of bone marrow-derived mast cells with prostaglandin D(2) reduced their ability to generate leukotriene (LT) C(4) upon calcium ionophore stimulation but had little effect on LTB(4) generation. This effect could be reproduced by a selective agonist of the DP(2) receptor, 15R-methyl prostaglandin D(2) (15R-D(2)). 15R-D(2) dose-dependently inhibited LTC(4) generation with an IC(50) of 2 μM, and the effect was not altered by a DP(2)/thromboxane antagonist or by a peroxisome proliferator-activated receptor-γ antagonist. 15R-D(2) exerted its suppressive effect via a reduction in intracellular GSH, a mechanism that involved the conjugation of its non-enzymatic breakdown product to GSH. At 10 μM, 15R-D(2) reduced LTC(4) generation to 10%, intracellular GSH to 50%, and LTC(4) synthase (LTC(4)S) activity to 33.5% of untreated cells without altering immunoreactive LTC(4)S protein expression or 5-lipoxygenase activity. The effects of 15R-D(2) on LTC(4)S activity could be partially reversed by reducing reagent. The sulfhydryl-reactive oxidative agent diamide suppressed LTC(4)S activity and induced a reversible formation of covalent dimer LTC(4)S. LTC(4)S bearing a C56S mutation was resistant to the effect of diamide. Covalent dimer LTC(4)S was observed in nasal polyp biopsies, indicating that dimerization and inactivation of LTC(4)S can occur at the site of inflammation. These results suggest a cellular redox regulation of LTC(4)S function through a post-translational mechanism.
Collapse
Affiliation(s)
- Ping He
- From the Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Tanya Laidlaw
- From the Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Akiko Maekawa
- From the Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Yoshihide Kanaoka
- From the Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Kongyi Xu
- From the Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Bing K Lam
- From the Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
130
|
Edwards R, Dixon DP, Cummins I, Brazier-Hicks M, Skipsey M. New Perspectives on the Metabolism and Detoxification of Synthetic Compounds in Plants. PLANT ECOPHYSIOLOGY 2011. [DOI: 10.1007/978-90-481-9852-8_7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
131
|
Rinaldo-Matthis A, Wetterholm A, Martinez Molina D, Holm J, Niegowski D, Ohlson E, Nordlund P, Morgenstern R, Haeggström JZ. Arginine 104 is a key catalytic residue in leukotriene C4 synthase. J Biol Chem 2010; 285:40771-6. [PMID: 20980252 PMCID: PMC3003377 DOI: 10.1074/jbc.m110.105940] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human leukotriene C(4) synthase (hLTC(4)S) is an integral membrane enzyme that conjugates leukotriene (LT) A(4) with glutathione to form LTC(4), a precursor to the cysteinyl leukotrienes (LTC(4), LTD(4), and LTE(4)) that are involved in the pathogenesis of human bronchial asthma. From the crystal structure of hLTC(4)S, Arg-104 and Arg-31 have been implicated in the conjugation reaction. Here, we used site-directed mutagenesis, UV spectroscopy, and x-ray crystallography to examine the catalytic role of Arg-104 and Arg-31. Exchange of Arg-104 with Ala, Ser, Thr, or Lys abolished 94.3-99.9% of the specific activity against LTA(4). Steady-state kinetics of R104A and R104S revealed that the K(m) for GSH was not significantly affected. UV difference spectra of the binary enzyme-GSH complex indicated that GSH ionization depends on the presence of Arg-104 because no thiolate signal, with λ(max) at 239 nm, could be detected using R104A or R104S hLTC(4)S. Apparently, the interaction of Arg-104 with the thiol group of GSH reduces its pK(a) to allow formation of a thiolate anion and subsequent nucleophilic attack at C6 of LTA(4). On the other hand, exchange of Arg-31 with Ala or Glu reduced the catalytic activity of hLTC(4)S by 88 and 70%, respectively, without significantly affecting the k(cat)/K(m) values for GSH, and a crystal structure of R31Q hLTC(4)S (2.1 Å) revealed a Gln-31 side chain pointing away from the active site. We conclude that Arg-104 plays a critical role in the catalytic mechanism of hLTC(4)S, whereas a functional role of Arg-31 seems more elusive. Because Arg-104 is a conserved residue, our results pertain to other homologous membrane proteins and represent a structure-function paradigm probably common to all microsomal GSH transferases.
Collapse
Affiliation(s)
- Agnes Rinaldo-Matthis
- Division of Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Jefferies H, Bot J, Coster J, Khalil A, Hall JC, McCauley RD. The Role of Glutathione in Intestinal Dysfunction. J INVEST SURG 2010; 16:315-23. [PMID: 14708530 DOI: 10.1080/08941930390250214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Glutathione plays an important cytoprotective role in the gut. Animal studies have demonstrated that the provisions of glutathione precursors are protective for different types of free-radical-mediated cellular injury. There is a need to clarify the potential role of glutathione supplementation in ischemia-reperfusion injury and inflammatory bowel disease. More speculative is whether treatment with glutathione precursors can modify the progress of colorectal cancer.
Collapse
Affiliation(s)
- Heather Jefferies
- Department of Surgery, University of Western Australia, Perth, Western Australia, Australia
| | | | | | | | | | | |
Collapse
|
133
|
Newcomer ME, Gilbert NC. Location, location, location: compartmentalization of early events in leukotriene biosynthesis. J Biol Chem 2010; 285:25109-14. [PMID: 20507998 DOI: 10.1074/jbc.r110.125880] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukotrienes (LTs), derived from arachidonic acid (AA) released from the membrane by the action of phospholipase A(2), are potent lipid mediators of the inflammatory response. In 1983, Dahlén et al. demonstrated that LTC(4), LTD(4), and LTE(4) mediate antigen-induced constriction of bronchi in tissue obtained from subjects with asthma (Dahlén, S. E., Hansson, G., Hedqvist, P., Björck, T., Granström, E., and Dahlén, B. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 1712-1716). Over the last 25+ years, substantial progress has been made in understanding how LTs exert their effects, and a broader appreciation for the numerous biological processes they mediate has emerged. LT biosynthesis is initiated by the action of 5-lipoxygenase (5-LOX), which catalyzes the transformation of AA to LTA(4) in a two-step reaction. Ca(2+) targets 5-LOX to the nuclear membrane, where it co-localizes with the 5-LOX-activating protein FLAP and, when present, the downstream enzyme LTC(4) synthase, both transmembrane proteins. Crystal structures of the AA-metabolizing LOXs, LTC(4) synthase, and FLAP combined with biochemical data provide a framework for understanding how subcellular organizations optimize the biosynthesis of these labile hydrophobic signaling compounds, which must navigate pathways that include both membrane and soluble enzymes. The insights these structures afford and the questions they engender are discussed in this minireview.
Collapse
Affiliation(s)
- Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | |
Collapse
|
134
|
Rao PPN, Kabir SN, Mohamed T. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs): Progress in Small Molecule Drug Development. Pharmaceuticals (Basel) 2010; 3:1530-1549. [PMID: 27713316 PMCID: PMC4033995 DOI: 10.3390/ph3051530] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 04/22/2010] [Accepted: 05/12/2010] [Indexed: 02/06/2023] Open
Abstract
Ever since the discovery of aspirin, small molecule therapeutics have been widely prescribed to treat inflammation and pain. Aspirin and several small molecule NSAIDs are known to inhibit the enzymes cyclooxygenase-1 (COX-1) and -2 (COX-2). Despite the success of NSAIDs to treat inflammatory disorders, the development of a clinically useful small molecule NSAIDs with decreased side effect profiles is an ongoing effort. The recent discovery and development of selective COX-2 inhibitors was a step toward this direction. Emerging trends are represented by the progress in the development of hybrid agents such as nitric oxide donor-NSAIDs (NO-NSAIDs) and dual COX/lipoxygenase (LOX) inhibitors. This review focuses on the recent advances in the rational design of small molecule NSAIDs in therapy.
Collapse
Affiliation(s)
- Praveen P N Rao
- School of Pharmacy, Health Sciences Campus, University of Waterloo, 200 University Avenue W. Waterloo, ON, N2L 3G1 Canada.
| | - Saad N Kabir
- School of Pharmacy, Health Sciences Campus, University of Waterloo, 200 University Avenue W. Waterloo, ON, N2L 3G1 Canada
| | - Tarek Mohamed
- School of Pharmacy, Health Sciences Campus, University of Waterloo, 200 University Avenue W. Waterloo, ON, N2L 3G1 Canada
| |
Collapse
|
135
|
Abstract
The 55 Arabidopsis glutathione transferases (GSTs) are, with one microsomal exception, a monophyletic group of soluble enzymes that can be divided into phi, tau, theta, zeta, lambda, dehydroascorbate reductase (DHAR) and TCHQD classes. The populous phi and tau classes are often highly stress inducible and regularly crop up in proteomic and transcriptomic studies. Despite much study on their xenobiotic-detoxifying activities their natural roles are unclear, although roles in defence-related secondary metabolism are likely. The smaller DHAR and lambda classes are likely glutathione-dependent reductases, the zeta class functions in tyrosine catabolism and the theta class has a putative role in detoxifying oxidised lipids. This review describes the evidence for the functional roles of GSTs and the potential for these enzymes to perform diverse functions that in many cases are not "glutathione transferase" activities. As well as biochemical data, expression data from proteomic and transcriptomic studies are included, along with subcellular localisation experiments and the results of functional genomic studies.
Collapse
Affiliation(s)
- David P. Dixon
- Centre for Bioactive Chemistry, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Robert Edwards
- Centre for Bioactive Chemistry, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
- Address correspondence to
| |
Collapse
|
136
|
Bateman TJ, Debenham JS, Madsen-Duggan C, Toupence RB, Walsh TF, Truong Q, Bradley SA, Doss GA, Kumar S, Reddy VBG. Glutathione S-transferase catalyzed desulfonylation of a sulfonylfuropyridine. Drug Metab Dispos 2010; 38:108-14. [PMID: 19797605 DOI: 10.1124/dmd.109.029801] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MRL-1, a cannabinoid receptor-1 inverse agonist, was a member of a lead candidate series for the treatment of obesity. In rats, MRL-1 is eliminated mainly via metabolism, followed by excretion of the metabolites into bile. The major metabolite M1, a glutathione conjugate of MRL-1, was isolated and characterized by liquid chromatography/mass spectrometry and NMR spectroscopic methods. The data suggest that the t-butylsulfonyl group at C-2 of furopyridine was displaced by the glutathionyl group. In vitro experiments using rat and monkey liver microsomes in the presence of reduced glutathione (GSH) showed that the formation of M1 was independent of NADPH and molecular oxygen, suggesting that this reaction was not mediated by an oxidative reaction and a glutathione S-transferase (GST) was likely involved in catalyzing this reaction. Furthermore, a rat hepatic GST was capable of catalyzing the conversion of MRL-1 to M1 in the presence of GSH. When a close analog of MRL-1, a p-chlorobenzenesulfonyl furopyridine derivative (MRL-2), was incubated with rat liver microsomes in the presence of GSH, p-chlorobenzene sulfinic acid (M2) was also identified as a product in addition to the expected M1. Based on these data, a mechanism is proposed involving direct nucleophilic addition of GSH to sulfonylfuropyridine, resulting in an unstable adduct that spontaneously decomposes to form M1 and M2.
Collapse
Affiliation(s)
- Thomas J Bateman
- Department of Drug Metabolism and Pharmacokinetics, Merck Research Laboratories, Rahway, New Jersey, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Dixon DP, Skipsey M, Edwards R. Roles for glutathione transferases in plant secondary metabolism. PHYTOCHEMISTRY 2010; 71:338-50. [PMID: 20079507 DOI: 10.1016/j.phytochem.2009.12.012] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 12/18/2009] [Indexed: 05/17/2023]
Abstract
Plant glutathione transferases (GSTs) are classified as enzymes of secondary metabolism, but while their roles in catalysing the conjugation and detoxification of herbicides are well known, their endogenous functions are largely obscure. Thus, while the presence of GST-derived S-glutathionylated xenobiotics have been described in many plants, there is little direct evidence for the accumulation of similarly conjugated natural products, despite the presence of a complex and dichotomous metabolic pathway which processes these reaction products. The conservation in glutathione conjugating and processing pathways, the co-regulation of GSTs with inducible plant secondary metabolism and biochemical studies showing the potential of these enzymes to conjugate reactive natural products are all suggestive of important endogenous functions. As a framework for addressing these enigmatic functions we postulate that either: (a) the natural reaction products of GSTs are unstable and undergo reversible S-glutathionylation; (b) the conjugation products of GSTs are very rapidly processed to derived metabolites; (c) GSTs do not catalyse conventional conjugation reactions but instead use glutathione as a cofactor rather than co-substrate; or (d) GSTs are non-catalytic and function as transporter proteins for secondary metabolites and their unstable intermediates. In this review, we describe how enzyme biochemistry and informatics are providing clues as to GST function allowing for the critical evaluation of each of these hypotheses. We also present evidence for the involvement of GSTs in the synthesis of sulfur-containing secondary metabolites such as volatiles and glucosinolates, and the conjugation, transport and storage of reactive oxylipins, phenolics and flavonoids.
Collapse
Affiliation(s)
- David P Dixon
- Centre for Bioactive Chemistry, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK.
| | | | | |
Collapse
|
138
|
Ruan KH, Cervantes V, So SP. Engineering of a novel hybrid enzyme: an anti-inflammatory drug target with triple catalytic activities directly converting arachidonic acid into the inflammatory prostaglandin E2. Protein Eng Des Sel 2009; 22:733-40. [PMID: 19850676 DOI: 10.1093/protein/gzp058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cyclooxygenase isoform-2 (COX-2) and microsomal prostaglandin E(2) synthase-1 (mPGES-1) are inducible enzymes that become up-regulated in inflammation and some cancers. It has been demonstrated that their coupling reaction of converting arachidonic acid (AA) into prostaglandin (PG) E(2) (PGE(2)) is responsible for inflammation and cancers. Understanding their coupling reactions at the molecular and cellular levels is a key step toward uncovering the pathological processes in inflammation. In this paper, we describe a structure-based enzyme engineering which produced a novel hybrid enzyme that mimics the coupling reactions of the inducible COX-2 and mPGES-1 in the native ER membrane. Based on the hypothesized membrane topologies and structures, the C-terminus of COX-2 was linked to the N-terminus of mPGES-1 through a transmembrane linker to form a hybrid enzyme, COX-2-10aa-mPGES-1. The engineered hybrid enzyme expressed in HEK293 cells exhibited strong triple-catalytic functions in the continuous conversion of AA into PGG(2) (catalytic-step 1), PGH(2) (catalytic-step 2) and PGE(2) (catalytic-step 3), a pro-inflammatory mediator. In addition, the hybrid enzyme was also able to directly convert dihomo-gamma-linolenic acid (DGLA) into PGG(1), PGH(1) and then PGE(1) (an anti-inflammatory mediator). The hybrid enzyme retained similar K(d) and V(max) values to that of the parent enzymes, suggesting that the configuration between COX-2 and mPGES-1 (through the transmembrane domain) could mimic the native conformation and membrane topologies of COX-2 and mPGES-1 in the cells. The results indicated that the quick coupling reaction between the native COX-2 and mPGES-1 (in converting AA into PGE(2)) occurred in a way so that both enzymes are localized near each other in a face-to-face orientation, where the COX-2 C-terminus faces the mPGES-1 N-terminus in the ER membrane. The COX-2-10aa-mPGES-1 hybrid enzyme engineering may be a novel approach in creating inflammation cell and animal models, which are particularly valuable targets for the next generation of NSAID screening.
Collapse
Affiliation(s)
- Ke-He Ruan
- Department of Pharmacological and Pharmaceutical Sciences, The Center for Experimental Therapeutics and Pharmacoinformatics, University of Houston, College of Pharmacy, Houston, TX 77030, USA.
| | | | | |
Collapse
|
139
|
Guerrero MD, Aquino M, Bruno I, Riccio R, Terencio MC, Payá M. Anti-inflammatory and analgesic activity of a novel inhibitor of microsomal prostaglandin E synthase-1 expression. Eur J Pharmacol 2009; 620:112-9. [DOI: 10.1016/j.ejphar.2009.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 07/17/2009] [Accepted: 08/04/2009] [Indexed: 12/27/2022]
|
140
|
Iyer JP, Srivastava PK, Dev R, Dastidar SG, Ray A. Prostaglandin E(2) synthase inhibition as a therapeutic target. Expert Opin Ther Targets 2009; 13:849-65. [PMID: 19530988 DOI: 10.1517/14728220903018932] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Most NSAIDs function by inhibiting biosynthesis of PGE(2) by inhibition of COX-1 and/or COX-2. Since COX-1 has a protective function in the gastro-intestinal tract (GIT), non-selective inhibition of both cycloxy genases leads to moderate to severe gastro-intestinal intolerance. Attempts to identify selective inhibitors of COX-2, led to the identification of celecoxib and rofecoxib. However, long-term use of these drugs has serious adverse effects of sudden myocardial infarction and thrombosis. Drug-mediated imbalance in the levels of prostaglandin I(2) (PGI(2)) and thromboxane A(2) (TXA(2)) with a bias towards TXA(2) may be the primary reason for these events. This resulted in the drugs being withdrawn from the market, leaving a need for an effective and safe anti-inflammatory drug. METHODS Recently, the focus of research has shifted to enzymes downstream of COX in the prosta glandin biosynthetic pathway such as prostaglandin E(2) synthases. Microsomal prostaglandin E(2) synthase-1 (mPGES-1) specifically isomerizes PGH(2) to PGE(2), under inflammatory conditions. In this review, we examine the biology of mPGES-1 and its role in disease. Progress in designing molecules that can selectively inhibit mPGES-1 is reviewed. CONCLUSION mPGES-1 has the potential to be a target for anti-inflammatory therapy, devoid of adverse GIT and cardiac effects and warrants further investigation.
Collapse
Affiliation(s)
- Jitesh P Iyer
- Department of Pharmacology, New Drug Discovery Research, Ranbaxy Research Laboratories, Plot No-20, Sector-18, Udyog Vihar, Gurgaon, Haryana, India-122015
| | | | | | | | | |
Collapse
|
141
|
Cvilink V, Lamka J, Skálová L. Xenobiotic metabolizing enzymes and metabolism of anthelminthics in helminths. Drug Metab Rev 2009; 41:8-26. [PMID: 19514969 DOI: 10.1080/03602530802602880] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Anthelminthics remain the only accessible means in the struggle against helminth parasites, which cause significant morbidity and mortality in man and farm animals. The treatment of helminthic infections has become problematic because of frequent drug resistance of helminth parasites. The development of drug resistance can be facilitated by the action of xenobiotic metabolizing enzymes (XMEs). In all organisms, XMEs serve as an efficient defense against the potential negative action of xenobiotics. The activities of XMEs determine both desired and undesired effects of drugs, and the knowledge of drug metabolism is necessary for safe, effective pharmacotherapy. While human and mammalian XMEs have been intensively studied for many years, XMEs of helminth parasites have undergone relatively little investigation, so far. However, many types of XMEs, including oxidases, reductases, hydrolases, transferases, and transporters, have been described in several helminth species. XMEs of helminth parasites may protect these organisms from the toxic effects of anthelminthics. In case of certain anthelminthics, metabolic deactivation was reported in helminth larvae and/or adults. Moreover, if a helminth is in the repeated contact with an anthelminthic, it defends itself against the chemical stress by the induction of biotransformation enzymes or transporters. This induction can represent an advantageous defense strategy of the parasites and may facilitate the drug-resistance development.
Collapse
Affiliation(s)
- Viktor Cvilink
- Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | | | | |
Collapse
|
142
|
Characterization of a new fluorogenic substrate for microsomal glutathione transferase 1. Anal Biochem 2009; 390:52-6. [DOI: 10.1016/j.ab.2009.03.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/23/2009] [Accepted: 03/31/2009] [Indexed: 11/18/2022]
|
143
|
Kulinsky VI, Kolesnichenko LS. The glutathione system. I. Synthesis, transport, glutathione transferases, glutathione peroxidases. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2009. [DOI: 10.1134/s1990750809020036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
144
|
Alander J, Lengqvist J, Holm PJ, Svensson R, Gerbaux P, Heuvel RHHVD, Hebert H, Griffiths WJ, Armstrong RN, Morgenstern R. Microsomal glutathione transferase 1 exhibits one-third-of-the-sites-reactivity towards glutathione. Arch Biochem Biophys 2009; 487:42-8. [PMID: 19416719 DOI: 10.1016/j.abb.2009.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/08/2009] [Accepted: 04/29/2009] [Indexed: 11/18/2022]
Abstract
The trimeric membrane protein microsomal glutathione transferase 1 (MGST1) possesses glutathione transferase and peroxidase activity. Previous data indicated one active site/trimer whereas structural data suggests three GSH-binding sites. Here we have determined ligand interactions of MGST1 by several techniques. Nanoelectrospray mass spectrometry of native MGST1 revealed binding of three GSH molecules/trimer and equilibrium dialysis showed three product molecules/trimer (K(d)=320+/-50 microM). All three product molecules could be competed out with GSH. Reinvestigation of GSH-binding showed one high affinity site per trimer, consistent with earlier data. Using single turnover stopped flow kinetic measurements, K(d) could be determined for a low affinity GSH-binding site (2.5+/-0.5 mM). Thus we can reconcile previous observations and show here that MGST1 contains three active sites with different affinities for GSH and that only the high affinity site is catalytically competent.
Collapse
Affiliation(s)
- Johan Alander
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Kim JH, Raisuddin S, Rhee JS, Lee YM, Han KN, Lee JS. Molecular cloning, phylogenetic analysis and expression of a MAPEG superfamily gene from the pufferfish Takifugu obscurus. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:358-62. [PMID: 18832047 DOI: 10.1016/j.cbpc.2008.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/24/2008] [Accepted: 09/05/2008] [Indexed: 11/16/2022]
Abstract
The microsomal glutathione S-transferases (MGSTs) of membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) superfamily play an important role in xenobiotics detoxification. Compared to mammals, there is limited information on MAPEGS from fish. We cloned a full length of cDNA sequence of a MGST gene from the river pufferfish (Takifugu obscurus), studied its phylogenetic relationship, and measured its expression in different tissues and in liver of fish exposed to cadmium. Phylogenetic analysis revealed that the identified gene encoded for MGST3. Liver showed the highest expression of MGST3 transcripts. When MSGT expression was compared with the expression of other GSTs (GST-Alpha, GST-Mu and GST-Theta), a similar pattern of highest expression was observed in the liver. Upon Cd exposure (5 ppm) for 96 h, the highest expression of MGST was observed at 24 h. GST-Mu also showed highest expression at 24 h. These findings indicate that MGSTs may be playing a role in detoxification of xenobiotics or free radicals generated by Cd-induced oxidative stress in fish.
Collapse
Affiliation(s)
- Jin-Hyoung Kim
- Department of Marine Science, College of Natural Sciences, Inha University, Incheon 402-751, South Korea
| | | | | | | | | | | |
Collapse
|
146
|
Abstract
Bacterial glutathione transferases (GSTs) are part of a superfamily of enzymes that play a key role in cellular detoxification. GSTs are widely distributed in prokaryotes and are grouped into several classes. Bacterial GSTs are implicated in a variety of distinct processes such as the biodegradation of xenobiotics, protection against chemical and oxidative stresses and antimicrobial drug resistance. In addition to their role in detoxification, bacterial GSTs are also involved in a variety of distinct metabolic processes such as the biotransformation of dichloromethane, the degradation of lignin and atrazine, and the reductive dechlorination of pentachlorophenol. This review article summarizes the current status of knowledge regarding the functional and structural properties of bacterial GSTs.
Collapse
Affiliation(s)
- Nerino Allocati
- Dipartimento di Scienze Biomediche, Università G. d'Annunzio, Chieti, Italy.
| | | | | | | |
Collapse
|
147
|
Dourado D, Fernandes P, Mannervik B, Ramos M. Glutathione Transferase: New Model for Glutathione Activation. Chemistry 2008; 14:9591-8. [DOI: 10.1002/chem.200800946] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
148
|
Homo-timeric structural model of human microsomal prostaglandin E synthase-1 and characterization of its substrate/inhibitor binding interactions. J Comput Aided Mol Des 2008; 23:13-24. [DOI: 10.1007/s10822-008-9233-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
|
149
|
Franco POD, Rousvoal S, Tonon T, Boyen C. Whole genome survey of the glutathione transferase family in the brown algal model Ectocarpus siliculosus. Mar Genomics 2008; 1:135-48. [DOI: 10.1016/j.margen.2009.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/27/2009] [Accepted: 01/28/2009] [Indexed: 12/17/2022]
|
150
|
Structural basis for induced formation of the inflammatory mediator prostaglandin E2. Proc Natl Acad Sci U S A 2008; 105:11110-5. [PMID: 18682561 DOI: 10.1073/pnas.0802894105] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostaglandins (PG) are bioactive lipids produced from arachidonic acid via the action of cyclooxygenases and terminal PG synthases. Microsomal prostaglandin E synthase 1 (MPGES1) constitutes an inducible glutathione-dependent integral membrane protein that catalyzes the oxidoreduction of cyclooxygenase derived PGH(2) into PGE(2). MPGES1 has been implicated in a number of human diseases or pathological conditions, such as rheumatoid arthritis, fever, and pain, and is therefore regarded as a primary target for development of novel antiinflammatory drugs. To provide a structural basis for insight in the catalytic mechanism, we determined the structure of MPGES1 in complex with glutathione by electron crystallography from 2D crystals induced in the presence of phospholipids. Together with results from site-directed mutagenesis and activity measurements, we can thereby demonstrate the role of specific amino acid residues. Glutathione is found to bind in a U-shaped conformation at the interface between subunits in the protein trimer. It is exposed to a site facing the lipid bilayer, which forms the specific environment for the oxidoreduction of PGH(2) to PGE(2) after displacement of the cytoplasmic half of the N-terminal transmembrane helix. Hence, insight into the dynamic behavior of MPGES1 and homologous membrane proteins in inflammation and detoxification is provided.
Collapse
|