101
|
Wei W, Wang XJ. Inhibitory Control in the Cortico-Basal Ganglia-Thalamocortical Loop: Complex Regulation and Interplay with Memory and Decision Processes. Neuron 2016; 92:1093-1105. [PMID: 27866799 PMCID: PMC5193098 DOI: 10.1016/j.neuron.2016.10.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 09/12/2016] [Accepted: 10/12/2016] [Indexed: 01/25/2023]
Abstract
We developed a circuit model of spiking neurons that includes multiple pathways in the basal ganglia (BG) and is endowed with feedback mechanisms at three levels: cortical microcircuit, corticothalamic loop, and cortico-BG-thalamocortical system. We focused on executive control in a stop signal task, which is known to depend on BG across species. The model reproduces a range of experimental observations and shows that the newly discovered feedback projection from external globus pallidus to striatum is crucial for inhibitory control. Moreover, stopping process is enhanced by the cortico-subcortical reverberatory dynamics underlying persistent activity, establishing interdependence between working memory and inhibitory control. Surprisingly, the stop signal reaction time (SSRT) can be adjusted by weights of certain connections but is insensitive to other connections in this complex circuit, suggesting novel circuit-based intervention for inhibitory control deficits associated with mental illness. Our model provides a unified framework for inhibitory control, decision making, and working memory.
Collapse
Affiliation(s)
- Wei Wei
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY 10003, USA; NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai, 200122 Shanghai, China.
| |
Collapse
|
102
|
Mahone EM, Crocetti D, Tochen L, Kline T, Mostofsky SH, Singer HS. Anomalous Putamen Volume in Children With Complex Motor Stereotypies. Pediatr Neurol 2016; 65:59-63. [PMID: 27751663 PMCID: PMC5124524 DOI: 10.1016/j.pediatrneurol.2016.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Complex motor stereotypies in children are repetitive rhythmic movements that have a predictable pattern and location, seem purposeful, but serve no obvious function, tend to be prolonged, and stop with distraction, e.g., arm or hand flapping, waving. They occur in both "primary" (otherwise typically developing) and secondary conditions. These movements are best defined as habitual behaviors and therefore pathophysiologically hypothesized to reside in premotor to posterior putamen circuits. This study sought to clarify the underlying neurobiologic abnormality in children with primary complex motor stereotypies using structural neuroimaging, emphasizing brain regions hypothesized to underlie these atypical behaviors. METHODS High-resolution anatomic magnetic resonance images, acquired at 3.0 T, were analyzed in children aged eight to twelve years (20 with primary complex motor stereotypies and 20 typically developing). Frontal lobe subregions and striatal structures were delineated for analysis. RESULTS Significant reductions (P = 0.045) in the stereotypies group were identified in total putamen volume but not in caudate, nucleus accumbens, or frontal subregions. There were no group differences in total cerebral volume. CONCLUSIONS Findings of a smaller putamen provide preliminary evidence suggesting the potential involvement of the habitual pathway as the underlying anatomic site in primary complex motor stereotypies.
Collapse
Affiliation(s)
- E. Mark Mahone
- Kennedy Krieger Institute,Johns Hopkins University School of Medicine
| | | | | | - Tina Kline
- Johns Hopkins University School of Medicine
| | | | - Harvey S. Singer
- Kennedy Krieger Institute,Johns Hopkins University School of Medicine
| |
Collapse
|
103
|
Akopian G, Barry J, Cepeda C, Levine MS. Altered membrane properties and firing patterns of external globus pallidus neurons in the R6/2 mouse model of Huntington's disease. J Neurosci Res 2016; 94:1400-1410. [PMID: 27618125 DOI: 10.1002/jnr.23889] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 12/24/2022]
Abstract
In mouse models of Huntington's disease (HD), striatal neuron properties are significantly altered. These alterations predict changes in striatal output regions. However, little is known about alterations in those regions. The present study examines changes in passive and active membrane properties of neurons in the external globus pallidus (GPe), the first relay station of the indirect pathway, in the R6/2 mouse model of juvenile HD at presymptomatic (1 month) and symptomatic (2 month) stages. In GPe, two principal types of neurons can be distinguished based on firing properties and the presence (type A) or absence (type B) of Ih currents. In symptomatic animals (2 month), cell membrane capacitance and input resistance of type A neurons were increased compared with controls. In addition, action potential afterhyperpolarization amplitude was reduced. Although the spontaneous firing rate of GPe neurons was not different between control and R6/2 mice, the number of spikes evoked by depolarizing current pulses was significantly reduced in symptomatic R6/2 animals. In addition, these changes were accompanied by altered firing patterns evidenced by increased interspike interval variation and increased number of bursts. Blockade of GABAA receptors facilitated bursting activity in R6/2 mice but not in control littermates. Thus, alterations in firing patterns could be caused by changes in intrinsic membrane conductances and modulated by synaptic inputs. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Garnik Akopian
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Joshua Barry
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
104
|
Deffains M, Iskhakova L, Katabi S, Haber SN, Israel Z, Bergman H. Subthalamic, not striatal, activity correlates with basal ganglia downstream activity in normal and parkinsonian monkeys. eLife 2016; 5. [PMID: 27552049 PMCID: PMC5030093 DOI: 10.7554/elife.16443] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/22/2016] [Indexed: 02/02/2023] Open
Abstract
The striatum and the subthalamic nucleus (STN) constitute the input stage of the basal ganglia (BG) network and together innervate BG downstream structures using GABA and glutamate, respectively. Comparison of the neuronal activity in BG input and downstream structures reveals that subthalamic, not striatal, activity fluctuations correlate with modulations in the increase/decrease discharge balance of BG downstream neurons during temporal discounting classical condition task. After induction of parkinsonism with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), abnormal low beta (8-15 Hz) spiking and local field potential (LFP) oscillations resonate across the BG network. Nevertheless, LFP beta oscillations entrain spiking activity of STN, striatal cholinergic interneurons and BG downstream structures, but do not entrain spiking activity of striatal projection neurons. Our results highlight the pivotal role of STN divergent projections in BG physiology and pathophysiology and may explain why STN is such an effective site for invasive treatment of advanced Parkinson's disease and other BG-related disorders. DOI:http://dx.doi.org/10.7554/eLife.16443.001 The symptoms of Parkinson’s disease include tremor and slow movement, as well as loss of balance, depression and problems with sleep and memory. The death of neurons in a region of the brain called the substantia nigra pars compacta is one of the major hallmarks of Parkinson’s disease. These neurons produce a chemical called dopamine, and their death reduces dopamine levels in another area of the brain called the striatum. This structure is one of five brain regions known collectively as the basal ganglia, which form a circuit that helps to control movement. The most effective treatment currently available for advanced Parkinson’s disease entails lowering electrodes deep into the brain in order to shut down the activity of part of the basal ganglia. However, the target is not the striatum; instead it is a structure called the subthalamic nucleus. The striatum and the subthalamic nucleus are the two input regions of the basal ganglia: each sends signals to the other three structures downstream. So why does targeting the subthalamic nucleus, but not the striatum, reduce the symptoms of Parkinson’s disease? To shed some light on this issue, Deffains et al. recorded the activity of neurons in the basal ganglia before and after injecting two monkeys with a drug called MPTP. Related to heroin, MPTP produces symptoms in animals that resemble those of Parkinson’s disease. Before the injections, spontaneous fluctuations in the activity of the subthalamic nucleus produced matching changes in the activity of the three downstream basal ganglia structures. Fluctuations in the activity of the striatum, by contrast, had no such effect. Moreover, injecting the monkeys with MPTP caused the basal ganglia to fire in an abnormal highly synchronized rhythm, similar to that seen in Parkinson’s disease. Crucially, the subthalamic nucleus contributed to this abnormal rhythm, whereas the striatum did not. The results presented by Deffains et al. provide a concrete explanation for why inactivating the subthalamic nucleus, but not the striatum, reduces the symptoms of Parkinson’s disease. Further research is now needed to explore how the striatum controls the activity of downstream regions of the basal ganglia, both in healthy people and in those with Parkinson's disease. DOI:http://dx.doi.org/10.7554/eLife.16443.002
Collapse
Affiliation(s)
- Marc Deffains
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Liliya Iskhakova
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Shiran Katabi
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, United States
| | - Zvi Israel
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
105
|
Schwab BC, van Wezel RJA, van Gils SA. Sparse pallidal connections shape synchrony in a network model of the basal ganglia. Eur J Neurosci 2016; 45:1000-1012. [PMID: 27350120 DOI: 10.1111/ejn.13324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 01/15/2023]
Abstract
Neural synchrony in the basal ganglia, especially in the beta frequency band (13-30 Hz), is a hallmark of Parkinson's disease and considered as antikinetic. In contrast, the healthy basal ganglia show low levels of synchrony. It is currently unknown where synchrony and oscillations arise in the parkinsonian brain and how they are transmitted through the basal ganglia, as well as what makes them dependent on dopamine. The external part of the globus pallidus has recently been identified as a hub nucleus in the basal ganglia, possessing intrinsic inhibitory connections and possibly also gap junctions. In this study, we show that in a conductance-based network model of the basal ganglia, the combination of sparse, high-conductance inhibitory synapses and sparse, low-conductance gap junctions in the external part of the globus pallidus could effectively desynchronize the whole network. However, when gap junction coupling became strong enough, the effect was impeded and activity synchronized. In particular, sustained periods of beta coherence occurred between some neuron pairs. As gap junctions can change their conductance with the dopamine level, we suggest pallidal gap junction coupling as a mechanism contributing to the development of beta synchrony in the parkinsonian basal ganglia.
Collapse
Affiliation(s)
- Bettina C Schwab
- Applied Analysis, MIRA Institute of Technical Medicine and Biomedical Technology, University of Twente, 7500 AE, Enschede, The Netherlands.,Biomedical Signals and and Systems, MIRA Institute of Technical Medicine and Biomedical Technology, University of Twente, Enschede, The Netherlands
| | - Richard J A van Wezel
- Biomedical Signals and and Systems, MIRA Institute of Technical Medicine and Biomedical Technology, University of Twente, Enschede, The Netherlands.,Biophysics, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Stephan A van Gils
- Applied Analysis, MIRA Institute of Technical Medicine and Biomedical Technology, University of Twente, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
106
|
Xue Y, Yang YT, Liu HY, Chen WF, Chen AQ, Sheng Q, Chen XY, Wang Y, Chen H, Liu HX, Pang YY, Chen L. Orexin-A increases the activity of globus pallidus neurons in both normal and parkinsonian rats. Eur J Neurosci 2016; 44:2247-57. [PMID: 27336845 DOI: 10.1111/ejn.13323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/04/2016] [Accepted: 06/21/2016] [Indexed: 02/06/2023]
Abstract
Orexin is a member of neuropeptides which was first identified in the hypothalamus. The globus pallidus is a key structure in the basal ganglia, which is involved in both normal motor function and movement disorders. Morphological studies have shown the expression of both OX1 and OX2 receptors in the globus pallidus. Employing single unit extracellular recordings and behavioural tests, the direct in vivo electrophysiological and behavioural effects of orexin-A in the globus pallidus were studied. Micro-pressure administration of orexin-A significantly increased the spontaneous firing rate of pallidal neurons. Correlation analysis revealed a negative correlation between orexin-A induced excitation and the basal firing rate. Furthermore, application of the specific OX1 receptor antagonist, SB-334867, decreased the firing rate of pallidal neurons, suggesting that endogenous orexinergic systems modulate the firing activity of pallidal neurons. Orexin-A increased the excitability of pallidal neurons through both OX1 and OX2 receptors. In 6-hydroxydopamine parkinsonian rats, orexin-A-induced increase in firing rate of pallidal neurons was stronger than that in normal rats. Immunostaining revealed positive OX1 receptor expression in the globus pallidus of both normal and parkinsonian rats. Finally, postural test showed that unilateral microinjection of orexin-A led to contralateral deflection in the presence of systemic haloperidol administration. Further elevated body swing test revealed that pallidal orexin-A and SB-334867 induced contralateral-biased swing and ipsilateral-biased swing respectively. Based on the electrophysiological and behavioural findings of orexin-A in the globus pallidus, the present findings may provide a rationale for the pathogenesis and treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Yan Xue
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Yu-Ting Yang
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Hong-Yun Liu
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China.,Department of Pathology, Qingdao Municipal Hospital, Qingdao, China
| | - Wen-Fang Chen
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - An-Qi Chen
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Qing Sheng
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Xin-Yi Chen
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Ying Wang
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Hua Chen
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, China
| | - Hong-Xia Liu
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Ya-Yan Pang
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Lei Chen
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China
| |
Collapse
|
107
|
Subcortical matter in the α-synucleinopathies spectrum: an MRI pilot study. J Neurol 2016; 263:1575-82. [DOI: 10.1007/s00415-016-8173-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/14/2016] [Accepted: 05/14/2016] [Indexed: 11/25/2022]
|