101
|
Kiaie SH, Salehi-Shadkami H, Sanaei MJ, Azizi M, Shokrollahi Barough M, Nasr MS, Sheibani M. Nano-immunotherapy: overcoming delivery challenge of immune checkpoint therapy. J Nanobiotechnology 2023; 21:339. [PMID: 37735656 PMCID: PMC10512572 DOI: 10.1186/s12951-023-02083-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
Immune checkpoint (ICP) molecules expressed on tumor cells can suppress immune responses against tumors. ICP therapy promotes anti-tumor immune responses by targeting inhibitory and stimulatory pathways of immune cells like T cells and dendritic cells (DC). The investigation into the combination therapies through novel immune checkpoint inhibitors (ICIs) has been limited due to immune-related adverse events (irAEs), low response rate, and lack of optimal strategy for combinatorial cancer immunotherapy (IMT). Nanoparticles (NPs) have emerged as powerful tools to promote multidisciplinary cooperation. The feasibility and efficacy of targeted delivery of ICIs using NPs overcome the primary barrier, improve therapeutic efficacy, and provide a rationale for more clinical investigations. Likewise, NPs can conjugate or encapsulate ICIs, including antibodies, RNAs, and small molecule inhibitors. Therefore, combining the drug delivery system (DDS) with ICP therapy could provide a profitable immunotherapeutic strategy for cancer treatment. This article reviews the significant NPs with controlled DDS using current data from clinical and pre-clinical trials on mono- and combination IMT to overcome ICP therapeutic limitations.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Department of Formulation Development, ReNAP Therapeutics, Tehran, Iran.
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hossein Salehi-Shadkami
- Department of Formulation Development, ReNAP Therapeutics, Tehran, Iran
- Department of Medical Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| | - Marzieh Azizi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Mohammad Sadegh Nasr
- Department of Computer Science and Engineering Multi-Interprofessional Center for Health Informatics (MICHI), The University of Texas at Arlington, Arlington, TX, USA
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
102
|
Meng L, Yang Y, Mortazavi A, Zhang J. Emerging Immunotherapy Approaches for Treating Prostate Cancer. Int J Mol Sci 2023; 24:14347. [PMID: 37762648 PMCID: PMC10531627 DOI: 10.3390/ijms241814347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Immunotherapy has emerged as an important approach for cancer treatment, but its clinical efficacy has been limited in prostate cancer compared to other malignancies. This review summarizes key immunotherapy strategies under evaluation for prostate cancer, including immune checkpoint inhibitors, bispecific T cell-engaging antibodies, chimeric antigen receptor (CAR) T cells, therapeutic vaccines, and cytokines. For each modality, the rationale stemming from preclinical studies is discussed along with outcomes from completed clinical trials and strategies to improve clinical efficacy that are being tested in ongoing clinical trials. Imperative endeavors include biomarker discovery for patient selection, deciphering resistance mechanisms, refining cellular therapies such as CAR T cells, and early-stage intervention were reviewed. These ongoing efforts instill optimism that immunotherapy may eventually deliver significant clinical benefits and expand treatment options for patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Lingbin Meng
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (L.M.); (Y.Y.); (A.M.)
| | - Yuanquan Yang
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (L.M.); (Y.Y.); (A.M.)
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (L.M.); (Y.Y.); (A.M.)
| | - Jingsong Zhang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
103
|
Gusev A. Germline mechanisms of immunotherapy toxicities in the era of genome-wide association studies. Immunol Rev 2023; 318:138-156. [PMID: 37515388 PMCID: PMC11472697 DOI: 10.1111/imr.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Cancer immunotherapy has revolutionized the treatment of advanced cancers and is quickly becoming an option for early-stage disease. By reactivating the host immune system, immunotherapy harnesses patients' innate defenses to eradicate the tumor. By putatively similar mechanisms, immunotherapy can also substantially increase the risk of toxicities or immune-related adverse events (irAEs). Severe irAEs can lead to hospitalization, treatment discontinuation, lifelong immune complications, or even death. Many irAEs present with similar symptoms to heritable autoimmune diseases, suggesting that germline genetics may contribute to their onset. Recently, genome-wide association studies (GWAS) of irAEs have identified common germline associations and putative mechanisms, lending support to this hypothesis. A wide range of well-established GWAS methods can potentially be harnessed to understand the etiology of irAEs specifically and immunotherapy outcomes broadly. This review summarizes current findings regarding germline effects on immunotherapy outcomes and discusses opportunities and challenges for leveraging germline genetics to understand, predict, and treat irAEs.
Collapse
Affiliation(s)
- Alexander Gusev
- Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics, Brigham & Women's Hospital, Boston, Massachusetts, USA
- The Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
104
|
Shen R, Li Z, Wu X. The mitotic spindle-related seven-gene predicts the prognosis and immune microenvironment of lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:10131-10141. [PMID: 37266661 PMCID: PMC10423164 DOI: 10.1007/s00432-023-04906-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
PURPOSE Abnormalities in the mitotic spindle have been linked to a variety of cancers. Data on their role in the onset, progression, and treatment of lung adenocarcinoma (LUAD) need to be explored. METHODS The data were retrieved from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Molecular Signatures Database (MSigDB), for the training cohort, external validation cohort, and the hallmark mitotic spindle gene set, respectively. Mitotic spindle genes linked to LUAD prognosis were identified and intersected with differentially expressed up-regulated genes in the training cohort. Nomogram prediction models were built based on least absolute shrinkage and selection operator (LASSO) regression, univariate cox, and multivariate cox analyses. The seven-gene immunological score was examined, as well as the correlation of immune checkpoints. The DLGAP5 and KIF15 expression in BEAS-2B, A549, H1299, H1975, and PC-9 cell lines was validated with western blot (WB). RESULTS A total of 965 differentially expressed up-regulated genes in the training cohort intersected with 51 mitotic spindle genes associated with LUAD prognosis. Finally, the seven-gene risk score was determined and integrated with clinical characteristics to construct the nomogram model. Immune cell correlation analysis revealed a negative correlation between seven-gene expression with B cell, endothelial cell (excluding LMNB1), and T cell CD8 + (p < 0.05). However, the seven-gene expression was positively correlated with multiple immune checkpoints (p < 0.05). The expression of DLGAP5 and KIF15 were significantly higher in A549, H1299, H1975, and PC-9 cell lines than that in BEAS-2B cell line. CONCLUSION High expression of the seven genes is positively correlated with poor prognosis of LUAD, and these genes are promising as prospective immunotherapy targets.
Collapse
Affiliation(s)
- Ruxin Shen
- Department of Thoracic Surgery, Affiliated Nantong Hospital of Shanghai University, Nantong, 226000, Jiangsu, China
| | - Zhaoshui Li
- Qingdao Medical College, Qingdao University, Qingdao, 266023, China
| | - Xiaoting Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| |
Collapse
|
105
|
Ulase D, Behrens HM, Krüger S, Heckl SM, Ebert U, Becker T, Röcken C. LAG3 in gastric cancer: it's complicated. J Cancer Res Clin Oncol 2023; 149:10797-10811. [PMID: 37311986 PMCID: PMC10423140 DOI: 10.1007/s00432-023-04954-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
PURPOSE Lymphocyte activation gene 3 (LAG3) is thought to contribute to T cell exhaustion within the tumor microenvironment of solid tumors. This study aimed to analyze the spatial distribution of LAG3 + cells in relation to clinicopathological and survival data in a large set of 580 primary resected and neoadjuvantly treated gastric cancers (GC). METHODS LAG3 expression was evaluated in tumor center and invasive margin using immunohistochemistry and whole-slide digital image analysis. Cases were divided into LAG3-low and LAG3-high expression groups based on (1) median LAG3 + cell density, (2) cut-off values adapted to cancer-specific survival using Cutoff Finder application. RESULTS Significant differences in spatial distribution of LAG3 + cells were observed in primarily resected GC, but not in neoadjuvantly treated GC. LAG3 + cell density showed evident prognostic value at following cut-offs: in primarily resected GC, 21.45 cells/mm2 in tumor center (17.9 vs. 10.1 months, p = 0.008) and 208.50 cells/mm2 in invasive margin (33.8 vs. 14.7 months, p = 0.006); and in neoadjuvantly treated GC, 12.62 cells/mm2 (27.3 vs. 13.2 months, p = 0.003) and 123.00 cells/mm2 (28.0 vs. 22.4 months, p = 0.136), respectively. Significant associations were found between LAG3 + cell distribution patterns and various clinicopathological factors in both cohorts. In neoadjuvantly treated GC, LAG3 + immune cell density was found to be an independent prognostic factor of survival (HR = 0.312, 95% CI 0.162-0.599, p < 0.001). CONCLUSION In this study, a higher density of LAG3 + cells was associated with favorable prognosis. Current results support the need for extended analysis of LAG3. Differences in the distribution of LAG3 + cells should be considered, as they could influence clinical outcomes and treatment responses.
Collapse
Affiliation(s)
- Dita Ulase
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Building U33, 24105 Kiel, Germany
| | - Hans-Michael Behrens
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Building U33, 24105 Kiel, Germany
| | - Sandra Krüger
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Building U33, 24105 Kiel, Germany
| | - Steffen M. Heckl
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Ulrike Ebert
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Building U33, 24105 Kiel, Germany
| | - Thomas Becker
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Building U33, 24105 Kiel, Germany
| |
Collapse
|
106
|
Aggarwal V, Workman CJ, Vignali DAA. LAG-3 as the third checkpoint inhibitor. Nat Immunol 2023; 24:1415-1422. [PMID: 37488429 PMCID: PMC11144386 DOI: 10.1038/s41590-023-01569-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Lymphocyte activation gene 3 (LAG-3) is an inhibitory receptor that is highly expressed by exhausted T cells. LAG-3 is a promising immunotherapeutic target, with more than 20 LAG-3-targeting therapeutics in clinical trials and a fixed-dose combination of anti-LAG-3 and anti-PD-1 now approved to treat unresectable or metastatic melanoma. Although LAG-3 is widely recognized as a potent inhibitory receptor, important questions regarding its biology and mechanism of action remain. In this Perspective, we focus on gaps in the understanding of LAG-3 biology and discuss the five biggest topics of current debate and focus regarding LAG-3, including its ligands, signaling and mechanism of action, its cell-specific functions, its importance in different disease settings, and the development of novel therapeutics.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
107
|
Fortman DD, Hurd D, Davar D. The Microbiome in Advanced Melanoma: Where Are We Now? Curr Oncol Rep 2023; 25:997-1016. [PMID: 37269504 PMCID: PMC11090495 DOI: 10.1007/s11912-023-01431-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent data linking gut microbiota composition to ICI outcomes and gut microbiota-specific interventional clinical trials in melanoma. RECENT FINDINGS Preclinical and clinical studies have demonstrated the effects of the gut microbiome modulation upon ICI response in advanced melanoma, with growing evidence supporting the ability of the gut microbiome to restore or improve ICI response in advanced melanoma through dietary fiber, probiotics, and FMT. Immune checkpoint inhibitors (ICI) targeting the PD-1, CTLA-4, and LAG-3 negative regulatory checkpoints have transformed the management of melanoma. ICIs are FDA-approved in advanced metastatic disease, stage III resected melanoma, and high-risk stage II melanoma and are being investigated more recently in the management of high-risk resectable melanoma in the peri-operative setting. The gut microbiome has emerged as an important tumor-extrinsic modulator of both response and immune-related adverse event (irAE) development in ICI-treated cancer in general, and melanoma in particular.
Collapse
Affiliation(s)
- Dylan D Fortman
- Division of General Internal Medicine, Department of Medicine, University of Pittsburgh Medical Center (UPMC) and University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Drew Hurd
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh, Pavilion, Suite 1.32d, 5115, Center Avenue, Pittsburgh, PA, 15213, USA
| | - Diwakar Davar
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh, Pavilion, Suite 1.32d, 5115, Center Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
108
|
Sun Q, Hong Z, Zhang C, Wang L, Han Z, Ma D. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduct Target Ther 2023; 8:320. [PMID: 37635168 PMCID: PMC10460796 DOI: 10.1038/s41392-023-01522-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Accepted: 05/28/2023] [Indexed: 08/29/2023] Open
Abstract
Immune-checkpoint inhibitors (ICBs), in addition to targeting CTLA-4, PD-1, and PD-L1, novel targeting LAG-3 drugs have also been approved in clinical application. With the widespread use of the drug, we must deeply analyze the dilemma of the agents and seek a breakthrough in the treatment prospect. Over the past decades, these agents have demonstrated dramatic efficacy, especially in patients with melanoma and non-small cell lung cancer (NSCLC). Nonetheless, in the field of a broad concept of solid tumours, non-specific indications, inseparable immune response and side effects, unconfirmed progressive disease, and complex regulatory networks of immune resistance are four barriers that limit its widespread application. Fortunately, the successful clinical trials of novel ICB agents and combination therapies, the advent of the era of oncolytic virus gene editing, and the breakthrough of the technical barriers of mRNA vaccines and nano-delivery systems have made remarkable breakthroughs currently. In this review, we enumerate the mechanisms of each immune checkpoint targets, associations between ICB with tumour mutation burden, key immune regulatory or resistance signalling pathways, the specific clinical evidence of the efficacy of classical targets and new targets among different tumour types and put forward dialectical thoughts on drug safety. Finally, we discuss the importance of accurate triage of ICB based on recent advances in predictive biomarkers and diagnostic testing techniques.
Collapse
Affiliation(s)
- Qian Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Cong Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liangliang Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
109
|
Ma C, Li F, Gu Z, Yang Y, Qi Y. A novel defined risk signature of cuproptosis-related long non-coding RNA for predicting prognosis, immune infiltration, and immunotherapy response in lung adenocarcinoma. Front Pharmacol 2023; 14:1146840. [PMID: 37670938 PMCID: PMC10475834 DOI: 10.3389/fphar.2023.1146840] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Background: Cuproptosis is a newly discovered non-apoptotic form of cell death that may be related to the development of tumors. Nonetheless, the potential role of cuproptosis-related lncRNAs in tumor immunity formation and patient-tailored treatment optimization of lung adenocarcinoma (LUAD) is still unclear. Methods: RNA sequencing and survival data of LUAD patients were downloaded from The Cancer Genome Atlas (TCGA) database for model training. The patients with LUAD in GSE29013, GSE30219, GSE31210, GSE37745, and GSE50081 were used for validation. The proofed cuproptosis-related genes were extracted from the previous studies. The Pearson correlation was applied to select cuproptosis-related lncRNAs. We chose differentially expressed cuproptosis-related lncRNAs in the tumor and normal tissues and allowed them to go to a Cox regression and a LASSO regression for a lncRNA signature that predicts the LUAD prognosis. Kaplan-Meier estimator, Cox model, ROC, tAUC, PCA, nomogram predictor, decision curve analysis, and real-time PCR were further deployed to confirm the model's accuracy. We examined this model's link to other regulated cell death forms. Applying TMB, immune-related signatures, and TIDE demonstrated the immunotherapeutic capabilities of signatures. We evaluated the relationship of our signature to anticancer drug sensitivity. GSEA, immune infiltration analysis, and function experiments further investigated the functional mechanisms of the signature and the role of immune cells in the prognostic power of the signature. Results: An eight-lncRNA signature (TSPOAP1-AS1, AC107464.3, AC006449.7, LINC00324, COLCA1, HAGLR, MIR4435-2HG, and NKILA) was built and demonstrated owning prognostic power by applied to the validation cohort. Each signature gene was confirmed differentially expressed in the real world by real-time PCR. The eight-lncRNA signature correlated with 2321/3681 (63.05%) apoptosis-related genes, 11/20 (55.00%) necroptosis-related genes, 34/50 (68.00%) pyroptosis-related genes, and 222/380 (58.42%) ferroptosis-related genes. Immunotherapy analysis suggested that our signature may have utility in predicting immunotherapy efficacy in patients with LUAD. Mast cells were identified as key players that support the predicting capacity of the eight-lncRNA signature through the immune infiltrating analysis. Conclusion: In this study, an eight-lncRNA signature linked to cuproptosis was identified, which may improve LUAD management strategies. This signature may possess the ability to predict the effect of LUAD immunotherapy. In addition, infiltrating mast cells may affect the signature's prognostic power.
Collapse
Affiliation(s)
| | | | | | - Yang Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
110
|
Leowattana W, Leowattana P, Leowattana T. Systemic treatments for resectable carcinoma of the esophagus. World J Gastroenterol 2023; 29:4628-4641. [PMID: 37662861 PMCID: PMC10472899 DOI: 10.3748/wjg.v29.i30.4628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
One of the most prevalent malignancies in the world is esophageal cancer (EC). The 5-year survival rate of EC remains pitiful despite treatment advancements. Neoadjuvant chemoradiotherapy in conjunction with esophagectomy is the standard of care for patients with resectable disease. The pathological complete response rate, however, is not acceptable. A distant metastasis or a locoregional recurrence will occur in about half of the patients. To increase the clinical effectiveness of therapy, it is consequently vital to investigate cutting-edge and potent therapeutic modalities. The approach to the management of resectable EC using immunotherapy has been considerably altered by immune checkpoint inhibitors. Systemic immunotherapy has recently been shown to have the potential to increase the survival of patients with resectable EC, according to growing clinical data. A combination of chemotherapy, radiation, and immunotherapy may have a synergistic antitumor impact because, according to mounting evidence, these treatments can stimulate the immune system via a number of different pathways. In light of this, it makes sense to consider the value of neoadjuvant immunotherapy for patients with surgically treatable EC. In this review, we clarify the rationale for neoadjuvant immunotherapy in resectable EC patients, recap the clinical outcomes of these approaches, go through the upcoming and ongoing investigations, and emphasize the difficulties and unmet research requirements.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| | - Pathomthep Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakarinwirot University, Wattana 10110, Bangkok, Thailand
| |
Collapse
|
111
|
Yadav R, Hakobyan N, Wang JC. Role of Next Generation Immune Checkpoint Inhibitor (ICI) Therapy in Philadelphia Negative Classic Myeloproliferative Neoplasm (MPN): Review of the Literature. Int J Mol Sci 2023; 24:12502. [PMID: 37569880 PMCID: PMC10420159 DOI: 10.3390/ijms241512502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The Philadelphia chromosome-negative (Ph-) myeloproliferative neoplasms (MPNs), which include essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF), are enduring and well-known conditions. These disorders are characterized by the abnormal growth of one or more hematopoietic cell lineages in the body's stem cells, leading to the enlargement of organs and the manifestation of constitutional symptoms. Numerous studies have provided evidence indicating that the pathogenesis of these diseases involves the dysregulation of the immune system and the presence of chronic inflammation, both of which are significant factors. Lately, the treatment of cancer including hematological malignancy has progressed on the agents aiming for the immune system, cytokine environment, immunotherapy agents, and targeted immune therapy. Immune checkpoints are the molecules that regulate T cell function in the tumor microenvironment (TME). The first line of primary immune checkpoints are programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte antigen-4 (CTLA-4). Immune checkpoint inhibitor therapy (ICIT) exerts its anti-tumor actions by blocking the inhibitory pathways in T cells and has reformed cancer treatment. Despite the impressive clinical success of ICIT, tumor internal resistance poses a challenge for oncologists leading to a low response rate in solid tumors and hematological malignancies. A Phase II trial on nivolumab for patients with post-essential thrombocythemia myelofibrosis, primary myelofibrosis, or post-polycythemia myelofibrosis was performed (Identifier: NCT02421354). This trial tested the efficacy of a PD-1 blockade agent, namely nivolumab, but was terminated prematurely due to adverse events and lack of efficacy. A multicenter, Phase II, single-arm open-label study was conducted including pembrolizumab in patients with primary thrombocythemia, post-essential thrombocythemia or post-polycythemia vera myelofibrosis that were ineligible for or were previously treated with ruxolitinib. This study showed that pembrolizumab treatment did not have many adverse events, but there were no pertinent clinical responses hence it was terminated after the first stage was completed. To avail the benefits from immunotherapy, the paradigm has shifted to new immune checkpoints in the TME such as lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin domain 3 (TIM-3), T cell immunoglobulin and ITIM domain (TIGIT), V-domain immunoglobulin-containing suppressor of T cell activation (VISTA), and human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) forming the basis of next-generation ICIT. The primary aim of this article is to underscore and elucidate the significance of next-generation ICIT in the context of MPN. Specifically, we aim to explore the potential of monoclonal antibodies as targeted immunotherapy and the development of vaccines targeting specific MPN epitopes, with the intent of augmenting tumor-related immune responses. It is anticipated that these therapeutic modalities rooted in immunotherapy will not only expand but also enhance the existing treatment regimens for patients afflicted with MPN. Preliminary studies from our laboratory showed over-expressed MDSC and over-expressed VISTA in MDSC, and in progenitor and immune cells directing the need for more clinical trials using next-generation ICI in the treatment of MPN.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Internal Medicine, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA; (R.Y.); (N.H.)
| | - Narek Hakobyan
- Department of Internal Medicine, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA; (R.Y.); (N.H.)
| | - Jen-Chin Wang
- Department of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA
| |
Collapse
|
112
|
Astore S, Baciarello G, Cerbone L, Calabrò F. Primary and acquired resistance to first-line therapy for clear cell renal cell carcinoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:517-546. [PMID: 37842234 PMCID: PMC10571064 DOI: 10.20517/cdr.2023.33] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 10/17/2023]
Abstract
The introduction of first-line combinations had improved the outcomes for metastatic renal cell carcinoma (mRCC) compared to sunitinib. However, some patients either have inherent resistance or develop resistance as a result of the treatment. Depending on the kind of therapy employed, many factors underlie resistance to systemic therapy. Angiogenesis and the tumor immune microenvironment (TIME), nevertheless, are inextricably linked. Although angiogenesis and the manipulation of the tumor microenvironment are linked to hypoxia, which emerges as a hallmark of renal cell carcinoma (RCC) pathogenesis, it is only one of the potential elements involved in the distinctive intra- and inter-tumor heterogeneity of RCC that is still dynamic. We may be able to more correctly predict therapy response and comprehend the mechanisms underlying primary or acquired resistance by integrating tumor genetic and immunological markers. In order to provide tools for patient selection and to generate hypotheses for the development of new strategies to overcome resistance, we reviewed the most recent research on the mechanisms of primary and acquired resistance to immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs) that target the vascular endothelial growth factor receptor (VEGFR).We can choose patients' treatments and cancer preventive strategies using an evolutionary approach thanks to the few evolutionary trajectories that characterize ccRCC.
Collapse
Affiliation(s)
- Serena Astore
- Medical Oncology, San Camillo Forlanini Hospital, Rome 00152, Italy
| | | | - Linda Cerbone
- Medical Oncology, San Camillo Forlanini Hospital, Rome 00152, Italy
| | - Fabio Calabrò
- Medical Oncology, San Camillo Forlanini Hospital, Rome 00152, Italy
- Medical Oncology, IRCSS, National Cancer Institute Regina Elena, Rome 00128, Italy
| |
Collapse
|
113
|
Dagar G, Gupta A, Masoodi T, Nisar S, Merhi M, Hashem S, Chauhan R, Dagar M, Mirza S, Bagga P, Kumar R, Akil ASAS, Macha MA, Haris M, Uddin S, Singh M, Bhat AA. Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med 2023; 21:449. [PMID: 37420216 PMCID: PMC10327392 DOI: 10.1186/s12967-023-04292-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Traditional cancer treatments use nonspecific drugs and monoclonal antibodies to target tumor cells. Chimeric antigen receptor (CAR)-T cell therapy, however, leverages the immune system's T-cells to recognize and attack tumor cells. T-cells are isolated from patients and modified to target tumor-associated antigens. CAR-T therapy has achieved FDA approval for treating blood cancers like B-cell acute lymphoblastic leukemia, large B-cell lymphoma, and multiple myeloma by targeting CD-19 and B-cell maturation antigens. Bi-specific chimeric antigen receptors may contribute to mitigating tumor antigen escape, but their efficacy could be limited in cases where certain tumor cells do not express the targeted antigens. Despite success in blood cancers, CAR-T technology faces challenges in solid tumors, including lack of reliable tumor-associated antigens, hypoxic cores, immunosuppressive tumor environments, enhanced reactive oxygen species, and decreased T-cell infiltration. To overcome these challenges, current research aims to identify reliable tumor-associated antigens and develop cost-effective, tumor microenvironment-specific CAR-T cells. This review covers the evolution of CAR-T therapy against various tumors, including hematological and solid tumors, highlights challenges faced by CAR-T cell therapy, and suggests strategies to overcome these obstacles, such as utilizing single-cell RNA sequencing and artificial intelligence to optimize clinical-grade CAR-T cells.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, 3050, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Ravi Chauhan
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Manisha Dagar
- Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Sameer Mirza
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu and Kashmir, India
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| |
Collapse
|
114
|
Lu C, Wu L, Tang MY, Liu YF, Liu L, Liu XY, Zhang C, Huang L. Indoxyl sulfate in atherosclerosis. Toxicol Lett 2023:S0378-4274(23)00215-1. [PMID: 37414304 DOI: 10.1016/j.toxlet.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Atherosclerosis (AS), a chronic vascular inflammatory disease, has become a main focus of attention worldwide for its chronic progressing disease course and serious complications in the later period. Nevertheless, explanations for the exact molecular mechanisms of AS initiation and development remain to be an unsolved problem. The classic pathogenesis theories, such as lipid percolation and deposition, endothelium injury, inflammation and immune damage, provide the foundation for discovering the new key molecules or signaling mechanisms. Recently, indoxyl sulfate (IS), one of non-free uremia toxins, has been noticeable for its multiple atherogenic effects. IS exists at high concentration in plasma for its great albumin binding rate. Patients with uremia have markedly elevated serum levels of IS due both to the deterioration of renal function and to the high binding affinity of IS to albumin. Nowadays, elevated incidence of circulatory disease among patients with renal dysfunction indicates correlation of uremic toxins with cardiovascular damage. In this review, the atherogenic effects of IS and the underlying mechanisms are summarized with emphasis on several key pathological events associated with AS developments, such as vascular endothelium dysfunction, arterial medial lesions, vascular oxidative stress, excessive inflammatory responses, calcification, thrombosis and foam cell formation. Although recent studies have proved the great correlation between IS and AS, deciphering cellular and pathophysiological signaling by confirming key factors involved in IS-mediated atherosclerosis development may enable identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Cong Lu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Li Wu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Mu-Yao Tang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yi-Fan Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lei Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xi-Ya Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chun Zhang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
115
|
Hirata Y, Noorani A, Song S, Wang L, Ajani JA. Early stage gastric adenocarcinoma: clinical and molecular landscapes. Nat Rev Clin Oncol 2023; 20:453-469. [PMID: 37264184 DOI: 10.1038/s41571-023-00767-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 06/03/2023]
Abstract
Gastric adenocarcinoma, even when diagnosed at an early (localized) disease stage, poses a major health-care burden with cure rates that remain unsatisfactorily low, particularly in Western countries. This lack of progress reflects, among other aspects, the impracticality of early diagnosis, considerable variations in therapeutic approaches that is partly based on regional preferences, and the ingrained heterogeneity of gastric adenocarcinoma cells and their associated tumour microenvironment (TME). Clinical trials have long applied empirical interventions with the assumption that all early stage gastric adenocarcinomas are alike. Despite certain successes, the shortcomings of these approaches can potentially be overcome by targeting the specific molecular subsets of gastric adenocarcinomas identified by genomic and/or multi-omics analyses, including microsatellite instability-high, Epstein-Barr virus-induced, DNA damage repair-deficient, HER2-positive and PD-L1-high subtypes. Future approaches, including the availability of sophisticated vaccines, novel antibody technologies, agents targeting TME components (including fibroblasts, macrophages, cytokines or chemokines, and T cells) and novel immune checkpoint inhibitors, supported by improved tissue-based and blood-based diagnostic assays, seem promising. In this Review, we highlight current knowledge of the molecular and cellular biology of gastric adenocarcinomas, summarize the current approaches to clinical management of the disease, and consider the role of novel management and/or treatment strategies.
Collapse
Affiliation(s)
- Yuki Hirata
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ayesha Noorani
- Cancer Ageing and Somatic Mutation Group, Wellcome Sanger Institute, Hinxton, UK
- Cambridge Oesophago-gastric Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
116
|
Ibrahim R, Saleh K, Chahine C, Khoury R, Khalife N, Cesne AL. LAG-3 Inhibitors: Novel Immune Checkpoint Inhibitors Changing the Landscape of Immunotherapy. Biomedicines 2023; 11:1878. [PMID: 37509517 PMCID: PMC10377063 DOI: 10.3390/biomedicines11071878] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
One of the most important steps forward in the management of cancer was the discovery of immunotherapy. It has become an essential pillar in the treatment paradigm of cancer patients. Unfortunately, despite the various options presented with immune checkpoint inhibitors (ICIs), the benefit is still limited to select patients and the vast majority of these patients gain either minimal benefit or eventually progress, leaving an unmet need for the development of novel therapeutic agents and strategies. Lymphocyte activation gene-3 (LAG-3), an immune checkpoint receptor protein, is a molecule found on the surface of activated T-cells. It plays a major role in negatively regulating T-cell function thereby providing tumors with an immune escape in the tumor microenvironment (TME). Given its importance in regulating the immune system, LAG-3 has been considered as a promising target in oncology and precision medicine. To date, two LAG-3-directed agents (eftilagimod alpha and relatlimab) have been approved in combination with programmed death-1 (PD-1) inhibitors in the setting of advanced solid tumors. In this review, we discuss the structure of LAG-3, its mechanism of action, and its interaction with its ligands. We also shed light on the emerging treatments targeting LAG-3 for the treatment of solid tumors.
Collapse
Affiliation(s)
- Rebecca Ibrahim
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Khalil Saleh
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Claude Chahine
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Rita Khoury
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Nadine Khalife
- Department of head and neck Oncology, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Axel Le Cesne
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| |
Collapse
|
117
|
Kaya ZB, Karakoc E, McLean PJ, Saka E, Atilla P. Post-inflammatory administration of N-acetylcysteine reduces inflammation and alters receptor levels in a cellular model of Parkinson's disease. FASEB Bioadv 2023; 5:263-276. [PMID: 37415931 PMCID: PMC10320847 DOI: 10.1096/fba.2022-00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/10/2023] [Accepted: 04/28/2023] [Indexed: 07/08/2023] Open
Abstract
Parkinson's disease (PD) is a complex, multifactorial neurodegenerative disease with a prevalence of 1% over the age of 55. Neuropathological hallmarks of PD include the loss of dopaminergic neurons in the substantia nigra pars compacta and the accumulation of Lewy bodies that contain a variety of proteins and lipids including alpha-synuclein (α-syn). Although the formation of α-syn occurs intracellularly, it can also be found in the extracellular space where it can be taken up by neighboring cells. Toll-like receptor 2 (TLR2) is an immune system receptor that has been shown to recognize extracellular α-syn and modulate its uptake by other cells. Lymphocyte-activation gene 3 (LAG3), an immune checkpoint receptor, has also been proposed to play a role in extracellular α-syn internalization; however, a recent study has disputed this role. Internalized α-syn can trigger expression and secretion of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-2, and IL-6 and induce neuroinflammation, apoptosis, and mitophagy that results in cellular death. In this study, we tested if N-acetylcysteine (NAC), an anti-inflammatory and anti-carcinogenic drug, can circumvent the detrimental effects of neuroinflammation and induce an anti-inflammatory response by modulating transcription and expression of TLR2 and LAG3 receptors. Cells overexpressing wild-type α-syn were treated with TNF-α to induce inflammation followed by NAC to inhibit the deleterious effects of TNF-α-induced inflammation and apoptosis. SNCA gene transcription and α-syn protein expression were validated by q-PCR and Western blot (WB), respectively. Cell viability was measured, and apoptosis was evaluated by WB and terminal deoxynucleotidyl transferase nick end labeling methods. Alterations in LAG3 and TLR2 receptor levels were evaluated by immunofluorescent labeling, WB, and q-PCR. TNF-α not only increased inflammation but also increased endogenous and overexpressed α-syn levels. NAC treatment decreased expression of TLR2 and increased transcription of LAG3 receptor and diminished inflammation-mediated toxicity and cell death. Here, we demonstrate that NAC can reduce neuroinflammation that occurs as a result of alpha-synuclein overexpression, via a TLR2-associated pathway, making it a promising candidate for therapeutic intervention. Further studies are needed to elucidate molecular mechanisms and pathways related to neuroinflammation in PD and to develop possible new therapeutic approaches to slow the clinical progression of PD.
Collapse
Affiliation(s)
- Zeynep Bengisu Kaya
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of Histology and EmbryologyHacettepe University Faculty of MedicineAnkaraTurkey
| | - Elif Karakoc
- Department of Histology and EmbryologyHacettepe University Faculty of MedicineAnkaraTurkey
| | | | - Esen Saka
- Department of NeurologyHacettepe University Faculty of MedicineAnkaraTurkey
| | - Pergin Atilla
- Department of Histology and EmbryologyHacettepe University Faculty of MedicineAnkaraTurkey
| |
Collapse
|
118
|
Huang Y, Wu L, Sun Y, Li J, Mao N, Yang Y, Zhao M, Ren S. CCL5 might be a prognostic biomarker and associated with immuno-therapeutic efficacy in cancers: A pan-cancer analysis. Heliyon 2023; 9:e18215. [PMID: 37519664 PMCID: PMC10375802 DOI: 10.1016/j.heliyon.2023.e18215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose Chemokine ligand 5 (CCL5), a vital member of the CC chemokine family, plays diverse roles in tumorigenesis, metastasis, and prognosis in various human tumors. However, no pan-cancer analysis has been conducted to illustrate its distinctive effects on clinical prognosis via underlying mechanisms and biological characteristics. Methods Herein, we exploited the existed public bioinformatics database, primarily TCGA database and GTEx data, to comprehensively analyze the value of CCL5 involved in patient prognosis. Results This study found that CCL5 was excessively expressed in most tumors and significantly associated with clinical prognosis in 10 out of 33 types of tumors. Notably, CCL5 might be an independent predictive biomarker of clinical outcome in SKCM patients, confirmed by univariate and multivariate Cox regression analysis. Furthermore, we acquired the genetic alteration status of CCL5 in multiple types of tumor tissues from TCGA cohorts. We revealed a potential correlation between the expression level of CCL5 and tumor mutational burden in 33 types of tumors. In addition, data showed that DNA methylation was associated with CCL5 gene expression in THCA, PRAD, LUSC, and BRCA cancers. Immune infiltration and immune checkpoints are fine indexes for evaluating immunotherapy. We uncovered that CCL5 was negatively correlated with the immune infiltration of CD8+ T cell, CD4+ T cell, macrophages, and gamma delta T cells in BRCA-basal and CESC tumors, while a significant positive correlation was observed in BLCA, COAD and other 7 types of tumors. Besides, CCL5 was closely associated with the immune checkpoint molecules in 8 types of tumors. The TIDE score was less in the CCL5 high-expressed group than in the CCL5 low-expressed group in SKCM patients, which indicated that CCL5 might be a fine monitor of immune response for immunotherapy. GO enrichment analysis data uncovered that cytokine-cytokine receptor interaction and chemokine signaling might be involved in the role of CCL5 in regulating tumor pathogenesis and prognosis. Conclusion In conclusion, CCL5 was preliminarly identified as a biomarker of immune response and prognosis for tumors patients via our first comprehensive pan-cancer analysis.
Collapse
Affiliation(s)
- Yanchun Huang
- Department of Laboratory Medicine, The First People's Hospital of Longquanyi District, Chengdu, Chengdu 610100, China
- Department of Laboratory Medicine, West China Longquan Hospital Sichuan University, Chengdu 610100, China
| | - Lijuan Wu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yong Sun
- Department of Laboratory Medicine, The First People's Hospital of Longquanyi District, Chengdu, Chengdu 610100, China
- Department of Laboratory Medicine, West China Longquan Hospital Sichuan University, Chengdu 610100, China
| | - Jiwen Li
- Department of Laboratory Medicine, The First People's Hospital of Longquanyi District, Chengdu, Chengdu 610100, China
- Department of Laboratory Medicine, West China Longquan Hospital Sichuan University, Chengdu 610100, China
| | - Nan Mao
- Department of Nephrology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Yeqing Yang
- Department of Oncology, Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou 646000, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Sichong Ren
- Department of Nephrology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
119
|
Desmedt V, Jauregui-Amezaga A, Fierens L, Aspeslagh S, Dekervel J, Wauters E, Peeters M, Sabino J, Crapé L, Somers M, Hoorens A, Dutré J, Lobatón T. Position statement on the management of the immune checkpoint inhibitor-induced colitis via multidisciplinary modified Delphi consensus. Eur J Cancer 2023; 187:36-57. [PMID: 37116287 DOI: 10.1016/j.ejca.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 04/30/2023]
Abstract
INTRODUCTION The use of immune checkpoint inhibitors (ICIs) in cancer immunotherapy has shown increased overall survival in a wide range of cancer types with the associated risk of developing severe immune-mediated adverse events, commonly involving the gastrointestinal tract. AIM The aim of this position statement is to provide an updated practice advice to the gastroenterologists and oncologists on the diagnosis and management of ICI-induced gastrointestinal toxicity. METHODOLOGY The evidence reviewed in this paper includes a comprehensive search strategy of English language publications. Consensus was reached using a three-round modified Delphi methodology and approved by the members of the Belgian Inflammatory Bowel Disease Research and Development Group (BIRD), Belgian Society of Medical Oncology (BSMO), Belgian group of Digestive Oncology (BGDO), and Belgian Respiratory Society (BeRS). CONCLUSIONS The management of ICI-induced colitis requires an early multidisciplinary approach. A broad initial assessment is necessary (clinical presentation, laboratory markers, endoscopic and histologic examination) to confirm the diagnosis. Criteria for hospitalisation, management of ICIs, and initial endoscopic assessment are proposed. Even if corticosteroids are still considered the first-line therapy, biologics are recommended as an escalation therapy and as early treatment in patients with high-risk endoscopic findings.
Collapse
Affiliation(s)
- Valérie Desmedt
- Department of Gastroenterology and Hepatology, University Hospital Ghent, Belgium
| | - Aranzazu Jauregui-Amezaga
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Belgium; Laboratory of Experimental Medicine and Pediatrics (LEMP), Division of Gastroenterology-Hepatology, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.
| | - Liselotte Fierens
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Catholic University of Leuven, Belgium
| | | | - Jeroen Dekervel
- Department of Gastroenterology and Hepatology, University Hospital Leuven, Belgium
| | - Els Wauters
- Respiratory Oncology Unit (Pulmonology), University Hospitals KU Leuven, Leuven, Belgium; Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Marc Peeters
- Department of Digestive Oncology, University Hospital Antwerp, Belgium
| | - Joao Sabino
- Department of Gastroenterology and Hepatology, University Hospital Leuven, Belgium
| | - Lara Crapé
- Department of Gastroenterology, Algemeen Stedelijk Ziekenhuis Aalst, Belgium
| | - Michael Somers
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Belgium
| | - Anne Hoorens
- Department of Pathology, University Hospital Ghent, Belgium
| | - Joris Dutré
- Department of Gastroenterology, Ziekenhuis Netwerk Antwerpen Jan Palfijn, Belgium
| | - Triana Lobatón
- Department of Gastroenterology and Hepatology, University Hospital Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
120
|
Wang Y, Yang S, Wan L, Ling W, Chen H, Wang J. New developments in the mechanism and application of immune checkpoint inhibitors in cancer therapy (Review). Int J Oncol 2023; 63:86. [PMID: 37326100 PMCID: PMC10308343 DOI: 10.3892/ijo.2023.5534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) has been demonstrated in the treatment of numerous types of cancer and ICIs have remained a key focus of cancer research. However, improvements in survival rates only occur in a subset of patients, due to the complexity of drug resistance. Therefore, further investigations are required to identify predictive biomarkers that distinguish responders and non‑responders. Combined therapeutics involving ICIs and other modalities demonstrate potential in overcoming resistance to ICIs; however, further preclinical and clinical trials are required. Concurrently, prompt recognition and intervention of immune‑related adverse events are crucial to optimize the use of ICIs in clinical treatment. The present study aimed to review the current literature surrounding the mechanisms and application of ICIs, with the aim of providing a theoretical basis for clinicians.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510062
| | - Shuo Yang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036
| | - Li Wan
- Department of Endocrinology and Metabolism, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060
| | - Wei Ling
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080
| |
Collapse
|
121
|
Chen X, Li Z, Liang M, Zhang Z, Zhu D, Lin B, Zhou R, Lu Y. Identification of DDIT4 as a potential prognostic marker associated with chemotherapeutic and immunotherapeutic response in triple-negative breast cancer. World J Surg Oncol 2023; 21:194. [PMID: 37391802 DOI: 10.1186/s12957-023-03078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most heterogenous and aggressive subtype of breast cancer. Chemotherapy remains the standard treatment option for patients with TNBC owing to the unavailability of acceptable targets and biomarkers in clinical practice. Novel biomarkers and targets for patient stratification and treatment of TNBC are urgently needed. It has been reported that the overexpression of DNA damage-inducible transcript 4 gene (DDIT4) is associated with resistance to neoadjuvant chemotherapy and poor prognosis in patients with TNBC. In this study, we aimed to identify novel biomarkers and therapeutic targets using RNA sequencing (RNA-seq) and data mining using data from public databases. METHODS RNA sequencing (RNA-Seq) was performed to detect the different gene expression patterns in the human TNBC cell line HS578T treated with docetaxel or doxorubicin. Sequencing data were further analyzed by the R package "edgeR" and "clusterProfiler" to identify the profile of differentially expressed genes (DEGs) and annotate gene functions. The prognostic and predictive value of DDIT4 expression in patients with TNBC was further validated by published online data resources, including TIMER, UALCAN, Kaplan-Meier plotter, and LinkedOmics, and GeneMANIA and GSCALite were used to investigate the functional networks and hub genes related to DDIT4, respectively. RESULTS Through the integrative analyses of RNA-Seq data and public datasets, we observed the overexpression of DDIT4 in TNBC tissues and found that patients with DDIT4 overexpression showed poor survival outcomes. Notably, immune infiltration analysis showed that the levels of DDIT4 expression correlated negatively with the abundance of tumor-infiltrating immune cells and immune biomarker expression, but correlated positively with immune checkpoint molecules. Furthermore, DDIT4 and its hub genes (ADM, ENO1, PLOD1, and CEBPB) involved in the activation of apoptosis, cell cycle, and EMT pathways. Eventually, we found ADM, ENO1, PLOD1, and CEBPB showed poor overall survival in BC patients. CONCLUSION In this study, we found that DDIT4 expression is associated with the progression, therapeutic efficacy, and immune microenvironment of patients with TNBC, and DDIT4 would be as a potential prognostic biomarker and therapeutic target. These findings will help to identify potential molecular targets and improve therapeutic strategies against TNBC.
Collapse
Affiliation(s)
- Xuanzhao Chen
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zeyan Li
- Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Meihua Liang
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ziyang Zhang
- Guangzhou Huayin Medical Laboratory Center, Ltd., Guangzhou, China
| | - Di Zhu
- Department of Clinical Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Biyun Lin
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Renyu Zhou
- School of Medicine, Jinan University, Guangzhou, China
| | - Yuanzhi Lu
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Department of Clinical Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
122
|
Sankar K, Pearson AN, Worlikar T, Perricone MD, Holcomb EA, Mendiratta-Lala M, Xu Z, Bhowmick N, Green MD. Impact of immune tolerance mechanisms on the efficacy of immunotherapy in primary and secondary liver cancers. Transl Gastroenterol Hepatol 2023; 8:29. [PMID: 37601739 PMCID: PMC10432235 DOI: 10.21037/tgh-23-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/22/2023] Open
Abstract
The liver is a functionally unique organ with an immunosuppressive microenvironment. The liver is the sixth most common site of primary cancer in humans and is a frequent site of metastasis from other solid tumors. The development of effective therapies for primary and metastatic liver cancer has been challenging due to the complex metabolic and immune microenvironment of the liver. The liver tumor microenvironment (TME) in primary and secondary (metastatic) liver cancers is heterogenous and consists of unique immune and stromal cell populations. Crosstalk between these cell populations and tumor cells creates an immunosuppressive microenvironment within the liver which potentiates cancer progression. Immune checkpoint inhibitors (ICIs) are now clinically approved for the management of primary and secondary liver cancer and can partially overcome liver immune tolerance, but their efficacy is limited. In this review, we describe the liver microenvironment and the use of immunotherapy in primary and secondary liver cancer. We discuss emerging combination strategies utilizing locoregional and systemic therapy approaches which may enhance efficacy of immunotherapy in primary and secondary liver cancer. A deeper understanding of the immunosuppressive microenvironment of the liver will inform novel therapies and therapeutic combinations in order to improve outcomes of patients with primary and secondary liver cancer.
Collapse
Affiliation(s)
- Kamya Sankar
- Division of Medical Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ashley N. Pearson
- Graduate Program in Immunology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Tejaswi Worlikar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Matthew D. Perricone
- Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Erin A. Holcomb
- Graduate Program in Immunology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Neil Bhowmick
- Division of Medical Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael D. Green
- Graduate Program in Immunology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
123
|
Das S, Dash BS, Premji TP, Chen JP. Immunotherapeutic Approaches for the Treatment of Glioblastoma Multiforme: Mechanism and Clinical Applications. Int J Mol Sci 2023; 24:10546. [PMID: 37445721 DOI: 10.3390/ijms241310546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is one of the most aggressive types of primary brain tumor with a high-grade glioma known as glioblastoma multiforme (GBM). Patients diagnosed with GBM usually have an overall survival rate of less than 18 months after conventional therapy. This bleak prognosis underlines the need to consider new therapeutic interventions for GBM treatment to overcome current treatment limitations. By highlighting different immunotherapeutic approaches currently in preclinical and clinical trials, including immune checkpoint inhibitors, chimeric antigen receptors T cells, natural killer cells, vaccines, and combination therapy, this review aims to discuss the mechanisms, benefits, and limitations of immunotherapy in treating GBM patients.
Collapse
Affiliation(s)
- Suprava Das
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Thejas P Premji
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
124
|
Czajka-Francuz P, Prendes MJ, Mankan A, Quintana Á, Pabla S, Ramkissoon S, Jensen TJ, Peiró S, Severson EA, Achyut BR, Vidal L, Poelman M, Saini KS. Mechanisms of immune modulation in the tumor microenvironment and implications for targeted therapy. Front Oncol 2023; 13:1200646. [PMID: 37427115 PMCID: PMC10325690 DOI: 10.3389/fonc.2023.1200646] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
The efficacy of cancer therapies is limited to a great extent by immunosuppressive mechanisms within the tumor microenvironment (TME). Numerous immune escape mechanisms have been identified. These include not only processes associated with tumor, immune or stromal cells, but also humoral, metabolic, genetic and epigenetic factors within the TME. The identification of immune escape mechanisms has enabled the development of small molecules, nanomedicines, immune checkpoint inhibitors, adoptive cell and epigenetic therapies that can reprogram the TME and shift the host immune response towards promoting an antitumor effect. These approaches have translated into series of breakthroughs in cancer therapies, some of which have already been implemented in clinical practice. In the present article the authors provide an overview of some of the most important mechanisms of immunosuppression within the TME and the implications for targeted therapies against different cancers.
Collapse
Affiliation(s)
| | | | | | - Ángela Quintana
- Breast Cancer Unit, Vall d'Hebrón Institute of Oncology, Barcelona, Spain
| | | | | | | | - Sandra Peiró
- Breast Cancer Unit, Vall d'Hebrón Institute of Oncology, Barcelona, Spain
| | | | | | | | | | - Kamal S. Saini
- Fortrea, Inc., Durham, NC, United States
- Addenbrooke’s Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
125
|
Zhou X, Gu Y, Wang H, Zhou W, Zou L, Li S, Hua C, Gao S. From bench to bedside: targeting lymphocyte activation gene 3 as a therapeutic strategy for autoimmune diseases. Inflamm Res 2023:10.1007/s00011-023-01742-y. [PMID: 37314518 DOI: 10.1007/s00011-023-01742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/12/2023] [Accepted: 05/12/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Immune checkpoints negatively regulate immune response, thereby playing an important role in maintaining immune homeostasis. Substantial studies have confirmed that blockade or deficiency of immune checkpoint pathways contributes to the deterioration of autoimmune diseases. In this context, focusing on immune checkpoints might provide alternative strategies for the treatment of autoimmunity. Lymphocyte activation gene 3 (LAG3), as a member of immune checkpoint, is critical in regulating immune responses as manifested in multiple preclinical studies and clinical trials. Recent success of dual-blockade of LAG3 and programmed death-1 in melanoma also supports the notion that LAG3 is a crucial regulator in immune tolerance. METHODS We wrote this review article by searching the PubMed, Web of Science and Google Scholar databases. CONCLUSION In this review, we summarize the molecular structure and the action mechanisms of LAG3. Additionally, we highlight its roles in diverse autoimmune diseases and discuss how the manipulation of the LAG3 pathway can serve as a promising therapeutic strategy as well as its specific mechanism with the aim of filling the gaps from bench to bedside.
Collapse
Affiliation(s)
- Xueyin Zhou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yiming Gu
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huihong Wang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Zhou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Zou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuting Li
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
126
|
He LF, Mou P, Yang CH, Huang C, Shen Y, Zhang JD, Wei RL. Single-cell sequencing in primary intraocular tumors: understanding heterogeneity, the microenvironment, and drug resistance. Front Immunol 2023; 14:1194590. [PMID: 37359513 PMCID: PMC10287964 DOI: 10.3389/fimmu.2023.1194590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
Retinoblastoma (RB) and uveal melanoma (UM) are the most common primary intraocular tumors in children and adults, respectively. Despite continued increases in the likelihood of salvaging the eyeball due to advancements in local tumor control, prognosis remains poor once metastasis has occurred. Traditional sequencing technology obtains averaged information from pooled clusters of diverse cells. In contrast, single-cell sequencing (SCS) allows for investigations of tumor biology at the resolution of the individual cell, providing insights into tumor heterogeneity, microenvironmental properties, and cellular genomic mutations. SCS is a powerful tool that can help identify new biomarkers for diagnosis and targeted therapy, which may in turn greatly improve tumor management. In this review, we focus on the application of SCS for evaluating heterogeneity, microenvironmental characteristics, and drug resistance in patients with RB and UM.
Collapse
Affiliation(s)
- Lin-feng He
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Pei Mou
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Chun-hui Yang
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Cheng Huang
- 92882 Troops of the Chinese People’s Liberation Army, Qingdao, China
| | - Ya Shen
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Jin-di Zhang
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Rui-li Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
127
|
Pedersen JM, Hansen AS, Skejø C, Juul-Madsen K, Junker P, Hørslev-Petersen K, Hetland ML, Stengaard-Pedersen K, Østergaard M, Møller BK, Dreyer L, Hauge EM, Hvid M, Greisen S, Deleuran B. Lymphocyte activation gene 3 is increased and affects cytokine production in rheumatoid arthritis. Arthritis Res Ther 2023; 25:97. [PMID: 37287025 DOI: 10.1186/s13075-023-03073-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/20/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Lymphocyte activation gene-3 (LAG-3) inhibits T cell activation and interferes with the immune response by binding to MHC-II. As antigen presentation is central in rheumatoid arthritis (RA) pathogenesis, we studied aspects of LAG-3 as a serological marker and mediator in the pathogenesis of RA. Since Galectin-3 (Gal-3) is described as an additional binding partner for LAG-3, we also aimed to study the functional importance of this interaction. METHODS Plasma levels of soluble (s) LAG-3 were measured in early RA patients (eRA, n = 99) at baseline and after 12 months on a treat-to-target protocol, in self-reportedly healthy controls (HC, n = 32), and in paired plasma and synovial fluid (SF) from chronic RA patients (cRA, n = 38). Peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) were examined for LAG-3 expression by flow cytometry. The binding and functional outcomes of LAG-3 and Gal-3 interaction were assessed with surface plasmon resonance (SPR) and in cell cultures using rh-LAG3, an antagonistic LAG-3 antibody and a Gal-3 inhibitor. RESULTS Baseline sLAG-3 in the plasma was increased in eRA compared to HC and remained significantly elevated throughout 12 months of treatment. A high level of sLAG-3 at baseline was associated with the presence of IgM-RF and anti-CCP as well as radiographic progression. In cRA, sLAG-3 was significantly increased in SF compared with plasma, and LAG-3 was primarily expressed by activated T cells in SFMCs compared to PBMCs. Adding recombinant human LAG-3 to RA cell cultures resulted in decreased cytokine secretion, whereas blocking LAG-3 with an antagonistic antibody resulted in increased cytokine secretion. By SPR, we found a dose-dependent binding between LAG-3 and Gal-3. However, inhibiting Gal-3 in cultures did not further change cytokine production. CONCLUSIONS sLAG-3 in the plasma and synovial fluid is increased in both early and chronic RA patients, particularly in the inflamed joint. High levels of sLAG-3 are associated with autoantibody seropositivity and radiographic progression in eRA, and LAG-3 plays a biologically active role in cRA by decreasing inflammatory cytokine production. This functional outcome is not affected by Gal-3 interference. Our results suggest that LAG-3 is a faceted regulator of inflammation in early and chronic RA.
Collapse
Affiliation(s)
- Janni Maria Pedersen
- Department of Biomedicine, Aarhus University, C.F. Møllers Alle 6, 8000, Aarhus C, Denmark.
- Department of Acute Medicine and Trauma Care, Aalborg University Hospital, Aalborg, Denmark.
| | - Aida Solhøj Hansen
- Department of Biomedicine, Aarhus University, C.F. Møllers Alle 6, 8000, Aarhus C, Denmark
| | - Cæcilie Skejø
- Department of Biomedicine, Aarhus University, C.F. Møllers Alle 6, 8000, Aarhus C, Denmark
| | - Kristian Juul-Madsen
- Department of Biomedicine, Aarhus University, C.F. Møllers Alle 6, 8000, Aarhus C, Denmark
| | - Peter Junker
- Department of Rheumatology C, Odense University Hospital & Institute for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kim Hørslev-Petersen
- Danish Hospital for the Rheumatic Diseases, University of Southern Denmark, Odense, Denmark
| | - Merete Lund Hetland
- DANBIO and Copenhagen Centre for Arthritis Research (COPECARE), Centre for Rheumatology and Spine Diseases, Centre of Head and Orthopaedics, Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | | | - Mikkel Østergaard
- DANBIO and Copenhagen Centre for Arthritis Research (COPECARE), Centre for Rheumatology and Spine Diseases, Centre of Head and Orthopaedics, Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Bjarne Kuno Møller
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Lene Dreyer
- Center for Rheumatic Research Aalborg, Department of Rheumatology, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Ellen-Margrethe Hauge
- Department of Acute Medicine and Trauma Care, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Malene Hvid
- Department of Biomedicine, Aarhus University, C.F. Møllers Alle 6, 8000, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Stinne Greisen
- Department of Biomedicine, Aarhus University, C.F. Møllers Alle 6, 8000, Aarhus C, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, C.F. Møllers Alle 6, 8000, Aarhus C, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
128
|
Miedema IHC, Huisman MC, Zwezerijnen GJC, Grempler R, Pitarch AP, Thiele A, Hesse R, Elgadi M, Peltzer A, Vugts DJ, van Dongen GAMS, de Gruijl TD, Menke-van der Houven van Oordt CW, Bahce I. 89Zr-immuno-PET using the anti-LAG-3 tracer [ 89Zr]Zr-BI 754111: demonstrating target specific binding in NSCLC and HNSCC. Eur J Nucl Med Mol Imaging 2023; 50:2068-2080. [PMID: 36859619 PMCID: PMC10199858 DOI: 10.1007/s00259-023-06164-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/18/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE Although lymphocyte activation gene-3 (LAG-3) directed therapies demonstrate promising clinical anti-cancer activity, only a subset of patients seems to benefit and predictive biomarkers are lacking. Here, we explored the potential use of the anti-LAG-3 antibody tracer [89Zr]Zr-BI 754111 as a predictive imaging biomarker and investigated its target specific uptake as well as the correlation of its tumor uptake and the tumor immune infiltration. METHODS Patients with head and neck (N = 2) or lung cancer (N = 4) were included in an imaging substudy of a phase 1 trial with BI 754091 (anti-PD-1) and BI 754111 (anti-LAG-3). After baseline tumor biopsy and [18F]FDG-PET, patients were given 240 mg of BI 754091, followed 8 days later by administration of [89Zr]Zr-BI 754111 (37 MBq, 4 mg). PET scans were performed 2 h, 96 h, and 144 h post-injection. To investigate target specificity, a second tracer administration was given two weeks later, this time with pre-administration of 40 (N = 3) or 600 mg (N = 3) unlabeled BI 754111, followed by PET scans at 96 h and 144 h post-injection. Tumor immune cell infiltration was assessed by immunohistochemistry and RNA sequencing. RESULTS Tracer uptake in tumors was clearly visible at the 4-mg mass dose (tumor-to-plasma ratio 1.63 [IQR 0.37-2.89]) and could be saturated by increasing mass doses (44 mg: 0.67 [IQR 0.50-0.85]; 604 mg: 0.56 [IQR 0.42-0.75]), demonstrating target specificity. Tumor uptake correlated to immune cell-derived RNA signatures. CONCLUSIONS [89Zr]Zr-BI-754111 PET imaging shows favorable technical and biological characteristics for developing a potential predictive imaging biomarker for LAG-3-directed therapies. TRIAL REGISTRATION ClinicalTrials.gov , NCT03780725. Registered 19 December 2018.
Collapse
Affiliation(s)
- Iris H C Miedema
- Department of Medical Oncology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Marc C Huisman
- Imaging and Biomarkers, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Gerben J C Zwezerijnen
- Imaging and Biomarkers, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Rolf Grempler
- Department of Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Alejandro Perez Pitarch
- Department of Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88400, Biberach and der Riss, Germany
| | - Andrea Thiele
- Department of Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88400, Biberach and der Riss, Germany
| | - Raphael Hesse
- Department of Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88400, Biberach and der Riss, Germany
| | - Mabrouk Elgadi
- Department of Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Alexander Peltzer
- Department of Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88400, Biberach and der Riss, Germany
| | - Danielle J Vugts
- Imaging and Biomarkers, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Guus A M S van Dongen
- Imaging and Biomarkers, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, De Boelelaan 1117, 1018 HV, Amsterdam, the Netherlands
| | - C Willemien Menke-van der Houven van Oordt
- Department of Medical Oncology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.
- Imaging and Biomarkers, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.
| | - Idris Bahce
- Imaging and Biomarkers, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
129
|
Xie S, Wang M, Zeng C, Ou Y, Zhao L, Wang D, Chen L, Kong F, Yi D. Research progress of targeted therapy combined with immunotherapy for hepatocellular carcinoma. Front Oncol 2023; 13:1197698. [PMID: 37305582 PMCID: PMC10248438 DOI: 10.3389/fonc.2023.1197698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Hepatocellular carcinoma is a common gastrointestinal malignancy with a high mortality rate and limited treatment options. Molecularly targeted drugs combined with immune checkpoint inhibitors have shown unique advantages over single-agent applications, significantly prolonging patient survival. This paper reviews the research progress of molecular-targeted drugs combined with immune checkpoint inhibitors in the treatment of hepatocellular carcinoma and discusses the effectiveness and safety of the combination of the two drugs to provide a reference for the further application of molecular-targeted drugs combined with immune checkpoint inhibitors in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liwei Chen
- Department of Oncology, The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | | |
Collapse
|
130
|
Lan X, Yang TTC, Wang Y, Qu B, Rong S, Song N. Characterization of 405B8H3(D-E), a newly engineered high affinity chimeric LAG-3 antibody with potent antitumor activity. FEBS Open Bio 2023. [PMID: 37302810 DOI: 10.1002/2211-5463.13648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 04/11/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Lymphocyte activation gene-3 (LAG-3) is a type I transmembrane protein with structural similarities to CD4. Overexpression of LAG-3 enables cancer cells to escape immune surveillance, while its blockade reinvigorates exhausted T cells and strengthens anti-infection immunity. Blockade of LAG-3 may have antitumor effects. Here, we generated a novel anti-LAG-3 chimeric antibody, 405B8H3(D-E), through hybridoma technology from monoclonal antibodies produced in mice. The heavy-chain variable region of the selected mouse antibody was grafted onto a human IgG4 scaffold, while a modified light-chain variable region was coupled to the human kappa light-chain constant region. 405B8H3(D-E) could effectively bind LAG-3-expressing HEK293 cells. Moreover, it could bind cynomolgus monkey (cyno) LAG-3 expressed on HEK293 cells with a higher affinity than the reference anti-LAG-3 antibody BMS-986016. Furthermore, 405B8H3(D-E) promoted interleukin-2 secretion and was able to block the interactions of LAG-3 with liver sinusoidal endothelial cell lectin and major histocompatibility complex II molecules. Finally, 405B8H3(D-E) combined with anti-mPD-1-antibody showed effective therapeutic potential in the MC38 tumor mouse model. Therefore, 405B8H3(D-E) is likely to be a promising candidate therapeutic antibody for immunotherapy.
Collapse
Affiliation(s)
- Xiaoxuan Lan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, China
- Shanghai ChemPartner Co., Ltd., China
| | | | | | - Baoyuan Qu
- Jiangsu Huaiyu Pharmaceutical Co., Ltd., China
| | - Shaofeng Rong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, China
| | | |
Collapse
|
131
|
Shi T, Hu Z, Tian L, Yang Y. Advances in lung adenocarcinoma: A novel perspective on prognoses and immune responses of CENPO as an oncogenic superenhancer. Transl Oncol 2023; 34:101691. [PMID: 37207381 DOI: 10.1016/j.tranon.2023.101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent form of lung cancer globally, and its treatment remains a significant challenge. Therefore, it is crucial to comprehend the microenvironment to improve therapy and prognosis urgently. In this study, we utilized bioinformatic methods to analyze the transcription expression profile of patient samples with complete clinical information from the TCGA-LUAD datasets. To validate our findings, we also analyzed the Gene Expression Omnibus (GEO) datasets. The super-enhancer (SE) was visualized using the peaks of the H3K27ac and H3K4me1 ChIP-seq signal, which were identified by the Integrative Genomics Viewer (IGV). To further investigate the role of Centromere protein O (CENPO) in LUAD, we conducted various assays including Western blot, qRT-PCR, flow cytometry, wound healing and transwell assays to assess the cell functions of CENPO in vitro. The overexpression of CENPO is linked to a poor prognosis in patients with LUAD. Strong signal peaks of H3K27ac and H3K4me1 were also observed near the predicted SE regions of CENPO. CENPO was found to be positively associated with the expression levels of immune checkpoints and drug IC50 value (Roscovitine and TGX221), but negatively associated with the fraction levels of several immature cells and drug IC50 value (CCT018159, GSK1904529A, Lenaildomide, and PD-173074). Additionally, CENPO-associated prognostic signature (CPS) was identified as an independent risk factor. The high-risk group for LUAD is identified based on CPS enrichment, which involved not only endocytosis that transfers mitochondria to promote cell survival in response to chemotherapy but also cell cycle promotion that leads to drug resistance. The removal of CENPO significantly suppressed metastasis and induced arrest and apoptosis of LUAD cells. The involvement of CENPO in the immunosuppression of LUAD provides a prognostic signature for LUAD patients.
Collapse
Affiliation(s)
- Tongdong Shi
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital of Chongqing Medical University, No.288 Tianwen Avenue, Nan'an District, Chongqing 401336, People's Republic of China
| | - Zaoxiu Hu
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, No.519 Kunzhou Road, Xishan District, Kunming, Yunnan 650118, People's Republic of China
| | - Li Tian
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital of Chongqing Medical University, No.288 Tianwen Avenue, Nan'an District, Chongqing 401336, People's Republic of China
| | - Yanlong Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China.
| |
Collapse
|
132
|
Rupp L, Resag A, Potkrajcic V, Warm V, Wehner R, Jöhrens K, Bösmüller H, Eckert F, Schmitz M. Prognostic impact of the post-treatment T cell composition and spatial organization in soft tissue sarcoma patients treated with neoadjuvant hyperthermic radio(chemo)therapy. Front Immunol 2023; 14:1185197. [PMID: 37261361 PMCID: PMC10228739 DOI: 10.3389/fimmu.2023.1185197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Soft tissue sarcomas (STS) form a heterogeneous group of tumors sharing a mesenchymal origin. Despite good local control of the disease, the occurrence of distant metastases often limits survival of STS patients with localized, high-risk tumors of the extremities. Accumulating evidence suggests a central role for the tumor immune microenvironment in determining the clinical outcome and response to therapy. Thus, it has been reported that STS patients with a high immune signature and especially presence of B cells and tertiary lymphoid structures display improved overall survival and response to checkpoint inhibitor treatment. Here, we explored the effect of curative multimodal therapy on the T cell landscape of STS using multiplex immunohistochemistry. We analyzed the phenotype, frequency, and spatial distribution of STS-infiltrating CD8+ T cells by staining for CD8, 4-1BB, Granzyme B, Ki67, PD-1, and LAG-3 as well as CD3+ T helper cells using a panel consisting of CD3, T-bet, GATA3, RORγT, FoxP3, and Ki67. All patients received neoadjuvant radiotherapy plus locoregional hyperthermia with or without chemotherapy. While the treatment-naïve biopsy sample allows an analysis of baseline T cell infiltration levels, both intra- and peritumoral areas of the matched resected tissue were analyzed to assess composition and spatial distribution of the T cell compartment and its therapeutic modulation. Generally, post-treatment tissues displayed lower frequencies of CD3+ and CD8+ T cells. Association with clinical data revealed that higher post-treatment frequencies of peritumoral and intratumoral CD3+ T cells and intratumoral PD-1+ CD8+ T cells were significantly associated with improved disease-free survival (DFS), while these densities had no prognostic significance in the biopsy. Upon spatial analysis, a high ratio of intratumoral to peritumoral CD8+ T cells emerged as an independent prognostic marker for longer DFS. These results indicate that the STS T cell landscape is altered by multimodal therapy and may influence the clinical outcome of patients. An enhanced understanding of the STS immune architecture and its modulation by neoadjuvant therapy may pave the way towards novel treatment modalities and improve the long-term clinical outcome of STS patients.
Collapse
Affiliation(s)
- Luise Rupp
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Antonia Resag
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Vlatko Potkrajcic
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Verena Warm
- Institute of Pathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Korinna Jöhrens
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Hans Bösmüller
- Institute of Pathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- Department of Radiation Oncology, Medical University of Vienna, Comprehensive Cancer Center Vienna, Vienna, Austria
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
133
|
Hovhannisyan L, Riether C, Aebersold DM, Medová M, Zimmer Y. CAR T cell-based immunotherapy and radiation therapy: potential, promises and risks. Mol Cancer 2023; 22:82. [PMID: 37173782 PMCID: PMC10176707 DOI: 10.1186/s12943-023-01775-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
CAR T cell-based therapies have revolutionized the treatment of hematological malignancies such as leukemia and lymphoma within the last years. In contrast to the success in hematological cancers, the treatment of solid tumors with CAR T cells is still a major challenge in the field and attempts to overcome these hurdles have not been successful yet. Radiation therapy is used for management of various malignancies for decades and its therapeutic role ranges from local therapy to a priming agent in cancer immunotherapy. Combinations of radiation with immune checkpoint inhibitors have already proven successful in clinical trials. Therefore, a combination of radiation therapy may have the potential to overcome the current limitations of CAR T cell therapy in solid tumor entities. So far, only limited research was conducted in the area of CAR T cells and radiation. In this review we will discuss the potential and risks of such a combination in the treatment of cancer patients.
Collapse
Affiliation(s)
- Lusine Hovhannisyan
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, 3010, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, Bern, 3010, Switzerland
| | - Daniel M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland
| | - Yitzhak Zimmer
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland.
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland.
| |
Collapse
|
134
|
Abdel-Rahman S, Rehman AU, Gabr MT. Discovery of First-in-Class Small Molecule Inhibitors of Lymphocyte Activation Gene 3 (LAG-3). ACS Med Chem Lett 2023; 14:629-635. [PMID: 37197466 PMCID: PMC10184155 DOI: 10.1021/acsmedchemlett.3c00054] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/06/2023] [Indexed: 05/19/2023] Open
Abstract
Lymphocyte activation gene 3 (LAG-3) is a negative immune checkpoint that plays a key role in downregulating the immune response to cancer. Inhibition of LAG-3 interactions allows T cells to regain cytotoxic activity and reduce the immunosuppressive function of regulating T cells. We utilized a combination approach of focused screening and "SAR by catalog" to identify small molecules that function as dual inhibitors of the interactions of LAG-3 with major histocompatibility complex (MHC) class II and fibrinogen-like protein 1 (FGL1). Our top hit compound inhibited both LAG-3/MHCII and LAG-3/FGL1 interactions in biochemical binding assays with IC50 values of 4.21 ± 0.84 and 6.52 ± 0.47 μM, respectively. Moreover, we have demonstrated the ability of our top hit compound to block LAG-3 interactions in cell-based assays. This work will pave the way for future drug discovery efforts aiming at the development of LAG-3-based small molecules for cancer immunotherapy.
Collapse
Affiliation(s)
- Somaya
A. Abdel-Rahman
- Department
of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, New York 10065, United States
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ashfaq Ur Rehman
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, Irvine, California 92697, United States
| | - Moustafa T. Gabr
- Department
of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
135
|
Ziogas DC, Theocharopoulos C, Lialios PP, Foteinou D, Koumprentziotis IA, Xynos G, Gogas H. Beyond CTLA-4 and PD-1 Inhibition: Novel Immune Checkpoint Molecules for Melanoma Treatment. Cancers (Basel) 2023; 15:2718. [PMID: 37345056 PMCID: PMC10216291 DOI: 10.3390/cancers15102718] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
More than ten years after the approval of ipilimumab, immune checkpoint inhibitors (ICIs) against PD-1 and CTLA-4 have been established as the most effective treatment for locally advanced or metastatic melanoma, achieving durable responses either as monotherapies or in combinatorial regimens. However, a considerable proportion of patients do not respond or experience early relapse, due to multiple parameters that contribute to melanoma resistance. The expression of other immune checkpoints beyond the PD-1 and CTLA-4 molecules remains a major mechanism of immune evasion. The recent approval of anti-LAG-3 ICI, relatlimab, in combination with nivolumab for metastatic disease, has capitalized on the extensive research in the field and has highlighted the potential for further improvement of melanoma prognosis by synergistically blocking additional immune targets with new ICI-doublets, antibody-drug conjugates, or other novel modalities. Herein, we provide a comprehensive overview of presently published immune checkpoint molecules, including LAG-3, TIGIT, TIM-3, VISTA, IDO1/IDO2/TDO, CD27/CD70, CD39/73, HVEM/BTLA/CD160 and B7-H3. Beginning from their immunomodulatory properties as co-inhibitory or co-stimulatory receptors, we present all therapeutic modalities targeting these molecules that have been tested in melanoma treatment either in preclinical or clinical settings. Better understanding of the checkpoint-mediated crosstalk between melanoma and immune effector cells is essential for generating more effective strategies with augmented immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Helen Gogas
- First Department of Medicine, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.T.); (P.-P.L.); (D.F.); (I.-A.K.); (G.X.)
| |
Collapse
|
136
|
Yao XM, Zhang FH, Liu Y. Clinical Significance and Prognostic Value of the Expression of LAG-3 and FGL1 in Esophageal Squamous Cell Carcinoma. Bull Exp Biol Med 2023; 174:774-778. [PMID: 37162630 DOI: 10.1007/s10517-023-05796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 05/11/2023]
Abstract
In this retrospective study, we analyzed the expression of lymphocyte activating gene 3 (LAG-3) and fibrinogen-like protein 1 (FGP1) mRNA and the corresponding proteins in 78 patients with esophageal squamous cell carcinoma (ESCC) to evaluate the clinical significance and prognostic value. mRNA and protein expression were analyzed by reverse transcription PCR and Western blotting, respectively. The expression of LAG-3 and FGL1 mRNA and the corresponding proteins in tumor tissues were significantly increased in comparison with the normal esophageal mucosa. The overexpression of LAG-3 significantly correlated with the content of tumor-infiltrating lymphocytes (TILs), tumor differentiation, and TNM stage. The overexpression of FGL1 also significantly correlated with TILs, TNM stage, and lymph node metastasis. Kaplan-Meier survival analysis showed that tumor diameter, TNM stage, lymph node metastasis, LAG-3 and FGL1 protein expression were related to the progression-free survival (p<0.05). Multivariate Cox regression showed that the level of FGL1 and TNM stage were independent prognostic factors of progression-free survival. We speculated that the tumor microenvironment of ESCC induces immunosuppression due to up-regulated expression of LAG-3 and FGL1 in the tumor tissues, which promotes tumor growth.
Collapse
Affiliation(s)
- X M Yao
- Department of Tumor Radiotherapy and Chemotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - F H Zhang
- Department of Radiotherapy and Chemotherapy, Tangshan People's Hospital, Tangshan, Hebei, China
| | - Y Liu
- Department of Pathology, Hebei Tumor Hospital, Hebei province, Shijiazhuang, China.
| |
Collapse
|
137
|
Li J, Xuan S, Dong P, Xiang Z, Gao C, Li M, Huang L, Wu J. Immunotherapy of hepatocellular carcinoma: recent progress and new strategy. Front Immunol 2023; 14:1192506. [PMID: 37234162 PMCID: PMC10206122 DOI: 10.3389/fimmu.2023.1192506] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Due to its widespread occurrence and high mortality rate, hepatocellular carcinoma (HCC) is an abhorrent kind of cancer. Immunotherapy is a hot spot in the field of cancer treatment, represented by immune checkpoint inhibitors (ICIs), which aim to improve the immune system's ability to recognize, target and eliminate cancer cells. The composition of the HCC immune microenvironment is the result of the interaction of immunosuppressive cells, immune effector cells, cytokine environment, and tumor cell intrinsic signaling pathway, and immunotherapy with strong anti-tumor immunity has received more and more research attention due to the limited responsiveness of HCC to ICI monotherapy. There is evidence of an organic combination of radiotherapy, chemotherapy, anti-angiogenic agents and ICI catering to the unmet medical needs of HCC. Moreover, immunotherapies such as adoptive cellular therapy (ACT), cancer vaccines and cytokines also show encouraging efficacy. It can significantly improve the ability of the immune system to eradicate tumor cells. This article reviews the role of immunotherapy in HCC, hoping to improve the effect of immunotherapy and develop personalized treatment regimens.
Collapse
Affiliation(s)
- Jiarui Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shihai Xuan
- Department of Laboratory Medicine, The People’s Hospital of Dongtai City, Dongtai, China
| | - Peng Dong
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ce Gao
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Mo Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
138
|
Obradovic A, Ager C, Turunen M, Nirschl T, Khosravi-Maharlooei M, Iuga A, Jackson CM, Yegnasubramanian S, Tomassoni L, Fernandez EC, McCann P, Rogava M, DeMarzo AM, Kochel CM, Allaf M, Bivalacqua T, Lim M, Realubit R, Karan C, Drake CG, Califano A. Systematic elucidation and pharmacological targeting of tumor-infiltrating regulatory T cell master regulators. Cancer Cell 2023; 41:933-949.e11. [PMID: 37116491 PMCID: PMC10193511 DOI: 10.1016/j.ccell.2023.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/13/2022] [Accepted: 04/06/2023] [Indexed: 04/30/2023]
Abstract
Due to their immunosuppressive role, tumor-infiltrating regulatory T cells (TI-Tregs) represent attractive immuno-oncology targets. Analysis of TI vs. peripheral Tregs (P-Tregs) from 36 patients, across four malignancies, identified 17 candidate master regulators (MRs) as mechanistic determinants of TI-Treg transcriptional state. Pooled CRISPR-Cas9 screening in vivo, using a chimeric hematopoietic stem cell transplant model, confirmed the essentiality of eight MRs in TI-Treg recruitment and/or retention without affecting other T cell subtypes, and targeting one of the most significant MRs (Trps1) by CRISPR KO significantly reduced ectopic tumor growth. Analysis of drugs capable of inverting TI-Treg MR activity identified low-dose gemcitabine as the top prediction. Indeed, gemcitabine treatment inhibited tumor growth in immunocompetent but not immunocompromised allografts, increased anti-PD-1 efficacy, and depleted MR-expressing TI-Tregs in vivo. This study provides key insight into Treg signaling, specifically in the context of cancer, and a generalizable strategy to systematically elucidate and target MR proteins in immunosuppressive subpopulations.
Collapse
Affiliation(s)
- Aleksandar Obradovic
- Columbia Center for Translational Immunology, Irving Medical Center, New York, NY, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Casey Ager
- Columbia Center for Translational Immunology, Irving Medical Center, New York, NY, USA; Department of Hematology Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mikko Turunen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Thomas Nirschl
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Alina Iuga
- Department of Pathology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Lorenzo Tomassoni
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ester Calvo Fernandez
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Patrick McCann
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Meri Rogava
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Angelo M DeMarzo
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christina M Kochel
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohamad Allaf
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Trinity Bivalacqua
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Ronald Realubit
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles Karan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles G Drake
- Columbia Center for Translational Immunology, Irving Medical Center, New York, NY, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
139
|
Babar Q, Saeed A, Tabish TA, Sarwar M, Thorat ND. Targeting the tumor microenvironment: Potential strategy for cancer therapeutics. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166746. [PMID: 37160171 DOI: 10.1016/j.bbadis.2023.166746] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Cellular and stromal components including tumor cells, immune cells, mesenchymal cells, cancer-linked fibroblasts, and extracellular matrix, constituent tumor microenvironment (TME). TME plays a crucial role in reprogramming tumor initiation, uncontrolled proliferation, invasion and metastasis as well as response to therapeutic modalities. In recent years targeting the TME has developed as a potential strategy for treatment of cancer because of its life-threatening functions in restricting tumor development and modulating responses to standard-of-care medicines. Cold atmospheric plasma, oncolytic viral therapy, bacterial therapy, nano-vaccine, and repurposed pharmaceuticals with combination therapy, antiangiogenic drugs, and immunotherapies are among the most effective therapies directed by TME that have either been clinically authorized or are currently being studied. This article discusses above-mentioned therapies in light of targeting TME. We also cover problems related to the TME-targeted therapies, as well as future insights and practical uses in this rapidly growing field.
Collapse
Affiliation(s)
- Quratulain Babar
- Department of Biochemistry Government College University, Faisalabad, Pakistan
| | - Ayesha Saeed
- Department of Biochemistry Government College University, Faisalabad, Pakistan
| | - Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Mohsin Sarwar
- Department of Biochemistry University of Management and Technology, Lahore, Pakistan
| | - Nanasaheb D Thorat
- Department of Physics, Bernal Institute, Castletroy, Limerick V94T9PX, Ireland; Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, United Kingdom; Limerick Digital Cancer Research Centre (LDCRC) University of Limerick, Castletroy, Limerick V94T9PX, Ireland.
| |
Collapse
|
140
|
Zhang Y, Lu L, Zheng R. Emerging trends and focus on immune checkpoint inhibitors for non-small cell lung cancer treatment: visualization and bibliometric analysis. Front Pharmacol 2023; 14:1140771. [PMID: 37214445 PMCID: PMC10192761 DOI: 10.3389/fphar.2023.1140771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Lung cancer is the leading cause of cancer-related deaths worldwide, and non-small cell lung carcinoma (NSCLC) accounts for approximately 80% of all cases. Immune checkpoint inhibitors (ICIs) are widely used to treat NSCLC owing to their remarkable efficacy. In this study, we analyzed the scientific collaboration network, defined the hotspots of research on the use of ICIs for NSCLC treatment, analyzed its evolution over the past few years, and forecasted the field's future development using bibliometric analysis and a graphical study. Methods: Research articles and reviews regarding ICIs for NSCLC were retrieved and obtained from the Web of Science Core Collection on 26 September 2022. CtieSpace and VOSviewer were thereafter used to conduct the bibliometric and knowledge-map analysis. Results: We included 8,149 articles for this literature analysis. Our analysis showed that the USA had the highest number of publications and citations. We also noted that research trends in this field have changed drastically over the past 20 years, from the early development of ICIs, such as CTLA-4 inhibitors, to the development of recent ones, such as PD-1 and PD-L1 blockers. Further, the focus of research in this field has also gradually shifted from mechanisms to treatment effects and adverse events, suggesting that the field is maturing. Clinical applications are also being explored, including studies on how to enhance efficacy, reduce adverse effects, and expand to other specific cancer types. Conclusion: To the best of our knowledge, this is the first study to construct a comprehensive knowledge map on ICIs for NSCLC. It can help researchers rapidly grasp the status and focus of current research in this area, offer direction, and serve as a reference for conducting similar studies.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Lishan Lu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Rui Zheng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
141
|
Smith R, Yendamuri S, Vedire Y, Rosario S, Zollo R, Washington D, Sass S, Ivanick NM, Reid M, Barbi J. Immunoprofiling bronchoalveolar lavage cells reveals multifaceted smoking-associated immune dysfunction. ERJ Open Res 2023; 9:00688-2022. [PMID: 37342091 PMCID: PMC10277872 DOI: 10.1183/23120541.00688-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 06/22/2023] Open
Abstract
Background Bronchoalveolar lavage (BAL) is an underutilised tool in the search for pulmonary disease biomarkers. While leukocytes with effector and suppressor function play important roles in airway immunity and tumours, it remains unclear if frequencies and phenotypes of BAL leukocytes can be useful parameters in lung cancer studies and clinical trials. We therefore explored the utility of BAL leukocytes as a source of biomarkers interrogating the impact of smoking, a major lung cancer risk determinant, on pulmonary immunity. Methods In this "test case" observational study, BAL samples from 119 donors undergoing lung cancer screening and biopsy procedures were evaluated by conventional and spectral flow cytometry to exemplify the comprehensive immune analyses possible with this biospecimen. Proportions of major leukocyte populations and phenotypic markers levels were found. Multivariate linear rank sum analysis considering age, sex, cancer diagnosis and smoking status was performed. Results Significantly increased frequencies of myeloid-derived suppressor cells and PD-L1-expressing macrophages were found in current and former smokers compared to never-smokers. While cytotoxic CD8 T-cells and conventional CD4 helper T-cell frequencies were significantly reduced in current and former smokers, expression of immune checkpoints PD-1 and LAG-3 as well as Tregs proportions were increased. Lastly, the cellularity, viability and stability of several immune readouts under cryostorage suggested BAL samples are useful for correlative end-points in clinical trials. Conclusions Smoking is associated with heightened markers of immune dysfunction, readily assayable in BAL, that may reflect a permissive environment for cancer development and progression in the airway.
Collapse
Affiliation(s)
- Randall Smith
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- These authors contributed equally
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- These authors contributed equally
- These authors contributed equally to this article as lead authors and supervised the work
| | - Yeshwanth Vedire
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Spencer Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Robert Zollo
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Deschana Washington
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Stephanie Sass
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nathaniel M. Ivanick
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mary Reid
- Department of Medicine – Survivorship and Supportive Care, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Joseph Barbi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- These authors contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
142
|
Pescia C, Pini G, Olmeda E, Ferrero S, Lopez G. TIGIT in Lung Cancer: Potential Theranostic Implications. Life (Basel) 2023; 13:life13041050. [PMID: 37109579 PMCID: PMC10145071 DOI: 10.3390/life13041050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
TIGIT (T cell immunoreceptor with Ig and ITIM domains) is a co-inhibitory receptor expressed on various immune cells, including T cells, NK cells, and dendritic cells. TIGIT interacts with different ligands, such as CD155 and CD112, which are highly expressed on cancer cells, leading to the suppression of immune responses. Recent studies have highlighted the importance of TIGIT in regulating immune cell function in the tumor microenvironment and its role as a potential therapeutic target, especially in the field of lung cancer. However, the role of TIGIT in cancer development and progression remains controversial, particularly regarding the relevance of its expression both in the tumor microenvironment and on tumor cells, with prognostic and predictive implications that remain to date essentially undisclosed. Here, we provide a review of the recent advances in TIGIT-blockade in lung cancer, and also insights on TIGIT relevance as an immunohistochemical biomarker and its possible theranostic implications.
Collapse
Affiliation(s)
- Carlo Pescia
- Pathology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Giuditta Pini
- Pathology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Edoardo Olmeda
- Pathology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefano Ferrero
- Pathology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Gianluca Lopez
- Pathology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| |
Collapse
|
143
|
Chen W, Xu D, Liu Q, Wu Y, Wang Y, Yang J. Unraveling the heterogeneity of cholangiocarcinoma and identifying biomarkers and therapeutic strategies with single-cell sequencing technology. Biomed Pharmacother 2023; 162:114697. [PMID: 37060660 DOI: 10.1016/j.biopha.2023.114697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a common malignant tumor of the biliary tract that carries a high burden of morbidity and a poor prognosis. Due to the lack of precise diagnostic methods, many patients are often diagnosed at advanced stages of the disease. The current treatment options available are of varying efficacy, underscoring the urgency for the discovery of more effective biomarkers for early diagnosis and improved treatment. Recently, single-cell sequencing (SCS) technology has gained popularity in cancer research. This technology has the ability to analyze tumor tissues at the single-cell level, thus providing insights into the genomics and epigenetics of tumor cells. It also serves as a practical approach to study the mechanisms of cancer progression and to explore therapeutic strategies. In this review, we aim to assess the heterogeneity of CCA using single-cell sequencing technology, with the ultimate goal of identifying possible biomarkers and potential treatment targets.
Collapse
Affiliation(s)
- Wangyang Chen
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Dongchao Xu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Qiang Liu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Yirong Wu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China
| | - Yu Wang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China.
| | - Jianfeng Yang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
144
|
Bhagwat B, de Waal Malefyt R, Willingham A. Investigating combination benefit of PD1 and LAG3 co-blockade using an engineered cellular bioassay. Int Immunopharmacol 2023; 119:109566. [PMID: 37044037 DOI: 10.1016/j.intimp.2022.109566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 04/14/2023]
Abstract
LAG3 and PD1 are both immunomodulatory receptor that act by inhibiting activation of T cells, producing a more immunosuppressive environment. Even with the recent clinical success of PD1 and LAG3 co-blockade, signal transduction downstream of LAG3 remains largely unknown. We have leveraged an engineered Jurkat (T cell) and Raji (APC) co-culture system to assess simultaneous blockade of PD1 and LAG3 pathways using antibodies. RNA-Seq analysis of cell pellets individually treated with LAG3 or PD1 antibodies revealed modest immune activation however, 5-fold more genes were upregulated upon combination treatment. There were increases in costimulatory genes like CD28, CD5, CD6 as well as intracellular signaling molecules like LCP2 and ITK. Given the role of ERK in immune activation of T cells, pERK levels of Jurkat cells in the assay were evaluated. A very modest activation of pERK was observed with anti-LAG3 compared to anti-PD1 but a combination treatment resulted in prolonged ERK phosphorylation. Treatment of Jurkat cells with a commercial phosphatase inhibitor NSC87877 which can impact many phosphatases resulted in immune activation, measured by increased IL2 levels, only in the presence of LAG3. When NSC87877 was combined with the PD1 antibody, it could phenocopy combination benefit of PD1 and LAG3 blocking antibodies. CD28 has a recognized role in PD1 signaling but the impact on LAG3 signaling remains unknown. CD28 knockout in Jurkat cells affected overall IL-2 response of both LAG3 and PD1 antibody treatment but still retained combination benefit. Taken together this reductionist system highlights differences in downstream effects of LAG3 and PD1 blockade and we believe that the assay may have further utility to dissect convergence of both signaling pathways and augment studies in primary cells.
Collapse
Affiliation(s)
| | - Rene de Waal Malefyt
- Discovery Biologics, Merck & Co., Inc, South San Francisco, CA, USA; Synthekine, Inc., Menlo Park, CA, USA
| | | |
Collapse
|
145
|
Moeckel C, Bakhl K, Georgakopoulos-Soares I, Zaravinos A. The Efficacy of Tumor Mutation Burden as a Biomarker of Response to Immune Checkpoint Inhibitors. Int J Mol Sci 2023; 24:ijms24076710. [PMID: 37047684 PMCID: PMC10095310 DOI: 10.3390/ijms24076710] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Cancer is one of the leading causes of death in the world; therefore, extensive research has been dedicated to exploring potential therapeutics, including immune checkpoint inhibitors (ICIs). Initially, programmed-death ligand-1 was the biomarker utilized to predict the efficacy of ICIs. However, its heterogeneous expression in the tumor microenvironment, which is critical to cancer progression, promoted the exploration of the tumor mutation burden (TMB). Research in various cancers, such as melanoma and lung cancer, has shown an association between high TMB and response to ICIs, increasing its predictive value. However, the TMB has failed to predict ICI response in numerous other cancers. Therefore, future research is needed to analyze the variations between cancer types and establish TMB cutoffs in order to create a more standardized methodology for using the TMB clinically. In this review, we aim to explore current research on the efficacy of the TMB as a biomarker, discuss current approaches to overcoming immunoresistance to ICIs, and highlight new trends in the field such as liquid biopsies, next generation sequencing, chimeric antigen receptor T-cell therapy, and personalized tumor vaccines.
Collapse
Affiliation(s)
- Camille Moeckel
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Katrina Bakhl
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ilias Georgakopoulos-Soares
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Apostolos Zaravinos
- Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| |
Collapse
|
146
|
Lasorsa F, di Meo NA, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Tataru OS, Autorino R, Battaglia M, Ditonno P, Lucarelli G. Immune Checkpoint Inhibitors in Renal Cell Carcinoma: Molecular Basis and Rationale for Their Use in Clinical Practice. Biomedicines 2023; 11:biomedicines11041071. [PMID: 37189689 DOI: 10.3390/biomedicines11041071] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Renal cell carcinoma (RCC) is the seventh most common cancer in men and the ninth most common cancer in women worldwide. There is plenty of evidence about the role of the immune system in surveillance against tumors. Thanks to a better understanding of immunosurveillance mechanisms, immunotherapy has been introduced as a promising cancer treatment in recent years. Renal cell carcinoma (RCC) has long been thought chemoresistant but highly immunogenic. Considering that up to 30% of the patients present metastatic disease at diagnosis, and around 20–30% of patients undergoing surgery will suffer recurrence, we need to identify novel therapeutic targets. The introduction of immune checkpoint inhibitors (ICIs) in the clinical management of RCC has revolutionized the therapeutic approach against this tumor. Several clinical trials have shown that therapy with ICIs in combination or ICIs and the tyrosine kinase inhibitor has a very good response rate. In this review article we summarize the mechanisms of immunity modulation and immune checkpoints in RCC and discuss the potential therapeutic strategies in renal cancer treatment.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Nicola Antonio di Meo
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Martina Milella
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Octavian Sabin Tataru
- The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139 Târgu Mureș, Romania
| | - Riccardo Autorino
- Department of Urology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
147
|
Zou W, Huang R, Li P, Liu X, Huang Q, Yue J, Liu C. Clinical significance of immune checkpoint proteins in HPV-infected cervical cancer. J Infect Public Health 2023; 16:542-550. [PMID: 36801634 DOI: 10.1016/j.jiph.2023.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/19/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To investigate T cell immunoreceptor with Ig and ITIM domain (TIGIT), V-domain Ig suppressor of T cell activation (VISTA), and lymphocyte-activation gene-3 (LAG-3) expression in pathological tissue of human papillomavirus (HPV)-infected cervical cancer (CC) patients and their relationship with patient prognosis. METHODS Clinical data of 175 patients with HPV-infected CC were collected retrospectively. Tumor tissue sections were stained immunohistochemically for TIGIT, VISTA, and LAG-3. The Kaplan-Meier method calculated patient survival. Univariate and multivariate Cox proportional hazards models analyzed all potential risk factors for survival. RESULTS When combined positive score (CPS)= 1 was used as the cut-off value, the Kaplan-Meier survival curve showed that the progression-free survival (PFS) and overall survival (OS) of patients with positive expression of TIGIT and VISTA are shorter (both p < 0.05). Univariate COX regression analysis showed that the positive expression of TIGIT and VISTA are related to patient PFS and OS (both HR>1.0 and p < 0.05). Multivariate COX regression analysis showed that TIGIT-positive patients had shorter OS and VISTA-positive patients had shorter PFS (both HR>1.0 and p < 0.05). There is no significant correlation between LAG-3 expression and PFS or OS. When CPS= 10 was used as the cut-off value, Kaplan-Meier survival curve showed that TIGIT-positive patients had shorter OS (p = 0.019). Univariate COX regression analysis showed that TIGIT-positive expression was associated with the OS of patients (HR=2.209, CI: 1.118-4.365, p = 0.023). However, multivariate COX regression analysis showed that TIGIT expression was not associated significantly with OS. There was no significant correlation between VISTA and LAG-3 expression and PFS or OS. CONCLUSION TIGIT and VISTA are associated closely with HPV-infected CC prognosis and are effective biomarkers.
Collapse
Affiliation(s)
- Wenxue Zou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Rui Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Peihang Li
- Department of Radiation Oncology, Tianjin Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Xiang Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Gannan Medical University, Ganzhou Institute and Hospital, Jiangxi, China.
| | - Qingyu Huang
- Department of Graduate, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Chao Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
148
|
Cole K, Al-Kadhimi Z, Talmadge JE. Highlights into historical and current immune interventions for cancer. Int Immunopharmacol 2023; 117:109882. [PMID: 36848790 PMCID: PMC10355273 DOI: 10.1016/j.intimp.2023.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Immunotherapy is an additional pillar when combined with traditional standards of care such as chemotherapy, radiotherapy, and surgery for cancer patients. It has revolutionized cancer treatment and rejuvenated the field of tumor immunology. Several types of immunotherapies, including adoptive cellular therapy (ACT) and checkpoint inhibitors (CPIs), can induce durable clinical responses. However, their efficacies vary, and only subsets of cancer patients benefit from their use. In this review, we address three goals: to provide insight into the history of these approaches, broaden our understanding of immune interventions, and discuss current and future approaches. We highlight how cancer immunotherapy has evolved and discuss how personalization of immune intervention may address present limitations. Cancer immunotherapy is considered a recent medical achievement and in 2013 was selected as the "Breakthrough of the Year" by Science. While the breadth of immunotherapeutics has been rapidly expanding, to include the use of chimeric antigen receptor (CAR) T-cell therapy and immune checkpoint inhibitor (ICI) therapy, immunotherapy dates back over 3000 years. The expansive history of immunotherapy, and related observations, have resulted in several approved immune therapeutics beyond the recent emphasis on CAR-T and ICI therapies. In addition to other classical forms of immune intervention, including human papillomavirus (HPV), hepatitis B, and the Mycobacterium bovis Bacillus Calmette-Guérin (BCG) tuberculosis vaccines, immunotherapies have had a broad and durable impact on cancer therapy and prevention. One classic example of immunotherapy was identified in 1976 with the use of intravesical administration of BCG in patients with bladder cancer; resulting in a 70 % eradication rate and is now standard of care. However, a greater impact from the use of immunotherapy is documented by the prevention of HPV infections that are responsible for 98 % of cervical cancer cases. In 2020, the World Health Organization (WHO) estimated that 341,831 women died from cervical cancer [1]. However, administration of a single dose of a bivalent HPV vaccine was shown to be 97.5 % effective in preventing HPV infections. These vaccines not only prevent cervical squamous cell carcinoma and adenocarcinoma, but also oropharyngeal, anal, vulvar, vaginal, and penile squamous cell carcinomas. The breadth, response and durability of these vaccines can be contrasted with CAR-T-cell therapies, which have significant barriers to their widespread use including logistics, manufacturing limitations, toxicity concerns, financial burden and lasting remissions observed in only 30 to 40 % of responding patients. Another, recent immunotherapy focus are ICIs. ICIs are a class of antibodies that can increase the immune responses against cancer cells in patients. However, ICIs are only effective against tumors with a high mutational burden and are associated with a broad spectrum of toxicities requiring interruption of administration and/or administration corticosteroids; both of which limit immune therapy. In summary, immune therapeutics have a broad impact worldwide, utilizing numerous mechanisms of action and when considered in their totality are more effective against a broader range of tumors than initially considered. These new cancer interventions have tremendous potential notability when multiple mechanisms of immune intervention are combined as well as with standard of care modalities.
Collapse
Affiliation(s)
- Kathryn Cole
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zaid Al-Kadhimi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James E Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
149
|
Zheng X, Chen X, Wu W. The Regulatory Axis of PD-L1 Isoform 2/TNF/T Cell Proliferation Is Required for the Canonical Immune-Suppressive Effects of PD-L1 Isoform 1 in Liver Cancer. Int J Mol Sci 2023; 24:ijms24076314. [PMID: 37047287 PMCID: PMC10094247 DOI: 10.3390/ijms24076314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Despite the well-studied effects of the full-length membrane-locating isoform Iso1 of Programmed Cell Death Protein-Ligand 1 (PD-L1) on immunosuppression, little is known about another membrane-locating isoform, Iso2. While expressional and survival analysis of liver cancer patients indicated that Iso2 plays a tumor-suppressive role, our results also indicated that the tumor-promoting and immune-suppressive effects of Iso1 depended on the positive expression of Iso2. Through mediation analysis, we discovered several downstream genes or pathways of Iso2 and investigated their effects on the Iso1-regulating survival. Among all potential downstream immune factors, Iso2 was inclined to activate the proliferation of T cells by regulating chemokine activity and increasing CD3 levels by promoting TNF expression. Similar results were confirmed in the Mongolian liver cancer cohort, and the Iso2/TNF/T-cell axis was verified in several other cancers in the TCGA cohort. Finally, we demonstrated the promoting effects of Iso2 in terms of producing TNF and increasing T cells both in vitro and in vivo. Our findings illustrate that PD-L1 Iso2 can increase the number of T cells in the tumor microenvironment by elevating TNF levels, which is a necessary part of the tumor-suppressive effects of Iso1 in liver cancer.
Collapse
Affiliation(s)
- Xixi Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- Taizhou Institute of Health Sciences, Fudan University, Taizhou 225316, China
- Correspondence: (X.C.); (W.W.)
| | - Weicheng Wu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- Rugao Joint Research Institute of Longevity and Aging, Fudan University, Rugao 226599, China
- Correspondence: (X.C.); (W.W.)
| |
Collapse
|
150
|
Xiong K, Wang Z, Hounye AH, Peng L, Zhang J, Qi M. Development and validation of ferroptosis-related lncRNA signature and immune-related gene signature for predicting the prognosis of cutaneous melanoma patients. Apoptosis 2023; 28:840-859. [PMID: 36964478 DOI: 10.1007/s10495-023-01831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 03/26/2023]
Abstract
Ferroptosis, a form of cell death caused by iron-dependent peroxidation of lipids, plays an important role in cancer. Recent studies have shown that long noncoding RNAs (lncRNAs) are involved in the regulation of ferroptosis in tumor cells and are also closely related to tumor immunity. Immune cell infiltration in the tumor microenvironment affects the prognosis and clinical outcome of immunotherapy in melanoma patients, and immune cell classification may be able to accurately predict the prognosis of melanoma patients. However, the prognostic value of ferroptosis-related lncRNAs (FRLs) in melanoma has not been thoroughly explored, and it is difficult to define the immune characteristics of melanoma. We used The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) database, and the FerrDb database to identify FRLs. FRLs with prognostic value were evaluated in an experimental cohort utilizing univariate, LASSO (least absolute shrinkage and selection operator) and multivariate Cox regression, followed by in vitro assays evaluating the expression levels and the biological functions of three candidate FRLs. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curve analyses were used to assess the validity of the risk model, and the drug sensitivity of FRLs was examined by drug sensitivity analysis. The differentially expressed genes between the high- and low-risk groups in the risk model were enriched in the immune pathway, and we further found immune gene signatures (IRGs) that could predict the prognosis of melanoma patients through a series of methods including single-sample Gene Set Enrichment Analysis (ssGSEA). Finally, two GEO cohorts were used to validate the predictive accuracy and reliability of these two signature models. Our findings suggest that FRLs and IRGs have the potential to predict the prognosis of patients with cutaneous melanoma.
Collapse
Affiliation(s)
- Kaifen Xiong
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zheng Wang
- School of Computer Science, Hunan First Normal University, Changsha, 410205, China
| | | | - Li Peng
- School of Computer Science, Hunan First Normal University, Changsha, 410205, China.
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, 518020, Guangdong, China.
- Department of Geriatrics, Shenzhen People's Hospital(The Second Clinical Medical College, Jinan UniversityThe First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|