101
|
Yin LZ, Liu ZT, Li JL, Wang PD, Dong L, Duan L, Luo XQ, Fang BZ, Li WJ. Agilicoccus flavus gen. nov., sp. nov., a novel member of the family Dermatophilaceae isolated from the Pearl River. Int J Syst Evol Microbiol 2021; 71. [PMID: 34617879 DOI: 10.1099/ijsem.0.005076] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinobacterium, designated strain SYSU M44304T, was isolated from freshwater samples in the Pearl River Estuary. The isolate was Gram-stain-positive, aerobic, coccus-shaped, oxidase-positive and motile. The cell wall contained meso-diaminopimelic acid as its diagnostic diamino acid. The predominant menaquinone was MK-8. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine and seven unidentified phospholipids. The major fatty acids were C16 : 0 and C16 : 1. The G+C content based on genomic DNA was 73.2 mol %. The nearest phylogenetic neighbours to the novel strain were Mobilicoccus pelagius NBRC 104925T and Mobilicoccus caccae YIM 101593T. On the basis of chemotaxonomic and physiological characteristics and phylogenetic analysis, strain SYSU M44304T should be considered to represent a novel species of a new genus in the family Dermatophilaceae, for which we propose the name Agilicoccus flavus gen. nov., sp. nov. The type strain of Agilicoccus flavus is SYSU M44304T (=NBRC 114808T=CGMCC 1.18608T).
Collapse
Affiliation(s)
- Ling-Zi Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Ze-Tao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Jia-Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Pan-Deng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Li Duan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Xiao-Qing Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Bao-Zhu Fang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, PR China
| |
Collapse
|
102
|
Yin LZ, Li JL, Fang BZ, Liu ZT, Wang P, Dong L, Duan L, Luo XQ, Li SH, Li WJ. Roseomonas ponticola sp. nov., a novel bacterium isolated from Pearl River estuary. Int J Syst Evol Microbiol 2021; 71:004994. [PMID: 34623235 PMCID: PMC8604164 DOI: 10.1099/ijsem.0.004994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
A novel species of the genus Roseomonas, designated SYSU M41301T, was isolated from water sample of the Pearl River estuary in Guangdong, China. Polyphasic, taxonomic and phylogenomic analyses were used to determine the taxonomy position of the strain. Phylogenetic analysis using 16S rRNA gene sequence indicated that strain SYSU M41301T showed the highest sequence similarity to Roseomonas stagni KCTC 22213T (97.9 %) and Roseomonas riguiloci KCTC 23339T (96.4 %). The novel species could be differentiated from other species of the genus Roseomonas by its distinct phenotypic and genotypic characteristics. The isolate was Gram-staining-negative, aerobic, short rod-shape, oxidase-positive and non-motile. The predominant respiratory quinone was ubiquinone 8 (Q-8). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, and one unidentified polar lipid. The major fatty acids (>10 % of total) were 11-methyl C18 : 1 ω7c, summed feature 3 (C16 : 1 ω7c and/ or C16 : 1 ω6c) and summed feature 8 (C18: :1 ω7c and/or C18 : 1 ω6c). The G+C content of the novel isolate based on genomic DNA was 72.0 mol%. On the basis of phenotypic, genotypic and phylogenetic data, strain SYSU M41301T should be considered to represent a novel species in the genus Roseomonas, for which the name Roseomonas ponticola sp. nov. is proposed with the type strain SYSU M41301T (=KCTC 72726T=CGMCC 1.18613T).
Collapse
Affiliation(s)
- Ling-Zi Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, PR China
| | - Jia-Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, PR China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Ze-Tao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, PR China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, PR China
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, PR China
| | - Li Duan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, PR China
| | - Xiao-Qing Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, PR China
| | - Shan-Hui Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, PR China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| |
Collapse
|
103
|
Hunter KC, Lawson PA, Dowd SE, McLaughlin RW. Clostridium chrysemydis sp. nov., isolated from the faecal material of a painted turtle. Int J Syst Evol Microbiol 2021; 71. [PMID: 34569920 DOI: 10.1099/ijsem.0.005023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strict anaerobic, Gram-stain-positive rod-shaped bacterium, designated PTT, was isolated from the faecal material of a painted turtle (Chrysemys picta). Based on a comparative 16S rRNA gene sequence analysis, the isolate was assigned to Clostridium sensu stricto with the highest sequence similarities to Clostridium moniliforme (97.4 %), Clostridium sardiniense (97.2 %) and the misclassified organism Eubacterium multiforme (97.1 %). The predominant cellular fatty acids of strain PTT were C14 : 0, C16 : 0 and an unidentified product with an equivalent chain length of 14.969. The G+C content determined from the genome was 28.8 mol%. The fermentation end products from glucose were acetate and butyrate with no alcohols detected and trace amounts of CO2 and H2 also detected; no respiratory quinones were detected. Based on biochemical, phylogenetic, genotypic and chemotaxonomic criteria, the isolate represents a novel species of the genus Clostridium for which the name Clostridium chrysemydis sp. nov. is proposed. The type strain is strain PTT (=CCUG 74180T=ATCC TSD-219T).
Collapse
Affiliation(s)
- Kathryn C Hunter
- General Studies, Gateway Technical College, Kenosha WI 53144, USA
| | - Paul A Lawson
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK 73019, USA
| | - Scot E Dowd
- MR DNA (Molecular Research LP), Shallowater, TX, USA
| | - R W McLaughlin
- General Studies, Gateway Technical College, Kenosha WI 53144, USA
| |
Collapse
|
104
|
Streptomyces endocoffeicus sp. nov., an endophytic actinomycete isolated from Coffea arabica (L.). Antonie van Leeuwenhoek 2021; 114:1889-1898. [PMID: 34480669 DOI: 10.1007/s10482-021-01648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
An aerobic, non-motile, Gram-stain positive actinomycete, designated strain CA3R110T, was isolated from the surface-sterilised root of Coffea arabica L. collected from Lampang Province, Thailand. 16S rRNA gene sequence analysis indicated that strain CA3R110T was a member of the genus Streptomyces and showed the closest similarities to Streptomyces buecherae AC541T (99.2%), followed by Streptomyces rapamycinicus NRRL B-5491T (99.1%), Streptomyces luteoverticillatus NBRC 3840T (99.1%), Streptomyces coerulescens NBRC 12758T (99.1%), and Streptomyces iranensis HM 35T (99.0%). Strain CA3R110T contained LL-diaminopimelic acid in cell peptidoglycan, MK-9(H6), and MK-9(H8) as major menaquinone, iso-C16:0, iso-C15:0, C16:0 as major fatty acids. Diphosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositolmannoside were detected in the cell. The chemotaxonomic characteristics possessed the typical properties of the genus Streptomyces. A low digital DNA-DNA hybridization (< 55.7%) and average nucleotide identity-blast (ANIb) (< 92.2%) values revealed that strain CA3R110T could be distinguished from any known Streptomyces species. With the differences in phenotypic and genotypic data, strain CA3R110T represents a novel species of genus Streptomyces, for which the name Streptomyces endocoffeicus sp. nov. is proposed. The type strain is CA3R110T (= TBRC 11245T = NBRC 114296T).
Collapse
|
105
|
Zhao S, Cheng M, Lin C, Liu H, Wang Z, Zhang K, Song S, Yang Q. Streptomyces luteolifulvus sp. nov., a novel actinomycete isolated from soil in Nanjing, China. Antonie van Leeuwenhoek 2021; 114:1829-1839. [PMID: 34460021 DOI: 10.1007/s10482-021-01643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
During the investigation of exploring potential sources of novel species and natural bioactives, a novel actinomycete, designated strain HIT-DPA4T, was isolated from a soil sample, which was collected from Nanjing, Jiangsu Province, PR China and characterized using a polyphasic approach. On the basis of 16S rRNA gene sequence similarities and the result of phylogenetic analysis, strain HIT-DPA4T was most closely related to Streptomyces cyaneus CGMCC 4.1671 T, and shared the highest sequence similarity of 98.76%. In addition, the cell walls of the species HIT-DPA4T contained LL-diaminopimelic acid as the diagnostic diamino acid and the whole-cell hydrolysates were identified as glucose and ribose, and the principal phospholipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannoside and phosphatidylmonomethylethanolamine. MK-9(H6) and MK-9(H4) were predominant menaquinones; and C16:0, anteiso-C15:0 and C15:0 as major cellular fatty acids of the organism HIT-DPA4T. Gene Ontology database analysis and antiSMASH server predicted results displayed that strain HIT-DPA4T was a promising classification units, which has various types of functions and contains multiple biosynthetic gene clusters with the similarity more than 80%. Multilocus sequence analysis (MLSA) of five housekeeping genes (atpD, gyrB, recA, rpoB and trpB) illustrated that Streptomyces luteolifulvus formed a separate branch in the genus Streptomyces. However, a combination of low level of DNA-DNA relatedness and physiological properties indicated that strain HIT-DPA4T can be distinguished from its phylogenetically related species Streptomyces cyaneus CGMCC 4.1671 T. Moreover, gene synteny research could be further differed organism HIT-DPA4T from similarity species. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces luteolifulvus sp. nov. is proposed. The type strain is HIT-DPA4T (= CGMCC 4.7558 T = TISTR 2751 T).
Collapse
Affiliation(s)
- Shanshan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yikuang Street, Nangang District, Harbin, 150080, People's Republic of China
| | - Ming Cheng
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yikuang Street, Nangang District, Harbin, 150080, People's Republic of China
| | - Congyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yikuang Street, Nangang District, Harbin, 150080, People's Republic of China
| | - He Liu
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yikuang Street, Nangang District, Harbin, 150080, People's Republic of China
| | - Zhengran Wang
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yikuang Street, Nangang District, Harbin, 150080, People's Republic of China
| | - Kai Zhang
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yikuang Street, Nangang District, Harbin, 150080, People's Republic of China
| | - Simin Song
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yikuang Street, Nangang District, Harbin, 150080, People's Republic of China
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yikuang Street, Nangang District, Harbin, 150080, People's Republic of China.
| |
Collapse
|
106
|
Huang J, Huang Y. Lentzea tibetensis sp. nov., a novel Actinobacterium with antimicrobial activity isolated from soil of the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2021; 71. [PMID: 34427551 DOI: 10.1099/ijsem.0.004976] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel filamentous Actinobacterium, designated strain FXJ1.1311T, was isolated from soil collected in Ngari (Ali) Prefecture, Qinghai-Tibet Plateau, western PR China. The strain showed antimicrobial activity against Gram-positive bacteria and Fusarium oxysporum. Results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FXJ1.1311T belonged to the genus Lentzea and showed the highest sequence similarity to Lentzea guizhouensis DHS C013T (98.04%). Morphological and chemotaxonomic characteristics supported its assignment to the genus Lentzea. The genome-wide average nucleotide identity between strain FXJ1.1311T and L. guizhouensis DHS C013T as well as other Lentzea type strains was <82.2 %. Strain FXJ1.1311T also formed a monophyletic line distinct from the known Lentzea species in the phylogenomic tree. In addition, physiological and chemotaxonomic characteristics allowed phenotypic differentiation of the novel strain from L. guizhouensis. Based on the evidence presented here, strain FXJ1.1311T represents a novel species of the genus Lentzea, for which the name Lentzea tibetensis sp. nov. is proposed. The type strain is FXJ1.1311T (=CGMCC 4.7383T=DSM 104975T).
Collapse
Affiliation(s)
- Jiao Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
107
|
Huang RR, Ge XF, Chen XK, Yang SR, Zhen C, Wen ZQ, Li YN, Liu WZ. Steroidobacter gossypii sp. nov., isolated from cotton field soil. Int J Syst Evol Microbiol 2021; 71. [PMID: 34343063 DOI: 10.1099/ijsem.0.004935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative bacterium, designated S1-65T, was isolated from soil samples collected from a cotton field located in the Xinjiang region of PR China. Results of 16S rRNA gene sequence analysis revealed that strain S1-65T was affiliated to the genus Steroidobacter with its closest phylogenetic relatives being 'Steroidobacter cummioxidans' 35Y (98.4 %), 'Steroidobacter agaridevorans' SA29-B (98.3 %) and Steroidobacter agariperforans KA5-BT (98.3 %). 16S rRNA-directed phylogenetic analysis showed that strain S1-65T formed a unique phylogenetic subclade next to 'S. agaridevorans' SA29-B and S. agariperforans KA5-BT, suggesting that strain S1-65T should be identified as a member of the genus Steroidobacter. Further, substantial differences between the genotypic properties of strain S1-65T and the members of the genus Steroidobacter, including average nucleotide identity and digital DNA-DNA hybridization, resolved the taxonomic position of strain S1-65T and suggested its positioning as representing a novel species of the genus Steroidobacter. The DNA G+C content of strain S1-65T was 62.5 mol%, based on its draft genome sequence. The predominant respiratory quinone was ubiquinone-8. The main fatty acids were identified as summed feature 3 (C16:1ω6c/C16:1ω7c), C16 : 0 and iso-C15 : 0. In addition, its polar lipid profile was composed of aminophospholipid, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Here, we propose a novel species of the genus Steroidobacter: Steroidobacter gossypii sp. nov. with the type strain S1-65T (=JCM 34287T=CGMCC 1.18736T).
Collapse
Affiliation(s)
- Rui-Rui Huang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Xian-Feng Ge
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Xin-Kai Chen
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Shen-Rong Yang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Cheng Zhen
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhi-Qiang Wen
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Ya-Nan Li
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Wen-Zheng Liu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
108
|
Zhang Q, Liu G, Narsing Rao MP, Tang R, Yang S, Ye WY, Zhou SG, Li WJ. Shewanella cyperi sp. nov., a facultative anaerobic bacterium isolated from mangrove sediment. Int J Syst Evol Microbiol 2021; 71. [PMID: 34346863 DOI: 10.1099/ijsem.0.004940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain-negative, motile, facultatively anaerobic, rod-shaped strains, FJAT-53720T and FJAT-53726, were isolated from rhizosphere sediment of plant Cyperus malaccensis. Phylogenetic analysis based on their 16S rRNA gene sequences revealed that strains FJAT-53720T and FJAT-53726 were affiliated to the genus Shewanella (forming an independent cluster) with the highest sequence similarity to the type strain of Shewanella algae. Optimum growth of both strains was observed at 30 °C and pH 7. The respiratory quinones were Q-7, Q-8 and MK-7. The polar lipid profile included phosphatidylmethyl ethanolamine, phosphatidylethanolamine, diphosphatidylglycerol, one unidentified aminophospholipid and four unknown phospholipids. The major fatty acids of strains FJAT-53720T and FJAT-53726 were iso-C15:0, C17 : 1 ω8c and summed feature 3. The genomic DNA G+C content of strain FJAT-53720T was 55.6 mol%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between FJAT-53720T and FJAT-53726 were 97.4 and 77.9 %, confirming that they were similar species and hence FJAT-53720T was selected for further analysis. The ANI and dDDH values between FJAT-53720T and other members of the genus Shewanella were below the cut-off level (95-96 %; 70 %) for species delineation. Based on the above results, FJAT-53720T represents a novel species of the genus Shewanella, for which the name Shewanella cyperi sp. nov. is proposed. The type strain is FJAT-53720T (=KCTC 82444T=GDMCC 1.2207T).
Collapse
Affiliation(s)
- Qi Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Guohong Liu
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Rong Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shang Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wen-Yuan Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| |
Collapse
|
109
|
Li S, Shi L, Lian WH, Lin ZL, Lu CY, Xu L, Wei QC, Zhang JY, Dong L, Li WJ. Arenibaculum pallidiluteum gen. nov., sp. nov., a novel bacterium in the family Azospirillaceae, isolated from desert soil, and reclassification of Skermanella xinjiangensis to a new genus Deserticella as Deserticella xinjiangensis comb. nov., and transfer of the genera Indioceanicola and Oleisolibacter from the family Rhodospirillaceae to the family Azospirillaceae. Int J Syst Evol Microbiol 2021; 71. [PMID: 34283015 DOI: 10.1099/ijsem.0.004874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel pale orange-coloured bacterium, designated strain SYSU D00532T, was isolated from sandy soil collected from the Gurbantunggut desert in Xinjiang, PR China. Cells of strain SYSU D00532T were found to be aerobic, Gram-stain-negative, oxidase-positive, catalase-positive, motile and rod-shaped with a single polar or subpolar flagellum. Growth occurred at 15-45 °C (optimum, 28-37 °C, pH 5.0-8.0 (optimum, pH 6.0-7.0) and with 0-1.5% NaCl (w/v; optimum, 0.5 %). The major polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and phosphatidylglycerol. Unidentified aminolipids, unidentified polar lipids, an unidentified aminophospholipid and an unidentified phospholipid were also detected. The major respiratory quinone was ubiquinone-10 and the major fatty acids were summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), C16:0 and C19:0 cyclo ω8c. The genomic DNA G+C content was 69.8 mol%. Results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SYSU D00532T belonged to the family Azospirillaceae and showed 93.4% (Desertibacter roseus 2622T), 93.2% (Skermanella xinjiangensis 10-1-101T), 93.2% ('Skermanella rubra' YIM 93097T) and 92.4% (Desertibacter xinjiangensis M71T) similarities. Based on the phylogenetic, phenotypic and chemotaxonomic data, strain SYSU D00532T is proposed to represent a new species of a new genus, named Arenibaculum pallidiluteum gen. nov., sp. nov., within the family Azospirillaceae. The type strain is SYSU D00532T (=KCTC 82269T=CGMCC 1.18631T=MCCC 1K04984T). We also propose the reclassification of Skermanella xinjiangensis to a new genus Deserticella as Deserticella xinjiangensis comb. nov., and the transfer of the genera Indioceanicola and Oleisolibacter from the family Rhodospirillaceae to the family Azospirillaceaewe based on the phylogenetic results.
Collapse
Affiliation(s)
- Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lei Shi
- Division of Neurosurgical Intensive Care Unit, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zhi-Liang Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Chun-Yan Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lu Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qi-Chuang Wei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jing-Yi Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| |
Collapse
|
110
|
Jiang Z, Zhang WH, Song D, Xiao M, Phurbu D, Liu BB, Guo SX, Chen W, Li WJ. Gulosibacter sediminis sp. nov., isolated from Indian Ocean marine sediment. Int J Syst Evol Microbiol 2021; 71. [PMID: 34292143 DOI: 10.1099/ijsem.0.004906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-positive, catalase-positive, oxidase-negative, aerobic, non-motile, rod-shaped bacterium, designated strain YIM M12148T, was isolated from a marine sediment sample collected from the Indian Ocean. The strain grew optimally at 28 °C, pH 8.0 and in the presence of 1-3 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM M12148T belongs to the genus Gulosibacter, with the highest sequence similarity to Gulosibacter faecalis NBRC 15706T (96.12 %). The cell-wall sugars of strain YIM M12148T were rhamnose, ribose, glucose and mannose. The predominant isoprenoid quinones were MK-8 and MK-9. The polar lipids consisted of major amounts of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unknown phospholipid and one unknown lipid. Major fatty acids (>5 % of the total) of the novel isolate were anteiso-C15 : 0, iso-C15 : 0, iso-C13 : 0 and anteiso-C13 : 0. The genomic DNA G+C content of strain YIM M12148T was 67.15 mol%. On the basis of genotypic and phenotypic data, it is apparent that strain YIM M12148T represents a novel species of the genus Gulosibacter, for which the name Gulosibacter sediminis sp. nov. is proposed. The type strain is YIM M12148T (=KCTC 29660T=DSM 29154T).
Collapse
Affiliation(s)
- Zhao Jiang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, PR China
| | - Wei-Hua Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, PR China
| | - Dan Song
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, PR China
| | - Min Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Dorji Phurbu
- Tibet Plateau Institute of Biology, Lhasa, Tibet 850001, PR China
| | - Bing-Bing Liu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, PR China
| | - Shu-Xian Guo
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, PR China
| | - Wei Chen
- China Tobacco Yunnan Industrial Co. Ltd, Kunming, 650231 PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
111
|
Qu PH, Luo HM, Feng JH, Li S, Chen C, Dong L, Ming YZ, Li WJ, Lin Y. Sandaracinobacteroides hominis gen. nov., sp. nov., isolated from human skin. Arch Microbiol 2021; 203:5067-5074. [PMID: 34302507 DOI: 10.1007/s00203-021-02454-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
Strain SZY PN-1 T, representing a novel Gram-negative, aerobic, non-motile, rod-shaped and yellow-pigmented bacterium, was isolated from a skin sample of a healthy Chinese male. Growth occurred at pH 6.0-8.0 (optimum, pH 7.0) and 10-37 ℃ (optimum, 30 ℃) with 0-1.0% (w/v) NaCl in R2A agar. Comparative analysis of the 16S rRNA gene sequences revealed that strain SZY PN-1 T shared high similarities with two invalid-published species, "Sandaracinobacter sibiricus" RB16-17 (97.1%) and "Sandaracinobacter neustonicus" JCM 30734 (96.6%), respectively. Phylogenetic analysis of 16S rRNA gene sequences together with protein-concatemer tree showed that SZY PN-1 T formed a separate branch within the family Sphingosinicellaceae. The DNA G + C content of the strain SZY PN-1 T was 65.0% (genome). The polar lipid profile included phosphatidylethanolamine, phosphatidylglycerol, two sphingoglycolipids, diphosphatidylglycerol, five unidentified glycolipids, and seven unidentified lipids. The predominant fatty acids (> 10.0%) were identified as C18:1 ω7c and/or C18:1 ω6c, C17:1 ω6c, C16:1 ω7c and/or C16:1 ω6c. The major respiratory quinone was Q-10. Based on the phenotypic and genotypic features, a novel genus and species, Sandaracinobacteroides hominis gen. nov., sp. nov. is proposed, with type strain SZY PN-1 T (= KCTC 82150 T = NBRC 114675 T).
Collapse
Affiliation(s)
- Ping-Hua Qu
- Department of Clinical Laboratory, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Hai-Min Luo
- Department of Clinical Laboratory, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Jun-Hui Feng
- Department of Clinical Laboratory, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Song Li
- Department of Clinical Laboratory, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Cha Chen
- Department of Clinical Laboratory, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yu-Zhen Ming
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ying Lin
- Department of Dermatology, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
112
|
Zhou J, Zhang S, Zhang G, Yang J, Lai XH, Pu J, Jin D, Lu S, Huang Y, Zhu W, Huang Y, Xu M, Lei W, Cheng Y, Liu L, Xu J. Characterization of isolates of members of the genus Actinomyces from Marmota himalayana: description of Actinomyces faecalis sp. nov., Actinomyces respiraculi sp. nov., and Actinomyces trachealis sp. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 34252022 DOI: 10.1099/ijsem.0.004875] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Six novel strains (ZJ34T, ZJ561, ZJ750T, ZJ1629, zg-993T and zg-987) isolated from faeces and respiratory tracts of Marmota himalayana from the Qinghai-Tibet Plateau of PR China were characterized comprehensively. The results of analyses of the 16S rRNA gene and genome sequences indicated that the six strains represent three novel species of the genus Actinomyces, and are closely related to Actinomyces urogenitalis DSM 15434T (16S rRNA gene sequences similarities, 94.9-98.7 %), Actinomyces weissii CCUG 61299T (95.6-96.6 %), Actinomyces bovis CCTCC AB2010168T (95.7 %) and Actinomyces bowdenii DSM 15435T (95.2-96.4 %), with values of digital DNA-DNA hybridization less than 30.1 % when compared with their closest relatives but higher than 70 % within each pair of novel strains (ZJ34T/ZJ561, ZJ750T/ZJ1629 and zg-993T/zg-987). All the novel strains had C18 : 1 ω9c and C16 : 0 as the two most abundant major fatty acids. MK-9(H4) or MK-8(H4) was the sole or predominant respiratory quinone of strains ZJ34T, ZJ750T and zg-993T and their polar lipid profiles differed, but all had diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, and phosphatidyl inositol mannoside as major components. ZJ750T shared identical peptidoglycan amino acid profile with ZJ34T (alanine, glutamic acid, lysine and ornithine) and the same whole-cell sugar composition with zg-993T (glucose, rhamnose and ribose). Strain zg-993T contained alanine, aspartic acid, glutamic acid, glycine and lysine in the peptidoglycan, and the only sugar in ZJ34T was ribose. The DNA G+C contents of the novel strains were within the range of 65.8-70.1 mol%. On the basis of the results from the aforementioned analyses, the six novel strains were classified as representing three novel species of genus Actinomyces, for which the names Actinomyces faecalis sp. nov. [type strain ZJ34T (=GDMCC 1.1952T=JCM 34355T)], Actinomyces respiraculi sp. nov. [type strain ZJ750T (=GDMCC 1.1950T=JCM 34356T)] and Actinomyces trachealis sp. nov. [type strain zg-993T (=GDMCC 1.1956T=JCM 34357T)] were proposed, respectively.
Collapse
Affiliation(s)
- Juan Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Sihui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing 100191, PR China
| | - Gui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Xin-He Lai
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Ying Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Wentao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Mingchao Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu Province, PR China
| | - Wenjing Lei
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Yanpeng Cheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Research Institute of Public Health, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
113
|
Duangupama T, Intaraudom C, Pittayakhajonwut P, Suriyachadkun C, Tadtong S, Sirirote P, Tanasupawat S, Thawai C. Streptomyces musisoli sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 2021; 71. [PMID: 34196604 DOI: 10.1099/ijsem.0.004857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An actinobacterium, strain CH5-8T, which formed spiral chains of spore arising from the aerial mycelium, was isolated from rhizosphere soil of Musa spp. The organism exhibited vivid greenish yellow substrate mycelium and easily produced the medium grey aerial spore mass on ISP2 medium. The typical chemotaxonomic properties of members of the genus Streptomyces were observed for strain CH5-8T, e.g. ll-diaminopimelic acid in cell peptidoglycan, MK-9(H8), MK-9(H6), and MK-9(H4) as major menaquinones and anteiso-C15 : 0, iso-C16 : 0, and anteiso-C17 : 0 as major fatty acids. Diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside were detected in the cells. A combination of morphological and chemotaxonomic data supported the assignment to the genus Streptomyces. The analysis result obtained for the 16S rRNA gene sequence confirmed the taxonomic affiliation at the genus level of this strain. The novel strain CH5-8T showed the highest 16S rRNA gene sequence values to Streptomyces echinatus NBRC 12763T (98.9 %), followed by Streptomyces actinomycinicus RCU-197T (98.9 %). The average nucleotide identity by blast (ANIb) and digital DNA-DNA hybridization values between CH5-8T and its closest relatives, S. echinatus CECT 3313T and S. actinomycinicus RCU-197T, were ≤91.6 % and ≤47.4 %, respectively. The digital DNA G+C content of genomic DNA was 72.1 mol%. On the basis of these phenotypic and genotypic data, strain CH5-8T represents a novel species, for which the name Streptomyces musisoli sp. nov. is proposed. The type strain is CH5-8T (=TBRC 9950T=NBRC 113997T).
Collapse
Affiliation(s)
- Thitikorn Duangupama
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| | - Chanwit Suriyachadkun
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon nayok 26120, Thailand
| | - Pramote Sirirote
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chitti Thawai
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.,Actinobacterial Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
114
|
Ming H, Cheng LJ, Yi BF, Xia TT, Niu MM, Zhao ZY, Liu BB, Nie GX, Cui CX. Brachybacterium subflavum sp. nov., a novel actinobacterium isolated from the foregut of grass carp. Int J Syst Evol Microbiol 2021; 71. [PMID: 34170217 DOI: 10.1099/ijsem.0.004839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinobacterium, designated CFH 10395T, was isolated from the foregut of grass carp (Ctenopharyngodon idella), which had been fed with ginseng extract supplement. The taxonomic position was investigated by a polyphasic approach. Cells of CFH 10395T were Gram-staining-positive, aerobic, ovoid-shaped, non-spore-forming and non-motile. On the basis of the results of 16S rRNA gene sequence analysis, CFH 10395T was most closely related to Brachybacterium endophyticum KCTC 49087T, Brachybacterium squillarum JCM 16464T and Brachybacterium paraconglomeratum JCM 17781T (97.85%, 97.51 and 97.29% similarity, respectively). CFH 10395T grew at 4-37 °C, pH 5.0-9.0 and in the presence of up to 10.0 % NaCl (w/v). The dominant menaquinone was MK-7. The whole-cell sugars were rhamnose, glucose, mannose and galactose. meso-diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan. The major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The genome size was 3.99 Mbp with a DNA G+C content of 71.9 mol%. On the basis of the results of phylogenetic analysis, physiological properties, chemotaxonomic characteristics, low average nucleotide identity (ANI) and digital DDH (dDDH) results [ANI calculated using MUMmer (ANIm) <87 %, ANI calculated using blast (ANIb) <83 % and dDDH <23 %], it is concluded that CFH 10395T represents a novel species of the genus Brachybacterium, for which the name Brachybacterium subflavum sp. nov., is proposed. The type strain is CFH 10395T (=CGMCC 1.13804T=KCTC 49235T).
Collapse
Affiliation(s)
- Hong Ming
- Synthetic Biology Engineering Lab of Henan Province, College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 PR China
| | - Li-Jiao Cheng
- College of Fisheries, Henan Normal University, Xinxiang, 453007 PR China
| | - Bing-Fang Yi
- College of Fisheries, Henan Normal University, Xinxiang, 453007 PR China
| | - Ting-Ting Xia
- Synthetic Biology Engineering Lab of Henan Province, College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 PR China
| | - Ming-Ming Niu
- College of Fisheries, Henan Normal University, Xinxiang, 453007 PR China
| | - Zi-Yu Zhao
- Synthetic Biology Engineering Lab of Henan Province, College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 PR China
| | - Bing-Bing Liu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004 PR China
| | - Guo-Xing Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453007 PR China
| | - Cai-Xia Cui
- Synthetic Biology Engineering Lab of Henan Province, College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 PR China
| |
Collapse
|
115
|
Li R, Yang L, Pukall R, Neumann-Schaal M, Mu CG, Shi YJ, Wang Y, Jiang GQ, Zhou YG, Cai M, Yin M, Zhu WY, Tang SK. Alkalibacillus aidingensis sp. nov., an Bacterium Isolated from Aiding Lake in Xinjiang Province, North-West China. Curr Microbiol 2021; 78:3307-3312. [PMID: 34181048 DOI: 10.1007/s00284-021-02587-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
A bacterial strain, Gram staining negative, aerobic, long rod, motile bacterium with flagellum, designated strain YIM 98829T, was isolated from the Aiding Lake in Xinjiang province, North-West China. The isolate produced oval subterminal endospores in swollen sporangia. The predominant menaquinone was MK-7. The cell wall peptidoglycan contained ornithine, serine, aspartic acid, glutamic acid, and alanine, while diaminopimelic acid could not be detected. The major whole-cell sugars contained xylose, glucose, galactose, and mannose. Diphosphatidylglycerol, phosphatidylglycerol, one unknown phospholipid, and two unidentified aminophospholipids were part of the polar lipid profile. Iso-C15:0 and anteiso-C15:0 were the major fatty acids. The DNA G + C content of the type strain was 38.0 mol%. Phylogenetic analysis indicated that the isolate belongs to the genus Alkalibacillus. However, it differed from its closest relatives, A. haloalkaliphilus DSM 5271T (97.04%), A. filiformis 4AGT (96.99%), and A. silvisoli BM2T (96.95%) in some physiological characteristics. DNA-DNA hybridization result indicated low levels of relatedness between strain YIM 98829T and A. haloalkaliphilus JCM 12303T (16.9%). On the basis of physiological, phenotypic, and chemotaxonomic data, strain YIM 98829T represents a novel species of genus Alkalibacillus, for which the name Alkalibacillus aidingensis sp. nov. is proposed. The type strain is YIM 98829T (= NBRC 114103T = CGMCC 1.17260T = DSM 112470T).
Collapse
Affiliation(s)
- Rui Li
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Li Yang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Rüdiger Pukall
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Chang-Gai Mu
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yong-Jiang Shi
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yun Wang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China
| | - Gang-Qiang Jiang
- Urumqi Customs Technology Center, Urumqi, 830011, People's Republic of China
| | - Yu-Guang Zhou
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Man Cai
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Min Yin
- School of Medicine, Yunnan University, Kunming, 650091, People's Republic of China
| | - Wen-Yong Zhu
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China.
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People's Republic of China.
| | - Shu-Kun Tang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
116
|
Nammali A, Intaraudom C, Pittayakhajonwut P, Suriyachadkun C, Tadtong S, Srabua P, Thawai C. Streptomyces coffeae sp. nov., an endophytic actinomycete isolated from the root of Coffea arabica (L.). Int J Syst Evol Microbiol 2021; 71. [PMID: 34106825 DOI: 10.1099/ijsem.0.004834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An endophytic actinobacterium, designated strain CA1R205T, was isolated from the surface-sterilized root of Coffea arabica L. collected from Ratchaburi province, Thailand. The taxonomic position of this strain was evaluated using a polyphasic approach. The strain produced light yellowish brown to dark brownish black substrate mycelium and greyish white aerial mycelium. The spiral spore chains were produced directly on aerial mycelium. CA1R205T was found to have ll-diaminopimelic acid in the cell peptidoglycan, galactose, glucose, mannose and ribose as whole-cell reducing sugars, MK-10(H4), MK-9(H6), MK-10(H2), MK-9(H4), MK-10(H6) and MK-10(H8) as menaquinones and iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0 and C16 : 0 as major fatty acids. Diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol were detected in the cells. These characteristics were consistent the typical chemotaxonomic properties of members the genus Streptomyces. The taxonomic affiliation at the genus level of this strain could be confirmed using its 16S rRNA gene sequence data. CA1R205T showed the highest 16S rRNA gene sequence similarity value to Streptomyces rapamycinicus NRRL B-5491T (98.9 %), followed by Streptomyces iranensis HM 35T (98.8 %). Digital DNA-DNA hybridization and average nucleotide identity-by blast (ANIb) values between CA1R205T and S. rapamycinicus NRRL B-5491T were 27.2 and 81.5 %, respectively. The DNA G+C content of genomic DNA was 70.7 mol%. Due to the differences in physiological, biochemical and genotypic data, CA1R205T could be discriminated from its closest neighbour. Thus, CA1R205T should be recognized as representing a novel species of the genus Streptomyces, for which the name Streptomyces coffeae sp. nov. is proposed. The type strain is CA1R205T (=TBRC 11244T=NBRC 114295T).
Collapse
Affiliation(s)
- Achararak Nammali
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand
| | - Chanwit Suriyachadkun
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon nayok 26120, Thailand
| | - Phatraya Srabua
- Scientific and Technological Research Equipment Center (STREC), Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Chitti Thawai
- Actinobacterial Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
117
|
Peritore-Galve FC, Tancos MA, Smart CD. Bacterial Canker of Tomato: Revisiting a Global and Economically Damaging Seedborne Pathogen. PLANT DISEASE 2021; 105:1581-1595. [PMID: 33107795 DOI: 10.1094/pdis-08-20-1732-fe] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The gram-positive actinobacterium Clavibacter michiganensis is the causal agent of bacterial canker of tomato, an economically impactful disease with a worldwide distribution. This seedborne pathogen systemically colonizes tomato xylem leading to unilateral leaflet wilt, marginal leaf necrosis, stem and petiole cankers, and plant death. Additionally, splash dispersal of the bacterium onto fruit exteriors causes bird's-eye lesions, which are characterized as necrotic centers surrounded by white halos. The pathogen can colonize developing seeds systemically through xylem and through penetration of fruit tissues from the exterior. There are currently no commercially available resistant cultivars, and bactericidal sprays have limited efficacy for managing the disease once the pathogen is in the vascular system. In this review, we summarize research on epidemiology, host colonization, the bacterial genetics underlying virulence, and management of bacterial canker. Finally, we highlight important areas of research into this pathosystem that have the potential to generate new strategies for prevention and mitigation of bacterial canker.
Collapse
Affiliation(s)
- F Christopher Peritore-Galve
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Matthew A Tancos
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Frederick, MD 21702
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|
118
|
Gu Y, Zhu X, Lin F, Shen C, Li Y, Ao L, Fan W, Ren C, Xu Y. Caproicibacterium amylolyticum gen. nov., sp. nov., a novel member of the family Oscillospiraceae isolated from pit clay used for making Chinese strong aroma-type liquor. Int J Syst Evol Microbiol 2021; 71. [PMID: 33906707 DOI: 10.1099/ijsem.0.004789] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An anaerobic, Gram-stain-positive, rod-shaped, motile and spore-forming bacterium, designated strain LBM18003T, was isolated from pit clay used for making Chinese strong aroma-type liquor. Growth occurred at 20-40 °C (optimum, 30-37 °C), pH 4.5-9.5 (optimum, pH 6.5-7.0) and in the presence of 0.0-1.0 % (w/v) sodium chloride (optimum, 0 %). The predominant fatty acids were C16:0, C14:0, C14:0 DMA and C16:0 3-OH, and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unidentified phospholipids and nine unidentified glycolipids. Phylogenetic analysis revealed that strain LBM18003T is a novel member of the family Oscillospiraceae. The 16S rRNA gene sequence similarities of strain LBM18003T to its two most closely related species were less than 94.5 % for distinguishing genera, i.e. closely related to Caproiciproducens galactitolivorans JCM 30532T (94.1 %) and Caproicibacter fermentans DSM 107079T (93.2 %). The genome size of strain LBM18003T was 2 996 201 bp and its DNA G+C content was 48.48 mol%. Strain LBM18003T exhibited 67.8 and 68.1% pairwise-determined whole-genome average nucleotide identity values to Caproiciproducens galactitolivorans JCM 30532T and Caproicibacter fermentans DSM 107079T, respectively; and showed 62.2 and 61.0 % the average amino acid identity values to Caproiciproducens galactitolivorans JCM 30532T and Caproicibacter fermentans DSM 107079T, respectively; and demonstrated 46.1 and 41.5 % conserved genes to Caproiciproducens galactitolivorans JCM 30532T and Caproicibacter fermentans DSM 107079T, respectively. The comparisons of 16S rRNA gene and genome sequences confirmed that strain LBM18003T represented a novel genus of the family Oscillospiraceae. Based on morphological, physiological, biochemical, chemotaxonomic, genotypic and phylogenetic results, strain LBM18003T represents a novel species of a novel genus of the family Oscillospiraceae, for which the name Caproicibacterium amylolyticum gen. nov., sp. nov. is proposed. The type strain is LBM18003T (=GDMCC 1.1626T=JCM 33783T).
Collapse
Affiliation(s)
- Yang Gu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Xiaojun Zhu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Feng Lin
- National Engineering Research Center of Solid-state Brewing, Luzhou 646000, PR China
| | - Caihong Shen
- National Engineering Research Center of Solid-state Brewing, Luzhou 646000, PR China
| | - Yong Li
- National Engineering Research Center of Solid-state Brewing, Luzhou 646000, PR China
| | - Ling Ao
- National Engineering Research Center of Solid-state Brewing, Luzhou 646000, PR China
| | - Wenlai Fan
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Cong Ren
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
119
|
Luo HM, Feng JH, Li LH, Li MM, Liu RQ, Chen F, Lin Y, Li WJ, Qu PH, Xiao M. Cysteiniphilum marinum sp. nov., isolated from coastal seawater. Antonie van Leeuwenhoek 2021; 114:1079-1089. [PMID: 33895906 DOI: 10.1007/s10482-021-01579-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Six aerobic Gram-negative bacteria were isolated from seawater in Guangdong Province, P.R. China. Cells were observed to be Gram-negative, aerobic, non-motile and non-spore forming. Growth of the designated type strain 19X3-30T occurred at a temperature range of 14-37 °C (optimum, 28 °C), a pH range of 6.0-8.0 (optimum, pH 7) and up to 7.5% NaCl (optimum, 1.5%; w/v), and was enhanced by CO2 and L-cysteine supplementation. The major polar lipids identified in strain 19X3-30T were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The principal cellular fatty acids profile showed the presence of anteiso-C15:0, anteiso-C17:0 and C18:0 (> 8% of total fatty acids), and the respiratory quinone was ubiquinone 8 (UQ-8). According to the analysis of 16S rRNA gene sequences, these strains represented a novel species within the family Fastidiosibacteraceae, sharing maximum similarities with Cysteiniphilum litorale DSM 101832T (96.6%) and Cysteiniphilum halobium DSM 103992T (95.3%). Phylogenetic dendrograms based on 16S rRNA gene and protein marker genes from the genomic sequences both indicated that the strains formed a monophyletic lineage closely linked to the genus Cysteiniphilum, which was also supported by the UPGMA dendrogram based on the MALDI-TOF MS profile. The genomic DNA G + C contents of six strains ranged from 38.0% to 38.1%. Based on different taxonomic genomic metrics, phylogeny and phenotypic features, we propose that the strains warrant the assignment to a novel species, for which the name Cysteiniphilum marinum sp. nov. is proposed. The type strain is 19X3-30T (= KCTC 82154T = CGMCC 1.18585T).
Collapse
Affiliation(s)
- Hai-Min Luo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Jun-Hui Feng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Liang-Hui Li
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ru-Qin Liu
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Fu Chen
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Ying Lin
- Department of Dermatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ping-Hua Qu
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Min Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
120
|
Marinifaba aquimaris gen. nov., sp. nov., a novel chitin-degrading gammaproteobacterium in the family Alteromonadaceae isolated from seawater of the Mariana Trench. Antonie van Leeuwenhoek 2021; 114:947-955. [PMID: 33864544 DOI: 10.1007/s10482-021-01568-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
A novel Gram-negative, rod-shaped, aerobic, oxidase-positive and catalase-negative bacterium, designated strain SM1970T, was isolated from a seawater sample collected from the Mariana Trench. Strain SM1970T grew at 15-37 oC and with 1-5% (w/v) NaCl. It hydrolyzed colloidal chitin, agar and casein but did not reduce nitrate to nitrite. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain SM1970T formed a distinct lineage close to the genus Catenovulum within the family Alteromonadaceae, sharing the highest sequence similarity (93.6%) with type strain of Catenovulum maritimum but < 93.0% sequence similarity with those of other known species in the class Gammaproteobacteria. The major fatty acids of strain SM1970T were summed feature 3 (C16: 1 ω7c and/or C16: 1 ω6c), C16: 0 and summed feature 8 (C18: 1 ω7c and/or C18: 1 ω6c). The major polar lipids of the strain included phosphatidylethanolamine and phosphatidylglycerol and its main respiratory quinone was ubiquinone 8. The draft genome of strain SM1970T consisted of 77 scaffolds and was 4,172,146 bp in length, containing a complete set of genes for chitin degradation. The average amino acid identity (AAI) values between SM1970T and type strains of known Catenovulum species were 56.6-57.1% while the percentage of conserved proteins (POCP) values between them were 28.5-31.5%. The genomic DNA G + C content of strain SM1970T was 40.1 mol%. On the basis of the polyphasic analysis, strain SM1970T is considered to represent a novel species in a novel genus of the family Alteromonadaceae, for which the name Marinifaba aquimaris is proposed with the type strain being SM1970T (= MCCC 1K04323T = KCTC 72844T).
Collapse
|
121
|
Kim JA, Lee B, Kang JY, Song JJ, Choi JH. Marivivens aquimaris sp. nov., isolated from seawater. Arch Microbiol 2021; 203:3229-3234. [PMID: 33835235 DOI: 10.1007/s00203-021-02305-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022]
Abstract
A Gram-stain-negative, strictly aerobic, non-flagellated, rod-shaped bacterium, designated GSB7T, was isolated from seawater collected at the Yellow Sea coast of South Korea. Catalase and oxidase activities were positive. Growth occurred at pH 6.0-9.0 (optimum pH 7.0), 10-40 °C (optimum 30 °C) and with 0-8% NaCl (optimum 1-2%). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GSB7T belonged to the genus Marivivens, showing the sequence similarities of 96.3, 96.1, and 96.0% with Marivivens niveibacter HSLHS2T, Limimaricola hongkongensis DSM17492T, and Marivivens donghaensis AM-4T, respectively. The respiratory quinone was ubiquinone-10 and the major fatty acids were summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), C18:1 ω7c 11-methyl, C16:0 and C10:0 3-OH. The polar lipids comprised phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminolipid, and five unidentified lipids. The DNA G + C content calculated from the whole-genome sequence was 60.6 mol%. On the basis of phenotypic, chemotaxonomic and genotypic characteristics presented in this study, strain GSB7T is suggested to represent a novel species of the genus Marivivens, for which the name Marivivens aquimaris sp. nov. is proposed. The type strain is GSB7T (= KCTC 82026T = JCM 34042T).
Collapse
Affiliation(s)
- Jeong Ah Kim
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Binna Lee
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Ji Young Kang
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Jae Jun Song
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea.
| | - Jong Hyun Choi
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea.
| |
Collapse
|
122
|
Li J, Cheng JH, Teng ZJ, Sun ZZ, He XY, Wang P, Shi M, Song XY, Chen XL, Zhang YZ, Tian X, Zhang XY. Taxonomic and Enzymatic Characterization of Flocculibacter collagenilyticus gen. nov., sp. nov., a Novel Gammaproteobacterium With High Collagenase Production. Front Microbiol 2021; 12:621161. [PMID: 33786038 PMCID: PMC8005334 DOI: 10.3389/fmicb.2021.621161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Collagens from marine animals are an important component of marine organic nitrogen. Collagenase-producing bacteria and their collagenases play important roles in collagen degradation and organic nitrogen recycling in the ocean. However, only a few collagenase-producing marine bacteria have been so far discovered. Here, we reported the isolation and characterization of a collagenase-secreting bacterium, designated strain SM1988T, isolated from a green alga Codium fragile sample. Strain SM1988T is a Gram-negative, aerobic, oxidase-, and catalase-positive, unipolar flagellated, and rod-shaped bacterium capable of hydrolyzing casein, gelatin and collagens. Phylogenetic analysis revealed that strain SM1988T formed a distinct phylogenetic lineage along with known genera within the family Pseudoalteromonadaceae, with 16S rRNA gene sequence similarity being less than 93.3% to all known species in the family. Based on the phylogenetic, genomic, chemotaxonomic and phenotypic data, strain SM1988T was considered to represent a novel species in a novel genus in the family Pseudoalteromonadaceae, for which the name Flocculibacter collagenilyticus gen. nov., sp. nov. is proposed, with the type strain being SM1988T (= MCCC 1K04279T = KCTC 72761T). Strain SM1988T showed a high production of extracellular collagenases, which had high activity against both bovine collagen and codfish collagen. Biochemical tests combined with genome and secretome analyses indicated that the collagenases secreted by strain SM1988T are serine proteases from the MEROPS S8 family. These data suggest that strain SM1988T acts as an important player in marine collagen degradation and recycling and may have a promising potential in collagen resource utilization.
Collapse
Affiliation(s)
- Jian Li
- College of Life Science and Technology, Xinjiang University, Urumqi, China.,State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Jun-Hui Cheng
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Zhao-Jie Teng
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Zhong-Zhi Sun
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Yan He
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Peng Wang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Xinmin Tian
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| |
Collapse
|
123
|
Li N, He XY, Liu NH, Gu TJ, Li J, Geng YH, Zhang S, Wang P, Fu HH, Shi M, Chen XL, Zhang YZ, Zhang XY, Qin QL. Tritonibacter aquimaris sp. nov. and Tritonibacter litoralis sp. nov., two novel members of the Roseobacter group isolated from coastal seawater. Antonie Van Leeuwenhoek 2021; 114:787-798. [PMID: 33782795 DOI: 10.1007/s10482-021-01558-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/08/2021] [Indexed: 11/26/2022]
Abstract
Two Gram-stain-negative bacterial strains, SM1969T and SM1979T, were isolated from coastal surface seawater of Qingdao, China. They were taxonomically characterized by the phylogenetic, genomic, chemotaxonomic and phenotypic analyses. The two strains shared 97.0% 16S rRNA gene sequence similarity with each other and the highest similarity (96.8-97.5%) with type strains of six species in the genera Shimia, Tritonibacter and Tropicibacter in the Roseobacter group of the family Rhodobacteraceae. In the phylogenetic tree based on single-copy orthologous clusters (OCs), both strains clustered with known species of the genus Tritonibacter and together formed a separate branch adjacent to Tritonibacter ulvae. Although sharing many chemotaxonomic and phenotypic characteristics, the two strains could be differentiated from each other and closely related species by numerous traits. Particularly, strain SM1969T was found to have a DMSP lyase coding gene dddW in its genome and have the ability to produce DMS from DMSP while strain SM1979T was not. The average nucleotide identity and in silico DNA-DNA hybridization values between strains SM1969T and SM1979T and type strains of closely related species were all below the thresholds to discriminate bacterial species, demonstrating that they constitute two new species in the genus Tritonibacter. The names Tritonibacter aquimaris sp. nov. and Tritonibacter litoralis sp. nov. are proposed for the two new species, with type strains being SM1969T (= MCCC 1K04320T = KCTC 72843T) and SM1979T (= MCCC 1K04321T = KCTC 72842T), respectively.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xiao-Yan He
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Ning-Hua Liu
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Tie-Ji Gu
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Jian Li
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yu-Hui Geng
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Shan Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Peng Wang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
124
|
Oceanobacillus salinisoli sp. nov., a bacterium isolated from saline soil of Turpan city in Xinjiang province, north-west China. Arch Microbiol 2021; 203:2919-2924. [PMID: 33763766 DOI: 10.1007/s00203-021-02287-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
YIM B00359T, a novel bacterial strain was isolated from the saline soil of Turpan city in Xinjiang province, north-west China. The strain was Gram-stain-positive, motile, aerobic, produced oval subterminal endospores in swollen sporangia. The whole-cell hydrolysates contain meso-diaminopimelic acid as the cell-wall diamino acid, with xylose, glucose, and ribose as the major whole-cell sugars. The phospholipids are diphosphatidylglycerol, phosphatidylglycerol, unidentified phospholipids, unidentified glycolipids, and one unidentified glycophospholipid. The predominant menaquinone is MK-7. The major fatty acids are anteiso-C15:0, iso-C14:0, iso-C15:0, and iso-C16:0. The DNA G + C content of the type strain is 37.5 mol%. Phylogenetic analysis indicated that the isolate belongs to the genus Oceanobacillus. However, it differed from its closest relatives, Oceanobacillus halophilus DSM 23996 T and Oceanobacillus senegalensis Marseille-P3587T in many physiological and chemotaxonomic characteristics. Based on comparative analysis of polyphasic taxonomic data, strain YIM B00359T represents a novel species of the genus Oceanobacillus, for which the name Oceanobacillus salinisoli sp. nov. is proposed. The type strain is YIM B00359T (= CGMCC 1.17509T = KCTC 43185T).
Collapse
|
125
|
Aquiflexum lacus sp. nov., isolated from a lake sediment sample. Arch Microbiol 2021; 203:2911-2917. [PMID: 33763765 DOI: 10.1007/s00203-021-02280-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
A novel Gram-staining negative, crescent-like or rod-shaped, non-motile bacterium, designated strain CUG 91378 T, was isolated from a sediment sample of Qinghai Lake, Qinghai Province, China. The strain was red-colored, and catalase- and oxidase-positive. Strain CUG 91378 T was able to grow at 15-37 °C (optimum, 28 °C), pH 7-9 (pH 7.0) and in the presence of up to 3.0% (w/v) NaCl (0-2%). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CUG 91378 T formed a well-supported monophyletic clade with Aquiflexum balticum DSM 16537 T (95.4%) and Aquiflexum aquatile Z0201T (93.2%). The DNA G + C content of CUG 91378 T was 39.0%. Low (< 87%) average nucleotide identity (ANI) and (< 26%) digital DNA-DNA hybridization (dDDH) values were observed between strain CUG 91378 T and its closest species on the phylogenetic trees. The sole respiratory quinone of strain CUG 91378 T was MK-7. The predominant fatty acids (> 5.0%) were iso-C15:0 (19.1%), iso-C16:0 (12.0%), iso-C16:1 H (10.9%), iso-C16:0 3OH (9.2%), iso-C17:0 3OH (7.7%), C17:1ω6c (6.1%) and anteiso-C15:0 (5.8%). Strain CUG 91378 T contained as phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and four unidentified lipids (L1, L2, L3 and L4). Based on the data from the current polyphasic study, the isolate represents a novel species of the genus Aquiflexum for which the name Aquiflexum lacus is proposed. The type strain of the proposed new taxon is CUG 91378 T (= KCTC 62637 T = CGMCC 1.13988 T).
Collapse
|
126
|
Liu ZT, Jiao JY, Liu L, Li MM, Ming YZ, Song JL, Lv AP, Xian WD, Fang BZ, Li WJ. Rhabdothermincola sediminis gen. nov., sp. nov., a new actinobacterium isolated from hot spring sediment, and emended description of the family Iamiaceae. Int J Syst Evol Microbiol 2021; 71. [PMID: 33739250 DOI: 10.1099/ijsem.0.004760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
One thermophilic bacterium, designated strain SYSU G02662T, was isolated from hot spring sediment sampled in Tibet, PR China. Polyphasic taxonomic analyses and whole-genome sequencing were used to determine the taxonomy position of the strain. Phylogenetic analysis using 16S rRNA gene sequences indicated that strain SYSU G02662T showed the highest sequence similarity to Actinomarinicola tropica SCSIO 58843T (95.1 %). The strain could be differentiated from other species of the family Iamiaceae by its distinct phenotypic and genotypic characteristics. Cells of strain SYSU G02662T were aerobic, Gram-staining-positive and short rodshaped. Growth occurred optimally at 45 °C and pH 7.0. In addition, meso-diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan. The respiratory quinone was MK-9 (H8), while the major fatty acids (>10 %) were C16 : 0, C17 : 0, C18 : 0 and iso-C16 : 0. The detected polar lipids included diphosphatidylglycerol, phosphatidylinositol mannoside and phosphatidylinositol. The G+C content of the genomic DNA was 70.5 % based on the draft genomic sequence. On the basis of phenotypic, genotypic and phylogenetic data, strain SYSU G02662T represents a novel species of a novel genus in the family Iamiaceae, for which the name Rhabdothermincola sediminis gen. nov., sp. nov. is proposed. The type strain of the proposed novel species is SYSU G02662T (=CGMCC 4.7688T=KCTC 49500T).
Collapse
Affiliation(s)
- Ze-Tao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Yu-Zhen Ming
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jiang-Lin Song
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Wen-Dong Xian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| |
Collapse
|
127
|
Tian Z, Yang J, Lai XH, Pu J, Jin D, Luo X, Huang Y, Li J, Zhang G, Wang S, Xu J. Microbacterium caowuchunii sp. nov. and Microbacterium lushaniae sp. nov., isolated from plateau pika ( Ochotona curzoniae) on the Qinghai-Tibet Plateau of PR China. Int J Syst Evol Microbiol 2021; 71. [PMID: 33502309 DOI: 10.1099/ijsem.0.004662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four novel bacterial strains (ST-M6T, L-033, L-031T and Z-333) were isolated from the intestinal contents of plateau pikas (Ochotona curzoniae) collected on the Qinghai-Tibet Plateau, PR China. Cells were aerobic, non-motile, Gram-stain-positive, catalase-positive, oxidase-negative, capsuled and short-rod-shaped. Phylogenetic analyses based on the 16S rRNA gene sequences and 387 core genes indicated that the four isolates belong in the genus Microbacterium and clearly separate from recognized species. The two type strains (ST-M6T and L-031T) shared low 16S rRNA similarity, average nucleotide identity values and digital DNA-DNA hybridization relatedness with their phylogenetic neighbours (Microbacterium ginsengisoli DSM 18659T, Microbacterium hatanonis DSM 19179T, Microbacterium rhizomatis JCM 30598T, Microbacterium radiodurans CCTCC M208212T, Microbacterium oleivorans DSM 16091T and Microbacterium arborescens DSM 20754T). The genomic DNA G+C contents of strains ST-M6T and L-031T were 70.4 and 70.7 mol%, respectively. The major cellular fatty acids of strain ST-M6T were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0, in contrast to anteiso-C17 : 0, anteiso-C15 : 0 and anteiso-C17 : 1 ω9c of strain L-031T. Both type strains (ST-M6T and L-031T) were glycolate test positive and shared the following common features: MK-11 and MK-12 as major menaquinones; rhamnose, ribose, mannose and galactose as major cell-wall sugars; diphosphatidylglycerol, phosphatidylglycerol and two glycolipids as polar lipids; and ornithine, alanine, glycine and glutamic acid as cell-wall amino acids. Comparing the phenotypic, phylogenetic and chemotaxonomic features of the four strains and their related taxa, strains ST-M6T and L-031T represent two novel species of the genus Microbacterium, for which the names Microbacterium caowuchunii sp. nov. (type strain ST-M6T=CGMCC 1.16364T=DSM 104058T) and Microbacterium lushaniae sp. nov. (type strain L-031T =CGMCC 1.16363T=DSM 106170T) are proposed.
Collapse
Affiliation(s)
- Zhi Tian
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, 382 Wuyi road, Taiyuan, Shanxi 030001, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.,Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Jing Yang
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Xin-He Lai
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Dong Jin
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Xuelian Luo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Ying Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Junqin Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.,Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Gui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Suping Wang
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Jianguo Xu
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China
| |
Collapse
|
128
|
Han MX, Huang JR, Jiang HC, Fang BZ, Xie YG, Li WJ. Lunatibacter salilacus gen. nov., sp. nov., a member of the family Cyclobacteriaceae, isolated from a saline and alkaline lake sediment. Int J Syst Evol Microbiol 2021; 71. [PMID: 33406031 DOI: 10.1099/ijsem.0.004621] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A non-motile, Gram-staining negative, catalase- and oxidase-positive, crescent-rod shaped bacterium, designated strain CUG 91308T, was isolated from a sediment sample of Qinghai Lake, Qinghai Province, China. Colonies on OSM agar were round, smooth, flat and pinkish-orange in colour. Strain CUG 91308T could grow at 15-37 °C, pH 6-12 and in the presence of up to 7.0 % NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CUG 91308T belonged to the family Cyclobacteriaceae and formed a clade with the genus Lunatimonas in the phylogenetic tree, but separated from any species of the known genera within the family. The genomic DNA G+C content is about 42.1 %. The predominant fatty acids (>10 %) were iso-C15 : 0 (21.1 %), summed feature 3 (C16 : 1 ω7c / C16 : 1 ω6c / iso-C15 : 0 2OH) (14.3 %), iso-C17 : 0 3OH (12.3 %) and summed feature 9 (iso-C17 : 1 ω9c / C16 : 0 10-methyl) (10.6 %). The polar lipids of strain CUG 91308T were phosphatidylethanolamine (PE) and four unidentified polar lipids. Strain CUG 91308T contained MK-7 as the major respiratory quinone. On the basis of phenotypic, genotypic and phylogenetic data, strain CUG 91308T represents a novel species of a novel genus in the family Cyclobacteriaceae, for which the name Lunatibacter salilacus gen. nov., sp. nov. is proposed. The type strain of the proposed new isolate is CUG 91308T (=KCTC 62636T=CGMCC 1.13593T).
Collapse
Affiliation(s)
- Ming-Xian Han
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Jian-Rong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Hong-Chen Jiang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Bao-Zhu Fang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yuan-Guo Xie
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.,State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
129
|
Zhu QH, Yang CL, Luo XX, Zhang LL, Xia ZF. Microbacterium karelineae sp. nov. isolated from a halophyte plant in the Taklamakan desert. Int J Syst Evol Microbiol 2021; 71. [PMID: 33480836 DOI: 10.1099/ijsem.0.004629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain, designated TRM 80801T, was isolated from the Karelinea in Taklamakan desert, Xinjiang Uygur Autonomous Region, north-west China. Cells were Gram-stain-positive, aerobic, non-motile, short rods. Strain TRM 80801T grew at 4-50 °C, with optimum growth at 28 °C, and grew at pH 6.0-11.0 and 1-15 % (w/v) NaCl. Phylogenetic analyses of the 16S rRNA gene sequences placed strain TRM 80801T within the genus Microbacterium with the highest similarities to Microbacterium suaedae YZYP 306T (98.97 %) and Microbacterium indicum BBH6T (98.17 %), respectively. The DNA G+C content of TRM 80801T is 69.38 mol%. The cell-wall peptidoglycan contained the amino acids ornithine, glutamic acid, glycine and alanine, the diagnostic diamino acid was ornithine. The acyl type of the peptidoglycan was glycolyl. Whole-cell sugars were ribose, mannose, glucose, rhamnose and galactose. The major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The predominant menaquinones were MK-10, MK-11 and MK-12. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol. The whole-genome average nucleotide identity (ANI) value between strain TRM 80801T and Microbacterium suaedae YZYP 306T is 70.2 %. On the basis of the evidence presented in this study, strain TRM 80801T is representative of a novel species in the genus Microbacterium, for which the name Microbacterium karelineae sp. nov. is proposed. The type strain is TRM 80801T (=CCTCC AB 2019248T=KCTC 49357T).
Collapse
Affiliation(s)
- Qi-Hui Zhu
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin/College of Life Science, Tarim University, Alar 843300, PR China
| | - Cai-Ling Yang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin/College of Life Science, Tarim University, Alar 843300, PR China
| | - Xiao-Xia Luo
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin/College of Life Science, Tarim University, Alar 843300, PR China
| | | | - Zhan-Feng Xia
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin/College of Life Science, Tarim University, Alar 843300, PR China
| |
Collapse
|
130
|
Sun XM, Chen C, Xue Z, He XY, Liu NH, Chen XL, Zhang YZ, Fan SJ, Zhang XY. Marinomonas algicola sp. nov. and Marinomonas colpomeniae sp. nov., isolated from marine macroalgae. Int J Syst Evol Microbiol 2021; 71. [PMID: 33661091 DOI: 10.1099/ijsem.0.004730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain-negative, aerobic, rod-shaped bacteria, polar flagellated, designated strains SM2066T and SM1966T, were respectively isolated from the surfaces of Colpomenia sinuosa and Ulva pertusa macroalgae collected off the coastal areas of Rongcheng, PR China. Strain SM2066T grew at 8-37 °C and with 0.5-7.0 % (w/v) NaCl, while strain SM1966T grew at 5-30 °C and with 0.5-8.5% (w/v) NaCl. Both of them reduced nitrate to nitrite and required Na+ for growth but neither of them hydrolysed starch and DNA. Phylogenetic analysis based on 16S rRNA gene and single-copy orthologous cluster sequences revealed that both strains SM2066T and SM1966T were affiliated with the genus Marinomonas but formed distinct phylogenetic branches from known Marinomonas species, respectively sharing the highest 16S rRNA gene sequence similarities with type strains of Marinomonas ushuaiensis (97.9 %) and Marinomonas blandensis (96.7 %). The digital DNA-DNA hybridization and average nucleotide identity values between strains SM2066T and SM1966T and type strains of closely related Marinomonas species were all below 22.9 and 79.9 mol%, respectively. The major fatty acids of the two strains were summed feature 3 (C16 : 1 ω6c/C16 : 1 ω7c), summed feature 8 (C18 : 1 ω7c) and C16 : 0, with their predominant polar lipids being phosphatidylethanolamine and phosphatidylglycerol, and their sole respiratory quinone being Q-8. The genomic DNA G+C contents of strains SM2066T and SM1966T determined from genomic sequences were 40.3 and 41.6 mol%, respectively. On the basis of the polyphasic evidence presented in this study, strains SM2066T and SM1966T are considered to represent two novel species within the genus Marinomonas, for which the names Marinomonas colpomeniae sp. nov. and Marinomonas algicola sp. nov. are proposed. The type strains are SM2066T (=MCCC 1K04390T= KCTC 82372T) and SM1966T (=MCCC 1K04387T= KCTC 72848T), respectively.
Collapse
Affiliation(s)
- Xiao-Meng Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China.,Life Science College, Shandong Normal University, Jinan 250014, PR China
| | - Cui Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China.,Life Science College, Shandong Normal University, Jinan 250014, PR China
| | - Zhao Xue
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,Life Science College, Shandong Normal University, Jinan 250014, PR China
| | - Xiao-Yan He
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Ning-Hua Liu
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Xiu-Lan Chen
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, PR China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Shou-Jin Fan
- Life Science College, Shandong Normal University, Jinan 250014, PR China
| | - Xi-Ying Zhang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
131
|
Shin TG, Park JS. Flagellimonas hymeniacidonis sp. nov., Isolated from the Sponge Hymeniacidon sinapium. Curr Microbiol 2021; 78:1061-1067. [PMID: 33575884 DOI: 10.1007/s00284-020-02328-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
A Gram-stain-negative, rod-shaped, non-motile, aerobic, yellow-pigmented, marine bacterium (designated strain 176CP5-101 T) was isolated from a sponge Hymeniacidon sinapium from Cheongpo beach, Taean in Republic of Korea. The strain was able to grow at pH 6.8-8.5 (optimum at pH 7.5), in 1-7% (w/v) NaCl (optimum at 3%, w/v) and at 10-30 °C (optimum at 30 °C). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 176CP5-101 T belonged to the family Flavobacteriaceae and was most closely related to Flagellimonas aquimarina KCTC 52351 T (97.1%), F. algicola KACC 19790 T (97.0%), F. pacifica KCTC 52762 T (96.9%), F. eckloniae KCCM 42307 T (96.4%), F. flava KCTC 22665 T (96.0%), and F. maritima KCTC 32464 T (95.4%). Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain 176CP5-101 T and F. aquimarina KCTC 52351 T were, respectively, 79.9% and 22.1%, indicating that 176CP5-101 T is a novel species of the genus Flagellimonas. The DNA G + C content of the genomic DNA was 37.8 mol%. Menaquinone with six isoprene units (MK-6) was the major respiratory quinone, and the major polar lipids were phosphatidylethanolamine (PE), unidentified aminophospholipid, and unidentified lipids. The fatty acids are mainly (> 5%) defined iso-C15:0, iso-C15:0 3-OH, iso-C15:1 G, iso-C17:0 3-OH, and C16:1 ω7c and/or C16:1 ω6c (summed feature 3). Phenotypic, phylogenetic, genomic, and chemotaxonomic characteristics showed that strain 176CP5-101 T represents a novel species of the genus Flagellimonas, for which the name Flagellimonas hymeniacidonis sp. nov. is proposed. The type strain is 176CP5-101 T (= KACC 19892 T = LMG 31316 T).
Collapse
Affiliation(s)
- Tae-Gi Shin
- Department of Biological Sciences and Biotechnology, Hannam University Jeonmin-Dong, Yuseong-gu, Daejeon, 34430, Republic of Korea
| | - Jin-Sook Park
- Department of Biological Sciences and Biotechnology, Hannam University Jeonmin-Dong, Yuseong-gu, Daejeon, 34430, Republic of Korea.
| |
Collapse
|
132
|
Neobacillus sedimentimangrovi sp. nov., a Thermophilic Bacterium Isolated from Mangrove Sediment. Curr Microbiol 2021; 78:1039-1044. [PMID: 33543358 DOI: 10.1007/s00284-021-02360-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Two Gram-stain positive, rod-shaped, endospore-forming, aerobic, thermophilic strains, designated FJAT-2464T and FJAT-52740, were isolated from the sediment collected from Zhangjiang Estuary Mangrove National Nature Reserve in Fujian Province, China. The 16S rRNA gene sequence similarity between strains FJAT-2464T and FJAT-52740 was 100%. The result suggests that strains FJAT-2464T and FJAT-52740 belong to the same genome species, hence only FJAT-2464T was considered for further analysis. Strain FJAT-2464T showed the highest 16S rRNA gene sequence similarities to the type strains of Neobacillus thermocopriae SgZ-7T (99.9%), Neobacillus cucumis AP-6T (97.6%) and Neobacillus drentensis LMG 21831T (97.5%). Growth was observed at 25-65 °C (optimum 60 °C), pH 7.0-8.0 (optimum 8.0) with NaCl tolerance up to 1.0% (w/v) (optimum without NaCl %). The cell-wall peptidoglycan contained meso-diaminopimelic acid and MK-7 was the only respiratory quinone. The major fatty acids were iso-C15:0 and anteiso-C15:0. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, unidentified aminophospholipid and unidentified lipids. The average nucleotide identity and digital DNA-DNA hybridization values between strain FJAT-2464T and the most closely related strain N. thermocopriae SgZ-7T was below the threshold value for species delineation. Based on the above results, strain FJAT-2464T represents a novel species of the genus Neobacillus, for which the name Neobacillus sedimentimangrovi sp. nov. is proposed. The type strain is FJAT-2464T (= MCCC 1K04406T = KCTC 43264T).
Collapse
|
133
|
Haloechinothrix aidingensis sp. nov., an actinomycete isolated from salt lake in Xinjiang province, north-west China. Arch Microbiol 2021; 203:1801-1806. [PMID: 33484273 DOI: 10.1007/s00203-021-02184-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
An actinomycete strain, designated YIM 98757T, was isolated from the hypersaline sediment of Aiding Lake in Xinjiang province, north-west China. The strain grew well on most media tested and no diffusible pigment was produced. The substrate mycelium was well developed and fragmented. No spores were formed. The whole-cell hydrolysates contained meso-diaminopimelic acid as the cell-wall diamino acid. Xylose, galactose, ribose were the major whole-cell sugars. The phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides and an unknown phospholipid. The predominant menaquinone was MK-8(H4). The major fatty acid was iso-C16:0. The DNA G + C content was 69.1 mol%. Phylogenetic analysis indicated that the isolate belongs to the genus Haloechinothrix. However, it differed from its closest relative, H. alba YIM 98757 T in many phenotypic and chemotaxonomic characteristics. Moreover, the DNA-DNA and ANI relatedness values between the novel isolate and H. alba YIM 93221 T were 53.3% and 92.5%, respectively. Based on comparative analysis of polyphasic taxonomic data, strain YIM 98757 T represents a novel species of the genus Haloechinothrix, for which the name Haloechinothrix aidingensis sp. nov. is proposed. The type strain is YIM 98757T (= CGMCC 4.7627T = CCTCC AA 2020012).
Collapse
|
134
|
Paracoccus lichenicola sp. nov., Isolated from Lichen. Curr Microbiol 2021; 78:816-821. [PMID: 33388938 DOI: 10.1007/s00284-020-02321-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Strain YIM 132242T, isolated from lichen collected from Pu'er, Yunnan Province, China, was short-rod-shaped, Gram-reaction-negative, aerobic, catalase- and oxidase-positive. Growth of the strain was occurred at 10-39 °C (optimum, 28-35 °C), at pH 4.0-10.0 (optimum, pH 7.0-8.0) and at salinities of 0-8% (w/v) NaCl (optimum, 0-2%). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain YIM 132242T belonged to the genus Paracoccus and had the highest levels of sequence similarity to Paracoccus aerius KCTC 42845T (97.0% similarity), Paracoccus sediminis CMB17T (96.8% similarity), and Paracoccus fontiphilus MVW-1T (96.4% similarity). The major fatty acid was identified as C18:1 ω7c (77.6%). The predominant respiratory quinone was ubiquinone-10 (Q-10). Polar lipid analysis indicated the presence of phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), diphosphatidylglycerol (DPG), an unidentified lipid (L), and three unidentified phospholipids (PL1-PL3). Based on the draft genome sequence, the DNA G + C content of the strain was 67.1 mol%, and the values of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) of strain YIM 132242T with Paracoccus aerius KCTC 42845T were 85.4% and 29.1%, respectively. On the basis of the data from this polyphasic characterization, strain YIM 132242T represents a novel species of the genus Paracoccus, for which the name Paracoccus lichenicola sp. nov. is proposed. The type strain is YIM 132242T (= KCTC 72463T = CGMCC1.17191T).
Collapse
|
135
|
Liu L, Lv AP, Li MM, Ming YZ, Jiao JY, Fang BZ, Xiao M, Salam N, Li WJ. Seramator thermalis gen. nov., sp. nov., a novel cellulose- and xylan-degrading member of the family Dysgonamonadaceae isolated from a hot spring. Int J Syst Evol Microbiol 2020; 70:5717-5724. [PMID: 32956031 DOI: 10.1099/ijsem.0.004469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Two anaerobic bacteria, designated strains SYSU GA16112T and SYSU GA16107, were isolated from a hot spring in Tengchong County, Yunnan Province, south-west PR China. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains SYSU GA16112T and SYSU GA16107 belong to the family Dysgonamonadaceae. Cells of strains SYSU GA16112T and SYSU GA16107 were Gram-stain-negative, rod-shaped and non-motile. The major fatty acids (>10 %) of strains SYSU GA16112T and SYSU GA16107 were identified as anteiso-C15 : 0 and anteiso-C17 : 0 3OH. The polar lipid profile of strain SYSU GA16112T was found to consist of phosphatidylethanolamine, two unidentified aminophospholipids, two unidentified phosphoglycolipids, two unidentified aminolipids and one unidentified polar lipid, while that of strain SYSU GA16107 consisted of phosphatidylethanolamine, two unidentified polar lipids, three unidentified aminophospholipids, two unidentified phosphoglycolipids and one unidentified aminolipid. The genomic DNA G+C contents of strains SYSU GA16112T and SYSU GA16107 were determined to be 41.90 and 41.89 %, respectively, and the average nucleotide identity value between them was 99.99 %. Based on their morphological and physiological properties, and results of phylogenetic analyses, strains SYSU GA16112T and SYSU GA16107 are considered to represent a novel species of a novel genus, for which the name Seramator thermalis gen. nov., sp. nov. (type strain SYSU GA16112T=CGMCC 1.5281T=KCTC 15753T) is proposed.
Collapse
Affiliation(s)
- Lan Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yu-Zhen Ming
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Bao-Zhu Fang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Min Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
136
|
Schwitalla JW, Benndorf R, Martin K, Vollmers J, Kaster AK, de Beer ZW, Poulsen M, Beemelmanns C. Streptomyces smaragdinus sp. nov., isolated from the gut of the fungus growing-termite Macrotermes natalensis. Int J Syst Evol Microbiol 2020; 70:5806-5811. [PMID: 32969785 PMCID: PMC7723250 DOI: 10.1099/ijsem.0.004478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic position of a novel aerobic, Gram-positive actinobacteria, designated strain RB5T, was determined using a polyphasic approach. The strain, isolated from the gut of the fungus-farming termite Macrotermes natalensis, showed morphological, physiological and chemotaxonomic properties typical of the genus Streptomyces. Based on 16S rRNA gene sequence analysis, the closest phylogenetic neighbour of RB5T was Streptomyces polyrhachis DSM 42102T (98.87 %). DNA–DNA hybridization experiments between strain RB5T and S. polyrhachis DSM 42102T resulted in a value of 27.4 % (26.8 %). The cell wall of strain RB5T contained ll-diaminopimelic acid as the diagnostic amino acid. Mycolic acids and diagnostic sugars in whole-cell hydrolysates were not detected. The strain produced the following major phospholipids: diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol-mannoside and phosphatidylserine. The menaquinone profile showed hexa- and octahydrogenated menaquinones containing nine isoprene units [MK-9(H6) and MK-9(H8)]. The strain exhibited a fatty acid profile containing the following major fatty acids: 12-methyltridecanoic acid (iso-C14 : 0) 12-methyltetradecanoic acid (anteiso-C15 : 0), 13-methyltetradecanoic acid (iso-C15 : 0) and 14-methylpentadecanoic acid (iso-C16 : 0). Here, we propose a novel species of the genus Streptomyces – Streptomyces smaragdinus with the type strain RB5T (=VKM Ac-2839T=NRRL B65539T).
Collapse
Affiliation(s)
- Jan W Schwitalla
- Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - René Benndorf
- Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Karin Martin
- Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - John Vollmers
- Institute for Biological Interfaces (IBG 5), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG 5), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Z Wilhelm de Beer
- Department of Microbiology and Plant Pathology, Forestry and Agriculture Biotechnology Institute, University of Pretoria, 0028 Hatfield, South Africa
| | - Michael Poulsen
- University of Copenhagen, Department of Biology, Section for Ecology and Evolution, Universitetsparken 15, 2100 Copenhagen East, Denmark
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| |
Collapse
|
137
|
Li Q, Li G, Lang L, An D, Jiang C, Jiang Y. Glycomyces terrestris sp. nov., isolated from extremely arid soil from Yuanmou Earth Forest. Int J Syst Evol Microbiol 2020; 71. [PMID: 33253081 DOI: 10.1099/ijsem.0.004580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, mycelium-forming actinobacterium, YIM 121974T was isolated from an extreme arid soil sample collected at Yuanmou Earth Forest, Yunnan Province, PR China. Classification using a polyphasic approach suggested that strain YIM 121974T belonged to the genus Glycomyces and was closely related to Glycomyces dulcitolivorans SJ-25T (98.3 %), Glycomyces scopariae YIM 56256T (98 %), Glycomyces mayteni YIM 61331T (97.9 %), Glycomyces albidus NEAU-7082T (97.9 %), Glycomyces sambucus CGMCC 4.3147T (97.7 %), Glycomyces artemisiae IXS4T (97.6 %) and Glycomyces parisis CPCC 204357T (97.5 %), but could be distinguished from its closest relatives by a combination of phenotypic and phylogenetic features. Average nucleotide identity values of YIM 121974T to its closest phylogenetic neighbours were 70.7-88.9 %, which are lower than the threshold of 95 %. The digital DNA-DNA hybridization values between YIM 121974T and these relative species were 18.0-36.3 %, which are also well below the cut-off value (>70 %) for species delineation. The DNA G+C content of strain YIM 121974T was 72.3 mol% (draft genome sequence). The predominant menaquinone was MK-11. The phospholipids were composed of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, phosphoglycolipid and glycolipid. The major fatty acid compositions were iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The draft genome of isolate YIM 121974T was found to contain 11 secondary metabolite biosynthesis gene clusters by using the antiSMASH server. Based on the above observations, strain YIM 121974T could be distinguished from closely related species belonging to the genus Glycomyces. Thus, strain YIM 121974T represents a novel species of the genus Glycomyces, for which the name Glycomyces terrestris sp. nov. is proposed. The type strain is YIM 121974T (=KCTC 39870T=DSM 106742T).
Collapse
Affiliation(s)
- Qinyuan Li
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Guiding Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.,Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Lei Lang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Defeng An
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Chenglin Jiang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Yi Jiang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| |
Collapse
|
138
|
Ren XB, Cha QQ, Guo XH, He XY, Su HN, Qin QL, Song XY, Chen XL, Zhang YZ, Xu F, Zhang XY. Pelagovum pacificum gen. nov., sp. nov., a novel member of the family Rhodobacteraceae isolated from surface seawater of the Mariana Trench. Int J Syst Evol Microbiol 2020; 70:6155-6162. [PMID: 33052807 DOI: 10.1099/ijsem.0.004512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, ovoid-rod-shaped bacterium, designated strain SM1903T, was isolated from surface seawater of the Mariana Trench. The strain grew at 15-37 °C (optimum, 35 °C) and with 1-15 % (optimum, 4 %) NaCl. It hydrolysed aesculin but did not reduce nitrate to nitrite and hydrolyse Tween 80. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain SM1903T formed a separate lineage within the family Rhodobacteraceae, sharing the highest 16S rRNA gene sequence similarity with type strains of Pseudooceanicola antarcticus (95.7 %) and Roseisalinus antarcticus (95.7 %). In phylogenetic trees based on single-copy OCs and whole proteins sequences, strain SM1903T fell within a sub-cluster encompassed by Oceanicola granulosus, Roseisalinus antarcticus and Histidinibacterium lentulum and formed a branch adjacent to Oceanicola granulosus. The major cellular fatty acids were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C16 : 0 and 11-methyl-C18 : 1 ω7c. The polar lipids mainly comprised phosphatidylglycerol, phosphatidylcholine, one unidentified lipid, one unidentified aminolipid, and one unidentified glycolipid. The solo respiratory quinone was ubiquinone-10. The genomic DNA G+C content of strain SM1903T was 66.0 mol%. Based on the results of phenotypic, chemotaxonomic, and phylogenetic characterization for strain SM1903T, it is considered to represent a novel species of a novel genus in the family Rhodobacteraceae, for which the name Pelagovum pacificum gen. nov., sp. nov. is proposed. The type strain is SM1903T (=MCCC 1K03608T=KCTC 72046T).
Collapse
Affiliation(s)
- Xue-Bing Ren
- State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Qian-Qian Cha
- State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Xiao-Han Guo
- State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Xiao-Yan He
- State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Hai-Nan Su
- State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Qi-Long Qin
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Xiu-Lan Chen
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Fei Xu
- State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Xi-Ying Zhang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology/Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
139
|
Benndorf R, Schwitalla JW, Martin K, de Beer ZW, Vollmers J, Kaster AK, Poulsen M, Beemelmanns C. Nocardia macrotermitis sp. nov. and Nocardia aurantia sp. nov., isolated from the gut of the fungus-growing termite Macrotermes natalensis. Int J Syst Evol Microbiol 2020; 70:5226-5234. [PMID: 32815801 PMCID: PMC7660896 DOI: 10.1099/ijsem.0.004398] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
The taxonomic positions of two novel aerobic, Gram-stain-positive Actinobacteria, designated RB20T and RB56T, were determined using a polyphasic approach. Both were isolated from the fungus-farming termite Macrotermes natalensis. Results of 16S rRNA gene sequence analysis revealed that both strains are members of the genus Nocardia with the closest phylogenetic neighbours Nocardia miyunensis JCM12860T (98.9 %) and Nocardia nova DSM44481T (98.5 %) for RB20T and Nocardia takedensis DSM 44801T (98.3 %), Nocardia pseudobrasiliensis DSM 44290T (98.3 %) and Nocardia rayongensis JCM 19832T (98.2 %) for RB56T. Digital DNA-DNA hybridization (DDH) between RB20T and N. miyunensis JCM12860T and N. nova DSM 44481T resulted in similarity values of 33.9 and 22.0 %, respectively. DDH between RB56T and N. takedensis DSM44801T and N. pseudobrasiliensis DSM44290T showed similarity values of 20.7 and 22.3 %, respectively. In addition, wet-lab DDH between RB56T and N. rayongensis JCM19832T resulted in 10.2 % (14.5 %) similarity. Both strains showed morphological and chemotaxonomic features typical for the genus Nocardia, such as the presence of meso-diaminopimelic acid (A2pm) within the cell wall, arabinose and galactose as major sugar components within whole cell-wall hydrolysates, the presence of mycolic acids and major phospholipids (diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol), and the predominant menaquinone MK-8 (H4, ω-cyclo). The main fatty acids for both strains were hexadecanoic acid (C16 : 0), 10-methyloctadecanoic acid (10-methyl C18 : 0) and cis-9-octadecenoic acid (C18 : 1 ω9c). We propose two novel species within the genus Nocardia: Nocardia macrotermitis sp. nov. with the type strain RB20T (=VKM Ac-2841T=NRRL B65541T) and Nocardia aurantia sp. nov. with the type strain RB56T (=VKM Ac-2842T=NRRL B65542T).
Collapse
Affiliation(s)
- René Benndorf
- Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Jan W. Schwitalla
- Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Karin Martin
- Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Z. Wilhelm de Beer
- Department of Microbiology and Plant Pathology, Forestry and Agriculture Biotechnology Institute, University of Pretoria, 0028 Hatfield, South Africa
| | - John Vollmers
- Institute for Biological Interfaces (IBG 5), Karlsruhe Institute of Technology, Hermann-von- Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG 5), Karlsruhe Institute of Technology, Hermann-von- Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael Poulsen
- University of Copenhagen, Department of Biology, Section for Ecology and Evolution, Universitetsparken 15, 2100 Copenhagen East, Denmark
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| |
Collapse
|
140
|
Benndorf R, Martin K, Küfner M, de Beer ZW, Vollmers J, Kaster AK, Beemelmanns C. Actinomadura rubteroloni sp. nov. and Actinomadura macrotermitis sp. nov., isolated from the gut of the fungus growing-termite Macrotermes natalensis. Int J Syst Evol Microbiol 2020; 70:5255-5262. [PMID: 32845828 PMCID: PMC7660899 DOI: 10.1099/ijsem.0.004403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/03/2020] [Indexed: 11/18/2022] Open
Abstract
The taxonomic positions of two novel aerobic, Gram-positive actinobacteria, designated strains RB29T and RB68T, were determined using a polyphasic approach. Based on 16S rRNA gene sequence analysis, the closest phylogenetic neighbours of RB29T were identified as Actinomadura rayongensis DSM 102126T (99.2 % similarity) and Actinomadura atramentaria DSM 43919T (98.7 %), and for strain RB68T was Actinomadura hibisca DSM 44148T (98.3 %). Digital DNA-DNA hybridization (dDDH) between RB29T and its closest phylogenetic neighbours, A. rayongensis DSM 102126T and A. atramentaria DSM 43919T, resulted in similarity values of 53.2 % (50.6-55.9 %) and 26.4 % (24.1-28.9 %), respectively. Additionally, the average nucleotide identity (ANI) was 93.2 % (94.0 %) for A. rayongensis DSM 102126T and 82.3 % (78.9 %) for A. atramentaria DSM 43919T. dDDH analysis between strain RB68T and A. hibisca DSM 44148T gave a similarity value of 24.5 % (22.2-27.0 %). Both strains, RB29T and RB68T, revealed morphological characteristics and chemotaxonomic features typical for the genus Actinomadura, such as the presence of meso-diaminopimelic acid in the cell wall, galactose and glucose as major sugar components within whole-cell hydrolysates and the absence of mycolic acids. The major phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. Predominant menaquinones were MK-9(H6) and MK-9(H8) for RB29T and MK-9(H4) and MK-9(H6) for RB68T. The main fatty acids were identified as 10-methyloctadecanoic acid (10-methyl C18:0), 14-methylpentadecanoic acid (iso-C16:0), hexadecanoic acid (C16:0) and cis-9-octadecanoic acid (C18 : 1 ω9c). Here, we propose two novel species of the genus Actinomadura: Actinomadura rubteroloni sp. nov. with the type strain RB29T (=CCUG 72668T=NRRL B-65537T) and Actinomadura macrotermitis sp. nov. with the type strain RB68T (=CCUG 72669T=NRRL B-65538T).
Collapse
Affiliation(s)
- René Benndorf
- Chemical Biology of Microbe–Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Karin Martin
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Michelle Küfner
- Chemical Biology of Microbe–Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Z. Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agriculture Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - John Vollmers
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christine Beemelmanns
- Chemical Biology of Microbe–Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| |
Collapse
|
141
|
Li Y, Sun XM, Li J, Song XY, Qin QL, Su HN, Chen XL, Zhang YZ, Fan SJ, Zhang XY. Marinomonas profundi sp. nov., isolated from deep seawater of the Mariana Trench. Int J Syst Evol Microbiol 2020; 70:5747-5752. [PMID: 32945763 DOI: 10.1099/ijsem.0.004472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, polarly flagellated, straight or curved rod-shaped bacterium, designated strain M1K-6T, was isolated from deep seawater samples collected from the Mariana Trench. The strain grew at -4 to 37 °C (optimum, 25-30 °C), at pH 5.5-10.0 (optimum, pH 7.0) and with 0.5-14.0 % (w/v) NaCl (optimum, 2.0 %). It did not reduce nitrate to nitrite nor hydrolyse gelatin or starch. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain M1K-6T was affiliated with the genus Marinomonas, sharing 93.1-97.0 % sequence similarity with the type strains of recognized Marinomonas species. The major cellular fatty acids were summed feature 3 (C16 : 1 ω6c/C16 : 1 ω7c), summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), C16 : 0, C10 : 0 3-OH and C18 : 0. The predominant respiratory quinone was ubiquinone-8. Polar lipids of strain M1K-6T included phosphatidylethanolamine, phosphatidylglycerol and two unidentified lipids. The genomic G+C content of strain M1K-6T was 46.0 mol%. Based on data from the present polyphasic study, strain M1K-6T was considered to represent a novel species within the genus Marinomonas, for which the name Marinomonas profundi sp. nov. is proposed. The type strain is M1K-6T (=KCTC 72501T=MCCC 1K03890T).
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,College of Life Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Xiao-Meng Sun
- College of Life Science, Shandong Normal University, Jinan 250014, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Jian Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Hai-Nan Su
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Xiu-Lan Chen
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Shou-Jin Fan
- College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Xi-Ying Zhang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
142
|
Niu M, Ming H, Cheng LJ, Yi BF, Xia TT, Li M, Nie GX. Brevibacillus migulae sp. nov., isolated from a Yellow River sediment sample. Int J Syst Evol Microbiol 2020; 70:5693-5700. [PMID: 32931405 DOI: 10.1099/ijsem.0.004462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain CFH S0501T, a novel Gram-stain-positive, aerobic, rod-shaped, endospore-forming and motile micro-organism with peritrichous flagella, was isolated from a sediment sample collected from the Yellow River in Henan Province, PR China. Optimum growth was observed at 28 °C, pH 7.0 and without NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that the strain belonged to the genus Brevibacillus and was closely related to Brevibacillus centrosporus DSM 8445T and Brevibacillus ginsengisoli Gsoil 3088T (with 96.8 and 96.7 % sequence similarity, respectively). The predominant menaquinone was MK-7. Major cellular fatty acids were anteiso-C15 : 0 and iso-C15 : 0. Polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, two unidentified phospholipids and an unidentified polar lipid. The cell-wall peptidoglycan was found to contain meso-diaminopimelic acid. The genome size was 5.26 Mbp with a G+C content of 49.7 mol%. The average nucleotide identity (ANI) and in silico DNA-DNAhybridization (DDH) values between CFH S0501T and the other species of the genus Brevibacillus were found to be low (ANIm <86.11 %, ANIb <70.30 % and DDH <25.00 %). Based on physiological properties, chemotaxonomic characteristics and low ANI and DDH results, strain CFH S0501T is considered to represent a novel species, for which the name Brevibacillus migulae sp. nov. is proposed. The type strain is CFH S0501T (=DSM 29940T=BCRC 80809T).
Collapse
Affiliation(s)
- Mingming Niu
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Hong Ming
- Synthetic Biology Engineering Lab of Henan Province, College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Li-Jiao Cheng
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Bing-Fang Yi
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Ting-Ting Xia
- Synthetic Biology Engineering Lab of Henan Province, College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Meng Li
- Synthetic Biology Engineering Lab of Henan Province, College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Guo-Xing Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| |
Collapse
|
143
|
Ye JJ, Liu SW, Lu QP, Cheema MT, Abbas M, Sajid I, Huang DL, Sun CH. Arthrobacter mobilis sp. nov., a novel actinobacterium isolated from Cholistan desert soil. Int J Syst Evol Microbiol 2020; 70:5445-5452. [PMID: 32886595 DOI: 10.1099/ijsem.0.004431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic, catalase-positive, oxidase-negative, non-mycelium-forming, motile, rod-shaped with one polar flagellum actinobacterium, designated E918T, was isolated from a desert soil collected in Cholistan desert, Pakistan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain E918T belonged to the genus Arthrobacter and was most closely related to Arthrobacter deserti CGMCC 1.15091T (97.2 % similarity). The peptidoglycan was of the A3α type and the whole-cell sugar profile was found to contain galactose. The major menaquinone was MK-9(H2). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and two unidentified glycolipids. The major fatty acids identified were anteiso-C15 : 0 and anteiso-C17 : 0. The G+C content of the genomic DNA was 68.69 mol%. The digital DNA-DNA hybridization and average nucleotide identity values between strain E918T and A. deserti CGMCC 1.15091T were 28.0 and 83.4%, respectively. On the basis of its phylogenetic, phenotypic and chemotaxonomic features, strain E918T was considered to represent a novel species of the genus Arthrobacter, for which the name Arthrobacter mobilis sp. nov. is proposed. The type strain of Arthrobacter mobilis is E918T (=JCM 33392T=CGMCC 1.16978T).
Collapse
Affiliation(s)
- Jing-Jing Ye
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.,College of Basic Medical Sciences, Guilin Medical University, Guilin 541004, PR China
| | - Shao-Wei Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Qin-Pei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Mohsin Tassawar Cheema
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Abbas
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam Campus, Lahore 54590, Pakistan
| | - Imran Sajid
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam Campus, Lahore 54590, Pakistan
| | - Da-Lin Huang
- College of Basic Medical Sciences, Guilin Medical University, Guilin 541004, PR China
| | - Cheng-Hang Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| |
Collapse
|
144
|
Geng YH, He XY, Li N, Li J, Gu TJ, Sun XM, Song XY, Chen XL, Zhang YZ, Qin QL, Zhang XY. Vibrio algicola sp. nov., isolated from the surface of coralline algae. Int J Syst Evol Microbiol 2020; 70:5149-5155. [PMID: 32812859 DOI: 10.1099/ijsem.0.004394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, oxidase- and catalase-positive, facultative anaerobic and rod-shaped bacterium, designated strain SM1977T, was isolated from the surface of coralline algae collected from the intertidal zone at Qingdao, PR China. The strain grew at 10-35 °C, pH 4.5-8.5 and with 1-8.5% (w/v) NaCl. It reduced nitrate to nitrite and hydrolysed Tween 20 and DNA. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SM1977T was affiliated with the genus Vibrio, having the highest sequence similarity (97.6 %) to the type strain of Vibrio casei, followed by those of another five species (95.6-97.6 %) in the Rumoiensis clade of the genus Vibrio. However, the in silico DNA-DNA hybridization (75.3-75.9 %) and average nucleotide identity (21.6-22.8 %) values of SM1977T against these close relatives were all below the corresponding thresholds to discriminate bacterial species. The major fatty acids were summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0 and summed feature 8 (C18:1 ω6c and /or C18:1 ω7c). The predominant polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The sole respiratory quinone was Q-8. The genomic DNA G+C content of strain SM1977T, determined from the obtained whole genomic sequence, was 42.3 mol%. On the basis of the polyphasic results obtained in this study, strain SM1977T is considered to represent a novel species within the genus Vibrio, for which the name Vibrio algicola sp. nov. is proposed. The type strain is SM1977T (=MCCC 1K04351T=KCTC 72847T).
Collapse
Affiliation(s)
- Yu-Hui Geng
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Xiao-Yan He
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Na Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Jian Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Tie-Ji Gu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Xiao-Meng Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Xiu-Lan Chen
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Qi-Long Qin
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Xi-Ying Zhang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
145
|
Yang L, Huang HW, Wang Y, Kou YR, Yin M, Li Y, Wang XQ, Zhao GF, Zhu WY, Tang SK. Paenibacillus turpanensis sp. nov., isolated from a salt lake of Turpan city in Xinjiang province, north-west China. Arch Microbiol 2020; 203:77-83. [PMID: 32748000 DOI: 10.1007/s00203-020-02003-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/04/2020] [Accepted: 07/24/2020] [Indexed: 11/30/2022]
Abstract
Strain YIM B00363T, a Gram-positive, aerobic, non-motile, rod-shaped, spore-forming bacterium, was isolated from saline soil samples collected from a salt lake in Xinjiang province, north-west China, and was characterized using a polyphasic approach. The optimum growth temperature was 37 °C and the optimum pH was 7.5-8.0. The major menaquinone was MK-7; anteiso-C15:0 (53.52%), iso-C15:0 (15.04%) and C16:0 (12.76%) were the predominant cellular fatty acids. The diagnostic diamino acid of the cell wall peptidoglycan was meso-diaminopimelic acid. The phospholipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, unidentified phospholipids, unidentified glycolipids and unknown lipids. The DNA G + C content of the type strain was 50.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain YIM B00363T belonged to a cluster comprising species of the genus Paenibacillus. The nearest relatives were P. residui MC-246T and P. senegalensis JC66T, with 93.2% and 92.8% gene sequence similarities, respectively. On the basis of its phenotypic characteristics and phylogenetic distinctivenes, strain YIM B00363T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus turpanensis sp. nov. is proposed. The type strain is YIM B00363T (= CGMCC 1.17507T = KCTC 43184T).
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of MicrobiologySchool of Life SciencesYunnan University, Kunming, 650091, People's Republic of China
| | - Hua-Wei Huang
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of MicrobiologySchool of Life SciencesYunnan University, Kunming, 650091, People's Republic of China
| | - Yun Wang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China
| | - Ya-Rong Kou
- Walvax Biotechnology Co., Ltd, Kunming, 650106, People's Republic of China
| | - Min Yin
- School of Medicine, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yu Li
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of MicrobiologySchool of Life SciencesYunnan University, Kunming, 650091, People's Republic of China
| | - Xue-Qian Wang
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of MicrobiologySchool of Life SciencesYunnan University, Kunming, 650091, People's Republic of China
| | - Gui-Fang Zhao
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of MicrobiologySchool of Life SciencesYunnan University, Kunming, 650091, People's Republic of China
| | - Wen-Yong Zhu
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of MicrobiologySchool of Life SciencesYunnan University, Kunming, 650091, People's Republic of China. .,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infections Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, People's Republic of China.
| | - Shu-Kun Tang
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of MicrobiologySchool of Life SciencesYunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
146
|
Sphingobacterium endophyticum sp. nov., a novel endophyte isolated from halophyte. Arch Microbiol 2020; 202:2771-2778. [PMID: 32737542 DOI: 10.1007/s00203-020-02000-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/02/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022]
Abstract
A bacterial strain designated NYYP31T was isolated from the leaves of an annual halophytes, Suaeda corniculata Bunge, collected from the southern edge of the Gurbantunggut desert, north-west China. Strain NYYP31T was Gram-staining negative, strictly aerobic, rod-shaped, non-motile, and non-spore-forming. Growth was observed at 4-42 °C, at pH 5.0-10.0, in the presence of up to 8% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences and coding sequences of 92 protein clusters showed that strain NYYP31T should be assigned to the genus Sphingobacterium. 16S rRNA gene sequence similarity analysis showed that strain NYYP31T was most closely related to the type strain of Sphingobacterium daejeonense (97.9%) and Sphingobacterium lactis (97.7%). The predominant isoprenoid quinone was MK-7. The major fatty acids were identified as iso-C15:0, iso-C17:0 3-OH and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The polar lipids were phosphatidylethanolamine, two unidentified phospholipids, three unidentified lipids, three unidentified amino phospholipids, and two unidentified glycolipids. The genomic DNA G + C content was 36.4 mol%. The average nucleotide identity (ANI) values for strain NYYP31T to the type strains of S. daejeonense and S. lactis were 77.9 and 74.1%, respectively, which were below the cut-off level (95-96%) for species delineation. Based on the above results, strain NYYP31T represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium endophyticum sp. nov. is proposed. The type strain is NYYP31T (= CGMCC 1.16979T = NBRC 114258T).
Collapse
|
147
|
Ping W, Zhang Y, Pang H, Zhang J, Li D, Li Y, Zhang J. Chitinophaga solisilvae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2020; 70:4808-4815. [DOI: 10.1099/ijsem.0.004350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, strictly aerobic, non-motile and rod-shaped bacterial strain, O9T, was isolated from a forest soil sample collected at Dai, Xishuangbanna, Yunnan Province, PR China. Strain O9T grew optimally at pH 7.0, at 28‒30 °C and in the absence of NaCl. 16S rRNA gene sequence analysis placed strain O9T within the genus
Chitinophaga
of the family Chitinophagaceae, with
Chitinophaga terrae
KP01T (97.8 %),
Chitinophaga jiangningensis
JN53T (97.7 %),
Chitinophaga niastensis
JS16-4T (97.4 %),
Chitinophaga qingshengii
JN246T (97.3 %) and
Chitinophaga dinghuensis
DHOC24T (97.3 %) as its closest relatives. Strain O9T hydrolysed casein, gelatin and Tween 80. It could not assimilate l-arabinose, l-rhamnose, sucrose, melibiose, gentiobiose or d-fructose as a carbon source. It was negative for esterase lipase (C8) and β-glucosidase. Phosphatidylethanolamine was the predominant polar lipid. The major respiratory quinone of strain O9T was MK-7. Its major fatty acids were iso-C15:0 (34.2 %), C16:1
ω5c (20.9 %) and iso-C17:0 3-OH (12.6 %). The genomic DNA G+C content of strain O9T was 49.0 mol% based on total genome calculations. The average nucleotide identity score between the genomic sequence of strain O9T and that of
Chitinophaga terrae
KP01T was 72.9%. The Genome-to-Genome Distance Calculator showed that DNA‒DNA hybridization values for strain O9T and
Chitinophaga terrae
KP01T were 13.6, 21.1 and 14.4%, respectively. Based on the polyphasic taxonomic data, strain O9T represents a novel species of the genus
Chitinophaga
, for which the name Chitinophaga solisilvae sp. nov. is proposed. The type strain is O9T (=CGMCC 1.12462T=KCTC 32404T).
Collapse
Affiliation(s)
- Weiwei Ping
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ying Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Huancheng Pang
- Institute of Agri-resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Jun Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Dai Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yuyi Li
- Institute of Agri-resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Jianli Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
148
|
Ming H, Niu MM, Cheng LJ, Zhang YM, Yi BF, Xia TT, Li M, Nie GX. Isoptericola halalbus sp. nov., a halotolerant actinobacterium isolated from saline lake sediment. Int J Syst Evol Microbiol 2020; 70:4661-4667. [PMID: 32687463 DOI: 10.1099/ijsem.0.004329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-positive bacterium, designated CFH 91151T, was isolated from sediment collected from a saline lake in Yuncheng, Shanxi Province, PR China. Cells of strain CFH 91151T were rod-or v-shaped, aerobic, non-motile, non-spore-forming and halotolerant. Results of 16S rRNA gene sequence analysis revealed that strain CFH 91151T was closely related to Isoptericola variabilis MX5T and Isoptericola nanjingensis H17T (98.7 and 98.4% sequence similarity, respectively). The strain grew at 4-45 °C, pH 5.0-9.0 and with 0-14.0 % (w/v) NaCl. Cells were positive for catalase, nitrate was not used and H2S was not produced. Major cellular fatty acids were anteiso-C15 : 0 (62.76 %), anteiso-C17 : 0 (12.09 %) and iso-C15 : 0 (9.46 %). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two unidentified phospholipids and three unidentified glycolipids. The menaquinone was MK-9 (H4). The genome size was 4.10 Mbp with a G+C content of 72.4 mol%. The average amino acid identity (ANI) and in silico DNA-DNA hybridization (DDH) values between CFH 91151T and the other species of the genus Isoptericola were found to be low (ANIm <87.19 %, ANIb <84.38 % and DDH <29.30 %). Based on physiological properties, chemotaxonomic characteristics and low ANI and DDH results, strain CFH 91151T is considered to represent a novel species, for which the name Isoptericola halalbus sp. nov. is proposed. The type strain is CFH 91151T (=DSM 105976T=KCTC 49061T).
Collapse
Affiliation(s)
- Hong Ming
- Synthetic Biology Engineering Lab of Henan Province, College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Ming-Ming Niu
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Li-Jiao Cheng
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Yan-Min Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Bing-Fang Yi
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Ting-Ting Xia
- Synthetic Biology Engineering Lab of Henan Province, College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Meng Li
- Synthetic Biology Engineering Lab of Henan Province, College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Guo-Xing Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| |
Collapse
|
149
|
Arthrobacter sedimenti sp. nov., isolated from river sediment in Yuantouzhu park, China. Arch Microbiol 2020; 202:2551-2556. [PMID: 32661667 DOI: 10.1007/s00203-020-01968-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 10/23/2022]
Abstract
A Gram-stain positive, motile, aerobic and rod-shaped strain (MIC A30T) was isolated from river sediment in Yuantouzhu park, Wuxi City, China. Growth occurred at 20-40 °C, at pH 6.0-9.0 and at 0-5.0% NaCl. Strain MIC A30T was moderately related to Arthrobacter liuii CGMCC 1.12778T (97.9%), Arthrobacter pokkaliiT (97.9%) and Arthrobacter globiformis NBRC 12137T (96.7%) by 16S rRNA analysis. The DNA-DNA relatedness values between strain MIC A30T and these reference strains were below 30%. The DNA G+C content was 63.1 mol%. Average nucleotide identity (ANI) and genome-to-genome distance (GGD) values between strain MIC A30T and A. liuii CGMCC 1.12778T were 60.34% and 29.39%, respectively. Quinone was identified as MK-9(H2). Major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. Major fatty acids were iso-C15:0, anteiso-C15:0 and anteiso-C17:0. Whole-cell sugars were galactose, mannose and rhamnose. The cell wall peptidoglycan contained A4α peptidoglycan type with lysine as the diagnostic diamino acid. Based on several taxonomic results, strain MIC A30T is identified as a novel species in genus Arthrobacter, whose name is proposed as Arthrobacter sedimenti sp. nov. The type strain is MIC A30T (= KACC 19599T = CGMCC 1.13474T).
Collapse
|
150
|
Zhou T, Wang XY, Deng DQ, Xu LH, Li XL, Guo Y, Li WH, Xie H, Zhang PL, Zhou XH. Nocardia colli sp. nov., a new pathogen isolated from a patient with primary cutaneous nocardiosis. Int J Syst Evol Microbiol 2020; 70:2981-2987. [PMID: 32375925 PMCID: PMC7395626 DOI: 10.1099/ijsem.0.003856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A novel nocardioform strain, CICC 11023T, was isolated from a tissue biopsy of neck lesions of a patient with primary cutaneous nocardiosis and characterized to establish its taxonomic position. The morphological, biochemical, physiological and chemotaxonomic properties of strain CICC 11023T were consistent with classification in the genus Nocardia. Whole-cell hydrolysates were rich in meso-diaminopimelic acid, galactose, arabinose and fructose. Mycolic acids were present. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid and two unidentified lipids, and the predominant menaquinone was cyclo MK-8 (H4, ω-cyclo). The main fatty acids (>5 %) were C18 : 0 10-methyl (TBSA), C16 : 0, summed feature 4 (C16 : 1 trans 9/C15 : 0 iso 2OH), C15 : 0 and C17 : 0 10-methyl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the isolate is most closely related (>98 % similarity) to the type strains Nocardia ninae OFN 02.72T, Nocardia iowensis UI 122540T and Nocardia alba YIM 30243T, and phylogenetic analysis of gyrB gene sequences showed similarity (89.1–92.2 %) to Nocardia vulneris NBRC 108936T, Nocardia brasiliensis IFM 0236T and Nocardia exalbida IFM 0803T. DNA–DNA hybridization results for strain CICC 11023T compared to Nocardia type strains ranged from 20.4 to 35.4 %. The genome of strain CICC 11023T was 8.78 Mbp with a G+C content of 67.4 mol% overall. The average nucleotide identity (ANI) values between strain CICC 11023T and N. alba YIM 30243T were low (OrthoANIu=77.47 %), and the ANI values between strain CICC 11023T and N. vulneris NBRC 108936 T were low (OrthoANIu=83.75 %). Consequently, strain CICC 11023T represents a novel Nocardia species on the basis of this polyphasic study, for which the name Nocardia colli sp. nov. is proposed. The type strain is CICC 11023T (=KCTC 39837T).
Collapse
Affiliation(s)
- Tao Zhou
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, PR China
| | - Xiao-Yun Wang
- Department of Dermatology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, PR China
- *Correspondence: Xiao-Yun Wang,
| | - Dan-Qi Deng
- Department of Dermatology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, PR China
| | - Li-Hua Xu
- The Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, PR China
| | - Xiao-Lan Li
- Department of Dermatology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, PR China
| | - Yun Guo
- Department of Dermatology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, PR China
| | - Wen-Hua Li
- Department of Dermatology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, PR China
| | - Hong Xie
- Department of Dermatology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, PR China
| | - Pei-Lian Zhang
- Department of Dermatology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, PR China
| | - Xiao-Hong Zhou
- Department of Dermatology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, PR China
| |
Collapse
|