101
|
Chiu CH, Su LH, Chu CH, Wang MH, Yeh CM, Weill FX, Chu C. Detection of multidrug-resistant Salmonella enterica serovar typhimurium phage types DT102, DT104, and U302 by multiplex PCR. J Clin Microbiol 2006; 44:2354-8. [PMID: 16825349 PMCID: PMC1489530 DOI: 10.1128/jcm.00171-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a common cause of nontyphoidal salmonellosis in humans and animals. Multidrug-resistant serovar Typhimurium phage type DT104, which emerged in the 1990s, has become widely distributed in many countries. A total of 104 clinical isolates of Salmonella serogroup B were collected from three major hospitals in Taiwan during 1997 to 2003 and were examined by a multiplex PCR targeting the resistance genes and the spv gene of the virulence plasmid. A total of 51 isolates (49%) were resistant to all drugs (ACSSuT [resistance to ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline]), and all contained a 1.25-kb PCR fragment of integron that is part of the 43-kb Salmonella genomic island 1 (SGI1). The second group was resistant to SSu (28%), and the third was susceptible to all five drugs (13%). Fifty-nine isolates were serotyped to be serovar Typhimurium by the tube agglutination method using H antisera. The virulence plasmid was found in 54 (91.5%) of the 59 serovar Typhimurium isolates. A majority (94.1%) of the Salmonella serogroup B isolates with the ACSSuT resistance pattern harbored a virulence plasmid. Phage typing identified three major phage types: DT104, DT120, and U302. Analysis of the isolates by pulsed-field gel electrophoresis showed six genotypes. We found two genotypes in DT104 strains, two in DT120, and the other two in U302. The presence of a monophasic serovar (4,5,12:i:-) has added difficulty in the determination of the serovars of multidrug-resistant Salmonella serogroup B isolates. Nevertheless, the multiplex PCR devised in the present study appears to be efficient and useful in the rapid identification of ACSSuT-type serovar Typhimurium with SGI1, irrespective of their phage types.
Collapse
Affiliation(s)
- Cheng-Hsun Chiu
- Department of Pediatrics, Chang Gung Children's Hospital, and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
102
|
Tu X, Latifi T, Bougdour A, Gottesman S, Groisman EA. The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica. Proc Natl Acad Sci U S A 2006; 103:13503-8. [PMID: 16938894 PMCID: PMC1557385 DOI: 10.1073/pnas.0606026103] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The sigma factor RpoS regulates the expression of many stress response genes and is required for virulence in several bacterial species. We now report that RpoS accumulates when Salmonella enterica serovar Typhimurium is growing logarithmically in media with low Mg(2+) concentrations. This process requires the two-component regulatory system PhoP/PhoQ, which is specifically activated in low Mg(2+). We show that PhoP controls RpoS protein turnover by serving as a transcriptional activator of the iraP (yaiB) gene, which encodes a product that enhances RpoS stability by interacting with RssB, the protein that normally delivers RpoS to the ClpXP protease for degradation. Mutation of the phoP gene rendered Salmonella as sensitive to hydrogen peroxide as an rpoS mutant after growth in low Mg(2+). In Escherichia coli, low Mg(2+) leads to only modest RpoS stabilization, and iraP is not regulated by PhoP/PhoQ. These findings add the sigma factor RpoS to the regulatory proteins and two-component systems that are elevated in a PhoP/PhoQ-dependent fashion when Salmonella face low Mg(2+) environments. Our data also exemplify the critical differences in regulatory circuits that exist between the closely related enteric bacteria Salmonella and E. coli.
Collapse
Affiliation(s)
- Xuanlin Tu
- Department of Molecular Microbiology and
| | - Tammy Latifi
- Department of Molecular Microbiology and
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Alexandre Bougdour
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- To whom correspondence may be addressed. E-mail:
or
| | - Eduardo A. Groisman
- Department of Molecular Microbiology and
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
103
|
Thompson A, Rolfe MD, Lucchini S, Schwerk P, Hinton JCD, Tedin K. The bacterial signal molecule, ppGpp, mediates the environmental regulation of both the invasion and intracellular virulence gene programs of Salmonella. J Biol Chem 2006; 281:30112-21. [PMID: 16905537 DOI: 10.1074/jbc.m605616200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During infection of mammalian hosts, facultative intracellular pathogens have to adjust rapidly to different environmental conditions encountered during passage through the gastrointestinal tract and following uptake into epithelial cells and macrophages. Successful establishment within the host therefore requires the coordinated expression of a large number of virulence genes necessary for the adaptation between the extracellular and intracellular phases of infection. In this study we show that the bacterial signal molecule, ppGpp, plays a major role in mediating the environmental signals involved in the regulation of both the extracellular and intracellular virulence gene programs. Under oxygen limiting conditions, we observed a strong ppGpp dependence for invasion gene expression, the result of severe reductions in expression of the Salmonella pathogenicity island (SPI) 1 transcriptional regulator genes hilA, C, and D and invF. Overexpression of the non-SPI1-encoded regulator RtsA restored hilA expression in the absence of ppGpp. SPI2-encoded genes, required for intracellular proliferation in macrophages, were activated in the wild type strain under aerobic, late log phase growth conditions. The expression of SPI2 genes was also shown to be ppGpp-dependent under these conditions. The results from this study suggest a mechanism for the alternate regulation of the opposing extracellular and intracellular virulence gene programs and indicate a remarkable specificity for ppGpp in the regulation of genes involved in virulence compared with the rest of the genome. This is the first demonstration that this highly conserved regulatory system is involved in bacterial virulence gene expression on a global scale.
Collapse
Affiliation(s)
- Arthur Thompson
- Molecular Microbiology Group, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom.
| | | | | | | | | | | |
Collapse
|
104
|
Gassama-Sow A, Wane AA, Canu NA, Uzzau S, Kane AA, Rubino S. Characterization of virulence factors in the newly described Salmonella enterica serotype Keurmassar emerging in Senegal (sub-Saharan Africa). Epidemiol Infect 2006; 134:741-3. [PMID: 16420724 PMCID: PMC2870466 DOI: 10.1017/s0950268805005807] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2005] [Indexed: 11/07/2022] Open
Abstract
From 2000 to 2001, nine strains of Salmonella enterica belonging to the new serotype Keurmassar have been isolated from human and poultry samples at the Senegalese National Salmonella and Shigella Reference Laboratory at the Pasteur Institute, in Dakar. All strains carried virulence factors including Salmonella Pathogenicity Islands (SPI)-1, -2, -3 and -5 encoded genes. Strains did not harbour virulence plasmid. Ribotyping analysis revealed a single clone identical to Salmonella Decatur isolated in Zimbabwe. These data suggest that strains are closely related, and may have been spread clonally. In this new serotype, insertion sequence IS200 is not present.
Collapse
Affiliation(s)
- A Gassama-Sow
- Laboratoire de Bactériologie Expérimentale, Institut Pasteur, Dakar, Sénégal.
| | | | | | | | | | | |
Collapse
|
105
|
Abstract
The purpose of this study was to develop a multiplex polymerase chain reaction (PCR) protocol useful in the virulence genotyping of Salmonella spp. with the idea that genotyping could augment current Salmonella characterization and typing methods. Seventeen genes associated with Salmonella invasion, fimbrial production, toxin production, iron transport, and intramacrophage survival were targeted by three PCR reactions. Most of these genes are required for full Salmonella virulence in a murine model, and many are also located on Salmonella pathogenicity islands (PAIs) and are associated with type III secretion systems (TTSSs). Once the success of procedures that used positive and negative control strains was verified, the genotypes of 78 Salmonella isolates incriminated in avian salmonellosis (primarily from sick, commercially reared chickens and turkeys) and 80 Salmonella isolates from apparently healthy chickens or turkeys were compared. Eleven of the 17 genes tested (invA, orgA, prgH, tolC, spaN [invJ], sipB, sitC, pagC, msgA, spiA, and iroN) were found in all of the isolates. Another (sopB) was present in all isolates from sick birds and all but one isolate from healthy birds. The remaining five genes (lpfC, cdtB, sifA, pefA, and spvB) were found in 10%-90% of the isolates from sick birds and 3.75%-90% of the healthy birds. No significant differences in the occurrence of these genes between the two groups of isolates were detected. These results suggest that these virulence genes, and presumably the PAls and TTSSs with which they are associated, are widely distributed among Salmonella isolates of birds, regardless of whether their hosts of origin have been identified as having salmonellosis.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
106
|
Ygberg SE, Clements MO, Rytkönen A, Thompson A, Holden DW, Hinton JCD, Rhen M. Polynucleotide phosphorylase negatively controls spv virulence gene expression in Salmonella enterica. Infect Immun 2006; 74:1243-54. [PMID: 16428774 PMCID: PMC1360324 DOI: 10.1128/iai.74.2.1243-1254.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutational inactivation of the cold-shock-associated exoribonuclease polynucleotide phosphorylase (PNPase; encoded by the pnp gene) in Salmonella enterica serovar Typhimurium was previously shown to enable the bacteria to cause chronic infection and to affect the bacterial replication in BALB/c mice (M. O. Clements et al., Proc. Natl. Acad. Sci. USA 99:8784-8789, 2002). Here, we report that PNPase deficiency results in increased expression of Salmonella plasmid virulence (spv) genes under in vitro growth conditions that allow induction of spv expression. Furthermore, whole-genome microarray-based transcriptome analyses of bacteria growing inside murine macrophage-like J774.A.1 cells revealed six genes as being significantly up-regulated in the PNPase-deficient background, which included spvABC, rtcB, entC, and STM2236. Mutational inactivation of the spvR regulator diminished the increased expression of spv observed in the pnp mutant background, implying that PNPase acts upstream of or at the level of SpvR. Finally, competition experiments revealed that the growth advantage of the pnp mutant in BALB/c mice was dependent on spvR as well. Combined, our results support the idea that in S. enterica PNPase, apart from being a regulator of the cold shock response, also functions in tuning the expression of virulence genes and bacterial fitness during infection.
Collapse
Affiliation(s)
- Sofia Eriksson Ygberg
- Microbiology and Tumor Biology Center, Karolinska Institute, Nobels väg 16, 171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
107
|
Na HS, Kim HJ, Lee HC, Hong Y, Rhee JH, Choy HE. Immune response induced by Salmonella typhimurium defective in ppGpp synthesis. Vaccine 2005; 24:2027-34. [PMID: 16356600 DOI: 10.1016/j.vaccine.2005.11.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 11/09/2005] [Accepted: 11/15/2005] [Indexed: 11/24/2022]
Abstract
Systemic infection by Salmonella typhimurium requires coordinated expression of virulence genes found primarily in Salmonella Pathogenecity Islands (SPIs). We have previously reported that the intracellular signal that induces these virulence genes is a stringent signal molecule, ppGpp [Song et al. J Biol Chem 2003;279:34183]. In this study, we found that relA and spoT double mutant Salmonella (DeltappGpp strain), which is defective in ppGpp synthesis, was virtually avirulent in BALB/c mice. Subsequently, the live vaccine potential of the avirulent DeltappGpp Salmonella strain was determined. A single immunization with live DeltappGpp Salmonella efficiently protected mice from challenge with wild-type Salmonella at a dose 10(6)-fold above the LD50 30 days after immunization. Various assays revealed that immunization of mice with the DeltappGpp strain elicited both systemic and mucosal antibody responses, in addition to cell-mediated immunity.
Collapse
Affiliation(s)
- Hee Sam Na
- Genome Research Center for Enteropathogenic Bacteria and Research Institute of Vibrio Infection, South Korea
| | | | | | | | | | | |
Collapse
|
108
|
Chen S, Zhao S, McDermott PF, Schroeder CM, White DG, Meng J. A DNA microarray for identification of virulence and antimicrobial resistance genes in Salmonella serovars and Escherichia coli. Mol Cell Probes 2005; 19:195-201. [PMID: 15797820 DOI: 10.1016/j.mcp.2004.11.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 11/16/2004] [Indexed: 10/25/2022]
Abstract
Characterization of antimicrobial resistance and virulence gene profiles provides important information on the potential pathogenicity of bacteria. This information can be used to facilitate prompt and effective treatment of bacterial infections. We developed and tested a PCR-based microarray platform for detecting virulence and antimicrobial resistance genes in Salmonella serovars and Escherichia coli. Twelve Salmonella and seven E. coli isolates were screened for the presence of 25 virulence and 23 antimicrobial resistance genes. All S. Typhimurium DT104 isolates harbored virulence plasmids. E. coli O157:H7 isolates possessed virulence genes typical of enterohemorrhagic E. coli (EHEC), whereas E. coli O126 isolates contained virulence genes characteristic of enteropathogenic E. coli (EPEC) and E. coli O111, O78 and O147 isolates had virulence genes characteristic of enterotoxigenic E. coli (ETEC). Correlation between antimicrobial resistance phenotype and genotype was observed for each isolate. The aadA, tetA, and sulI genes were most commonly detected in bacteria resistant to streptomycin, tetracycline and sulfonamide, respectively. All isolates exhibiting resistance to third generation cephalosporins harbored the bla(CMY-2) and bla(TEM-1) genes. Microarray analysis is an effective method to rapidly screen Salmonella and E. coli for multiple antimicrobial resistance and virulence genes.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Nutrition and Food Science, University of Maryland, 0112 Skinner Building, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
109
|
Folkesson A, Eriksson S, Andersson M, Park JT, Normark S. Components of the peptidoglycan-recycling pathway modulate invasion and intracellular survival of Salmonella enterica serovar Typhimurium. Cell Microbiol 2005; 7:147-55. [PMID: 15617530 DOI: 10.1111/j.1462-5822.2004.00443.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
beta-Lactam resistance in enteric bacteria is frequently caused by mutations in ampD encoding a cytosolic N-acetylmuramyl- l-alanine amidase. Such mutants are blocked in murein (peptidoglycan) recycling and accumulate cytoplasmic muropeptides that interact with the transcriptional activator ampR, which de-represses beta-lactamase expression. Salmonella enterica serovar Typhimurium, an extensively studied enteric pathogen, was used to show that mutations in ampD decreased the ability of S. typhimurium to enter a macrophage derived cell line and made the bacteria more potent as inducers of inducible nitric oxide synthase (iNOS), as compared with the wild-type. ampG mutants, defective in the transport of recycled muropeptides across the cytoplasmic membrane, behaved essentially as the wild-type in invasion assays and in activation of iNOS. As ampD mutants also have reduced in vivo fitness in a murine model, we suggest that the cytoplasmic accumulation of muropeptides affects the virulence of the ampD mutants.
Collapse
Affiliation(s)
- Anders Folkesson
- Mikrobiologiskt och Tumörbiologiskt Centrum, Karolinska Institutet, S-17177 Stockholm, Sverige, Sweden.
| | | | | | | | | |
Collapse
|
110
|
Rediers H, Rainey PB, Vanderleyden J, De Mot R. Unraveling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression. Microbiol Mol Biol Rev 2005; 69:217-61. [PMID: 15944455 PMCID: PMC1197422 DOI: 10.1128/mmbr.69.2.217-261.2005] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major challenge for microbiologists is to elucidate the strategies deployed by microorganisms to adapt to and thrive in highly complex and dynamic environments. In vitro studies, including those monitoring genomewide changes, have proven their value, but they can, at best, mimic only a subset of the ensemble of abiotic and biotic stimuli that microorganisms experience in their natural habitats. The widely used gene-to-phenotype approach involves the identification of altered niche-related phenotypes on the basis of gene inactivation. However, many traits contributing to ecological performance that, upon inactivation, result in only subtle or difficult to score phenotypic changes are likely to be overlooked by this otherwise powerful approach. Based on the premise that many, if not most, of the corresponding genes will be induced or upregulated in the environment under study, ecologically significant genes can alternatively be traced using the promoter trap techniques differential fluorescence induction and in vivo expression technology (IVET). The potential and limitations are discussed for the different IVET selection strategies and system-specific variants thereof. Based on a compendium of genes that have emerged from these promoter-trapping studies, several functional groups have been distinguished, and their physiological relevance is illustrated with follow-up studies of selected genes. In addition to confirming results from largely complementary approaches such as signature-tagged mutagenesis, some unexpected parallels as well as distinguishing features of microbial phenotypic acclimation in diverse environmental niches have surfaced. On the other hand, by the identification of a large proportion of genes with unknown function, these promoter-trapping studies underscore how little we know about the secret lives of bacteria and other microorganisms.
Collapse
Affiliation(s)
- Hans Rediers
- Centre of Microbial and Plant Genetics, Heverlee, Belgium
| | | | | | | |
Collapse
|
111
|
Olah PA, Sherwood JS, Logue CM. Molecular analysis of Salmonella isolates recovered from processed Turkey carcasses. J Food Prot 2005; 68:845-9. [PMID: 15830682 DOI: 10.4315/0362-028x-68.4.845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was carried out to determine the prevalence of some virulence characteristics associated with Salmonella isolates recovered from processed turkey carcasses in the Midwestern region of the United States. A total of 94 Salmonella isolates recovered from turkey carcasses from two processing plants (A and B) were examined to determine the prevalence of invA, pagC, and spvC genes. Bioassays also were used to evaluate aerobactin and colicin production. All isolates (100%) were positive for the presence of invA and pagC but were negative for spvC. Overall, 19.1% of all isolates tested were positive for aerobactin production, and 25.5% of all isolates were positive for colicin. Aerobactin and colicin production differed among isolates recovered from the two plants; more isolates from plant B produced these compounds. The Salmonella isolates examined in this study possess significant potential for causing human illness.
Collapse
Affiliation(s)
- Pamela A Olah
- Great Plains Institute of Food Safety, Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, North Dakota 58105, USA
| | | | | |
Collapse
|
112
|
Abstract
The facultative intracellular pathogen Salmonella enterica serovar Typhimurium possesses an elaborate set of virulence genes that enables the bacterium successfully to move between and adapt to the environment, different host organisms and various micro-niches within a given host. Expression of virulence attributes is by no means constitutive. Rather, the regulation of virulence determinants is highly coordinated and integrated into normal bacterial physiological responses. By integrating discriminating virulence gene regulators with conserved housekeeping regulatory processes, the bacteria can sense alterations in the repertoire of environmental cues, and translate the sensing events into a pragmatic and coordinated expression of virulence genes. While the description of transmissible genetic elements that import global gene regulatory factors into a cell brings conceptual problems into the established regulatory network, the existence of mobile gene regulators may actually enable the bacteria to further modulate virulence expression.
Collapse
Affiliation(s)
- Mikael Rhen
- Microbiology and Tumor Biology Center, Karolinska Institute, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
113
|
Pizarro-Cerdá J, Tedin K. The bacterial signal molecule, ppGpp, regulates Salmonella virulence gene expression. Mol Microbiol 2005; 52:1827-44. [PMID: 15186428 DOI: 10.1111/j.1365-2958.2004.04122.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous, overlapping global regulatory systems mediate the environmental signalling controlling the virulence of Salmonella typhimurium. With both extra- and intracellular lifestyles, unravelling the mechanisms involved in regulating Salmonella pathogenesis has been complex. Here, we report a factor co-ordinating environmental signals with global regulators involved in pathogenesis. An S. typhimuriumDeltarelADeltaspoT strain deficient in guanosine tetraphosphate (ppGpp) synthesis was found to be highly attenuated in vivo and non-invasive in vitro. The DeltarelADeltaspoT strain exhibited severely reduced expression of hilA and invF, encoding major transcriptional activators required for Salmonella pathogenicity island 1 (SPI-1) gene expression and at least two other pathogenicity islands. None of the growth conditions intended to mimic the intestinal milieu was capable of inducing hilA expression in the absence of ppGpp. However, the expression of global regulators of Salmonella virulence, RpoS and PhoP/Q, and RpoS- and PhoP/Q-dependent, non-virulence-related genes was not significantly different from the wild-type strain. The results indicate that ppGpp plays a central role as a regulator of virulence gene expression in S. typhimurium and implicates ppGpp as a major factor in the environmental and host-dependent regulation of Salmonella pathogenesis.
Collapse
Affiliation(s)
- Javier Pizarro-Cerdá
- Institut Pasteur, Unité Interactions Bactéries-Cellules, 28 Rue du Docteur Roux, F-75724 Cedex 15 Paris, France
| | | |
Collapse
|
114
|
Fluit AC. Towards more virulent and antibiotic-resistantSalmonella? ACTA ACUST UNITED AC 2005; 43:1-11. [PMID: 15607630 DOI: 10.1016/j.femsim.2004.10.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 10/21/2004] [Indexed: 11/20/2022]
Abstract
Salmonella are well-known pathogens. Virulence determinants can be present on the chromosome, usually encoded on pathogenicity islands, or on plasmids and bacteriophages. Antibiotic resistance determinants usually are encoded on plasmids, but can also be present on the multidrug resistance region of Salmonella Genomic Island 1 (SGI1). Virulence plasmids show a remarkable diversity in the combination of virulence factors they encode, which appears to adapt them to specific hosts and the ability to cause gastroenteritidis or systemic disease. The appearance of plasmids with two replicons may help to extend the host range of these plasmids and thereby increase the virulence of previously non- or low pathogenic serovars. Antibiotic resistance among Salmonella is also increasing. This increase is not only in the percentage isolates resistant to a particular antibiotic, but also the development of resistance against newer antibiotics. The increased occurrence of integrons is particularly worrying. Integrons can harbour a varying set of antibiotic resistance encoding gene cassettes. Gene cassettes can be exchanged between integrons. Although the gene cassettes currently present in Salmonella integrons encode for older antibiotics (however, some still frequently used) gene cassettes encoding resistance against the newest antibiotics has been documented in Enterobacteriaceae. Furthermore, beta-lactamases with activity against broad-spectrum cephalosporins, which are often used in empiric therapy, have been found associated with integrons. So, empiric treatment of Salmonella infections becomes increasingly more difficult. The most worrisome finding is that virulence and resistance plasmids form cointegrates. These newly formed plasmids can be selected by antibiotic pressure and thereby for virulence factors. Taken together these trends may lead to more virulent and antibiotic-resistant Salmonella.
Collapse
Affiliation(s)
- Ad C Fluit
- Eijkman-Winkler Institute, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
115
|
Porwollik S, Boyd EF, Choy C, Cheng P, Florea L, Proctor E, McClelland M. Characterization of Salmonella enterica subspecies I genovars by use of microarrays. J Bacteriol 2004; 186:5883-98. [PMID: 15317794 PMCID: PMC516822 DOI: 10.1128/jb.186.17.5883-5898.2004] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Subspecies 1 of Salmonella enterica is responsible for almost all Salmonella infections of warm-blooded animals. Within subspecies 1 there are over 2,300 known serovars that differ in their prevalence and the diseases that they cause in different hosts. Only a few of these serovars are responsible for most Salmonella infections in humans and domestic animals. The gene contents of 79 strains from the most prevalent serovars were profiled by microarray analysis. Strains within the same serovar often differed by the presence and absence of hundreds of genes. Gene contents sometimes differed more within a serovar than between serovars. Groups of strains that share a distinct profile of gene content can be referred to as "genovars" to distinguish them from serovars. Several misassignments within the Salmonella reference B collection were detected by genovar typing and were subsequently confirmed serologically. Just as serology has proved useful for understanding the host range and pathogenic manifestations of Salmonella, genovars are likely to further define previously unrecognized specific features of Salmonella infections.
Collapse
Affiliation(s)
- S Porwollik
- Sidney Kimmel Cancer Center, 10835 Altman Row, San Diego, CA 92103, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Hurst MRH, Glare TR, Jackson TA. Cloning Serratia entomophila antifeeding genes--a putative defective prophage active against the grass grub Costelytra zealandica. J Bacteriol 2004; 186:5116-28. [PMID: 15262948 PMCID: PMC451664 DOI: 10.1128/jb.186.15.5116-5128.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 04/28/2004] [Indexed: 11/20/2022] Open
Abstract
Serratia entomophila and Serratia proteamaculans (Enterobacteriaceae) cause amber disease in the grass grub Costelytra zealandica (Coleoptera: Scarabaeidae), an important pasture pest in New Zealand. Larval disease symptoms include cessation of feeding, clearance of the gut, amber coloration, and eventual death. A 155-kb plasmid, pADAP, carries the genes sepA, sepB, and sepC, which are essential for production of amber disease symptoms. Transposon insertions in any of the sep genes in pADAP abolish gut clearance but not cessation of feeding, indicating the presence of an antifeeding gene(s) elsewhere on pADAP. Based on deletion analysis of pADAP and subsequent sequence data, a 47-kb clone was constructed, which when placed in either an Escherichia coli or a Serratia background exerted strong antifeeding activity and often led to rapid death of the infected grass grub larvae. Sequence data show that the antifeeding component is part of a large gene cluster that may form a defective prophage and that six potential members of this prophage are present in Photorhabdus luminescens subsp. laumondii TTO1, a species which also has sep gene homologues.
Collapse
|
117
|
Geimba MP, Tondo EC, de Oliveira FA, Canal CW, Brandelli A. Serological characterization and prevalence of spvR genes in Salmonella isolated from foods involved in outbreaks in Brazil. J Food Prot 2004; 67:1229-33. [PMID: 15222555 DOI: 10.4315/0362-028x-67.6.1229] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Salmonella strains (n = 75) isolated from foods involved in foodborne outbreaks occurred in Rio Grande do Sul State, Brazil, during 1999 and 2000 were studied. Strains were serotyped and submitted to PCR analysis to verify the prevalence of Salmonella plasmid virulence (spvR) regulatory gene. Among the 75 isolates, 73 (97%) were classified as Salmonella enterica serovar Enteritidis. All of the Salmonella strains isolated in 1999 were classified as serotype Enteritidis, whereas in 2000 two isolates were serotyped as Salmonella Derby and Salmonella Typhimurium. Regarding the prevalence of spvR gene, 62 strains (82.7%) were PCR positive, and a positive correlation (P < 0.05) between the strains of Salmonella Enteritidis and the presence of spvR gene was demonstrated, which suggests that this gene is a characteristic of the Salmonella Enteritidis analyzed.
Collapse
Affiliation(s)
- Mercedes P Geimba
- Faculdade de Biociências, PUCRS, Av. Ipiranga, 6681, prédio 12A, Cep 90619-900, Porto Alegre, Brazil
| | | | | | | | | |
Collapse
|
118
|
Olsen JE, Brown DJ, Thomsen LE, Platt DJ, Chadfield MS. Differences in the carriage and the ability to utilize the serotype associated virulence plasmid in strains of Salmonella enterica serotype Typhimurium investigated by use of a self-transferable virulence plasmid, pOG669. Microb Pathog 2004; 36:337-47. [PMID: 15120160 DOI: 10.1016/j.micpath.2004.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 02/23/2004] [Accepted: 02/24/2004] [Indexed: 11/16/2022]
Abstract
Most strains of Salmonella enterica subspecies enterica serotype typhimurium (S. typhimurium) naturally harbour a virulence plasmid which carries the salmonella plasmid virulence (spv) genes. However, isolates belonging to certain phage types are generally found without the plasmid. We have utilized a self-transferable virulence plasmid, pOG669 to investigate the effect of introduction of spv genes into strains of such phage types. The use of the co-integrate plasmid, pOG669, was validated on a diverse collection of strains. pOG669 was transferred into strains of serotypes that are normally associated with the possession of virulence plasmids. All strains maintained the wild type level of virulence in a mouse model, except that introduction of pOG669 restored normal virulence levels in an avirulent, plasmid free strain of S. dublin and resulted in a decrease in virulence in a strain of S. dublin from clonal line Du3. S. gallinarum did not become virulent in mice, but pOG669 was functionally interchangeable with the wild type plasmid when strains were tested in a chicken model. Strains of serotypes not normally associated with the carriage of a virulence plasmid did not increase in virulence upon the introduction of pOG669. An IncX plasmid pOG670 that was included as control was incompatible with the virulence plasmid in a strain of S. dublin, demonstrating that the common virulence plasmid of this serotype is of a different incompatibility group than other virulence plasmids. Strains of S. typhimurium from phage types that do not normally carry a virulence plasmid responded differently to attempts to introduce pOG669. No transconjugants were observed with the strains of DT5 and DT21. The introduction of pOG669 did not alter the virulence of JEO3942(DT10), DT35 and JEO3949(DT66) significantly, while DT1 and DT27 became more virulent. DT27 became as virulent as wild type C5, while logVC(10) of DT1 only increased from 4.1 to 5.7. The ability to express spv-genes was measured by use of an spvRAB'-cat fusion. Expression in S. enteritidis was found to be higher than in other serotypes tested. Only serotypes that naturally carry a virulence plasmid expressed spv-genes. The strain of DT1 expressed spv at a very low level, while expression in the strains of DT10 and DT35 was approximately 2-fold lower than in a control strain of S. typhimurium, while the level in the DT66 strain corresponded to the control strain. The plasmid pSTF9, which carried the fusion gene could not be introduced into the strains of DT5, DT21 and DT27. The RpoS level in the strains was measured indirectly by use of a katE-lacZ fusion. In the DT5 strain the level of expression was low, while the strains JEO3942(DT10), DT21, DT27 and DT35 expressed 4-5 fold the level in this strain. An internal fragment of the rpoS gene was sequenced in three strains. These all showed an identical sequence to a published S. typhimurium rpoS gene.
Collapse
Affiliation(s)
- John E Olsen
- Department of Veterinary Microbiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
119
|
Hurst MRH, O'Callaghan M, Glare TR. Peripheral sequences of the Serratia entomophila pADAP virulence-associated region. Plasmid 2004; 50:213-29. [PMID: 14597010 DOI: 10.1016/s0147-619x(03)00062-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Some strains of the Enterobacteriaceae Serratia entomophila and Serratia proteamaculans cause amber disease in the grass grub, Costelytra zealandica (Coleoptera: Scarabaeidae), an important pasture pest in New Zealand. The genes responsible for this disease reside on a large, 155-kb plasmid designated amber disease-associated plasmid (pADAP). Herein, we report the DNA sequencing of approximately 50 kb upstream and 10 kb downstream of the virulence-encoding region. Based on similarity with proteins in the current databases, and potential ribosome-binding sites, 63 potential ORFs were determined. Eleven of these ORFs belong to a type IV pilus cluster (pilL-V) and a further eight have similarities to the translated products of the plasmid transfer traH-N genes of the plasmid R64. In addition, a degenerate 785-nt direct repeat flanks a 44.7-kb region with the potential to encode three Bacillus subtilis Yee-type proteins, a fimbrial gene cluster, the sep virulence-associated genes and several remnant IS elements.
Collapse
Affiliation(s)
- Mark R H Hurst
- Biocontrol and Biosecurity, AgResearch, PO Box 60, Lincoln, New Zealand.
| | | | | |
Collapse
|
120
|
Threlfall EJ, Hampton MD, Chart H, Hopkins KL, Ward LR, Tebbutt G. Emergence of new subclones of multiresistant Salmonella
Typhimurium DT104 possibly associated with poultry meat. Vet Rec 2004; 154:89-90. [PMID: 14756505 DOI: 10.1136/vr.154.3.89] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- E J Threlfall
- Laboratory of Enteric Pathogens, Central Public Health Laboratory, 61 Colindale Avenue, London NW9 5HT
| | | | | | | | | | | |
Collapse
|
121
|
Abstract
The Gram-negative pathogen Salmonella enterica can survive and replicate within a variety of mammalian cells. Regardless of the cell type, internalized bacteria survive and replicate within the Salmonella-containing vacuole, the biogenesis of which is dependent on bacterially encoded virulence factors. In particular, Type III secretion systems translocate bacterial effector proteins into the eukaryotic cell where they can specifically interact with a variety of targets. Salmonella has two distinct Type III secretion systems that are believed to have completely different functions. The SPI2 system is induced intracellularly and is required for intracellular survival in macrophages; it plays no role in invasion but is categorized as being required for Salmonella-containing vacuole biogenesis. In contrast, the SPI1 Type III secretion system is induced extracellularly and is essential for invasion of nonphagocytic cells. Its role in post-invasion processes has not been well studied. Recent studies indicate that Salmonella-containing vacuole biogenesis may be more dependent on SPI1 than previously believed. Other non-SPI2 virulence factors and the host cell itself may play critical roles in determining the intracellular environment of this facultative intracellular pathogen. In this review we discuss the recent advances in determining the mechanisms by which Salmonella regulate Salmonella-containing vacuole biogenesis and the implications of these findings.
Collapse
Affiliation(s)
- Leigh A Knodler
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Diseases/NIH, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | | |
Collapse
|
122
|
Abstract
Comparative genomics and microarrays reveal that the genomes of different Salmonella enterica serovars are distinguished from each other by the presence or absence of hundreds of genes. The distribution of these variable genome regions is often not clonal. Therefore, lateral gene transfer (LGT) plays an important role in diversity among Salmonella. Overall, almost one quarter of the entire S. enterica sv Typhimurium genome may have been introduced by LGT.
Collapse
Affiliation(s)
- Steffen Porwollik
- Sidney Kimmel Cancer Center, 10835 Altman Row, San Diego, CA 92121, USA.
| | | |
Collapse
|
123
|
Robbe-Saule V, Algorta G, Rouilhac I, Norel F. Characterization of the RpoS status of clinical isolates of Salmonella enterica. Appl Environ Microbiol 2003; 69:4352-8. [PMID: 12902215 PMCID: PMC169149 DOI: 10.1128/aem.69.8.4352-4358.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The stationary-phase-inducible sigma factor, sigma(S) (RpoS), is the master regulator of the general stress response in Salmonella and is required for virulence in mice. rpoS mutants can frequently be isolated from highly passaged laboratory strains of Salmonella: We examined the rpoS status of 116 human clinical isolates of Salmonella, including 41 Salmonella enterica serotype Typhi strains isolated from blood, 38 S. enterica serotype Typhimurium strains isolated from blood, and 37 Salmonella serotype Typhimurium strains isolated from feces. We examined the abilities of these strains to produce the sigma(S) protein, to express RpoS-dependent catalase activity, and to resist to oxidative stress in the stationary phase of growth. We also carried out complementation experiments with a cloned wild-type rpoS gene. Our results showed that 15 of the 41 Salmonella serotype Typhi isolates were defective in RpoS. We sequenced the rpoS allele of 12 strains. This led to identification of small insertions, deletions, and point mutations resulting in premature stop codons or affecting regions 1 and 2 of sigma(S), showing that the rpoS mutations are not clonal. Thus, mutant rpoS alleles can be found in freshly isolated clinical strains of Salmonella serotype Typhi, and they may affect virulence properties. Interestingly however, no rpoS mutants were found among the 75 Salmonella serotype Typhimurium isolates. Strains that differed in catalase activity and resistance to hydrogen peroxide were found, but the differences were not linked to the rpoS status. This suggests that Salmonella serotype Typhimurium rpoS mutants are counterselected because rpoS plays a role in the pathogenesis of Salmonella serotype Typhimurium in humans or in the transmission cycle of the disease.
Collapse
Affiliation(s)
- Véronique Robbe-Saule
- Unité de Génétique des Bactéries Intracellulaires, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
124
|
Kurita A, Gotoh H, Eguchi M, Okada N, Matsuura S, Matsui H, Danbara H, Kikuchi Y. Intracellular expression of the Salmonella plasmid virulence protein, SpvB, causes apoptotic cell death in eukaryotic cells. Microb Pathog 2003; 35:43-8. [PMID: 12860458 DOI: 10.1016/s0882-4010(03)00066-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The spv genes carried on the Salmonella virulence plasmid are commonly associated with severe systemic infection in experimental animals. The SpvB virulence-associated protein has been shown to ADP-ribosylate actin, and this enzymatic activity is essential for virulence in mice. Here, we present evidence that intracellular expression of SpvB protein induces not only disruption of actin filaments but also apoptotic cell death in eukaryotic cells.
Collapse
Affiliation(s)
- Ai Kurita
- Laboratory of Molecular Immunology, Center for Basic Research, The Kitasato Institute, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Raupach B, Kurth N, Pfeffer K, Kaufmann SHE. Salmonella typhimurium strains carrying independent mutations display similar virulence phenotypes yet are controlled by distinct host defense mechanisms. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6133-40. [PMID: 12794143 DOI: 10.4049/jimmunol.170.12.6133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The outcome of Salmonella infection in the mammalian host favors whoever succeeds best in disturbing the equilibrium between coordinate expression of bacterial (virulence) genes and host defense mechanisms. Intracellular persistence in host cells is critical for pathogenesis and disease, because Salmonella typhimurium strains defective in this property are avirulent. We examined whether similar host defense mechanisms are required for growth control of two S. typhimurium mutant strains. Salmonella pathogenicity island 2 (SPI2) and virulence plasmid-cured Salmonella mutants display similar virulence phenotypes in immunocompetent mice, yet their gene loci participate in independent virulence strategies. We determined the role of TNF-alpha and IFN-gamma as well as different T cell populations in infection with these Salmonella strains. After systemic infection, IFN-gamma was essential for growth restriction of plasmid-cured S. typhimurium, while SPI2 mutant infections were controlled in the absence of IFN-gamma. TNFRp55-deficiency restored systemic virulence to both Salmonella mutants. After oral inoculation, control of plasmid-cured bacteria substantially relied on both IFN-gamma and TNF-alpha signaling while control of SPI2 mutants did not. However, for both mutants, ultimate clearance of bacteria from infected mice depended on alphabeta T cells.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antigens, CD/genetics
- Antigens, CD/physiology
- Immunity, Innate/genetics
- Immunocompromised Host/genetics
- Interferon-gamma/physiology
- Intracellular Fluid/immunology
- Intracellular Fluid/microbiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Phenotype
- Plasmids
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Salmonella Infections, Animal/genetics
- Salmonella Infections, Animal/immunology
- Salmonella Infections, Animal/microbiology
- Salmonella typhimurium/genetics
- Salmonella typhimurium/growth & development
- Salmonella typhimurium/immunology
- Salmonella typhimurium/pathogenicity
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/microbiology
- Tumor Necrosis Factor-alpha/physiology
- Virulence
Collapse
Affiliation(s)
- Bärbel Raupach
- Department of Immunology, Max-Planck-Institut für Infektionsbiologie, Berlin, Germany.
| | | | | | | |
Collapse
|
126
|
Gotoh H, Okada N, Kim YG, Shiraishi K, Hirami N, Haneda T, Kurita A, Kikuchi Y, Danbara H. Extracellular secretion of the virulence plasmid-encoded ADP-ribosyltransferase SpvB in Salmonella. Microb Pathog 2003; 34:227-38. [PMID: 12732471 DOI: 10.1016/s0882-4010(03)00034-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nontyphoid Salmonella enterica requires the plasmid-encoded spv genes to establish successful systemic infection in experimental animals. The SpvB virulence-associated protein has recently been shown to contain the ADP-ribosyltransferase domain. SpvB ADP-ribosilates actin and depolymerizes actin filaments when expressed in cultured epithelial cells. However, spontaneous secretion or release of SpvB has not been observed under in vitro growth conditions. In the present study we investigated the secretion of SpvB from Salmonella using in vitro and in vivo assay systems. We showed that SpvB is secreted into supernatant from Salmonella strains that contain the cloned spvB gene on a plasmid when they grew in intracellular salts medium (ISM), a minimal medium mimicing the intracellular iron concentrations of eukaryotic cells. A series of mutant SpvB proteins revealed that an N-terminal region of SpvB located at amino acids 1-229 was sufficient to promote secretion into extracellular milieu. Confocal immunofluorescence microscopy also demonstrated efficient localization of the N-terminal domain of SpvB(1-360) tagged with biotinylated peptide within infected host cell cytosol but not truncated SpvB(1-179) fusion protein. In addition, mutations that inactivate genes within Salmonella pathogenicity island 1 or Salmonella pathogenicity island 2 that encode type III secretion systems (TTSS) could secrete the SpvB protein into the culture medium. These results indicate that SpvB protein is transported from the bacteria and into the host cytoplasm independent of TTSS.
Collapse
Affiliation(s)
- Hideo Gotoh
- Department of Microbiology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JCD. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 2003; 47:103-18. [PMID: 12492857 DOI: 10.1046/j.1365-2958.2003.03313.x] [Citation(s) in RCA: 672] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
For intracellular pathogens such as Salmonellae, Mycobacteriae and Brucellae, infection requires adaptation to the intracellular environment of the phagocytic cell. The transition from extracellular to intravacuolar environment has been expected to involve a global modulation of bacterial gene expression, but the precise events have been difficult to determine. We now report the complete transcriptional profile of intracellular Salmonella enterica sv. Typhimurium following macrophage infection. During replication in murine macrophage-like J774-A.1 cells, 919 of 4451 S. Typhimurium genes showed significant changes in transcription. The expression profile identified alterations in numerous virulence and SOS response genes and revealed unexpected findings concerning the biology of the Salmonella-macrophage interaction. We observed that intracellular Salmonella are not starved for amino acids or iron (Fe2+), and that the intravacuolar environment is low in phosphate and magnesium but high in potassium. S. Typhimurium appears to be using the Entner-Douderoff pathway to use gluconate and related sugars as a carbon source within macrophages. Almost half the in vivo-regulated genes were of unknown function, suggesting that intracellular growth involves novel macrophage-associated functions. This is the first report that identifies the whole set of in vivo-regulated genes for any bacterial pathogen during infection of mammalian cells.
Collapse
Affiliation(s)
- Sofia Eriksson
- Microbiology and Tumor Biology Center, Karolinska Institute, Nobels väg 16, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
128
|
Kaneko A, Mita M, Sekiya K, Matsui H, Kawahara K, Danbara H. Association of a regulatory gene, slyA with a mouse virulence of Salmonella serovar Choleraesuis. Microbiol Immunol 2002; 46:109-13. [PMID: 11939575 DOI: 10.1111/j.1348-0421.2002.tb02666.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influence of slyA gene, originally found in Salmonella serovar Typhimurium as a regulatory gene for the expression of virulence genes, on a mouse virulence of S. serovar Choleraesuis was investigated by using an slyA-defective mutant. The defective mutant was constructed by the insertion of a kanamycin-resistance gene (aph) into the cloned slyA gene, and the homologous recombination with the intact slyA gene on the chromosome. The mutant strain showed the LD50 value for BALB/c mouse approximately 10(5) higher than that of the parent strain. The increase of the LD50 value was the same order as that shown by the mutation of the slyA gene of S. serovar Typhimurium, although LD50 of the wild-type strain of S. serovar Choleraesuis was 40-fold higher than that of S. serovar Typhimurium. The time course of infection observed in the mice organs also proved the clear difference of the virulence between the parent and the mutant strains. These results suggested that the slyA gene product functions as a virulence-associated regulator also in S. serovar Choleraesuis.
Collapse
Affiliation(s)
- Aki Kaneko
- Department of Microbiology, School of Pharmaceutical Science, Kitasato University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
129
|
Abstract
Bacteria are ubiquitous colonizers of various environments and host organisms, and they are therefore often subjected to drastic temperature alterations. Temperature alterations set demands on these colonizers, in that the bacteria need to readjust their biochemical constitution and physiology in order to survive and resume growth at the new temperature. Furthermore, temperature alteration is also a main factor determining the expression or repression of bacterial virulence functions. To cope with temperature variation, bacteria have devices for sensing temperature alterations and a means of translating this sensory event into a pragmatic gene response. While such regulatory cascades may ultimately be complicated, it appears that they contain primary sensor machinery at the top of the cascade. The functional core of such machinery is usually that of a temperature-induced conformational or physico-chemical change in the central constituents of the cell. In a sense, a bacterium can use structural alterations in its biomolecules as the primary thermometers or thermostats.
Collapse
Affiliation(s)
- Sofia Eriksson
- Microbiology and Tumor Biology Center, Karolinska Institute, Nobels väg 16, 171 77 Stockholm, Sweden
| | | | | |
Collapse
|
130
|
Liebana E. Molecular tools for epidemiological investigations of S. enterica subspecies enterica infections. Res Vet Sci 2002; 72:169-75. [PMID: 12076110 DOI: 10.1053/rvsc.2001.0550] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Salmonella infection is one of the most prevalent reported food-borne diseases in industrialised countries, most often associated with eating contaminated eggs, poultry and pork. Traditionally, epidemiological investigations for Salmonella enterica have been based on phenotypic characteristics. However, the predominance of certain phenotypes within hosts or locations makes further epidemiological subgrouping necessary. The combination of conventional and molecular epidemiology data is yielding important insights into the understanding of the epidemiology of many infectious diseases, although at present there is no consensus on which molecular method is best suited for intraserotype differentiation within S. enterica. This paper reviews the current methodology for some of the most prevalent animal and human-associated serotypes.
Collapse
Affiliation(s)
- E Liebana
- Department of Bacterial Diseases, Veterinary Laboratories Agency-Weybridge, Addlestone, Surrey, KT15 3NB, UK.
| |
Collapse
|
131
|
Libby SJ, Lesnick M, Hasegawa P, Kurth M, Belcher C, Fierer J, Guiney DG. Characterization of the spv locus in Salmonella enterica serovar Arizona. Infect Immun 2002; 70:3290-4. [PMID: 12011028 PMCID: PMC127997 DOI: 10.1128/iai.70.6.3290-3294.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Arizona (S. enterica subspecies IIIa) is a common Salmonella isolate from reptiles and can cause serious systemic disease in humans. The spv virulence locus, found on large plasmids in Salmonella subspecies I serovars associated with severe infections, was confirmed to be located on the chromosome of serovar Arizona. Sequence analysis revealed that the serovar Arizona spv locus contains homologues of spvRABC but lacks the spvD gene and contains a frameshift in spvA, resulting in a different C terminus. The SpvR protein functions as a transcriptional activator for the spvA promoter, and SpvB and SpvC are highly conserved. The analysis supports the proposal that the chromosomal spv sequence more closely corresponds to the ancestral locus acquired during evolution of S. enterica, with plasmid acquisition of spv genes in the subspecies I strains involving addition of spvD and polymorphisms in spvA.
Collapse
Affiliation(s)
- Stephen J Libby
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Chu C, Chiu CH, Chu CH, Ou JT. Nucleotide and amino acid sequences of oriT-traM-traJ-traY-traA-traL regions and mobilization of virulence plasmids of Salmonella enterica serovars enteritidis, gallinarum-pullorum, and typhimurium. J Bacteriol 2002; 184:2857-62. [PMID: 12003924 PMCID: PMC135071 DOI: 10.1128/jb.184.11.2857-2862.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virulence plasmid of Salmonella enterica serovar Gallinarum-Pullorum (pSPV) but not those of Salmonella enterica serovars Enteritidis (pSEV) and Typhimurium (pSTV) can be readily mobilized by an F or F-like conjugative plasmid. To investigate the reason for the difference, the oriT-traM-traJ-traY-traA-traL regions of the three salmonella virulence plasmids (pSVs) were cloned and their nucleotide and deduced amino acid sequences were examined. The cloned fragments were generally mobilized more readily than the corresponding full-length pSVs, but the recombinant plasmid containing the oriT of pSPV was, as expected, more readily mobilized, with up to 100-fold higher frequency than the recombinant plasmids containing the oriT of the other two pSVs. The nucleotide sequences of the oriT-traM-traJ-traY-traA-traL region of pSEV and pSTV were almost identical (only 4 bp differences), but differed from that of pSPV. Major nucleotide sequence variations were found in traJ, traY, and the Tra protein binding sites sby and sbm. sby of pSPV showed higher similarity than that of pSEV or pSTV to that of the F plasmid. The reverse was true for sbm: similarity was higher with pSEV and pSTV than with pSPV. In the deduced amino acid sequences of the five Tra proteins, major differences were found in TraY: pSEV's TraY was 75 amino acids, pSTV's was 106 amino acids, and pSPV's was 133 amino acids; and there were duplicate consensus betaalphaalpha fragments in the TraY of pSPV and F plasmid, whereas there was only a single betaalphaalpha fragment in that of pSEV and pSTV.
Collapse
Affiliation(s)
- Chishih Chu
- Department of Microbiology and Immunology, Chang Gung University College of Medicine, Taiwan
| | | | | | | |
Collapse
|
133
|
Kim KS, Rao NN, Fraley CD, Kornberg A. Inorganic polyphosphate is essential for long-term survival and virulence factors in Shigella and Salmonella spp. Proc Natl Acad Sci U S A 2002; 99:7675-80. [PMID: 12032342 PMCID: PMC124319 DOI: 10.1073/pnas.112210499] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2002] [Indexed: 01/10/2023] Open
Abstract
The importance of inorganic polyphosphate (poly P) and poly P kinase (PPK), the enzyme principally responsible for its synthesis, has been established previously for stationary-phase survival of Escherichia coli and virulence in Pseudomonas aeruginosa. The gene (ppk) that encodes PPK is highly conserved among many bacterial pathogens, including Shigella and Salmonella spp. In view of the phylogenetic similarity of the enteropathogens and the frequency with which virulence factors are expressed in stationary phase, the ppk gene of pathogenic Shigella flexneri, Salmonella enterica serovar Dublin, and Salmonella enterica serovar typhimurium have been cloned and deleted. In some of these mutants lacking ppk, the phenotypes included features indicative of decreased virulence such as: (i) growth defects, (ii) defective responses to stress and starvation, (iii) loss of viability, (iv) polymyxin sensitivity, (v) intolerance to acid and heat, and (vi) diminished invasiveness in epithelial cells. Thus PPK may prove, as it has with P. aeruginosa, to be an attractive target for antibiotics, with low toxicity because PPK is not found in higher eukaryotes.
Collapse
Affiliation(s)
- Kwang-Seo Kim
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | | | | | | |
Collapse
|
134
|
Hansen-Wester I, Stecher B, Hensel M. Analyses of the evolutionary distribution of Salmonella translocated effectors. Infect Immun 2002; 70:1619-22. [PMID: 11854253 PMCID: PMC127817 DOI: 10.1128/iai.70.3.1619-1622.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI2) translocates Salmonella translocated effectors (STE) into host cells. STE are encoded by genes outside of SPI2. The distribution of STE loci within the salmonellae was investigated. In contrast to the SPI2 locus that is conserved within Salmonella enterica, STE loci show a variable distribution. In addition to other virulence determinants, the possession of various sets of STE loci may contribute to the different host ranges and pathogenic potentials of S. enterica serovars.
Collapse
Affiliation(s)
- Imke Hansen-Wester
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, FAU Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
135
|
Chiu CH, Wu TL, Su LH, Chu C, Chia JH, Kuo AJ, Chien MS, Lin TY. The emergence in Taiwan of fluoroquinolone resistance in Salmonella enterica serotype choleraesuis. N Engl J Med 2002; 346:413-9. [PMID: 11832529 DOI: 10.1056/nejmoa012261] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Salmonella enterica serotype choleraesuis is a cause of serious systemic infections. Because fluoroquinolones are the drug of choice for the treatment of severe salmonella infections, the emergence and dissemination of fluoroquinolone-resistant S. enterica serotype choleraesuis have clinical consequences. METHODS In Taiwan, a hospital-based surveillance system has been in place since 1987 to monitor the incidence of S. enterica serotype choleraesuis infections and the antimicrobial susceptibility of the isolates. We investigated the rapid emergence of fluoroquinolone resistance in this serotype in 2000 and 2001. Pigs in Taiwan were evaluated as a potential source of the resistant salmonella. RESULTS A total of 501 clinical isolates of S. enterica serotype choleraesuis were recovered in our hospital from 1987 through 2000. The proportion of total salmonella isolates made up by S. enterica serotype choleraesuis decreased from an average of 8.4 percent before 1995 to 2.7 percent in 1996 through 1998. During 1999 and 2000, this proportion increased significantly, to an average of 5.0 percent. Ciprofloxacin resistance in S. enterica serotype choleraesuis has been observed since 2000. In the third quarter of 2001, 60 percent of isolates were resistant to ciprofloxacin. Molecular typing indicated that the primary source of S. enterica serotype choleraesuis isolates was herds of swine. All the resistant isolates from humans and swine had mutations that led to the substitution of phenylalanine for serine at position 83 and asparagine for aspartic acid at position 87 in the gene for DNA gyrase A. CONCLUSIONS This investigation in Taiwan indicates that fluoroquinolone-resistant S. enterica serotype choleraesuis can spread from swine to humans. The use of fluoroquinolones in food animals should be prohibited.
Collapse
Affiliation(s)
- Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Children's Hospital, Taoyuan, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Chang CC, Ou JT. Excess production of interleukin-12 subunit p40 stimulated by the virulence plasmid of Salmonella enterica serovar Typhimurium in the early phase of infection in the mouse. Microb Pathog 2002; 32:15-25. [PMID: 11782117 DOI: 10.1006/mpat.2001.0476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The production of interleukin-12 (IL-12) and its subunits in response to Salmonella enterica serovar Typhimurium infection in the BALB/c mouse was examined. Unlike wild-type Typhimurium, a plasmidless strain, isolated by curing of the virulence plasmid (pSTV), did not stimulate excess IL-12p40 production. When a Tn 5 tagged pSTV was transferred back to the plasmidless strain, the ability to stimulate IL-12p40 production was restored. However, a strain harbouring another Tn50pSTV failed to stimulate excess IL-12p40 production. This Tn 5 insertion area, located on fragment H3 of pSTV, was designated spf (stimulation of protein forty). The ability to stimulate IL-12p40 production was restored in a partial diploid that carried a wild-type fragment covering the spf site. There is one known gene, repA, a locus, rsk, and two putative ORFs, in the vicinity of the Tn 5 insertion site; however, these are not spf. The precise location of the spf locus is still unknown.
Collapse
Affiliation(s)
- Chien-Chung Chang
- Chang Gung University College of Medicine, Department of Microbiology and Immunology, Kweishan, Taoyuan, 333 Taiwan, Taiwan
| | | |
Collapse
|
137
|
Hurst MRH, Glare TR. Restriction map of the Serratia entomophila plasmid pADAP carrying virulence factors for Costelytra zealandica. Plasmid 2002; 47:51-60. [PMID: 11798285 DOI: 10.1006/plas.2001.1551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Some strains of the Enterobacteriaceae Serratia entomophila and S. proteamaculans cause amber disease in the grass grub Costelytra zealandica (Coleoptera: Scarabaeidae), an important pasture pest in New Zealand. The virulence determinants of the disease reside on a large plasmid designated pADAP (amber disease-associated plasmid). A BamHI, EcoRI, and HindIII restriction cleavage map of pADAP was constructed by means of cloning restriction fragments. Each fragment was mapped, and neighboring fragments of mapped clones were systematically isolated from libraries using DNA probes constructed from previously cloned fragments. Through the use of sniff sequencing from the distal ends of a number of pADAP subclones the location of putative IS elements and genes involved in replication and conjugation were identified and assigned on the map. The location of the amber disease virulence-associated region was also mapped. The final map of pADAP spans 155 kb, 40 kb larger than the previous estimate.
Collapse
|
138
|
|
139
|
Abstract
In order to know the effect of in vitro passages on the pathogenicity of the Salmonella gallinarum strain INTA 91, a lyophilized culture was compared with the same strain recently isolated from a sick bird. The mean lethal dose (LD50) of the orally administered lyophilized culture was determined as 2.04 x 10(8) colony-forming units (CFU)/chicken. There was no correlation between the LD50 dose and the degree of disease produced; doses 10 or 100 times higher than the calculated LD50 did not produce a more severe disease. In trial 1, chickens were challenged with 1.02 x 10(9) CFU per chicken (5LD50) of the lyophilized strain and reached 52.2% mortality at the end of the assay. In trial 2, three different groups of chickens were infected with a recent isolate of the same strain: 2.04 x 10(8) CFU/chicken, 4.1 x 10(8) CFU/chicken, and 2.1 x 10(9) CFU/chicken (i.e., 1LD50, 2LD50, and 10LD50 of the dose calculated for the lyophilized strain, respectively). These chicken groups presented higher mortality rates (90%, 100%, and 95%, respectively) than previous trials, showing that the S. gallinarum strain used here increased its virulence by in vivo infected chicken passage. In all assays, the disease started after an incubation period of around 5-6 days. To obtain reliable and reproducible results in future challenge experiments, a fixed limited number of in vitro passages of the S. gallinarum strain must be determined.
Collapse
|
140
|
|
141
|
Beuzón CR, Holden DW. Use of mixed infections with Salmonella strains to study virulence genes and their interactions in vivo. Microbes Infect 2001; 3:1345-52. [PMID: 11755424 DOI: 10.1016/s1286-4579(01)01496-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the Salmonella-mouse model of systemic infection, high dose inoculation results in the multiplication of many of the cells present in the inoculum, rather than the clonal amplification of a small number. This characteristic has allowed the development of methods to screen multiple strains for either virulence attenuation or gene expression within the same animal. Mixed infections with mutant and wild-type strains are used to provide a sensitive measure of virulence attenuation referred to as the competitive index. We have recently used a variation of this method, involving mixed infections of single and double mutant strains, to study virulence gene interaction in vivo.
Collapse
Affiliation(s)
- C R Beuzón
- Department of Infectious Diseases, Imperial College School of Medicine, Flowers Building, Armstrong Road, London SW7 2AZ, UK
| | | |
Collapse
|
142
|
Abstract
One of the strongest and most noticeable responses of a Bacillus subtilis cell to a range of stress and starvation conditions is the dramatic induction of a large number of general stress proteins. The alternative sigma factor sigma B is responsible for the induction of the genes encoding these general stress proteins that occurs following heat, ethanol, salt or acid stress, or during energy depletion. sigma B was detected more than 20 years ago by Richard Losick and William Haldenwang as the first alternative sigma factor of bacteria, but interest in sigma B declined after it was realized that sigma B is not involved in sporulation. It later turned out that sigma B, whose activity itself is tightly controlled, is absolutely required for the induction of this regulon, not only in B. subtilis, but also in other Gram-positive bacteria. These findings may have been responsible for the recent revival of interest in sigma B. This chapter summarizes the current information on this sigma B response including the latest results on the signal transduction pathways, the structure of the regulon and its physiological role. More than 150 general stress proteins/genes belong to this sigma B regulon, which is believed to provide the non-growing cell with a non-specific, multiple and preventive stress resistance. sigma B-dependent stress proteins are involved in non-specific protection against oxidative stress and also protect cells against heat, acid, alkaline or osmotic stress. A cell in the transition from a growing to a non-growing state induced by energy depletion will be equipped with a comprehensive stress resistance machine to protect it against future stress. The protection against oxidative stress may be an essential part of this response. In addition, preloading of cells with sigma B-dependent stress proteins, induced by mild heat or salt stress, will protect cells against a severe, potentially lethal, future stress. Both the specific protection against an acute emerging stress, as well as the non-specific, prospective protection against future stress, are adaptive functions crucial for surviving stress and starvation in nature. We suggest that the sigma B response is one essential component of a survival strategy that ensures survival in a quiescent, vegetative state as an alternative to sporulation. The role of sigma B in related Gram-positive bacteria (including cyanobacteria) with special emphasis on pathogenic bacteria is discussed.
Collapse
Affiliation(s)
- M Hecker
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie, Friedrich-Ludwig-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | | |
Collapse
|
143
|
Chu C, Chiu CH, Wu WY, Chu CH, Liu TP, Ou JT. Large drug resistance virulence plasmids of clinical isolates of Salmonella enterica serovar Choleraesuis. Antimicrob Agents Chemother 2001; 45:2299-303. [PMID: 11451688 PMCID: PMC90645 DOI: 10.1128/aac.45.8.2299-2303.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Choleraesuis generally causes systemic human salmonellosis without diarrhea, and therefore, antimicrobial treatment is essential for such patients. The drug resistance information on this organism is thus of high value. Serovar Choleraesuis usually harbors a virulence plasmid (pSCV) of 50 kb in size. Of the 16 clinical isolates identified to be serovar Choleraesuis, all except one harbored a pSCV and seven of them carried a pSCV of more than 125 kb in size. A pSCV was defined as a plasmid carrying spvC and characteristic deletions detected by PCR and by DNA-DNA hybridization (for the former criterion). The results of PCR, restriction fragment profiles, and Southern DNA-DNA hybridizations of the profiles all indicated that such larger pSCVs were derived from the 50-kb plasmid recombined with non-pSCVs found in some clinical isolates. Fifteen of the 17 strains, including a laboratory strain, were then tested for drug resistance against 16 antibiotics with E-test and the dilution method. The laboratory strain, which harbored a 50-kb pSCV and a 6-kb non-pSCV, was resistant only to sulfonamides (SUL), and its resistance gene, sulII, checked with PCR and DNA-DNA hybridization, was located on the 6-kb non-pSCV. All 14 clinical strains were resistant to multiple drugs. Of the 14, 7 were resistant to SUL, and the resistance gene was located on a plasmid. The sulII gene, but not bla(TEM-1), was carried only on the 6-kb non-pSCV. Of the remaining six large plasmids, three of 90 kb, two of 136 kb, and one of 140 kb, the last three were pSCVs and carried the other SUL gene (sulI) and the bla(TEM-1) gene. The six strains were also resistant to trimethoprim-sulfamethoxazole. None of the 50-kb pSCVs carried resistance genes. These drug resistance genes on the large pSCVs were apparently also acquired through recombination.
Collapse
Affiliation(s)
- C Chu
- Department of Microbiology and Immunology, Chang Gung University College of Medicine, Kweishan 333, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
144
|
Matsui H, Bacot CM, Garlington WA, Doyle TJ, Roberts S, Gulig PA. Virulence plasmid-borne spvB and spvC genes can replace the 90-kilobase plasmid in conferring virulence to Salmonella enterica serovar Typhimurium in subcutaneously inoculated mice. J Bacteriol 2001; 183:4652-8. [PMID: 11443102 PMCID: PMC95362 DOI: 10.1128/jb.183.15.4652-4658.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a mouse model of systemic infection, the spv genes carried on the Salmonella enterica serovar Typhimurium virulence plasmid increase the replication rate of salmonellae in host cells of the reticuloendothelial system, most likely within macrophages. A nonpolar deletion in the spvB gene greatly decreased virulence but could not be complemented by spvB alone. However, a low-copy-number plasmid expressing spvBC from a constitutive lacUV5 promoter did complement the spvB deletion. By examining a series of spv mutations and cloned spv sequences, we deduced that spvB and spvC could be sufficient to confer plasmid-mediated virulence to S. enterica serovar Typhimurium. The spvBC-bearing plasmid was capable of replacing all of the spv genes, as well as the entire virulence plasmid, of serovar Typhimurium for causing systemic infection in BALB/c mice after subcutaneous, but not oral, inoculation. A point mutation in the spvBC plasmid preventing translation but not transcription of spvC eliminated the ability of the plasmid to confer virulence. Therefore, it appears that both spvB and spvC encode the principal effector factors for Spv- and plasmid-mediated virulence of serovar Typhimurium.
Collapse
Affiliation(s)
- H Matsui
- Laboratory of Infectious Diseases and Immunology, Center for Basic Research, The Kitasato Institute, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
145
|
Paiva de Sousa C, Dubreuil JD. Distribution and expression of the astA gene (EAST1 toxin) in Escherichia coli and Salmonella. Int J Med Microbiol 2001; 291:15-20. [PMID: 11403406 DOI: 10.1078/1438-4221-00097] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The distribution and expression of the astA gene (EAST1 toxin) among 358 strains of Enterobacteriaceae were studied. The gene was found in 32.6% and 11.9% of Escherichia coli and Salmonella strains, respectively. The majority of E. coli EAST1-positive strains were found among EHEC (88.0%), EAggEC (86.6%), and A-EPEC (58.3%). The gene was present in 16.6% of E. coli strains without known virulence genes. There was no significant variation among the different serotypes of E. coli tested regarding the presence of the gene. For EPEC, 13.7% of the tested strains were astA-positive. Among atypical EPEC (eae+, bfp-, EAF-) and (eae+, bfp+, EAF-) 46.2 and 72.7%, respectively, were positive. The majority of the A-EPEC (87%) and EaggEC (83%) strains expressed the EAST-1 toxin as judged from Ussing chamber experiments. Of 32 EIEC strains studied, 2 possessed and expressed the gene as determined in Ussing chamber experiments. Among the Salmonella strains studied, five strains isolated from food were positive for astA and one strain of S. agona showed biological activity in Ussing chamber experiments.
Collapse
Affiliation(s)
- C Paiva de Sousa
- Departamento de Nurtição, Universidada Federale da Paraíba, João Pessoa, Brasil
| | | |
Collapse
|
146
|
Abstract
In order to infect a host, a microbe must be equipped with special properties known as virulence factors. Bacterial virulence factors are required to facilitate colonization, to survive under host defenses, and to permit multiplication inside the host. However, the possession of genes encoding virulence factors does not guarantee effective infection. There is considerable evidence that tight regulation of a given virulence factor is as important as the possession of the virulence factors themselves. Thus, an understanding of the regulation of virulence expression is fundamental to our comprehension of any infection process and can identify potential targets for disease prevention and therapy. We have summarized the lessons learned from experimental salmonellosis in terms of virulence regulation and hope to illustrate the differing requirements for gene and virulence expression.
Collapse
Affiliation(s)
- M Clements
- Microbiology and Tumor Biology Center, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
147
|
Haneda T, Okada N, Nakazawa N, Kawakami T, Danbara H. Complete DNA sequence and comparative analysis of the 50-kilobase virulence plasmid of Salmonella enterica serovar Choleraesuis. Infect Immun 2001; 69:2612-20. [PMID: 11254626 PMCID: PMC98198 DOI: 10.1128/iai.69.4.2612-2620.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete nucleotide sequence of pKDSC50, a large virulence plasmid from Salmonella enterica serovar Choleraesuis strain RF-1, has been determined. We identified 48 of the open reading frames (ORFs) encoded by the 49,503-bp molecule. pKDSC50 encodes a known virulence-associated operon, the spv operon, which is composed of genes essential for systemic infection by nontyphoidal Salmonella. Analysis of the genetic organization of pKDSC50 suggests that the plasmid is composed of several virulence-associated genes, which include the spvRABCD genes, plasmid replication and maintenance genes, and one insertion sequence element. A second virulence-associated region including the pef (plasmid-encoded fimbria) operon and rck (resistance to complement killing) gene, which has been identified on the virulence plasmid of S. enterica serovar Typhimurium, was absent. Two different replicon regions, similar to the RepFIIA and RepFIB replicons, were found. Both showed high similarity to those of the pO157 plasmid of enterohemorrhagic Escherichia coli O157:H7 and the enteropathogenic E. coli (EPEC) adherence factor plasmid harbored by EPEC strain B171 (O111:NM), as well as the virulence plasmids of Salmonella serovars Typhimurium and Enteritidis. Comparative analysis of the nucleotide sequences of the 50-kb virulence plasmid of serovar Choleraesuis and the 94-kb virulence plasmid of serovar Typhimurium revealed that 47 out of 48 ORFs of the virulence plasmid of serovar Choleraesuis are highly homologous to the corresponding ORFs of the virulence plasmid of serovar Typhimurium, suggesting a common ancestry.
Collapse
Affiliation(s)
- T Haneda
- Department of Microbiology, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | | | | | | | | |
Collapse
|
148
|
Chiu CH, Chu C, Ou JT. Lack of evidence of an association between the carriage of virulence plasmid and the bacteremia of Salmonella typhimurium in humans. Microbiol Immunol 2001; 44:741-8. [PMID: 11092237 DOI: 10.1111/j.1348-0421.2000.tb02558.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The involvement of the virulence plasmid (pSTV) of Salmonella typhimurium in human salmonellosis was examined. Most of the 224 clinical strains isolated from the blood (53) and nonblood samples (171) contained a 90 kb or larger plasmid, most of which were pSTV. The rates of pSTV carriage in the isolates showed no statistically significant difference between those derived from the blood and those from other sources (87% vs. 83%; chi2=0.49, 0.1<P<0.9), suggesting that pSTV may not play a critical role in promoting S. typhimurium bacteremia in humans. Nine strains with representative plasmid profiles were tested for the mouse virulence. The result revealed that these clinical isolates contained all three virulent types known: the avirulent, the highly virulent when a pSTV was present, and the moderately virulent regardless of the presence or absence of pSTV. This indicated that mouse virulence of S. typhimurium did not correlate their virulence in humans. Clinical data showed that most patients with primary bacteremia had underlying immunosuppressive diseases, whereas only a few patients with secondary bacteremia had preexisting diseases (87% vs. 13%; chi2=22.73, P<0.005). It is suggested that the contribution of pSTV to S. typhimurium bacteremia in humans is likely to be limited, and both the host factor and the microbial virulence determinants on the chromosome are more important than virulence plasmid in predisposing patients to bacteremia.
Collapse
Affiliation(s)
- C H Chiu
- Department of Pediatrics, Chang Gung Children's Hospital, Taoyuan, Taiwan.
| | | | | |
Collapse
|
149
|
Robbe-Saule V, Coynault C, Ibanez-Ruiz M, Hermant D, Norel F. Identification of a non-haem catalase in Salmonella and its regulation by RpoS (sigmaS). Mol Microbiol 2001; 39:1533-45. [PMID: 11260470 DOI: 10.1046/j.1365-2958.2001.02340.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the identification and functional analysis of katN, a gene encoding a non-haem catalase of Salmonella enterica serotype Typhimurium. katN, which is not present in Escherichia coli, is located between the yciGFE and yciD E. coli homologues in the Salmonella genome. Its predicted protein product has a molecular weight of 31 826 Da and is similar to the Mn-catalases of Lactobacillus plantarum and Thermus spp. Its product, KatN, was visualized as a 37 kDa protein in E. coli maxicells. A KatN recombinant protein, containing six histidine residues at its C-terminus, was purified, and its catalase activity was observed on a non-denaturing polyacrylamide gel. KatN was also visualized by catalase activity gel staining of bacterial cell extracts. Its expression was shown to be regulated by growth phase and rpoS. Northern blotting indicated that kat forms an operon with the upstream yciGFE genes. A putative rpoS-regulated promoter was identified upstream of yciG. Southern blotting revealed that katN is conserved within Salmonella serovars. katN homologues were found in Pseudomonas aeruginosa, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae and Serratia marcescens. A katN mutation did not appear to affect the hydrogen peroxide (H2O2) response of Salmonella. However, the expression of katN increased the H2O2 resistance of unadapted cells in the exponential phase and of rpoS mutants in stationary phase. Thus, KatN may contribute to hydrogen peroxide resistance in Salmonella in certain environmental conditions.
Collapse
Affiliation(s)
- V Robbe-Saule
- Institut Pasteur, Unité de Génétique des Bactéries Intracellulaires, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
150
|
Lesnick ML, Reiner NE, Fierer J, Guiney DG. The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol Microbiol 2001; 39:1464-70. [PMID: 11260464 DOI: 10.1046/j.1365-2958.2001.02360.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ADP-ribosylating enzymes, such as cholera and diphtheria toxins, are key virulence factors for a variety of extracellular bacterial pathogens but have not been implicated previously during intracellular pathogenesis. Salmonella strains are capable of invading epithelial cells and localizing in macrophages during infection. The spvB virulence gene of Salmonella is required for human macrophage cytotoxicity in vitro and for enhancing intracellular bacterial proliferation during infection. Here, we present evidence that spvB encodes an ADP-ribosylating enzyme that uses actin as a substrate and depolymerizes actin filaments when expressed in CHO cells. Furthermore, site-directed mutagenesis demonstrates that the ADP-ribosylating activity of SpvB is essential for Salmonella virulence in mice. As spvB is expressed by Salmonella strains after invasion of epithelial cells or phagocytosis by macrophages, these results suggest that SpvB functions as an intracellular ADP-ribosylating toxin critical for the pathogenesis of Salmonella infections.
Collapse
Affiliation(s)
- M L Lesnick
- Department of Medicine 0640, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|