101
|
Peretz H, Blinder P, Baranes D, Vago R. Aragonite crystalline matrix as an instructive microenvironment for neural development. J Tissue Eng Regen Med 2008; 2:463-71. [DOI: 10.1002/term.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
102
|
Leckband D. From Single Molecules to Living Cells: Nanomechanical Measurements of Cell Adhesion. Cell Mol Bioeng 2008. [DOI: 10.1007/s12195-008-0029-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
103
|
Devemy E, Blaschuk OW. Identification of a novel N-cadherin antagonist. Peptides 2008; 29:1853-61. [PMID: 18655820 DOI: 10.1016/j.peptides.2008.06.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 06/25/2008] [Accepted: 06/26/2008] [Indexed: 01/20/2023]
Abstract
The cell adhesion molecule, N-cadherin plays a pivotal role in many biological and disease processes. Drugs that modulate N-cadherin function should therefore be useful therapeutic agents. We have used phage display technology to identify amino acid sequences capable of binding to N-cadherin. All of these sequences harbor a Trp residue in the second position from the N-terminus. A synthetic linear peptide containing one of these sequences, H-SWTLYTPSGQSK-NH(2) was found to bind a chimeric protein composed of the N-cadherin ectodomain fused to the immunoglobulin G1 Fc fragment with an affinity (K(D)) of 10.7microM, as determined by surface plasmon resonance. It also blocked the aggregation of beads coated with this chimeric protein. Furthermore, this peptide disrupted adhesion and tube formation by N-cadherin-expressing human umbilical vein endothelial cells in vitro. These observations suggest that N-cadherin antagonists have the potential of serving as anti-angiogenic agents. The peptide, H-SWTLYTPSGQSK-NH(2) should prove useful for studies designed to evaluate N-cadherin function in various biological processes.
Collapse
Affiliation(s)
- Emmanuelle Devemy
- Division of Urology, Department of Surgery, McGill University, Urology Research Laboratories, Royal Victoria Hospital, Room H6.15, 687 Pine Avenue West, Montreal, Quebec H3A 1A1, Canada.
| | | |
Collapse
|
104
|
Abstract
Desmosomes are cadherin-based intercellular junctions that primarily provide mechanical stability to tissues such as epithelia and cardiac muscle. Desmosomal cadherins, which are Ca(2+)-dependent adhesion molecules, are of central importance in mediating direct intercellular interaction. The close association of these proteins, with intracellular components of desmosomes ultimately linked to the cytoskeleton, is believed to play an important role in tissue morphogenesis during development and wound healing. Elucidation of the binding mechanism of adhesive interfaces between the extracellular domains of cadherins has been approached by structural, biophysical and biochemical methods. X-ray crystal structures of isolated extracellular domains of cadherins have provided compelling evidence of the mutual binding of the highly conserved N-terminal residue, Trp(2), from opposing proteins. This binding interface was also implicated by biochemical and cell-adhesion assays and mutagenesis data to be the primary adhesive interface between cells. Recent results based on electron tomography of epidermal desmosomes were consistent with this view, showing cadherin molecules interacting at their N-terminal tips. An integrative structural approach involving X-ray crystallography, cryo-electron tomography and immuno-electron microscopy should give the complete picture of the architecture of this important junction; identifying its various proteins and showing their arrangements and binding interfaces under native conditions. Together with these 'static' approaches, live-cell imaging of cultured keratinocytes should provide important insights into the dynamic property of the assembly and disassembly of desmosomes.
Collapse
|
105
|
Schnekenburger J, Schick V, Krüger B, Manitz MP, Sorg C, Nacken W, Kerkhoff C, Kahlert A, Mayerle J, Domschke W, Lerch MM. The calcium binding protein S100A9 is essential for pancreatic leukocyte infiltration and induces disruption of cell-cell contacts. J Cell Physiol 2008; 216:558-67. [PMID: 18452188 DOI: 10.1002/jcp.21433] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Leukocyte infiltration is an early and critical event in the development of acute pancreatitis. However, the mechanism of leukocyte transmigration into the pancreas and the function of leukocytes in initiating acute pancreatitis are still poorly understood. Here, we studied the role of S100A9 (MRP14), a calcium binding protein specifically released by polymorph nuclear leukocytes (PMN), in the course of acute experimental pancreatitis. Acute pancreatitis was induced by repeated supramaximal caerulein injections in S100A9 deficient or S100A9 wild-type mice. We then determined S100A9 expression, trypsinogen activation peptide (TAP) levels, serum amylase and lipase activities, and tissue myeloperoxidase (MPO) activity. Cell-cell contact dissociation was analyzed in vitro with biovolume measurements of isolated acini after incubation with purified S100A8/A9 heterodimers, and in vivo as measurement of Evans Blue extravasation after intravenous application of S100A8/A9. Pancreatitis induced increased levels of S100A9 in the pancreas. However, infiltration of leukocytes and MPO activity in the lungs and pancreas during acute pancreatitis was decreased in S100A9-deficient mice and associated with significantly lower serum amylase and lipase activities as well as reduced intrapancreatic TAP-levels. Incubation of isolated pancreatic acini with purified S100A8/A9-heterodimers resulted in a rapid dissociation of acinar cell-cell contacts which was highly calcium-dependent. Consistent with these findings, in vivo application of S100A8/A9 in mice was in itself sufficient to induce pancreatic cell-cell contract dissociation as indicated by Evans Blue extravasation. These data show that the degree of intrapancreatic trypsinogen activation is influenced by the extent of leukocyte infiltration into the pancreas which, in turn, depends on the presence of S100A9 that is secreted from PMN. S100A9 directly affects leukocyte tissue invasion and mediates cell contact dissociation via its calcium binding properties.
Collapse
|
106
|
Chatterjee G, Carrithers LM, Carrithers MD. Epithelial V-like antigen regulates permeability of the blood-CSF barrier. Biochem Biophys Res Commun 2008; 372:412-7. [PMID: 18498762 DOI: 10.1016/j.bbrc.2008.05.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 05/02/2008] [Indexed: 11/18/2022]
Abstract
Epithelial V-like antigen (EVA), a CD3-binding immunoglobulin-like protein, regulates embryonic thymic development. Here we demonstrate that EVA is expressed in choroid plexus from mature immune competent and lymphocyte-deficient (RAG-/-) mice. Choroid plexus epithelial cells from RAG-/- mice demonstrated reduced junctional integrity and enhanced permeability that was associated with decreased expression of E-cadherin and EVA mRNA as compared to wild-type mice. Following iv infusion of an anti-CD3 antibody (145-2C11) that also binds EVA, expression of E-cadherin and EVA mRNA approached levels seen in wild-type mice. Immuno-fluorescent staining for cadherin also revealed decreased expression in untreated RAG-/- mice that could be increased by 145-2C11 treatment. Expression of mouse EVA in HEK-293 cells followed by challenge with 145-2C11 resulted in increased cytosolic calcium that was not seen in control cells. These results suggest that EVA expressed in choroid plexus cells may regulate the permeability of the blood-CSF barrier.
Collapse
Affiliation(s)
- Gouri Chatterjee
- Department of Neurology, Yale University School of Medicine, PO Box 208018, New Haven, CT 06520-8018, USA
| | | | | |
Collapse
|
107
|
Zhou F, Su J, Fu L, Yang Y, Zhang L, Wang L, Zhao H, Zhang D, Li Z, Zha X. Unglycosylation at Asn-633 made extracellular domain of E-cadherin folded incorrectly and arrested in endoplasmic reticulum, then sequentially degraded by ERAD. Glycoconj J 2008; 25:727-40. [PMID: 18491227 DOI: 10.1007/s10719-008-9133-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 03/27/2008] [Accepted: 03/31/2008] [Indexed: 01/28/2023]
Abstract
The human E-cadherin is a single transmembrane domain protein involved in Ca(2+)-dependent cell-cell adhesion. In a previous study, we demonstrated that all of four potential N-glycosylation sites in E-cadherin are occupied by N-glycans in human breast carcinoma cells in vivo and the elimination of N-glycan at Asn-633 dramatically affected E-cadherin expression and made it degraded. In this study we investigated the molecular mechanism of E-cadherin, which lacks N-glycosylation at Asn-633 (M4), degradation and the role of the N-glycan at Asn-633 in E-cadherin folding. We treated cells stably expressed M4 E-cadherin with MG123, DMM, respectively. Either MG132 or DMM could efficiently block degradation of M4 E-cadherin. M4 E-cadherin was recognized as the substrate of ERAD and was retro-translocated from ER lumen to cytoplasm by p97. It was observed that the ration of M4 E-cadherin binding to calnexin was significantly increased compared with that of other variants, suggesting that it was a misfolded protein, though cytoplasmic domain of M4 E-cadherin could associate with beta-catenin. Furthermore, we found that N-glycans of M4 E-cadherin were modified in immature high mannose type, suggesting that it could not depart to Golgi apparatus. In conclusion, this study revealed that N-glycosylation at Asn-633 is essential for E-cadherin expression, folding and trafficking.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Abstract
We have developed a new concept of cell–cell adhesion termed ‘hyper-adhesion’, the very strong adhesion adopted by desmosomes. This uniquely desmosomal property accounts for their ability to provide the intercellular links in the desmosome–intermediate filament complex. These links are targeted by diseases, resulting in disruption of the complex with severe consequences. Hyper-adhesion is characteristic of desmosomes in tissues and is believed to result from a highly ordered arrangement of the extracellular domains of the desmosomal cadherins that locks their binding interaction so that it is highly resistant to disruption. This ordered arrangement may be reflected by and dependent upon a similarly ordered molecular structure of the desmosomal plaque. Hyper-adhesion can be down-regulated to a more weakly adhesive state by cell signalling involving protein kinase C, which translocates to the desmosomal plaque. Down-regulation takes place in wound edge epithelium and appears to be accompanied by loss of the ordered arrangement causing desmosomes to adopt the type of weaker adhesion characteristic of adherens junctions. We review the evidence for hyper-adhesion and speculate on the molecular basis of its mechanism.
Collapse
|
109
|
Busche S, Descot A, Julien S, Genth H, Posern G. Epithelial cell-cell contacts regulate SRF-mediated transcription via Rac-actin-MAL signalling. J Cell Sci 2008; 121:1025-35. [PMID: 18334560 DOI: 10.1242/jcs.014456] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Epithelial cell-cell junctions are specialised structures connecting individual cells in epithelial tissues. They are dynamically and functionally linked to the actin cytoskeleton. Disassembly of these junctions is a key event during physiological and pathological processes, but how this influences gene expression is largely uncharacterised. Here, we investigate whether junction disassembly regulates transcription by serum response factor (SRF) and its coactivator MAL/MRTF. Ca2+-dependent dissociation of epithelial integrity was found to correlate strictly with SRF-mediated transcription. In cells lacking E-cadherin expression, no SRF activation was observed. Direct evidence is provided that signalling occurs via monomeric actin and MAL. Dissociation of epithelial junctions is accompanied by induction of RhoA and Rac1. However, using clostridial cytotoxins, we demonstrate that Rac, but not RhoA, is required for SRF and target gene induction in epithelial cells, in contrast to serum-stimulated fibroblasts. Actomyosin contractility is a prerequisite for signalling but failed to induce SRF activation, excluding a sufficient role of the Rho-ROCK-actomyosin pathway. We conclude that E-cadherin-dependent cell-cell junctions facilitate transcriptional activation via Rac, G-actin, MAL and SRF upon epithelial disintegration.
Collapse
Affiliation(s)
- Stephan Busche
- Department of Molecular Biology, AG Regulation of Gene Expression, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
110
|
Abstract
Modular proteins such as titin, fibronectin, and cadherin are ubiquitous components of living cells. Often involved in signaling and mechanical processes, their architecture is characterized by domains containing a variable number of heterogeneous "repeats" arranged in series, with either flexible or rigid linker regions that determine their elasticity. Cadherin repeats arranged in series are unique in that linker regions also feature calcium-binding motifs. While it is well known that the extracellular repeats of cadherin proteins mediate cell-cell adhesion in a calcium-dependent manner, the molecular mechanisms behind the influence of calcium in adhesion dynamics and cadherin's mechanical response are not well understood. Here we show, using molecular dynamics simulations, how calcium ions control the structural integrity of cadherin's linker regions, thereby affecting cadherin's equilibrium dynamics, the availability of key residues involved in cell-cell adhesion, and cadherin's mechanical response. The all-atom, multi-nanosecond molecular dynamics simulations involved the entire C-cadherin extracellular domain solvated in water (a 345,000 atom system). Equilibrium simulations show that the extracellular domain maintains its crystal conformation (elongated and slightly curved) when calcium ions are present. In the absence of calcium ions, however, it assumes a disordered conformation. The conserved residue Trp(2), which is thought to insert itself into a hydrophobic pocket of another cadherin molecule (thereby providing the basis for cell-cell adhesion), switches conformation from exposed to intermittently buried upon removal of calcium ions. Furthermore, the overall mechanical response of C-cadherin's extracellular domain is characterized at low force by changes in shape (tertiary structure elasticity), and at high force by unraveling of secondary structure elements (secondary structure elasticity). This mechanical response is modulated by calcium ions at both low and high force, switching from a stiff, rod-like to a soft, spring-like behavior upon removal of ions. The simulations provide an unprecedented molecular view of calcium-mediated allostery in cadherins, also illustrating the general principles of linker-mediated elasticity of modular proteins relevant not only for cell-cell adhesion and sound transduction, but also muscle elasticity.
Collapse
|
111
|
Posy S, Shapiro L, Honig B. Sequence and structural determinants of strand swapping in cadherin domains: do all cadherins bind through the same adhesive interface? J Mol Biol 2008; 378:954-68. [PMID: 18395225 DOI: 10.1016/j.jmb.2008.02.063] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 02/06/2008] [Accepted: 02/27/2008] [Indexed: 11/19/2022]
Abstract
Cadherins are cell surface adhesion proteins important for tissue development and integrity. Type I and type II, or classical, cadherins form adhesive dimers via an interface formed through the exchange, or "swapping", of the N-terminal beta-strands from their membrane-distal EC1 domains. Here, we ask which sequence and structural features in EC1 domains are responsible for beta-strand swapping and whether members of other cadherin families form similar strand-swapped binding interfaces. We created a comprehensive database of multiple alignments of each type of cadherin domain. We used the known three-dimensional structures of classical cadherins to identify conserved positions in multiple sequence alignments that appear to be crucial determinants of the cadherin domain structure. We identified features that are unique to EC1 domains. On the basis of our analysis, we conclude that all cadherin domains have very similar overall folds but, with the exception of classical and desmosomal cadherin EC1 domains, most of them do not appear to bind through a strand-swapping mechanism. Thus, non-classical cadherins that function in adhesion are likely to use different protein-protein interaction interfaces. Our results have implications for the evolution of molecular mechanisms of cadherin-mediated adhesion in vertebrates.
Collapse
Affiliation(s)
- Shoshana Posy
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
112
|
Jones LM, Yang W, Maniccia AW, Harrison A, van der Merwe PA, Yang JJ. Rational design of a novel calcium-binding site adjacent to the ligand-binding site on CD2 increases its CD48 affinity. Protein Sci 2008; 17:439-49. [PMID: 18287277 PMCID: PMC2248323 DOI: 10.1110/ps.073328208] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/04/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
Abstract
Electrostatic interactions are important for molecular recognition processes including Ca2+-binding and cell adhesion. To understand these processes, we have successfully introduced a novel Ca2+-binding site into the non-Ca2+-dependent cell adhesion protein CD2 using our criteria that are specifically tailored to the structural and functional properties of the protein environment and charged adhesion surface. This designed site with ligand residues exclusively from the beta-sheets selectively binds to Ca2+ and Ln3+ over other mono- and divalent cations. While Ca2+ and Ln3+ binding specifically alters the local environment of the designed Ca2+-binding site, the designed protein undergoes a significantly smaller conformation change compared with those observed in naturally occurring Ca2+-binding sites that are composed of at least part of the flexible loop and helical regions. In addition, the CD2-CD48-binding affinity increased approximately threefold after protein engineering, suggesting that the cell adhesion of CD2 can be modulated by altering the local electrostatic environment. The study provides site-specific information for regulating cell adhesion within CD2 and gives insight into the structural factors required for Ca2+-modulated biological processes.
Collapse
Affiliation(s)
- Lisa M Jones
- Department of Chemistry, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | |
Collapse
|
113
|
Lim BBC, Lee EH, Sotomayor M, Schulten K. Molecular basis of fibrin clot elasticity. Structure 2008; 16:449-59. [PMID: 18294856 DOI: 10.1016/j.str.2007.12.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
Abstract
Blood clots must be stiff to stop hemorrhage yet elastic to buffer blood's shear forces. Upsetting this balance results in clot rupture and life-threatening thromboembolism. Fibrin, the main component of a blood clot, is formed from molecules of fibrinogen activated by thrombin. Although it is well known that fibrin possesses considerable elasticity, the molecular basis of this elasticity is unknown. Here, we use atomic force microscopy (AFM) and steered molecular dynamics (SMD) to probe the mechanical properties of single fibrinogen molecules and fibrin protofibrils, showing that the mechanical unfolding of their coiled-coil alpha helices is characterized by a distinctive intermediate force plateau in the systems' force-extension curve. We relate this plateau force to a stepwise unfolding of fibrinogen's coiled alpha helices and of its central domain. AFM data show that varying pH and calcium ion concentrations alters the mechanical resilience of fibrinogen. This study provides direct evidence for the coiled alpha helices of fibrinogen to bring about fibrin elasticity.
Collapse
Affiliation(s)
- Bernard B C Lim
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
114
|
Baumgartner W, Wendeler MW, Weth A, Koob R, Drenckhahn D, Gessner R. Heterotypic trans-interaction of LI- and E-cadherin and their localization in plasmalemmal microdomains. J Mol Biol 2008; 378:44-54. [PMID: 18342884 DOI: 10.1016/j.jmb.2008.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 02/07/2008] [Accepted: 02/12/2008] [Indexed: 11/30/2022]
Abstract
Cadherins are calcium-dependent adhesion molecules important for tissue morphogenesis and integrity. LI-cadherin and E-cadherin are the two prominent cadherins in intestinal epithelial cells. Whereas LI-cadherin belongs to the subfamily of 7D (seven-domain)-cadherins defined by their seven extracellular cadherin repeats and short intracellular domain, E-cadherin is the prototype of classical cadherins with five extracellular domains and a highly conserved cytoplasmic part that interacts with catenins and thereby modulates the organization of the cytoskeleton. Here, we report a specific heterotypic trans-interaction of LI- with E-cadherin, two cadherins of distinct subfamilies. Using atomic force microscopy and laser tweezer experiments, the trans-interaction of LI- and E-cadherin was characterized on the single-molecule level and on the cellular level, respectively. This heterotypic interaction showed similar binding strength (20-52 pN at 200-4000 nm/s) and lifetime (0.8 s) as the respective homotypic interactions of LI- and E-cadherin. VE-cadherin, another classical cadherin, did not bind to LI-cadherin. In enterocytes, LI-cadherin and E-cadherin are located in different membrane regions. LI-cadherin is distributed along the basolateral membrane, whereas the majority of E-cadherin is concentrated in adherens junctions. This difference in membrane distribution was also reflected in Chinese hamster ovary cells stably expressing either LI- or E-cadherin. We found that LI-cadherin is localized almost exclusively in cholesterol-rich fractions, whereas E-cadherin is excluded from these membrane fractions. Given their different membrane localization in enterocytes, the heterotypic trans-interaction of LI- and E-cadherin might play a role during development of the intestinal epithelium when the cells do not yet have elaborate membrane specializations.
Collapse
Affiliation(s)
- Werner Baumgartner
- Department of Cellular Neurobionics, Institute of Zoology, RWTH-Aachen University, D-52056 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
115
|
Courjean O, Chevreux G, Perret E, Morel A, Sanglier S, Potier N, Engel J, van Dorsselaer A, Feracci H. Modulation of E-cadherin monomer folding by cooperative binding of calcium ions. Biochemistry 2008; 47:2339-49. [PMID: 18232713 DOI: 10.1021/bi701340d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Classical cadherins are transmembrane glycoproteins involved in calcium-dependent cell-cell adhesion. Calcium ions are coordinated at the interface between successive modules of the cadherin ectodomain and are thought to regulate the adhesive interactions of cadherins when present at millimolar concentrations. It is widely accepted that calcium plays a critical role in cadherin-mediated cell-cell adhesion, but the nature of cadherin-calcium binding remains a matter of debate. We investigated the parameters of noncovalent cadherin-calcium binding, using the two N-terminal modules of E-cadherin (E/EC12) with a native N-terminal end and nondenaturing electrospray ionization mass spectrometry. By directly visualizing the molecular complexes, we demonstrated that E/EC12 binds three calcium ions, with an average KD of 20 +/- 0.7 microM. These calcium ions bound cooperatively to E/EC12 in its monomeric state, and these properties were not modified by an N-terminal extension consisting of a single methionine residue. This binding induced specific structural changes, as shown by assessments of protease sensitivity, circular dichroism, and mass spectrometry. Furthermore, the D103A mutation (a residue involved in E-cadherin adhesive function) modified calcium binding and led to a loss of cooperativity and the absence of structural changes, despite calcium binding. As the amino acids involved in calcium binding are found within the cadherin consensus motif, our findings may be relevant to other members of the cadherin family.
Collapse
Affiliation(s)
- Olivier Courjean
- Morphogenèse cellulaire et progression tumorale, Institut Curie, CNRS UMR 144, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Chien YH, Jiang N, Li F, Zhang F, Zhu C, Leckband D. Two stage cadherin kinetics require multiple extracellular domains but not the cytoplasmic region. J Biol Chem 2007; 283:1848-56. [PMID: 17999960 DOI: 10.1074/jbc.m708044200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Micropipette manipulation measurements quantified the pre-steady state binding kinetics between cell pairs mediated by Xenopus cleavage stage cadherin. The time-dependence of the intercellular binding probability exhibits a fast forming, low probability binding state, which transitions to a slower forming, high probability state. The biphasic kinetics are independent of the cytoplasmic region, but the transition to the high probability state requires the third extracellular domain EC3. Deleting either EC3 or EC3-5, or substituting Trp(2) for Ala reduces the binding curves to a simple, monophasic rise in binding probability to a limiting plateau, as predicted for a single site binding mechanism. The two stage cadherin binding process reported here directly parallels previous biophysical studies, and confirms that the cadherin ectodomain governs the initial intercellular adhesion dynamics.
Collapse
Affiliation(s)
- Yuan-Hung Chien
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | | | | | | | | | | |
Collapse
|
117
|
Abstract
Cadherins are Ca(2+)-dependent cell adhesion molecules found in several kinds of cell-cell contact, including adherens junctions and desmosomes. In the presence of Ca(2+), cells expressing the same type of cadherin form stable contacts with one another, a phenomenon designated homophilic, or homotypic, adhesion. Most cadherins are single-pass transmembrane proteins whose extracellular regions mediate specific cell-cell interactions. The intracellular faces of these contacts are associated with the actin cytoskeleton in adherens junctions or the intermediate-filament system in desmosomes. The close coordination of the transmembrane adhesion molecules with the cytoskeleton is believed to be essential in coordinating morphogenetic movements of tissues during development and in conferring the appropriate mechanical properties to cell-cell contacts. Structural, biochemical, and biophysical analysis of the molecules that comprise these contacts has provided unique mechanistic insights into the specificity of homophilic adhesion, the functional connection to the underlying cytoskeleton, and the dynamics of junction formation.
Collapse
Affiliation(s)
- Sabine Pokutta
- Department of Structural Biology and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
118
|
Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Müller U, Kachar B. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 2007; 449:87-91. [PMID: 17805295 DOI: 10.1038/nature06091] [Citation(s) in RCA: 514] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 07/10/2007] [Indexed: 11/09/2022]
Abstract
Hair cells of the inner ear are mechanosensors that transduce mechanical forces arising from sound waves and head movement into electrochemical signals to provide our sense of hearing and balance. Each hair cell contains at the apical surface a bundle of stereocilia. Mechanoelectrical transduction takes place close to the tips of stereocilia in proximity to extracellular tip-link filaments that connect the stereocilia and are thought to gate the mechanoelectrical transduction channel. Recent reports on the composition, properties and function of tip links are conflicting. Here we demonstrate that two cadherins that are linked to inherited forms of deafness in humans interact to form tip links. Immunohistochemical studies using rodent hair cells show that cadherin 23 (CDH23) and protocadherin 15 (PCDH15) localize to the upper and lower part of tip links, respectively. The amino termini of the two cadherins co-localize on tip-link filaments. Biochemical experiments show that CDH23 homodimers interact in trans with PCDH15 homodimers to form a filament with structural similarity to tip links. Ions that affect tip-link integrity and a mutation in PCDH15 that causes a recessive form of deafness disrupt interactions between CDH23 and PCDH15. Our studies define the molecular composition of tip links and provide a conceptual base for exploring the mechanisms of sensory impairment associated with mutations in CDH23 and PCDH15.
Collapse
Affiliation(s)
- Piotr Kazmierczak
- The Scripps Research, Institute Department of Cell Biology, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
119
|
Waschke J, Menendez-Castro C, Bruggeman P, Koob R, Amagai M, Gruber HJ, Drenckhahn D, Baumgartner W. Imaging and Force Spectroscopy on Desmoglein 1 Using Atomic Force Microscopy Reveal Multivalent Ca2+-Dependent, Low-Affinity Trans-Interaction. J Membr Biol 2007; 216:83-92. [PMID: 17657525 DOI: 10.1007/s00232-007-9037-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 05/14/2007] [Indexed: 01/15/2023]
Abstract
Desmoglein 1 is a desmosomal member of the cadherin family expressed in stratified epithelia. Desmoglein 1 is the target adhesion molecule of severe blistering skin diseases such as pemphigus or bullous impetigo. However, despite this enormous pathological relevance, the molecular binding properties of desmoglein 1 are largely unknown. Using atomic force microscopic imaging, we found that desmoglein 1 molecules displayed Ca(2+)-dependent conformational changes of the extracellular domains. By single-molecule force-distance cycles, we provide evidence that desmoglein 1 undergoes Ca(2+)-dependent (K (d) = 0.8 mM Ca(2+)) homophilic trans-interaction, which is highly relevant for the contribution of desmoglein 1 homophilic binding to keratinocyte cohesion in distinct epidermal layers. Moreover, while the single-unit unbinding force is comparable to other cadherins (approximately 40 pN at retrace velocity of 300 nm/s), apparent differences with respect to multivalency of interaction and lifetime of single bonds (0.17 s) were observed. Thus, besides the biophysical characterization of desmoglein 1, a main outcome of the study is that desmoglein 1 differs from other members of the cadherin family in terms of some molecular binding properties.
Collapse
Affiliation(s)
- Jens Waschke
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, Würzburg, D-97070, Germany
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:660-9. [PMID: 17854762 PMCID: PMC2682436 DOI: 10.1016/j.bbamem.2007.07.012] [Citation(s) in RCA: 1061] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 07/12/2007] [Accepted: 07/19/2007] [Indexed: 02/07/2023]
Abstract
Adherens junctions and Tight junctions comprise two modes of cell-cell adhesion that provide different functions. Both junctional complexes are proposed to associate with the actin cytoskeleton, and formation and maturation of cell-cell contacts involves reorganization of the actin cytoskeleton. Adherens junctions initiate cell-cell contacts, and mediate the maturation and maintenance of the contact. Adherens junctions consist of the transmembrane protein E-cadherin, and intracellular components, p120-catenin, beta-catenin and alpha-catenin. Tight junctions regulate the paracellular pathway for the movement of ions and solutes in-between cells. Tight junctions consist of the transmembrane proteins occludin and claudin, and the cytoplasmic scaffolding proteins ZO-1, -2, and -3. This review discusses the binding interactions of the most studied proteins that occur within each of these two junctional complexes and possible modes of regulation of these interactions, and the different mechanisms that connect and regulate interactions with the actin cytoskeleton.
Collapse
Affiliation(s)
- Andrea Hartsock
- Department of Molecular and Cellular Physiology, Stanford University
| | - W. James Nelson
- Department of Molecular and Cellular Physiology, Stanford University
- Department of Biological Sciences, Stanford University
- Corresponding Author: Department of Biological Sciences, The James H. Clark Center, The Bio-X Program, 318 Campus Drive (E200-B), Stanford University, Stanford, CA 94305-5430. Tel: 650-725-7596 Fax: 650-725-8021,
| |
Collapse
|
121
|
Wendeler MW, Drenckhahn D, Gessner R, Baumgartner W. Intestinal LI-cadherin acts as a Ca2+-dependent adhesion switch. J Mol Biol 2007; 370:220-30. [PMID: 17512947 DOI: 10.1016/j.jmb.2007.04.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 04/13/2007] [Accepted: 04/19/2007] [Indexed: 12/20/2022]
Abstract
Cadherins are Ca(2+)-dependent transmembrane glycoproteins that mediate cell-cell adhesion and are important for the structural integrity of epithelia. LI-cadherin and the classical E-cadherin are the predominant two cadherins in the intestinal epithelium. LI-cadherin consists of seven extracellular cadherin repeats and a short cytoplasmic part that does not interact with catenins. In contrast, E-cadherin is composed of five cadherin repeats and a large cytoplasmic domain that is linked via catenins to the actin cytoskeleton. Whereas E-cadherin is concentrated in adherens junctions, LI-cadherin is evenly distributed along the lateral contact area of intestinal epithelial cells. To investigate if the particular structural properties of LI-cadherin result in a divergent homotypic adhesion mechanism, we analyzed the binding parameters of LI-cadherin on the single molecule and the cellular level using atomic force microscopy, affinity chromatography and laser tweezer experiments. Homotypic trans-interaction of LI-cadherin exhibits low affinity binding with a short lifetime of only 1.4 s. Interestingly, LI-cadherin binding responds to small changes in extracellular Ca(2+) below the physiological plasma concentration with a high degree of cooperativity. Thus, LI-cadherin might serve as a Ca(2+)-regulated switch for the adhesive system on basolateral membranes of the intestinal epithelium.
Collapse
Affiliation(s)
- Markus W Wendeler
- Biomedical Research Center, Virchow Hospital of Charité Medical School Berlin, D-13353 Berlin, Germany
| | | | | | | |
Collapse
|
122
|
Tsukasaki Y, Kitamura K, Shimizu K, Iwane AH, Takai Y, Yanagida T. Role of multiple bonds between the single cell adhesion molecules, nectin and cadherin, revealed by high sensitive force measurements. J Mol Biol 2006; 367:996-1006. [PMID: 17300801 DOI: 10.1016/j.jmb.2006.12.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 12/11/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
Abstract
Nectins and cadherins, members of cell adhesion molecules (CAMs), are the primary mediators for various types of cell-cell junctions. Here, intermolecular force microscopy (IFM) with force sensitivity at sub-picoNewtons is used to characterize the extracellular trans-interactions between paired nectins and paired cadherins at the single molecule level. Three and four different bound states between paired nectins and paired cadherins are, respectively, identified and characterized based on bond strength distributions where each bound state has a unique lifetime and bond length. The results indicate that multiple domains of nectins act uncooperatively, as a zipper-like multiply bonded system whereas those of cadherins act cooperatively, as a parallel-like multiply bonded system, consistent with a "fork initiation and zipper" hypothesis for the formation of cell-cell adhesion. The observed dynamic properties among multiple bonds are expected to be advantageous such that nectins search adaptively in the cell-cell exploratory recognition process while cadherins slowly stabilize in the cell-cell zippering process.
Collapse
Affiliation(s)
- Yoshikazu Tsukasaki
- Department of Nanobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
123
|
Lovett FA, Gonzalez I, Salih DAM, Cobb LJ, Tripathi G, Cosgrove RA, Murrell A, Kilshaw PJ, Pell JM. Convergence of Igf2 expression and adhesion signalling via RhoA and p38 MAPK enhances myogenic differentiation. J Cell Sci 2006; 119:4828-40. [PMID: 17105766 DOI: 10.1242/jcs.03278] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell-cell contact is essential for appropriate co-ordination of development and it initiates significant signalling events. During myogenesis, committed myoblasts migrate to sites of muscle formation, align and form adhesive contacts that instigate cell-cycle exit and terminal differentiation into multinucleated myotubes; thus myogenesis is an excellent paradigm for the investigation of signals derived from cell-cell contact. PI3-K and p38 MAPK are both essential for successful myogenesis. Pro-myogenic growth factors such as IGF-II activate PI3-K via receptor tyrosine kinases but the extracellular cues and upstream intermediates required for activation of the p38 MAPK pathway in myoblast differentiation are not known. Initial observations suggested a correlation between p38 MAPK phosphorylation and cell density, which was also related to N-cadherin levels and Igf2 expression. Subsequent studies using N-cadherin ligand, dominant-negative N-cadherin, constitutively active and dominant-negative forms of RhoA, and MKK6 and p38 constructs, reveal a novel pathway in differentiating myoblasts that links cell-cell adhesion via N-cadherin to Igf2 expression (assessed using northern and promoter-reporter analyses) via RhoA and p38alpha and/or beta but not gamma. We thus define a regulatory mechanism for p38 activation that relates cell-cell-derived adhesion signalling to the synthesis of the major fetal growth factor, IGF-II.
Collapse
Affiliation(s)
- Fiona A Lovett
- The Babraham Institute, Babraham Research Campus, Cambridge, CB2 4AT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Prakasam AK, Maruthamuthu V, Leckband DE. Similarities between heterophilic and homophilic cadherin adhesion. Proc Natl Acad Sci U S A 2006; 103:15434-9. [PMID: 17023539 PMCID: PMC1622841 DOI: 10.1073/pnas.0606701103] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Indexed: 01/04/2023] Open
Abstract
The mechanism that drives the segregation of cells into tissue-specific subpopulations during development is largely attributed to differences in intercellular adhesion. This process requires the cadherin family of calcium-dependent glycoproteins. A widely held view is that protein-level discrimination between different cadherins on cell surfaces drives this sorting process. Despite this postulated molecular selectivity, adhesion selectivity has not been quantitatively verified at the protein level. In this work, molecular force measurements and bead aggregation assays tested whether differences in cadherin bond strengths could account for cell sorting in vivo and in vitro. Studies were conducted with chicken N-cadherin, canine E-cadherin, and Xenopus C-cadherin. Both qualitative bead aggregation and quantitative force measurements show that the cadherins cross-react. Furthermore, heterophilic adhesion is not substantially weaker than homophilic adhesion, and the measured differences in adhesion do not correlate with cell sorting behavior. These results suggest that the basis for cell segregation during morphogenesis does not map exclusively to protein-level differences in cadherin adhesion.
Collapse
Affiliation(s)
- A. K. Prakasam
- Departments of *Chemical and Biomolecular Engineering and
| | | | - D. E. Leckband
- Departments of *Chemical and Biomolecular Engineering and
- Chemistry and
- Center for Biophysics and Computational Biology, University of Illinois at Urbana, Urbana–Champaign, IL 61801
| |
Collapse
|
125
|
Abstract
Cadherins are essential cell adhesion molecules involved in tissue morphogenesis and the maintenance of tissue architecture in adults. The adhesion and selectivity functions of cadherins are located in their extracellular regions. Biophysical studies show that the adhesive activity is not confined to a single interface. Instead, multiple cadherin domains contribute to binding. By contrast, the specificity-determining site maps to the N-terminal domains, which adhere by the reciprocal binding of Trp2 residues from opposing proteins. Structural cooperativity can transmit the effects of subtle structural changes or ligand binding over large distances in the protein. Increasingly, studies show that differential cadherin-mediated adhesion, rather than exclusive homophilic binding between identical cadherins, direct cell segregation and the organization of tissue interfaces during morphogenesis. Force measurements quantified both kinetic and strength differences between different classical cadherins that may underlie cell sorting behavior. Despite the complex adhesion mechanisms and differences in binding properties, cadherin-mediated cell adhesion is also regulated by many other biochemical processes. Elucidating the mechanisms by which cadherins organize cell junctions and tissue architecture requires not only quantitative, mechanistic investigations of cadherin function but also investigations of the biochemical and cellular processes that can modulate those functions.
Collapse
Affiliation(s)
- Deborah Leckband
- Department of Chemical Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801, USA.
| | | |
Collapse
|
126
|
Abstract
The extracellular domains of cadherins are known to play a major role in cell adhesion, although the structures involved in this process remain unclear. We have used molecular dynamics to characterize the conformational and thermodynamic properties of two of the dimer interfaces identified in E-cadherin crystals and involving the two outermost exodomains (EC1 and EC2): a dimer involving exchange of the N-terminal strand (referred to as the "swapped" dimer) and a "staggered" dimer involving an EC1-EC2 interface. The results show that the staggered dimer involves a much smaller interface area and is notably less stable than the swapped dimer. It is also found that, despite its stability, the swapped dimer undergoes a conformational transition leading to a structure closer to that experimentally observed for the homologous C-cadherin. Finally, comparing the simulated dimer structures with the sequences of E-, C-, and N-cadherins shows that the swapped dimer interface involves surprisingly few residues that vary from family to family and notably no changes between the E- and C-cadherin exodomains.
Collapse
Affiliation(s)
- Fabien Cailliez
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
127
|
Nakaigawa N, Yao M, Baba M, Kato S, Kishida T, Hattori K, Nagashima Y, Kubota Y. Inactivation of von Hippel-Lindau gene induces constitutive phosphorylation of MET protein in clear cell renal carcinoma. Cancer Res 2006; 66:3699-705. [PMID: 16585196 DOI: 10.1158/0008-5472.can-05-0617] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is well known that inactivation of von Hippel-Lindau (VHL) gene predisposes for human clear cell renal carcinoma (CCRC). However, details about critical roles of VHL inactivation during tumorigenesis are still unknown. MET protein is a tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF), which regulates cell growth, cell morphology, and cell motility. We showed that MET protein overexpressed in CCRC cells was phosphorylated without HGF/SF. This constitutive phosphorylation of MET protein in CCRC cells was inhibited by the rescue of exogenous wild-type VHL gene without a decrease in expression level of MET protein. Interestingly, wild-type VHL gene suppressed the phosphorylation of MET protein only under high cell density conditions. Additionally, MET protein activated by the inactivation of VHL gene modified cell adherence, including N-cadherin and beta-catenin. When activation of MET protein in CCRC cells was inhibited by the MET inhibitor K252a, the growth of CCRC cells in vitro and the tumorigenesis induced by CCRC cells in nude mice were suppressed. From these results, we concluded that inactivation of VHL gene induced constitutive phosphorylation of MET protein and modified intercellular adherence structure to trigger the cell growth released from contact inhibition, finally resulting in tumorigenesis. This is one of the mechanisms of CCRC oncogenesis, and MET protein has potential as a molecular target for novel CCRC therapies.
Collapse
Affiliation(s)
- Noboru Nakaigawa
- Departments of Urology and Molecular Pathology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura Kanazawaku, Yokohama 236-0004, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Kobayashi N, Ikesue A, Majumdar S, Siahaan TJ. Inhibition of e-cadherin-mediated homotypic adhesion of Caco-2 cells: a novel evaluation assay for peptide activities in modulating cell-cell adhesion. J Pharmacol Exp Ther 2005; 317:309-16. [PMID: 16371447 DOI: 10.1124/jpet.105.097535] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transient modulation of E-cadherin-mediated cell-cell adhesion may improve paracellular drug delivery through biological barriers. Therefore, there is a need to develop an efficient method to evaluate cadherin peptides that can modulate the intercellular junctions. The objective of this study was to establish a novel assay to evaluate peptide activity in modulating E-cadherin-mediated homophilic interactions, based on the homotypic adhesion of Caco-2 cells. Fluorescence-labeled Caco-2 single cells were incubated with Caco-2 monolayers that were treated beforehand with Ca(2+)-free medium. The homotypic adhesion in the presence or absence of peptide and antibody was determined fluorometrically. The Ca(2+)-deficient pretreatment dramatically increased the number of single cells bound to the monolayers. Immunofluorescence staining showed that some of E-cadherins became accessible without surfactant-induced permeabilization of Caco-2 cell monolayers after the Ca(2+)-deficient pretreatment. The homotypic adhesion was largely dependent on extracellular Ca(2+) concentrations and significantly inhibited by the presence of anti-E-cadherin monoclonal antibody DECMA-1. In contrast, DECMA-1 did not inhibit E-cadherin-independent adhesion, such as the homotypic adhesion of Caco-2 cells in the absence of Ca(2+) or the heterotypic adhesion of Molt-3 T cells to Caco-2 monolayers. These results indicate the predominant involvement of E-cadherin-mediated cell-cell adhesion in this assay. E-cadherin-derived peptides, which had been shown in our previous studies to inhibit E-cadherin-mediated cell-cell adhesion, significantly inhibited homotypic adhesion in a dose-dependent manner. These results, taken together, suggest that the present assay can be used for evaluation of peptide, protein, or antibody activity in modulating the E-cadherin-mediated homophilic interactions in the context of whole live cells.
Collapse
Affiliation(s)
- Naoki Kobayashi
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, 66049-3729, USA
| | | | | | | |
Collapse
|
129
|
Garrod DR, Berika MY, Bardsley WF, Holmes D, Tabernero L. Hyper-adhesion in desmosomes: its regulation in wound healing and possible relationship to cadherin crystal structure. J Cell Sci 2005; 118:5743-54. [PMID: 16303847 DOI: 10.1242/jcs.02700] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The resistance of tissues to physical stress is dependent upon strong cell-cell adhesion in which desmosomes play a crucial role. We propose that desmosomes fulfil this function by adopting a more strongly adhesive state, hyper-adhesion, than other junctions. We show that the hyper-adhesive desmosomes in epidermis resist disruption by ethylene glycol bis(2-aminoethyl ether)-N,N,N′N′-tetraacetic acid (EGTA) and are thus independent of Ca2+. We propose that Ca2+ independence is the normal condition for tissue desmosomes. Ca2+ independence is associated with an organised arrangement of the intercellular adhesive material exemplified by a dense midline. When epidermis is wounded, desmosomes in the wound-edge epithelium lose hyper-adhesiveness and become Ca2+ dependent, i.e. readily dissociated by EGTA. Ca2+-dependent desmosomes lack a midline and show narrowing of the intercellular space. We suggest that this indicates a less-organised, weakly adhesive arrangement of the desmosomal cadherins, resembling classical cadherins in adherens junctions. Transition to Ca2+ dependence on wounding is accompanied by relocalisation of protein kinase C α to desmosomal plaques suggesting that an `inside-out' transmembrane signal is responsible for changing desmosomal adhesiveness. We model hyper-adhesive desmosomes using the crystal packing observed for the ectodomain of C-cadherin and show how the regularity of this 3D array provides a possible explanation for Ca2+ independence.
Collapse
Affiliation(s)
- David R Garrod
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, University of Manchester, Manchester, M13 9PT, UK
| | | | | | | | | |
Collapse
|
130
|
Perez TD, Nelson WJ, Boxer SG, Kam L. E-cadherin tethered to micropatterned supported lipid bilayers as a model for cell adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:11963-8. [PMID: 16316139 PMCID: PMC3368893 DOI: 10.1021/la052264a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cell-cell adhesion is a dynamic process requiring recruitment, binding, and reorganization of signaling proteins in the plane of the plasma membrane. Here, we describe a new system for investigating how this lateral mobility influences cadherin-based cell signaling. This model is based on tethering of a GPI-modified E-cadherin protein (hEFG) to a supported lipid bilayer. In this report, membrane microfluidics and micropatterning techniques are used to adopt this tethered protein system for studies with the anchorage-dependent cells. As directly formed from proteoliposomes, hEFG exhibits a diffusion coefficient of 0.6 +/- 0.3 microm(2)/s and mobile fraction of 30-60%. Lateral structuring of the supported lipid bilayer is used to isolate mobile proteins from this mixed mobile/immobile population, and should be widely applicable to other proteins. MCF-7 cells seeded onto hEFG-containing bilayers recognize and cluster this protein, but do not exhibit cell spreading required for survival. By micropatterning small anchors into the supported lipid bilayer, we have achieved cell spreading across the bilayer surface and concurrent interaction with mobile hEFG protein. Together, these techniques will allow more detailed analysis of the cellular dynamics involved in cadherin-dependent adhesion events.
Collapse
Affiliation(s)
- Tomas D Perez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, California 94305, USA
| | | | | | | |
Collapse
|
131
|
Prasad A, Zhao H, Rutherford JM, Housley N, Nichols C, Pedigo S. Effect of linker segments on the stability of epithelial cadherin domain 2. Proteins 2005; 62:111-21. [PMID: 16287100 DOI: 10.1002/prot.20657] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial cadherin is a transmembrane protein that is essential in calcium-dependent cell-cell recognition and adhesion. It contains five independently folded globular domains in its extracellular region. Each domain has a seven-strand beta-sheet immunoglobulin fold. Short seven-residue peptide segments connect the globular domains and provide oxygens to chelate calcium ions at the interface between the domains (Nagar et al., Nature 1995;380:360-364). Recently, stability studies of ECAD2 (Prasad et al., Biochemistry 2004;43:8055-8066) were undertaken with the motivation that Domain 2 is a representative domain for this family of proteins. The definition of a domain boundary is somewhat arbitrary; hence, it was important to examine the effect of the adjoining linker regions that connect Domain 2 to the adjacent domains. Present studies employ temperature-denaturation and proteolytic susceptibility to provide insight into the impact of these linkers on Domain 2. The significant findings of our present study are threefold. First, the linker segments destabilize the core domain in the absence of calcium. Second, the destabilization due to addition of the linker segments can be partially reversed by the addition of calcium. Third, sodium chloride stabilizes all constructs. This result implies that electrostatic repulsion is a contributor to destabilization of the core domain by addition of the linkers. Thus, the context of Domain 2 within the whole molecule affects its thermodynamic characteristics.
Collapse
Affiliation(s)
- Alka Prasad
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | | | | | | | | | | |
Collapse
|
132
|
Leong CM, Hibma MH. A flow cytometry-based assay for the measurement of protein regulation of E-cadherin-mediated adhesion. J Immunol Methods 2005; 302:116-24. [PMID: 15992814 DOI: 10.1016/j.jim.2005.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 04/29/2005] [Accepted: 05/05/2005] [Indexed: 11/29/2022]
Abstract
Epithelial (E)-cadherin is a transmembrane protein that mediates calcium-dependent cell adhesion. E-cadherin has significant roles in tissue development, adhesion between keratinocytes and retention of Langerhans cells in the epidermis, and its loss on tumour cells is frequently associated with metastasis. Here we describe a simple, flow cytometric adhesion assay to measure the effects of potential regulators of cell surface E-cadherin expression on E-cadherin-mediated adhesion between cells. In this assay, cells that have been transiently transfected to express the protein of interest are enzymatically treated to remove cell surface E-cadherin. Cells are then incubated in low attachment plates, during which time the E-cadherin is re-expressed and E-cadherin-mediated aggregation occurs. The effect of the protein of interest on the percentage of E-cadherin-mediated aggregates that form during incubation is measured flow cytometrically, following staining with an E-cadherin specific antibody. A major advantage of this assay is that a potential regulatory protein of interest can be tested in a transient expression system by co-expression with green fluorescent protein and analysis of adhesion conducted on green fluorescent cells only. We have applied this assay to measure the regulatory effects of E6 protein from human papillomavirus type 16 on E-cadherin-mediated adhesion but this assay potentially has broad applicability for testing the effects of other proteins on E-cadherin-mediated adhesion in an accurate and highly reproducible manner.
Collapse
Affiliation(s)
- Cheng-Mee Leong
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | |
Collapse
|
133
|
Prasad A, Pedigo S. Calcium-Dependent Stability Studies of Domains 1 and 2 of Epithelial Cadherin. Biochemistry 2005; 44:13692-701. [PMID: 16229459 DOI: 10.1021/bi0510274] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epithelial cadherin is important in establishing and maintaining cell to cell interactions in epithelial cells, thereby playing an important role during morphogenesis. The epithelial cadherin molecules have three main regions: the N-terminal extracellular region, the transmembrane region that spans the cell membrane once, and the C-terminal cytoplasmic region that communicates with the cytoskeletal actin filaments through catenins. We report studies of the calcium-dependent stability of extracellular domains 1 and 2 of epithelial cadherin as a two-domain construct (MECAD12). Circular dichroism (CD) spectra of MECAD12 indicated a typical beta-sheet conformation in all solution conditions. Thermal- and denaturant-induced unfolding was monitored by CD. Distinct calcium stabilization was observed as a shift in T(m) from 40 (apo) to 65 degrees C (10 mM Ca2+). Spectroscopic experiments agreed well with calorimetric (DSC). In the absence of calcium, the unfolding transition was shallow (deltaH(m) = 40 kcal/mol) but not obviously three state. Model-dependent analysis indicated that a second transition could be assigned to the unfolding of domain 2. A calcium-binding constant was derived from the calcium-dependent shift in temperature denaturation profiles. The Kd that was obtained (55 microM) was consistent with literature values. Thus, the modular domains of epithelial cadherin exhibit context-dependent behavior in both the apo and calcium-bound states. This cooperativity between the modules is consistent with the physiological role of epithelial cadherin in signal transduction through cell-adhesive contacts.
Collapse
Affiliation(s)
- Alka Prasad
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, USA
| | | |
Collapse
|
134
|
Abstract
E-cadherins belong to a family of membrane-bound, cellular adhesion proteins. Their adhesive properties mainly involve the two N-terminal extracellular domains (EC1 and EC2). The junctions between these domains are characterized by calcium ion binding sites, and calcium ions are essential for the correct functioning of E-cadherins. Calcium is believed to rigidify the extracellular portion of the protein, which, when complexed, adopts a rod-like conformation. Here, we use molecular dynamics simulations to investigate the dynamics of the EC1-2 portion of E-cadherin in the presence and in the absence of calcium ions. These simulations confirm that apo-cadherin shows much higher conformational flexibility on a nanosecond timescale than the calcium-bound form. It is also shown that although the apo-cadherin fragment can spontaneously complex potassium, these monovalent ions are incapable of rigidifying the interdomain junctions. In contrast, removal of the most solvent-exposed calcium ion at the EC1-2 junction does not significantly perturb the dynamical behavior of the fragment. We have also extended this study to the cis-dimer formed from two EC1-2 fragments, potentially involved in cellular adhesion. Here again, it is shown that the presence of calcium is an important factor in both rigidifying and stabilizing the complex.
Collapse
Affiliation(s)
- Fabien Cailliez
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Institut de Biologie Physico-Chimique, Paris 75005, France
| | | |
Collapse
|
135
|
Abstract
Cadherin cell-adhesion proteins mediate many facets of tissue morphogenesis. The dynamic regulation of cadherins in response to various extracellular signals controls cell sorting, cell rearrangements and cell movements. Cadherins are regulated at the cell surface by an inside-out signalling mechanism that is analogous to the integrins in platelets and leukocytes. Signal-transduction pathways impinge on the catenins (cytoplasmic cadherin-associated proteins), which transduce changes across the membrane to alter the state of the cadherin adhesive bond.
Collapse
Affiliation(s)
- Barry M Gumbiner
- Department of Cell Biology, University of Virginia, School of Medicine, PO BOX 800732, Charlottesville, Virginia 22908-0732, USA.
| |
Collapse
|
136
|
Fuchs M, Hutzler P, Handschuh G, Hermannstädter C, Brunner I, Höfler H, Luber B. Dynamics of cell adhesion and motility in living cells is altered by a single amino acid change in E-cadherin fused to enhanced green fluorescent protein. ACTA ACUST UNITED AC 2005; 59:50-61. [PMID: 15259055 DOI: 10.1002/cm.20019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
E-Cadherin regulates epithelial cell adhesion and is critical for the maintenance of tissue integrity. In sporadic diffuse-type gastric carcinoma, mutations of the E-cadherin gene are frequently observed that predominantly affect putative calcium binding motifs located in the linker region between the second and third extracellular domains. A single amino acid change (D370A) as found in a gastric carcinoma patient reduces cell adhesion and up-regulates cell motility. To study the effect of this mutation on the dynamics of cell adhesion and motility in living cells, enhanced green fluorescent protein (EGFP) was C-terminally fused to E-cadherin. The resulting mutant E-cadherin-EGFP fusion protein with a point mutation in exon 8 (p8-EcadEGFP) and a wild-type E-cadherin-EGFP fusion construct (wt-EcadEGFP) were expressed in human MDA-MB-435S cells. Fluorescent images were acquired by time-lapse laser scanning microscopy and E-cadherin was visualized during contact formation and in moving cells. Spatial and temporal localization of p8- and wt-EcadEGFP differed significantly. While wt-EcadEGFP was mainly localized at lateral membranes of contacting cells and formed E-cadherin puncta and plaques, p8-EcadEGFP-expressing cells frequently formed transient cell-cell contacts. During random cell migration, p8-EcadEGFP was found in lamellipodia. In contrast, wt-EcadEGFP localized at lateral cell-cell contact sites in low or non-motile cells. Inhibition of the epidermal growth factor (EGF) receptor, which plays a major role in lamellipodia formation and cell migration, reduced the motility of p8-EcadEGFP-expressing cells and caused lateral membrane staining of p8-EcadEGFP. Conversely, EGF induced cell motility and caused formation of lamellipodia that were E-cadherin positive. In conclusion, our data show that mutant E-cadherin significantly alters the dynamics of cell adhesion and motility in living cells and interferes with the formation of stable cell-cell contacts.
Collapse
Affiliation(s)
- Margit Fuchs
- Technische Universität München, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, München, Germany
| | | | | | | | | | | | | |
Collapse
|
137
|
Harrison OJ, Corps EM, Berge T, Kilshaw PJ. The mechanism of cell adhesion by classical cadherins: the role of domain 1. J Cell Sci 2005; 118:711-21. [PMID: 15671061 DOI: 10.1242/jcs.01665] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism by which classical cadherins mediate cell adhesion and, in particular, the roles played by calcium and Trp2, the second amino acid in the N-terminal domain, have long been controversial. We have used antibodies to investigate the respective contributions of Trp2 and calcium to the stability of the N-terminal domain of N-cadherin. Using a peptide antibody to the betaB strand in domain 1, which detects a disordered structure, we show that both Trp2 and calcium play crucial parts in regulating stability of the domain. The epitope for another antibody, mAb GC4, has been mapped to the base of domain 1. Binding of GC4 to this epitope was shown to depend on intramolecular 'docking' of Trp2 into the domain 1 structure. Using this property, we provide evidence that calcium regulates a dynamic equilibrium between docked and undocked Trp2. Finally, a novel technique has been developed to test whether Trp2 cross-intercalation between cadherin molecules from adjacent cells (strand exchange) is central to cadherin-mediated cell adhesion. Guided by crystal structures showing strand exchange, we have introduced single cysteine point mutations into N-cadherin domain 1 in such a way that a disulphide bond will form between opposing N-cadherin molecules during cell adhesion if strand exchange occurs. The bond requires complementary cysteines to be precisely juxtaposed according to the strand exchange model. Our results demonstrate that the disulphide bond forms as predicted. This provides compelling evidence that strand exchange is indeed a primary event in cell adhesion by classical cadherins.
Collapse
|
138
|
Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 2004; 25:747-806. [PMID: 15466940 DOI: 10.1210/er.2003-0022] [Citation(s) in RCA: 614] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is the process by which a single spermatogonium develops into 256 spermatozoa, one of which will fertilize the ovum. Since the 1950s when the stages of the epithelial cycle were first described, reproductive biologists have been in pursuit of one question: How can a spermatogonium traverse the epithelium, while at the same time differentiating into elongate spermatids that remain attached to the Sertoli cell throughout their development? Although it was generally agreed upon that junction restructuring was involved, at that time the types of junctions present in the testis were not even discerned. Today, it is known that tight, anchoring, and gap junctions are found in the testis. The testis also has two unique anchoring junction types, the ectoplasmic specialization and tubulobulbar complex. However, attention has recently shifted on identifying the regulatory molecules that "open" and "close" junctions, because this information will be useful in elucidating the mechanism of germ cell movement. For instance, cytokines have been shown to induce Sertoli cell tight junction disassembly by shutting down the production of tight junction proteins. Other factors such as proteases, protease inhibitors, GTPases, kinases, and phosphatases also come into play. In this review, we focus on this cellular phenomenon, recapping recent developments in the field.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, New York, New York 10021, USA.
| | | |
Collapse
|
139
|
El Sayegh TY, Arora PD, Laschinger CA, Lee W, Morrison C, Overall CM, Kapus A, McCulloch CAG. Cortactin associates with N-cadherin adhesions and mediates intercellular adhesion strengthening in fibroblasts. J Cell Sci 2004; 117:5117-31. [PMID: 15383621 DOI: 10.1242/jcs.01385] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The regulation of N-cadherin-mediated intercellular adhesion strength in fibroblasts is poorly characterized; this is due, in part, to a lack of available quantitative models. We used a recombinant N-cadherin chimeric protein and a Rat 2 fibroblast, donor-acceptor cell model, to study the importance of cortical actin filaments and cortactin in the strengthening of N-cadherin adhesions. In wash-off assays, cytochalasin D (1 microM) reduced intercellular adhesion by threefold, confirming the importance of cortical actin filaments in strengthening of N-cadherin-mediated adhesions. Cortactin, an actin filament binding protein, spatially colocalized to, and directly associated with, nascent N-cadherin adhesion complexes. Transfection of Rat-2 cells with cortactin-specific, RNAi oligonucleotides reduced cortactin protein by 85% and intercellular adhesion by twofold compared with controls (P<0.005) using the donor-acceptor model. Cells with reduced cortactin exhibited threefold less N-cadherin-mediated intercellular adhesion strength compared with controls in wash-off assays using N-cadherin-coated beads. Immunoprecipitation and immunoblotting showed that N-cadherin-associated cortactin was phosphorylated on tyrosine residue 421 after intercellular adhesion. While tyrosine phosphorylation of cortactin was not required for recruitment to N-cadherin adhesions it was necessary for cadherin-mediated intercellular adhesion strength. Thus cortactin, and phosphorylation of its tyrosine residues, are important for N-cadherin-mediated intercellular adhesion strength.
Collapse
Affiliation(s)
- Tarek Y El Sayegh
- CIHR Group in Matrix Dynamics, University of Toronto, Fitzgerald Building, 150 College Street, Ontario, M5S 3E2, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Koch AW, Manzur KL, Shan W. Structure-based models of cadherin-mediated cell adhesion: the evolution continues. Cell Mol Life Sci 2004; 61:1884-95. [PMID: 15289931 PMCID: PMC11138478 DOI: 10.1007/s00018-004-4006-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 02/24/2004] [Accepted: 03/04/2004] [Indexed: 12/01/2022]
Abstract
Cadherins are glycoproteins that are responsible for homophilic, Ca2+-dependent cell-cell adhesion and play crucial roles in many cellular adhesion processes ranging from embryogenesis to the formation of neuronal circuits in the central nervous system. Many different experimental approaches have been used to unravel the molecular basis for cadherin-mediated adhesion. In particular, several high-resolution structures have provided models for cadherin-cadherin interactions that are illuminative in many respects yet contradictory in others. This review gives an overview of the structural studies of cadherins over the past decade while focusing on recent developments that reconcile some of the earlier findings.
Collapse
Affiliation(s)
- A W Koch
- Montreal Neurological Institute, McGill University, 3801 University Street, H3A 2B4, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
141
|
Prasad A, Housley NA, Pedigo S. Thermodynamic Stability of Domain 2 of Epithelial Cadherin. Biochemistry 2004; 43:8055-66. [PMID: 15209501 DOI: 10.1021/bi049693c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cadherin is a cell adhesion molecule that participates in ordered calcium-dependent self-association interactions both between molecules on the same cell surface (cis-interactions) and on neighboring cell surfaces (trans-interactions). Cadherin is a transmembrane protein that has 3-7 independently folded beta-barrel extracellular domains. Both types of self-association interactions are mediated through the most N-terminal domain (Domain 1). Although the structural nature of the trans-interactions is clear, the nature of the cis-interactions is ambiguous despite several high-resolution structural studies. From earlier studies, it is understood that for the trans-interactions to happen, cis-interactions are mandatory. Hence, our first steps are to study the energetic driving forces for the cis-interactions. We have simplified the approach by first examining participating extracellular domains individually. We report here our initial experiments into the stability of Domain 2 of E-cadherin (ECAD2). ECAD2 appears monomeric, according to results from mass spectrometry and sedimentation equilibrium studies. We report denaturation data from differential scanning calorimetric experiments, and temperature and denaturant-induced unfolding experiments monitored by circular dichroism. These studies give a unified picture of the energetics of ECAD2-folding and stability, for which DeltaG degrees is 6.6 kcal/mol, T(m) is 54 degrees C, DeltaH(m) is 90 kcal/mol, and DeltaC(p) is 1300 cal/Kmol. These parameters are independent of calcium up to 5 mM, indicating that ECAD2 does not bind calcium at physiological calcium levels.
Collapse
Affiliation(s)
- Alka Prasad
- Department of Chemistry and Biochemistry, University of Mississippi, Mississippi 38677, USA
| | | | | |
Collapse
|
142
|
Castillejo-López C, Arias WM, Baumgartner S. The fat-like Gene of Drosophila Is the True Orthologue of Vertebrate Fat Cadherins and Is Involved in the Formation of Tubular Organs. J Biol Chem 2004; 279:24034-43. [PMID: 15047711 DOI: 10.1074/jbc.m313878200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fat cadherins constitute a subclass of the large cadherin family characterized by the presence of 34 cadherin motifs. To date, three mammalian Fat cadherins have been described; however, only limited information is known about the function of these molecules. In this paper, we describe the second fat cadherin in Drosophila, fat-like (ftl). We show that ftl is the true orthologue of vertebrate fat-like genes, whereas the previously characterized tumor suppressor cadherin, fat, is more distantly related as compared with ftl. Ftl is a large molecule of 4705 amino acids. It is expressed apically in luminal tissues such as trachea, salivary glands, proventriculus, and hindgut. Silencing of ftl results in the collapse of tracheal epithelia giving rise to breaks, deletions, and sac-like structures. Other tubular organs such as proventriculus, salivary glands, and hindgut are also malformed or missing. These data suggest that Ftl is required for morphogenesis and maintenance of tubular structures of ectodermal origin and underline its similarity in function to a reported lethal mouse knock-out of fat1 where glomerular epithelial processes collapse. Based on our results, we propose a model where Ftl acts as a spacer to keep tubular epithelia apart rather than the previously described adhesive properties of the cadherin superfamily.
Collapse
|
143
|
Schubert WD, Heinz DW. Structural aspects of adhesion to and invasion of host cells by the human pathogen Listeria monocytogenes. Chembiochem 2004; 4:1285-91. [PMID: 14661268 DOI: 10.1002/cbic.200300624] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wolf-Dieter Schubert
- Department of Structural Biology, German Research Center for Biotechnology (GBF), Mascheroder Weg 1, 38124 Braunschweig, Germany
| | | |
Collapse
|
144
|
Koch AW, Farooq A, Shan W, Zeng L, Colman DR, Zhou MM. Structure of the Neural (N-) Cadherin Prodomain Reveals a Cadherin Extracellular Domain-like Fold without Adhesive Characteristics. Structure 2004; 12:793-805. [PMID: 15130472 DOI: 10.1016/j.str.2004.02.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 02/18/2004] [Accepted: 02/18/2004] [Indexed: 11/16/2022]
Abstract
Classical cadherins mediate cell-cell adhesion through calcium-dependent homophilic interactions and are activated through cleavage of a prosequence in the late Golgi. We present here the first three-dimensional structure of a classical cadherin prosequence, solved by NMR. The prototypic prosequence of N-cadherin consists of an Ig-like domain and an unstructured C-terminal region. The folded part of the prosequence-termed prodomain-has a striking structural resemblance to cadherin "adhesive" domains that could not have been predicted from the amino acid sequence due to low sequence similarities. Our detailed structural and evolutionary analysis revealed that prodomains are distant relatives of cadherin "adhesive" domains but lack all the features known to be important for cadherin-cadherin interactions. The presence of an additional "nonadhesive" domain seems to make it impossible to engage homophilic interactions between cadherins that are necessary to activate adhesion, thus explaining the inactive state of prodomain-bearing cadherins.
Collapse
Affiliation(s)
- Alexander W Koch
- Fishberg Research Center for Neurobiology, Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029 USA.
| | | | | | | | | | | |
Collapse
|
145
|
Jahoda CAB, Kljuic A, O'Shaughnessy R, Crossley N, Whitehouse CJ, Robinson M, Reynolds AJ, Demarchez M, Porter RM, Shapiro L, Christiano AM. The lanceolate hair rat phenotype results from a missense mutation in a calcium coordinating site of the desmoglein 4 gene. Genomics 2004; 83:747-56. [PMID: 15081105 DOI: 10.1016/j.ygeno.2003.11.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 11/21/2003] [Indexed: 11/29/2022]
Abstract
Desmosomal cadherins are essential cell adhesion molecules present throughout the epidermis and other organs, whose major function is to provide mechanical integrity and stability to epithelial cells in a wide variety of tissues. We recently identified a novel desmoglein family member, Desmoglein 4 (Dsg4), using a positional cloning approach in two families with localized autosomal recessive hypotrichosis (LAH) and in the lanceolate hair (lah) mouse. In this study, we report cloning and identification of the rat Dsg4 gene, in which we discovered a missense mutation in a naturally occurring lanceolate hair (lah) rat mutant. Phenotypic analysis of lah/lah mutant rats revealed a striking hair shaft defect with the appearance of a lance head within defective hair shafts. The mutation disrupts a critical calcium binding site bridging the second and third extracellular domains of Dsg4, likely disrupting extracellular interactions of the protein.
Collapse
Affiliation(s)
- Colin A B Jahoda
- School of Biomedical and Biological Sciences, University of Durham, Durham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Zheng K, Makagiansar IT, Wang M, Urbauer JL, Kuczera K, Siahaan TJ. Expression, purification, and structural study of the EC4 domain of E-cadherin. Protein Expr Purif 2004; 33:72-9. [PMID: 14680964 DOI: 10.1016/j.pep.2003.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 08/26/2003] [Indexed: 11/17/2022]
Abstract
The objective of this work was to produce unlabeled and 15N-labeled EC4 domain protein from E-cadherin for studying its structure and binding properties to other EC domains as well as to E-cadherin peptides. The EC4 domain of E-cadherin was expressed in Escherichia coli from the vector pASK-IBA6 and localized in the periplasmic space of E. coli. This protein contains a Streptag sequence at the N-terminus, and thus was purified using a Strep-Tactin affinity column. However, at high concentrations the 15N-labeled EC4 protein showed an unstable conformation. Conditions for stabilizing the conformation of this protein were evaluated using CD spectroscopy. The CD results showed that this protein has high conformational stability in Tris buffer at pH 6.0 in the presence of 10 mM calcium chloride.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | |
Collapse
|
147
|
DeLise AM, Tuan RS. Alterations in the spatiotemporal expression pattern and function of N-cadherin inhibit cellular condensation and chondrogenesis of limb mesenchymal cells in vitro. J Cell Biochem 2004; 87:342-59. [PMID: 12397616 DOI: 10.1002/jcb.10308] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cartilage formation in the embryonic limb is presaged by a cellular condensation phase that is mediated by both cell-cell and cell-matrix interactions. N-Cadherin, a Ca(2+)-dependent cell-cell adhesion molecule, is expressed at higher levels in the condensing mesenchyme, followed by down-regulation upon chondrogenic differentiation, strongly suggesting a functional role in the cellular condensation process. To further examine the role of N-cadherin, we have generated expression constructs of wild type and two deletion mutants (extracellular and intracellular) of N-cadherin in the avian replication-competent, RCAS retrovirus, and transfected primary chick limb mesenchymal cell cultures with these constructs. The effects of altered, sustained expression of N-cadherin and its mutant forms on cellular condensation, on the basis of peanut agglutinin (DNA) staining, and chondrogenesis, based on expression of chondrocyte phenotypic markers, were characterized. Cellular condensation was relatively unchanged in cultures overexpressing wild type N-cadherin, compared to controls on all days in culture. However, expression of either of the deletion mutant forms of N-cadherin resulted in decreased condensation, with the extracellular deletion mutant demonstrating the most severe inhibition, suggesting a requirement for N-cadherin mediated cell-cell adhesion and signaling in cellular condensation. Subsequent chondrogenic differentiation was also affected in all cultures overexpressing the N-cadherin constructs, on the basis of metabolic sulfate incorporation, the presence of the cartilage matrix proteins collagen type II and cartilage proteoglycan link protein, and alcian blue staining of the matrix. The characteristics of the cultures suggest that the N-cadherin mutants disrupt proper cellular condensation and subsequent chondrogenesis, while the cultures overexpressing wild type N-cadherin appear to condense normally, but are unable to proceed toward differentiation, possibly due to the prolonged maintenance of increased cell-cell adhesiveness. Thus, spatiotemporally regulated N-cadherin expression and function, at the level of both homotypic binding and linkage to the cytoskeleton, is required for chondrogenesis of limb mesenchymal cells.
Collapse
Affiliation(s)
- Anthony M DeLise
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
148
|
Wendeler MW, Praus M, Jung R, Hecking M, Metzig C, Gessner R. Ksp-cadherin is a functional cell–cell adhesion molecule related to LI-cadherin. Exp Cell Res 2004; 294:345-55. [PMID: 15023525 DOI: 10.1016/j.yexcr.2003.11.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 11/10/2003] [Indexed: 10/26/2022]
Abstract
Ksp- and LI-cadherin are structurally homologous proteins coexpressed with E-cadherin in renal and intestinal epithelia, respectively. Whereas LI-cadherin has been shown to mediate Ca2+-dependent homotypic cell-cell adhesion independent of stable interactions with the cytoskeleton, little is known about the physiological role of Ksp-cadherin. To analyze its potential adhesive and morphoregulatory functions, we expressed murine Ksp-cadherin in CHO cells. In this report, we show that Ksp-cadherin induces homotypic and Ca2+-dependent cell-cell adhesion that can be specifically blocked with antibodies raised against the cadherin repeats EC1 and EC2. Ksp-cadherin mediates about the same quantitative adhesive effect (aggregation index) as LI- and E-cadherin. However, the cellular phenotype induced by Ksp-cadherin resembles more closely that of LI- than E-cadherin. This could reflect our observation, that Ksp-cadherin, as well as LI-cadherin, does not directly interact with beta-catenin. In conclusion, both cadherins are thus not only structurally but also functionally related and may share other functions within their respective epithelia.
Collapse
Affiliation(s)
- M W Wendeler
- Institute of Laboratory Medicine and Biochemistry, Virchow-Hospital of Charité Medical School, Humboldt University of Berlin, D-13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
149
|
Abstract
Cadherins constitute a superfamily of cell-cell adhesion molecules expressed in many different cell types that are required for proper cellular function and maintenance of tissue architecture. Classical cadherins are the best understood class of cadherins. They are single membrane spanning proteins with a divergent extracellular domain of five repeats and a conserved cytoplasmic domain. Binding between cadherin extracellular domains is weak, but strong cell-cell adhesion develops during lateral clustering of cadherins by proteins that link the cadherin cytoplasmic domain to the actin cytoskeleton. Understanding how different regions of cadherins regulate cell-cell adhesion has been a major focus of study. Here, we examine evidence of the structure and function of the extracellular domain of classical cadherins in regard to the control of recognition and adhesive contacts between cadherins on opposing cell surfaces. Early experiments that focused on understanding the homotypic, Ca(++)-dependent characteristics of cadherin adhesion are discussed, and data supporting the widely accepted cis- and trans-dimer models of cadherins are analyzed.
Collapse
Affiliation(s)
- T D Perez
- Department of Molecular and Cellular Physiology, Stanford University, School of Medicine, 279 Campus Dr, Beckman Center B121, Stanford, CA, 94305-5435, USA
| | | |
Collapse
|
150
|
Troyanovsky RB, Sokolov E, Troyanovsky SM. Adhesive and lateral E-cadherin dimers are mediated by the same interface. Mol Cell Biol 2003; 23:7965-72. [PMID: 14585958 PMCID: PMC262383 DOI: 10.1128/mcb.23.22.7965-7972.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
E-cadherin is a transmembrane protein that mediates Ca(2+)-dependent cell-cell adhesion. To study cadherin-cadherin interactions that may underlie the adhesive process, a recombinant E-cadherin lacking free sulfhydryl groups and its mutants with novel cysteines were expressed in epithelial A-431 cells. These cysteine mutants, designed according to various structural models of cadherin dimers, were constructed to reveal cadherin dimerization by the bifunctional sulfhydryl-specific cross-linker BM[PE0]3. Cross-linking experiments with the mutants containing a cysteine at strand B of their EC1 domains did show cadherin dimerization. By their properties these dimers correspond to those which have been characterized by co-immunoprecipitation assay. Under standard culture conditions the adhesive dimer is a dominant form. Calcium depletion dissociates adhesive dimers and promotes the formation of lateral dimers. Our data show that both dimers are mediated by the amino-terminal cadherin domain. Furthermore, the interfaces involved in both adhesive and lateral dimerization appear to be the same. The coexistence of the structurally identical adhesive and lateral dimers suggests some flexibility of the extracellular cadherin region.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Division of Dermatology, Washington University Medical School, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|