101
|
Permpoonputtana K, Mukda S, Govitrapong P. Effect of melatonin on d-amphetamine-induced neuroglial alterations in postnatal rat hippocampus and prefrontal cortex. Neurosci Lett 2012; 524:1-4. [DOI: 10.1016/j.neulet.2012.06.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/15/2012] [Accepted: 06/16/2012] [Indexed: 10/28/2022]
|
102
|
Gonçalves J, Ribeiro CF, Malva JO, Silva AP. Protective role of neuropeptide Y Y2receptors in cell death and microglial response following methamphetamine injury. Eur J Neurosci 2012; 36:3173-83. [DOI: 10.1111/j.1460-9568.2012.08232.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
103
|
Coelho-Santos V, Gonçalves J, Fontes-Ribeiro C, Silva AP. Prevention of methamphetamine-induced microglial cell death by TNF-α and IL-6 through activation of the JAK-STAT pathway. J Neuroinflammation 2012; 9:103. [PMID: 22642790 PMCID: PMC3391183 DOI: 10.1186/1742-2094-9-103] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 05/29/2012] [Indexed: 12/20/2022] Open
Abstract
Background It is well known that methamphetamine (METH) is neurotoxic and recent studies have suggested the involvement of neuroinflammatory processes in brain dysfunction induced by misuse of this drug. Indeed, glial cells seem to be activated in response to METH, but its effects on microglial cells are not fully understood. Moreover, it has been shown that cytokines, which are normally released by activated microglia, may have a dual role in response to brain injury. This led us to study the toxic effect of METH on microglial cells by looking to cell death and alterations of tumor necrosis factor-alpha (TNF-α) and interleukine-6 (IL-6) systems, as well as the role played by these cytokines. Methods We used the N9 microglial cell line, and cell death and proliferation were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay and incorporation of bromodeoxyuridine, respectively. The TNF-α and IL-6 content was quantified by enzyme-linked immunosorbent assay, and changes in TNF receptor 1, IL-6 receptor-alpha, Bax and Bcl-2 protein levels by western blotting. Immunocytochemistry analysis was also performed to evaluate alterations in microglial morphology and in the protein expression of phospho-signal transducer and activator of transcription 3 (pSTAT3). Results METH induced microglial cell death in a concentration-dependent manner (EC50 = 1 mM), and also led to significant morphological changes and decreased cell proliferation. Additionally, this drug increased TNF-α extracellular and intracellular levels, as well as its receptor protein levels at 1 h, whereas IL-6 and its receptor levels were increased at 24 h post-exposure. However, the endogenous proinflammatory cytokines did not contribute to METH-induced microglial cell death. On the other hand, exogenous low concentrations of TNF-α or IL-6 had a protective effect. Interestingly, we also verified that the anti-apoptotic role of TNF-α was mediated by activation of IL-6 signaling, specifically the janus kinase (JAK)-STAT3 pathway, which in turn induced down-regulation of the Bax/Bcl-2 ratio. Conclusions These findings show that TNF-α and IL-6 have a protective role against METH-induced microglial cell death via the IL-6 receptor, specifically through activation of the JAK-STAT3 pathway, with consequent changes in pro- and anti-apoptotic proteins.
Collapse
Affiliation(s)
- Vanessa Coelho-Santos
- Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | |
Collapse
|
104
|
Kousik SM, Napier TC, Carvey PM. The effects of psychostimulant drugs on blood brain barrier function and neuroinflammation. Front Pharmacol 2012; 3:121. [PMID: 22754527 PMCID: PMC3386512 DOI: 10.3389/fphar.2012.00121] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/06/2012] [Indexed: 12/17/2022] Open
Abstract
The blood brain barrier (BBB) is a highly dynamic interface between the central nervous system (CNS) and periphery. The BBB is comprised of a number of components and is part of the larger neuro(glio)vascular unit. Current literature suggests that psychostimulant drugs of abuse alter the function of the BBB which likely contributes to the neurotoxicities associated with these drugs. In both preclinical and clinical studies, psychostimulants including methamphetamine, MDMA, cocaine, and nicotine, produce BBB dysfunction through alterations in tight junction protein expression and conformation, increased glial activation, increased enzyme activation related to BBB cytoskeleton remodeling, and induction of neuroinflammatory pathways. These detrimental changes lead to increased permeability of the BBB and subsequent vulnerability of the brain to peripheral toxins. In fact, abuse of these psychostimulants, notably methamphetamine and cocaine, has been shown to increase the invasion of peripheral bacteria and viruses into the brain. Much work in this field has focused on the co-morbidity of psychostimulant abuse and human immunodeficiency virus (HIV) infection. As psychostimulants alter BBB permeability, it is likely that this BBB dysfunction results in increased penetration of the HIV virus into the brain thus increasing the risk of and severity of neuro AIDS. This review will provide an overview of the specific changes in components within the BBB associated with psychostimulant abuse as well as the implications of these changes in exacerbating the neuropathology associated with psychostimulant drugs and HIV co-morbidity.
Collapse
Affiliation(s)
- Sharanya M Kousik
- Department of Pharmacology, Rush University Medical Center Chicago, IL, USA
| | | | | |
Collapse
|
105
|
Psychostimulant abuse and neuroinflammation: emerging evidence of their interconnection. Neurotox Res 2012; 23:174-88. [PMID: 22714667 DOI: 10.1007/s12640-012-9334-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/09/2012] [Accepted: 05/22/2012] [Indexed: 12/31/2022]
Abstract
During the past two decades, there has been a tremendous expansion of knowledge regarding the neurobiological effects of substance abuse and how these effects impact behavior. At the same time, there has been a profound change in our understanding of the way in which the central nervous system responds to noxious stimuli. Most often referred to as the innate immune response (IIR), this defense mechanism is activated by a number of agents (toxic, microbial, ischemic) and has been implicated in the progression of a number of neurodegenerative diseases. We review evidence that psychostimulants of abuse (cocaine, methamphetamine, ecstasy) are associated with activation of the IIR. We first present background on what is currently known about the IIR including some of the cellular elements involved (microglia, astrocytes, vascular endothelial cells), key receptor pathways, and primary inflammatory cytokines (IL-1β, IL-6, TNF-α). We then present a variety of protein and gene expression data taken from animal studies that show increased expression of various components of the IIR following acute or repeated psychostimulant administration. Collectively the data indicate an association of psychostimulant use with IIR activation in the brain even at exposures not traditionally associated with neurotoxicity. Thus, the gradually escalating deleterious effects of psychostimulant use could in part involve neuroinflammatory mechanisms. Finally, we offer one hypothesis of a possible mechanism by which psychostimulants result in IIR activation and discuss the potential therapeutic implications of these findings for treatment of the recovering addict.
Collapse
|
106
|
Baptista S, Bento AR, Gonçalves J, Bernardino L, Summavielle T, Lobo A, Fontes-Ribeiro C, Malva JO, Agasse F, Silva AP. Neuropeptide Y promotes neurogenesis and protection against methamphetamine-induced toxicity in mouse dentate gyrus-derived neurosphere cultures. Neuropharmacology 2012; 62:2413-23. [DOI: 10.1016/j.neuropharm.2012.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
|
107
|
Abstract
Pharmacological interventions to treat psychiatric illness have previously focused on modifying dysfunctional neurotransmitter systems to improve symptoms. However, imperfect understanding of the aetiology of these heterogeneous syndromes has been associated with poor treatment outcomes for many individuals. Growing evidence suggests that oxidative stress, inflammation, changes in glutamatergic pathways and neurotrophins play important roles in many psychiatric illnesses including mood disorders, schizophrenia and addiction. These novel insights into pathophysiology allow new treatment targets to be explored. Minocycline is an antibiotic that can modulate glutamate-induced excitotoxicity, and has antioxidant, anti-inflammatory and neuroprotective effects. Given that these mechanisms overlap with the newly understood pathophysiological pathways, minocycline has potential as an adjunctive treatment in psychiatry. To date there have been promising clinical indications that minocycline may be a useful treatment in psychiatry, albeit from small trials most of which were not placebo controlled. Case reports of individuals with schizophrenia, psychotic symptoms and bipolar depression have shown serendipitous benefits of minocycline treatment on psychiatric symptoms. Minocycline has been trialled in open-label or small randomized controlled trials in psychiatry. Results vary, with findings supporting use in schizophrenia, but showing less benefit for nicotine dependence and obsessive-compulsive disorder. Given the limited data from rigorous clinical trials, further research is required. However, taken together, the current evidence suggests minocycline may be a promising novel therapy in psychiatry.
Collapse
Affiliation(s)
- Olivia M Dean
- Deakin University, School of Medicine, Barwon Health, Geelong, VIC, Australia.
| | | | | | | |
Collapse
|
108
|
Inflammatory effects of highly pathogenic H5N1 influenza virus infection in the CNS of mice. J Neurosci 2012; 32:1545-59. [PMID: 22302798 DOI: 10.1523/jneurosci.5123-11.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The A/VN/1203/04 strain of the H5N1 influenza virus is capable of infecting the CNS of mice and inducing a number of neurodegenerative pathologies. Here, we examined the effects of H5N1 on several pathological aspects affected in parkinsonism, including loss of the phenotype of dopaminergic neurons located in the substantia nigra pars compacta (SNpc), expression of monoamines and indolamines in brain, alterations in SNpc microglia number and morphology, and expression of cytokines, chemokines, and growth factors. We find that H5N1 induces a transient loss of the dopaminergic phenotype in SNpc and now report that this loss recovers by 90 d after infection. A similar pattern of loss and recovery was seen in monoamine levels of the basal ganglia. The inflammatory response in lung and different regions of the brain known to be targets of the H5N1 virus (brainstem, substantia nigra, striatum, and cortex) were examined at 3, 10, 21, 60, and 90 d after infection. In each of these brain regions, we found a significant increase in the number of activated microglia that lasted at least 90 d. We also quantified expression of IL-1α, IL-1β, IL-2, IL-6, IL-9, IL-10, IL-12(p70), IL-13, TNF-α, IFN-γ, granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, eotaxin, interferon-inducible protein 10, cytokine-induced neutrophil chemoattractant, monocyte chemotactic protein-1, macrophage inflammatory protein (MIP) 1α, MIP-1β, and VEGF, and found that the pattern and levels of expression are dependent on both brain region and time after infection. We conclude that H5N1 infection in mice induces a long-lasting inflammatory response in brain and may play a contributing factor in the development of pathologies in neurodegenerative disorders.
Collapse
|
109
|
Shah A, Silverstein PS, Singh DP, Kumar A. Involvement of metabotropic glutamate receptor 5, AKT/PI3K signaling and NF-κB pathway in methamphetamine-mediated increase in IL-6 and IL-8 expression in astrocytes. J Neuroinflammation 2012; 9:52. [PMID: 22420994 PMCID: PMC3338363 DOI: 10.1186/1742-2094-9-52] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 03/15/2012] [Indexed: 01/12/2023] Open
Abstract
Methamphetamine (MA) is one of the commonly used illicit drugs and the central nervous system toxicity of MA is well documented. The mechanisms contributing to this toxicity have not been fully elucidated. In this study, we investigated the effect of MA on the expression levels of the proinflammatory cytokines/chemokines, IL-6 and IL-8 in an astrocytic cell line. The IL-6 and IL-8 RNA levels were found to increase by 4.6 ± 0.2 fold and 3.5 ± 0.2 fold, respectively, after exposure to MA for three days. Exposure of astrocytes to MA for 24 hours also caused increased expression of IL-6 and IL-8 at the level of both RNA and protein. The potential involvement of the nuclear factor-Kappa B (NF-κB) pathway was explored as one of the possible mechanism(s) responsible for the increased induction of IL-6 and IL-8 by MA. The MA-mediated increases in IL-6 and IL-8 were significantly abrogated by SC514. We also found that exposure of astrocytes to MA results in activation of NF-κB through the phosphorylation of IκB-α, followed by translocation of active NF-κB from the cytoplasm to the nucleus. In addition, treatment of cells with a specific inhibitor of metabotropic glutamate receptor-5 (mGluR5) revealed that MA-mediated expression levels of IL-6 and IL-8 were abrogated by this treatment by 42.6 ± 5.8% and 65.5 ± 3.5%, respectively. Also, LY294002, an inhibitor of the Akt/PI3K pathway, abrogated the MA-mediated induction of IL-6 and IL-8 by 77.9 ± 6.6% and 81.4 ± 2.6%, respectively. Thus, our study demonstrates the involvement of an NF-κB-mediated signaling mechanism in the induction of IL-6 and IL-8 by MA. Furthermore, we showed that blockade of mGluR5 can protect astrocytes from MA-mediated increases of proinflammatory cytokines/chemokines suggesting mGluR5 as a potential therapeutic target in treating MA-mediated neurotoxicity.
Collapse
Affiliation(s)
- Ankit Shah
- Division of Pharmacology, UMKC-School of Pharmacy, Kansas City, MO 64108, USA
| | | | | | | |
Collapse
|
110
|
Coller JK, Hutchinson MR. Implications of central immune signaling caused by drugs of abuse: mechanisms, mediators and new therapeutic approaches for prediction and treatment of drug dependence. Pharmacol Ther 2012; 134:219-45. [PMID: 22316499 DOI: 10.1016/j.pharmthera.2012.01.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 01/12/2023]
Abstract
In the past two decades a trickle of manuscripts examining the non-neuronal central nervous system immune consequences of the drugs of abuse has now swollen to a significant body of work. Initially, these studies reported associative evidence of central nervous system proinflammation resulting from exposure to the drugs of abuse demonstrating key implications for neurotoxicity and disease progression associated with, for example, HIV infection. However, more recently this drug-induced activation of central immune signaling is now understood to contribute substantially to the pharmacodynamic actions of the drugs of abuse, by enhancing the engagement of classical mesolimbic dopamine reward pathways and withdrawal centers. This review will highlight the key in vivo animal, human, biological and molecular evidence of these central immune signaling actions of opioids, alcohol, cocaine, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA). Excitingly, this new appreciation of central immune signaling activity of drugs of abuse provides novel therapeutic interventions and opportunities to identify 'at risk' individuals through the use of immunogenetics. Discussion will also cover the evidence of modulation of this signaling by existing clinical and pre-clinical drug candidates, and novel pharmacological targets. Finally, following examination of the breadth of central immune signaling actions of the drugs of abuse highlighted here, the current known common immune signaling components will be outlined and their impact on established addiction neurocircuitry discussed, thereby synthesizing a common neuroimmune hypothesis of addiction.
Collapse
Affiliation(s)
- Janet K Coller
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
111
|
Snider SE, Vunck SA, van den Oord EJCG, Adkins DE, McClay JL, Beardsley PM. The glial cell modulators, ibudilast and its amino analog, AV1013, attenuate methamphetamine locomotor activity and its sensitization in mice. Eur J Pharmacol 2012; 679:75-80. [PMID: 22306241 DOI: 10.1016/j.ejphar.2012.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/04/2012] [Accepted: 01/11/2012] [Indexed: 11/26/2022]
Abstract
Over 800,000 Americans abuse the psychomotor stimulant, methamphetamine, yet its abuse is without an approved medication. Methamphetamine induces hypermotor activity, and sensitization to this effect is suggested to represent aspects of the addiction process. Methamphetamine's regulation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels may be partially responsible for its behavioral effects, and compounds that inhibit phosphodiesterase (PDE), the enzyme that degrades cAMP, can alter methamphetamine-induced behaviors. Methamphetamine also activates glial cells and causes a subsequent increase in pro-inflammatory cytokine levels. Modulation of glial cell activation is associated with changes in behavioral responses, and substances that oppose inflammatory activity can attenuate drug-induced behaviors. Ibudilast (aka AV411; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine), inhibits both PDE and glial pro-inflammatory activity. Ibudilast's amino analog, AV1013, modulates similar glial targets but negligibly inhibits PDE. The present study determined whether ibudilast and AV1013 would attenuate methamphetamine-induced locomotor activity and its sensitization in C57BL/6J mice. Mice were treated b.i.d. with ibudilast (1.8-13 mg/kg), AV1013 (10-56 mg/kg) or their vehicles intraperitoneally for 7 days, beginning 48 h before 5 days of daily 1-h locomotor activity tests. Each test was initiated by either a methamphetamine (3 mg/kg) or a saline injection. Ibudilast significantly (P<0.05) reduced the acute, chronic, and sensitization effects of methamphetamine's locomotor activity without significantly affecting activity by itself. AV1013 had similar anti-methamphetamine effects, suggesting that glial cell activity, by itself, can modulate methamphetamine's effects and perhaps serve as a medication target for its abuse.
Collapse
Affiliation(s)
- Sarah E Snider
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
112
|
Thomas Curtis J, Chen Y, Buck DJ, Davis RL. Chronic inorganic mercury exposure induces sex-specific changes in central TNFα expression: importance in autism? Neurosci Lett 2011; 504:40-4. [PMID: 21906657 DOI: 10.1016/j.neulet.2011.08.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/22/2011] [Accepted: 08/24/2011] [Indexed: 11/19/2022]
Abstract
Mercury is neurotoxic and increasing evidence suggests that environmental exposure to mercury may contribute to neuropathologies including Alzheimer's disease and autism spectrum disorders. Mercury is known to disrupt immunocompetence in the periphery, however, little is known about the effects of mercury on neuroimmune signaling. Mercury-induced effects on central immune function are potentially very important given that mercury exposure and neuroinflammation both are implicated in certain neuropathologies (i.e., autism). Furthermore, mounting evidence points to the involvement of glial activation in autism. Therefore, we utilized an in vivo model to assess the effects of mercury exposure on neuroimmune signaling. In prairie voles, 10 week mercury exposure (60ppm HgCl(2) in drinking water) resulted in a male-specific increase in TNFα protein expression in the cerebellum and hippocampus. These findings are consistent with our previously reported male-specific mercury-induced deficits in social behavior and further support a role for heavy metals exposure in neuropathologies such as autism. Subsequent studies should further evaluate the mechanism of action and biological consequences of heavy metals exposure. Additionally, these observations highlight the potential of neuroimmune markers in male voles as biomarkers of environmental mercury toxicity.
Collapse
Affiliation(s)
- J Thomas Curtis
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, United States
| | | | | | | |
Collapse
|
113
|
Martins T, Baptista S, Gonçalves J, Leal E, Milhazes N, Borges F, Ribeiro CF, Quintela O, Lendoiro E, López-Rivadulla M, Ambrósio AF, Silva AP. Methamphetamine transiently increases the blood-brain barrier permeability in the hippocampus: role of tight junction proteins and matrix metalloproteinase-9. Brain Res 2011; 1411:28-40. [PMID: 21803344 DOI: 10.1016/j.brainres.2011.07.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/01/2011] [Accepted: 07/06/2011] [Indexed: 01/05/2023]
Abstract
Methamphetamine (METH) is a powerful stimulant drug of abuse that has steadily gained popularity worldwide. It is known that METH is highly neurotoxic and causes irreversible damage of brain cells leading to neurological and psychiatric abnormalities. Recent studies suggested that METH-induced neurotoxicity might also result from its ability to compromise blood-brain barrier (BBB) function. Due to the crucial role of BBB in the maintenance of brain homeostasis and protection against toxic molecules and pathogenic organisms, its dysfunction could have severe consequences. In this study, we investigated the effect of an acute high dose of METH (30mg/kg) on BBB permeability after different time points and in different brain regions. For that, young adult mice were sacrificed 1h, 24h or 72h post-METH administration. METH increased BBB permeability, but this effect was detected only at 24h after administration, being therefore a transitory effect. Interestingly, we also found that the hippocampus was the most susceptible brain region to METH, comparing to frontal cortex and striatum. Moreover, in an attempt to identify the key players in METH-induced BBB dysfunction we further investigated potential alterations in tight junction (TJ) proteins and matrix metalloproteinase-9 (MMP-9). METH was able to decrease the protein levels of zonula occludens (ZO)-1, claudin-5 and occludin in the hippocampus 24h post-injection, and increased the activity and immunoreactivity of MMP-9. The pre-treatment with BB-94 (30mg/kg), a matrix metalloproteinase inhibitor, prevented the METH-induced increase in MMP-9 immunoreactivity in the hippocampus. Overall, the present data demonstrate that METH transiently increases the BBB permeability in the hippocampus, which can be explained by alterations on TJ proteins and MMP-9.
Collapse
Affiliation(s)
- Tânia Martins
- Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Loftis JM, Choi D, Hoffman W, Huckans MS. Methamphetamine causes persistent immune dysregulation: a cross-species, translational report. Neurotox Res 2011; 20:59-68. [PMID: 20953917 PMCID: PMC3081419 DOI: 10.1007/s12640-010-9223-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/10/2010] [Accepted: 09/27/2010] [Indexed: 10/18/2022]
Abstract
Methamphetamine (MA) dependence causes serious cognitive impairments that can persist during abstinence and negatively affect recovery outcomes. Evidence suggests that immune factors, such as cytokines, chemokines, and cellular adhesion molecules, contribute to MA-induced immune dysfunction, neuronal injury, and persistent cognitive impairments, yet the role of MA-induced brain inflammation remains unclear. To address this question, we used a cross-species, translational approach. Thirty-two male C57BL/6J mice were administered MA (1 mg/kg) or saline subcutaneously for seven consecutive days. Mice were euthanized at 72 h or 3 weeks after the last drug dose, and blood and brain samples were collected. In addition, 20 adults in remission from MA dependence and 20 non-dependent controls completed neuropsychological assessments and a blood draw. Multiplex assays were used to measure cytokine, chemokine, and intercellular adhesion molecule (ICAM-1) expression in mouse and human samples. A number of significant MA-induced changes in neuroimmune factors were observed. Of particular interest were the chemokine monocyte chemoattractant protein 1 (MCP-1) and the cellular adhesion molecule ICAM-1, which were similarly increased in the plasma of MA exposed mice as well as humans. In human participants, MA-induced changes in the cytokine and chemokine milieu were accompanied by increased cognitive impairments. Mice showing MA-induced changes in peripheral immune molecule expression also had significant brain-region specific changes in pro-inflammatory cytokines, chemokines, and ICAM-1. This cross-species, translational study suggests that chronic CNS immune dysregulation may in part contribute to the longlasting neuropsychiatric consequences of MA dependence.
Collapse
Affiliation(s)
- Jennifer M Loftis
- Research & Development Service, Portland VA Medical Center, 3710 SW U.S. Veterans Hospital Rd., R&D 16, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
115
|
Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse. Brain Behav Immun 2011; 25 Suppl 1:S21-8. [PMID: 21256955 PMCID: PMC5654377 DOI: 10.1016/j.bbi.2011.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/10/2011] [Accepted: 01/10/2011] [Indexed: 11/22/2022] Open
Abstract
Stress and stress-induced glucocorticoids (GCs) sensitize drug abuse behavior as well as the neuroinflammatory response to a subsequent pro-inflammatory challenge. Stress also predisposes or sensitizes individuals to develop substance abuse. There is an emerging evidence that glia and glia-derived neuroinflammatory mediators play key roles in the development of drug abuse. Drugs of abuse such as opioids, psychostimulants, and alcohol induce neuroinflammatory mediators such as pro-inflammatory cytokines (e.g. interleukin (IL)-1β), which modulate drug reward, dependence, and tolerance as well as analgesic properties. Drugs of abuse may directly activate microglial and astroglial cells via ligation of Toll-like receptors (TLRs), which mediate the innate immune response to pathogens as well as xenobiotic agents (e.g. drugs of abuse). The present review focuses on understanding the immunologic mechanism(s) whereby stress primes or sensitizes the neuroinflammatory response to drugs of abuse and explores whether stress- and GC-induced sensitization of neuroimmune processes predisposes individuals to drug abuse liability and the role of neuroinflammatory mediators in the development of drug addiction.
Collapse
|
116
|
Buchanan JB, Sparkman NL, Johnson RW. A neurotoxic regimen of methamphetamine exacerbates the febrile and neuroinflammatory response to a subsequent peripheral immune stimulus. J Neuroinflammation 2010; 7:82. [PMID: 21092194 PMCID: PMC2995792 DOI: 10.1186/1742-2094-7-82] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/22/2010] [Indexed: 02/08/2023] Open
Abstract
Methamphetamine (MA) use is associated with activation of microglia and, at high doses, can induce neurotoxicity. Given the changes in the neuroinflammatory environment associated with MA, we investigated whether MA administration would interfere with the thermoregulatory and neuroinflammatory response to a subsequent peripheral immune stimulus. C57BL6/J mice were given four i.p. injections of either 5 mg/kg MA or saline at two hour intervals. Twenty-four hours following the first MA injection, mice were given 100 μg/kg LPS or saline i.p. and blood and brains were collected. Here we report that mice exposed to MA developed higher fevers in response to LPS than did those given LPS alone. MA also exacerbated the LPS-induced increase in central cytokine mRNA. MA alone increased microglial Iba1 expression and expression was further increased when mice were exposed to both MA and LPS, suggesting that MA not only activated microglia but also influenced their response to a peripheral immune stimulus. Taken together, these data show that MA administration exacerbates the normal central immune response, most likely by altering microglia.
Collapse
Affiliation(s)
- Jessica B Buchanan
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
117
|
Kim KW, Kim HW, Li J, Kwon YB. Effect of bee venom acupuncture on methamphetamine-induced hyperactivity, hyperthermia and Fos expression in mice. Brain Res Bull 2010; 84:61-8. [PMID: 20950675 DOI: 10.1016/j.brainresbull.2010.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/02/2010] [Accepted: 10/05/2010] [Indexed: 11/30/2022]
Abstract
Acupuncture has been used to treat drug addiction by nicotine, alcohol, cocaine and morphine. This study was designed to investigate the effect of bee venom (BV) acupuncture on hyperactivity and hyperthermia induced by acute exposure to methamphetamine (METH, 1mg/kg, s.c.) in mice. Diluted BV (20μl of 0.01, 0.1, 1 and 10mg/ml in saline, s.c.) was administered bilaterally into the Zusanli acupoint (ST36) or control points (SP9 or GB39 or tail base). BV injection into ST36 dose dependently reduced METH-induced hyperactivity and hyperthermia, while BV injection (1mg/ml) into control points did not produce these suppressive effects. METH injection significantly increased Fos expression in several brain regions including nucleus accumbens (NA), caudate putamen (CPU), ventral tegmental area (VTA), substantia nigra (SN) and locus coeruleus (LC). Interestingly, BV (1mg/ml) injection into ST36 further increased METH-induced Fos expression in NA (core and shell), SN and LC. When we performed sciatic denervation or combination treatment of BV and lidocaine (BV diluted in 5% lidocaine solution), the enhancement of Fos elevation by BV was completely blocked in the NA, SN and LC in METH-injected mice, indicating that BV-induced peripheral nerve stimulation played an important role in the BV effect. Furthermore, the effects of BV were completely blocked by the α₂-adrenoceptor antagonist, idazoxan (3mg/kg, i.p.), but not by β-adrenoceptor antagonist, propranolol (10mg/kg, i.p.). Taken together, these findings suggest that BV acupuncture into ST36 may modulate METH-induced hyperactivity, hyperthermia and Fos expression through activation of the peripheral nerve and the central α₂-adrenergic activation.
Collapse
Affiliation(s)
- Kee Won Kim
- Department of Pharmacology, Institute for Medical Science, Chonbuk National University Medical School, Dukjin-gu, Jeonju, South Korea
| | | | | | | |
Collapse
|
118
|
Neuroimmune pharmacology from a neuroscience perspective. J Neuroimmune Pharmacol 2010; 6:10-9. [PMID: 20717737 DOI: 10.1007/s11481-010-9239-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
Abstract
The focus of this commentary is to describe how neuroscience, immunology, and pharmacology intersect and how interdisciplinary research involving these areas has expanded knowledge in the area of neuroscience, in particular. Examples are presented to illustrate that the brain can react to the peripheral immune system and possesses immune function and that resident immune molecules play a role in normal brain physiology. In addition, evidence is presented that the brain immune system plays an important role in mediating neurodegenerative diseases, the aging process, and neurodevelopment and synaptic plasticity. The identification of these mechanisms has been facilitated by pharmacological studies and has opened new possibilities for pharmacotherapeutic approaches to the treatment of brain disorders. The emerging field of neuroimmune pharmacology exemplifies this interdisciplinary approach and has facilitated the study of basic cellular and molecular events and disease states and opens avenues for novel therapies.
Collapse
|