101
|
Langhammer PF, Lips KR, Burrowes PA, Tunstall T, Palmer CM, Collins JP. A fungal pathogen of amphibians, Batrachochytrium dendrobatidis, attenuates in pathogenicity with in vitro passages. PLoS One 2013; 8:e77630. [PMID: 24130895 PMCID: PMC3795048 DOI: 10.1371/journal.pone.0077630] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022] Open
Abstract
Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), have accelerated recently, given the pathogen's role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39), and one recently thawed from cryopreserved stock (JEL427-P9). In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity.
Collapse
Affiliation(s)
- Penny F. Langhammer
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Karen R. Lips
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Patricia A. Burrowes
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico, United States of America
| | - Tate Tunstall
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Crystal M. Palmer
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - James P. Collins
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
102
|
Phillott AD, Grogan LF, Cashins SD, McDonald KR, Berger L, Skerratt LF. Chytridiomycosis and seasonal mortality of tropical stream-associated frogs 15 years after introduction of Batrachochytrium dendrobatidis. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2013; 27:1058-1068. [PMID: 23678872 DOI: 10.1111/cobi.12073] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 12/12/2012] [Indexed: 06/02/2023]
Abstract
Assessing the effects of diseases on wildlife populations can be difficult in the absence of observed mortalities, but it is crucial for threat assessment and conservation. We performed an intensive capture-mark-recapture study across seasons and years to investigate the effect of chytridiomycosis on demographics in 2 populations of the threatened common mist frog (Litoria rheocola) in the lowland wet tropics of Queensland, Australia. Infection prevalence was the best predictor for apparent survival probability in adult males and varied widely with season (0-65%). Infection prevalence was highest in winter months when monthly survival probabilities were low (approximately 70%). Populations at both sites exhibited very low annual survival probabilities (12-15%) but high recruitment (71-91%), which resulted in population growth rates that fluctuated seasonally. Our results suggest that even in the absence of observed mortalities and continued declines, and despite host-pathogen co-existence for multiple host generations over almost 2 decades, chytridiomycosis continues to have substantial seasonally fluctuating population-level effects on amphibian survival, which necessitates increased recruitment for population persistence. Similarly infected populations may thus be under continued threat from chytridiomycosis which may render them vulnerable to other threatening processes, particularly those affecting recruitment success.
Collapse
Affiliation(s)
- Andrea D Phillott
- One Health Research Group, School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | | | | | | | | | | |
Collapse
|
103
|
Why does Amphibian Chytrid (Batrachochytrium dendrobatidis) not occur everywhere? An exploratory study in Missouri ponds. PLoS One 2013; 8:e76035. [PMID: 24086681 PMCID: PMC3783386 DOI: 10.1371/journal.pone.0076035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/23/2013] [Indexed: 11/29/2022] Open
Abstract
The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), is a globally emerging pathogen that has caused widespread amphibian population declines, extirpations, and extinctions. However, Bd does not occur in all apparently suitable amphibian populations, even within regions where it is widespread, and it is often unclear why Bd occurs in some habitats but not others. In this study, we rigorously surveyed the amphibian and invertebrate biodiversity of 29 ponds in Missouri, screened resident amphibian larvae (Rana (Lithobates) sp.) for Bd infection, and characterized the aquatic physiochemical environment of each pond (temperature pH, conductivity, nitrogen, phosphorus, and chlorophyll-a). Our goal was to generate hypotheses toward answering the question, “Why does Bd not occur in all apparently suitable habitats?” Bd occurred in assayed amphibians in 11 of the 29 ponds in our study area (38% of ponds). We found no significant relationship between any single biotic or abiotic variable and presence of Bd. However, multivariate analyses (nonmetric multidimensional scaling and permutational tests of dispersion) revealed that ponds in which Bd occurred were a restricted subset of all ponds in terms of amphibian community structure, macroinvertebrate community structure, and pond physiochemistry. In other words, Bd ponds from 6 different conservation areas were more similar to each other than would be expected based on chance. The results of a structural equation model suggest that patterns in the occurrence of Bd among ponds are primarily attributable to variation in macroinvertebrate community structure. When combined with recent results showing that Bd can infect invertebrates as well as amphibians, we suggest that additional research should focus on the role played by non-amphibian biota in determining the presence, prevalence, and pathogenicity of Bd in amphibian populations.
Collapse
|
104
|
Searle CL, Mendelson JR, Green LE, Duffy MA. Daphnia predation on the amphibian chytrid fungus and its impacts on disease risk in tadpoles. Ecol Evol 2013; 3:4129-38. [PMID: 24324864 PMCID: PMC3853558 DOI: 10.1002/ece3.777] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 11/16/2022] Open
Abstract
Direct predation upon parasites has the potential to reduce infection in host populations. For example, the fungal parasite of amphibians, Batrachochytrium dendrobatidis (Bd), is commonly transmitted through a free-swimming zoospore stage that may be vulnerable to predation. Potential predators of Bd include freshwater zooplankton that graze on organisms in the water column. We tested the ability of two species of freshwater crustacean (Daphnia magna and D. dentifera) to consume Bd and to reduce Bd density in water and infection in tadpoles. In a series of laboratory experiments, we allowed Daphnia to graze in water containing Bd while manipulating Daphnia densities, Daphnia species identity, grazing periods and concentrations of suspended algae (Ankistrodesmus falcatus). We then exposed tadpoles to the grazed water. We found that high densities of D. magna reduced the amount of Bd detected in water, leading to a reduction in the proportion of tadpoles that became infected. Daphnia dentifera, a smaller species of Daphnia, also reduced Bd in water samples, but did not have an effect on tadpole infection. We also found that algae affected Bd in complex ways. When Daphnia were absent, less Bd was detected in water and tadpole samples when concentrations of algae were higher, indicating a direct negative effect of algae on Bd. When Daphnia were present, however, the amount of Bd detected in water samples showed the opposite trend, with less Bd when densities of algae were lower. Our results indicate that Daphnia can reduce Bd levels in water and infection in tadpoles, but these effects vary with species, algal concentration, and Daphnia density. Therefore, the ability of predators to consume parasites and reduce infection is likely to vary depending on ecological context.
Collapse
Affiliation(s)
- Catherine L Searle
- School of Biology, Georgia Institute of Technology Atlanta, Georgia, 30332 ; Department of Ecology and Evolutionary Biology University of Michigan, 2019 Kraus Natural Science Building, 830 North University, Ann Arbor, MI 48109-1048
| | | | | | | |
Collapse
|
105
|
Groner ML, Buck JC, Gervasi S, Blaustein AR, Reinert LK, Rollins-Smith LA, Bier ME, Hempel J, Relyea RA. Larval exposure to predator cues alters immune function and response to a fungal pathogen in post-metamorphic wood frogs. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2013; 23:1443-1454. [PMID: 24147415 DOI: 10.1890/12-1572.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
For the past several decades, amphibian populations have been decreasing around the globe at an unprecedented rate. Batrachochytrium dendrobatidis (Bd), the fungal pathogen that causes chytridiomycosis in amphibians, is contributing to amphibian declines. Natural and anthropogenic environmental factors are hypothesized to contribute to these declines by reducing the immunocompetence of amphibian hosts, making them more susceptible to infection. Antimicrobial peptides (AMPs) produced in the granular glands of a frog's skin are thought to be a key defense against Bd infection. These peptides may be a critical immune defense during metamorphosis because many acquired immune functions are suppressed during this time. To test if stressors alter AMP production and survival of frogs exposed to Bd, we exposed wood frog (Lithobates sylvaticus) tadpoles to the presence or absence of dragonfly predator cues crossed with a single exposure to three nominal concentrations of the insecticide malathion (0, 10, or 100 parts per billion [ppb]). We then exposed a subset of post-metamorphic frogs to the presence or absence of Bd zoospores and measured frog survival. Although predator cues and malathion had no effect on survival or size at metamorphosis, predator cues increased the time to metamorphosis by 1.5 days and caused a trend of a 20% decrease in hydrophobic skin peptides. Despite this decrease in peptides determined shortly after metamorphosis, previous exposure to predator cues increased survival in both Bd-exposed and unexposed frogs several weeks after metamorphosis. These results suggest that exposing tadpoles to predator cues confers fitness benefits later in life.
Collapse
Affiliation(s)
- Maya L Groner
- Center for Veterinary Epidemiological Research, Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Prince Edward Island C1A 4P3, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
Skin disease is an extremely common presenting complaint to the exotic animal practitioner. A systematic diagnostic approach is necessary in these cases to achieve a diagnosis and formulate an effective treatment plan. In all exotic species, husbandry plays a central role in the pathogenesis of cutaneous disease, so a thorough evaluation of the husbandry is critical for successful management. The clinical approach to skin disease in exotic animal patients is reviewed with specific focus on structure and function of the skin, diagnostic testing, and differential diagnoses for commonly encountered cutaneous diseases.
Collapse
Affiliation(s)
- Brian S Palmeiro
- Lehigh Valley Veterinary Dermatology and Fish Hospital, 4580 Crackersport Road, Allentown, PA 18104, USA.
| | | |
Collapse
|
107
|
Gervasi SS, Urbina J, Hua J, Chestnut T, A Relyea R, R Blaustein A. Experimental evidence for American bullfrog (Lithobates catesbeianus) susceptibility to chytrid fungus (Batrachochytrium dendrobatidis). ECOHEALTH 2013; 10:166-71. [PMID: 23539129 DOI: 10.1007/s10393-013-0832-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The emerging fungal pathogen, Batrachochytrium dendrobatidis (Bd), has been associated with global amphibian population declines and extinctions. American bullfrogs (Lithobates catesbeianus) are widely reported to be a tolerant host and a carrier of Bd that spreads the pathogen to less tolerant hosts. Here, we examined whether bullfrogs raised from eggs to metamorphosis in outdoor mesocosms were susceptible to Bd. We experimentally exposed metamorphic juveniles to Bd in the laboratory and compared mortality rates of pathogen-exposed animals to controls (non-exposed) in two separate experiments; one using a Bd strain isolated from a Western toad and another using a strain isolated from an American bullfrog. We wanted to examine whether metamorphic bullfrogs were susceptible to either of these strains. We show that bullfrogs were susceptible to one strain of Bd and not the other. In both experiments, infection load detected in the skin decreased over time, suggesting that metamorphic bullfrogs from some populations may be inefficient long-term carriers of Bd.
Collapse
|
108
|
Re-isolating Batrachochytrium dendrobatidis from an amphibian host increases pathogenicity in a subsequent exposure. PLoS One 2013; 8:e61260. [PMID: 23671564 PMCID: PMC3646005 DOI: 10.1371/journal.pone.0061260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
Controlled exposure experiments can be very informative, however, they are based on the assumption that pathogens maintained on artificial media under long-term storage retain the infective and pathogenic properties of the reproducing pathogen as it occurs in a host. We observed that JEL284, an in vitro cultured and maintained isolate of Batrachochytrium dendrobatidis (Bd), was becoming less infectious with successive uses. We hypothesized that passing an isolate propagated on artificial media through an amphibian host would make the isolate more infectious and pathogenic in subsequent exposures. To test our hypothesis, we used two discreet steps, a reisolation step (step 1) and a comparative exposure step (step 2). In step 1, we exposed eastern spadefoot toads, Scaphiopus holbrooki, to JEL284 and JEL197, another isolate that had been maintained in vitro for over six years. We then re-isolated JEL284 only from a successful infection and named this new isolate JEL284(FMBa). JEL197 did not infect any amphibians and, thus, did not proceed to step 2. In step 2, we compared infectivity and pathogenicity (mortality and survival time) of JEL284 and JEL284(FMBa) by exposing 54 naïve S. holbrooki to three treatments (JEL284, JEL284(FMBa), and negative control) with 18 individuals per group. We found that JEL284(FMBa) caused higher mortality and decreased survival time in infected individuals when compared to JEL284 and negative controls. Thus, our data show that pathogenicity of Bd can decrease when cultured successively in media only and can be partially restored by passage through an amphibian host. Therefore, we have demonstrated that pathogenicity shifts can occur rapidly in this pathogen. Given the potential for shifts in pathogenicity demonstrated here, we suspect Bd to have similar potential in natural populations. We suggest that, when possible, the use of freshly isolated or cryopreserved Bd would improve the quality of controlled exposure experiments using this pathogen.
Collapse
|
109
|
Searle CL, Xie GY, Blaustein AR. Development and infectious disease in hosts with complex life cycles. PLoS One 2013; 8:e60920. [PMID: 23565288 PMCID: PMC3615074 DOI: 10.1371/journal.pone.0060920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 03/04/2013] [Indexed: 11/18/2022] Open
Abstract
Metamorphosis is often characterized by profound changes in morphology and physiology that can affect the dynamics of species interactions. For example, the interaction between a pathogen and its host may differ depending on the life stage of the host or pathogen. One pathogen that infects hosts with complex life cycles is the emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis (Bd). We sought to determine how conditions at the larval stage can affect variation in development and patterns of Bd infection across amphibian life stages. We used outdoor experimental mesocosms to simulate natural pond habitats and manipulated the presence of Bd, the larval density, and the number of host species in larvae of two co-occurring amphibian species (Rana cascadae and Pseudacris regilla). We found that infection differed between species throughout development; P. regilla consistently had higher infection severity compared to R. cascadae. Additionally, while up to 100% of larvae were infected, only 18.2% of R. cascadae and 81.5% of P. regilla were infected after metamorphosis. This indicates that amphibians have the ability to recover from Bd infection as they undergo metamorphosis. Higher larval densities in P. regilla led to a shorter larval period, and individuals with a shorter larval period had lower infection severity. This led to a trend where P. regilla larvae reared at high densities tended to have lower infection prevalence after metamorphosis. We also found that exposure to Bd increased larval mortality and prolonged the larval period in P. regilla, indicating that P. regilla are susceptible to the negative effects of Bd as larvae. This study demonstrates that host density, species composition, and pathogen exposure may all interact to influence development and infection in hosts with complex life cycles.
Collapse
Affiliation(s)
- Catherine L Searle
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
110
|
Ocock JF, Rowley JJL, Penman TD, Rayner TS, Kingsford RT. Amphibian chytrid prevalence in an amphibian community in arid Australia. ECOHEALTH 2013; 10:77-81. [PMID: 23435528 DOI: 10.1007/s10393-013-0824-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/03/2013] [Accepted: 02/04/2013] [Indexed: 06/01/2023]
Affiliation(s)
- Joanne F Ocock
- School of Biological, Earth and Environmental Sciences, Australian Wetlands, Rivers and Landscapes Centre, University of New South Wales, Sydney, NSW, 2052, Australia.
| | | | | | | | | |
Collapse
|
111
|
Prior infection does not improve survival against the amphibian disease Chytridiomycosis. PLoS One 2013; 8:e56747. [PMID: 23451076 PMCID: PMC3579874 DOI: 10.1371/journal.pone.0056747] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/04/2013] [Indexed: 11/18/2022] Open
Abstract
Many amphibians have declined globally due to introduction of the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Hundreds of species, many in well-protected habitats, remain as small populations at risk of extinction. Currently the only proven conservation strategy is to maintain species in captivity to be reintroduced at a later date. However, methods to abate the disease in the wild are urgently needed so that reintroduced and wild animals can survive in the presence of Bd. Vaccination has been widely suggested as a potential strategy to improve survival. We used captive-bred offspring of critically endangered booroolong frogs (Litoria booroolongensis) to test if vaccination in the form of prior infection improves survival following re exposure. We infected frogs with a local Bd isolate, cleared infection after 30 days (d) using itraconazole just prior to the onset of clinical signs, and then re-exposed animals to Bd at 110 d. We found prior exposure had no effect on survival or infection intensities, clearly showing that real infections do not stimulate a protective adaptive immune response in this species. This result supports recent studies suggesting Bd may evade or suppress host immune functions. Our results suggest vaccination is unlikely to be useful in mitigating chytridiomycosis. However, survival of some individuals from all experimental groups indicates existence of protective innate immunity. Understanding and promoting this innate resistance holds potential for enabling species recovery.
Collapse
|
112
|
Gervasi S, Gondhalekar C, Olson DH, Blaustein AR. Host identity matters in the amphibian-Batrachochytrium dendrobatidis system: fine-scale patterns of variation in responses to a multi-host pathogen. PLoS One 2013; 8:e54490. [PMID: 23382904 PMCID: PMC3554766 DOI: 10.1371/journal.pone.0054490] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/12/2012] [Indexed: 11/19/2022] Open
Abstract
Species composition within ecological assemblages can drive disease dynamics including pathogen invasion, spread, and persistence. In multi-host pathogen systems, interspecific variation in responses to infection creates important context dependency when predicting the outcome of disease. Here, we examine the responses of three sympatric host species to a single fungal pathogen, Batrachochytrium dendrobatidis, which is associated with worldwide amphibian population declines and extinctions. Using an experimental approach, we show that amphibian species from three different genera display significant differences in patterns of pathgen-induced mortality as well as the magnitude and temporal dynamics of infection load. We exposed amphibians to one of four inoculation dose treatments at both larval and post- metamorphic stages and quantified infection load on day 8 and day 15 post-inoculation. Of the three species examined, only one (the Pacific treefrog; Pseudacris regilla) displayed "dose-dependent" responses; survival was reduced and infection load was elevated as inoculation dose was increased. We observed a reduction in survival but no differences in infection load across pathogen treatments in Cascades frogs (Rana cascadae). Western toads (Anaxyrus boreas) displayed differences in infection load but no differences in survival across pathogen treatments. Within species, responses to the pathogen varied with life history stage, and the most heavily infected species at the larval stage was different from the most heavily infected species at the post-metamorphic stage. Temporal changes in infection load were species and life history stage-specific. We show that variation in susceptibility to this multi-host pathogen is complex when viewed at a fine-scale and may be mediated through intrinsic host traits.
Collapse
Affiliation(s)
- Stephanie Gervasi
- Department of Zoology, Oregon State University, Corvallis, Oregon, USA.
| | | | | | | |
Collapse
|
113
|
Greenspan SE, Longcore JE, Calhoun AJK. Host invasion by Batrachochytrium dendrobatidis: fungal and epidermal ultrastructure in model anurans. DISEASES OF AQUATIC ORGANISMS 2012; 100:201-10. [PMID: 22968788 DOI: 10.3354/dao02483] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The chytridiomycete fungus Batrachochytrium dendrobatidis (Bd) colonizes mouthparts of amphibian larvae and superficial epidermis of post-metamorphic amphibians, causing the disease chytridiomycosis. Fungal growth within host cells has been documented by light and transmission electron microscopy; however, entry of the fungus into host cells has not. Our objective was to document how Bd enters host cells in the wood frog Lithobates sylvaticus, a species at high mortality risk for chytridiomycosis, and the bullfrog L. catesbeianus, a species at low mortality risk for chytridiomycosis. We inoculated frogs and documented infection with transmission electron microscopy. Zoospores encysted on the skin surface and produced morphologically similar germination tubes in both host species that penetrated host cell membranes and enabled transfer of zoospore contents into host cells. Documenting fungal and epidermal ultrastructure during host invasion furthers our understanding of Bd development and the pathogenesis of chytridiomycosis.
Collapse
Affiliation(s)
- Sasha E Greenspan
- Ecology and Environmental Science Program, School of Biology and Ecology, University of Maine, Orono, Maine 04469, USA.
| | | | | |
Collapse
|
114
|
Blaustein AR, Gervasi SS, Johnson PTJ, Hoverman JT, Belden LK, Bradley PW, Xie GY. Ecophysiology meets conservation: understanding the role of disease in amphibian population declines. Philos Trans R Soc Lond B Biol Sci 2012; 367:1688-707. [PMID: 22566676 DOI: 10.1098/rstb.2012.0011] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Infectious diseases are intimately associated with the dynamics of biodiversity. However, the role that infectious disease plays within ecological communities is complex. The complex effects of infectious disease at the scale of communities and ecosystems are driven by the interaction between host and pathogen. Whether or not a given host-pathogen interaction results in progression from infection to disease is largely dependent on the physiological characteristics of the host within the context of the external environment. Here, we highlight the importance of understanding the outcome of infection and disease in the context of host ecophysiology using amphibians as a model system. Amphibians are ideal for such a discussion because many of their populations are experiencing declines and extinctions, with disease as an important factor implicated in many declines and extinctions. Exposure to pathogens and the host's responses to infection can be influenced by many factors related to physiology such as host life history, immunology, endocrinology, resource acquisition, behaviour and changing climates. In our review, we discuss the relationship between disease and biodiversity. We highlight the dynamics of three amphibian host-pathogen systems that induce different effects on hosts and life stages and illustrate the complexity of amphibian-host-parasite systems. We then review links between environmental stress, endocrine-immune interactions, disease and climate change.
Collapse
Affiliation(s)
- Andrew R Blaustein
- Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331-2914, USA.
| | | | | | | | | | | | | |
Collapse
|
115
|
Hoverman JT, Mihaljevic JR, Richgels KLD, Kerby JL, Johnson PTJ. Widespread co-occurrence of virulent pathogens within California amphibian communities. ECOHEALTH 2012; 9:288-292. [PMID: 22766887 DOI: 10.1007/s10393-012-0778-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 05/23/2012] [Accepted: 05/26/2012] [Indexed: 06/01/2023]
Abstract
The chytrid fungus Batrachochytrium dendrobatidis, ranaviruses, and trematodes (Ribeiroia ondatrae and echinostomes) are highly virulent pathogens known to infect amphibians, yet the extent to which they co-occur within amphibian communities remains poorly understood. Using field surveillance of 85 wetlands in the East Bay region of California, USA, we found that 68% of wetlands had ≥2 pathogens and 36% had ≥3 pathogens. Wetlands with high pathogen species richness also tended to cluster spatially. Our results underscore the need for greater integration of multiple pathogens and their interactions into amphibian disease research and conservation efforts.
Collapse
Affiliation(s)
- Jason T Hoverman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | |
Collapse
|
116
|
Newman CE, Feinberg JA, Rissler LJ, Burger J, Shaffer HB. A new species of leopard frog (Anura: Ranidae) from the urban northeastern US. Mol Phylogenet Evol 2012; 63:445-55. [PMID: 22321689 PMCID: PMC4135705 DOI: 10.1016/j.ympev.2012.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 01/20/2012] [Accepted: 01/22/2012] [Indexed: 11/22/2022]
Abstract
Past confusion about leopard frog (genus Rana) species composition in the Tri-State area of the US that includes New York (NY), New Jersey (NJ), and Connecticut (CT) has hindered conservation and management efforts, especially where populations are declining or imperiled. We use nuclear and mitochondrial genetic data to clarify the identification and distribution of leopard frog species in this region. We focus on four problematic frog populations of uncertain species affiliation in northern NJ, southeastern mainland NY, and Staten Island to test the following hypotheses: (1) they are conspecific with Rana sphenocephala or R. pipiens, (2) they are hybrids between R. sphenocephala and R. pipiens, or (3) they represent one or more previously undescribed cryptic taxa. Bayesian phylogenetic and cluster analyses revealed that the four unknown populations collectively form a novel genetic lineage, which represents a previously undescribed cryptic leopard frog species, Rana sp. nov. Statistical support for R. sp. nov. was strong in both the Bayesian (pp=1.0) and maximum-likelihood (bootstrap=99) phylogenetic analyses as well as the Structure cluster analyses. While our data support recognition of R. sp. nov. as a novel species, we recommend further study including fine-scaled sampling and ecological, behavioral, call, and morphological analyses before it is formally described.
Collapse
Affiliation(s)
- Catherine E. Newman
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Jeremy A. Feinberg
- Graduate Program in Ecology & Evolution, Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - Leslie J. Rissler
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Joanna Burger
- Graduate Program in Ecology & Evolution, Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - H. Bradley Shaffer
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
- Center for Population Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
117
|
Hoverman JT, Gray MJ, Haislip NA, Miller DL. Phylogeny, life history, and ecology contribute to differences in amphibian susceptibility to ranaviruses. ECOHEALTH 2011; 8:301-19. [PMID: 22071720 DOI: 10.1007/s10393-011-0717-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 09/27/2011] [Accepted: 10/11/2011] [Indexed: 05/23/2023]
Abstract
Research that identifies the potential host range of generalist pathogens as well as variation in host susceptibility is critical for understanding and predicting the dynamics of infectious diseases within ecological communities. Ranaviruses have been linked to amphibian die-off events worldwide with the greatest number of reported mortality events occurring in the United States. While reports of ranavirus-associated mortality events continue to accumulate, few data exist comparing the relative susceptibility of different species. Using a series of laboratory exposure experiments and comparative phylogenetics, we compared the susceptibilities of 19 amphibian species from two salamander families and five anurans families for two ranavirus isolates: frog virus 3 (FV3) and an FV3-like isolate from an American bullfrog culture facility. We discovered that ranaviruses were capable of infecting 17 of the 19 larval amphibian species tested with mortality ranging from 0 to 100%. Phylogenetic comparative methods demonstrated that species within the anuran family Ranidae were generally more susceptible to ranavirus infection compared to species from the other five families. We also found that susceptibility to infection was associated with species that breed in semi-permanent ponds, develop rapidly as larvae, and have limited range sizes. Collectively, these results suggest that phylogeny, life history characteristics, and habitat associations of amphibians have the potential to impact susceptibility to ranaviruses.
Collapse
Affiliation(s)
- Jason T Hoverman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | |
Collapse
|