101
|
Zhang S, Zhang W, Liu N, Song T, Liu H, Zhao X, Xu W, Li C. Indole reduces the expression of virulence related genes in Vibrio splendidus pathogenic to sea cucumber Apostichopus japonicus. Microb Pathog 2017; 111:168-173. [PMID: 28867630 DOI: 10.1016/j.micpath.2017.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/06/2017] [Accepted: 08/30/2017] [Indexed: 12/24/2022]
Abstract
Indole is a metabolite of tryptophan that can be synthesized by various bacteria. In the present study, production of indole by Vibrio splendidus Vs was determined using Kovac's reagent, and m/z was further determined by HPLC-MS. Extracellular indole reached a maximum concentration of 160 μM, when OD600 of V. splendidus Vs was approximately 0.9. In addition, glucose could reduce indole level, and 1% (m/v) glucose could reduce the mRNA level of tnaA, the gene encoding tryptophanase, down to 0.2%. To investigate the effects of indole on the mRNA levels of virulence related genes of V. splendidus Vs, mRNA levels of vsm, vsh and ABC respectively related to protease activity, haemolytic activity and ABC transporter ATP-binding protein were determined. Exogenous indole supplemented at a concentration of 125 μΜ could respectively down regulate the mRNA level of vsm, vsh and ABC to 16%, 13% and 11%. Meanwhile, indole could alter the expressions of immune related gene in Apostichopus japonicus. When coelomocytes were co-cultured with exogenous indole at a concentration of 125 μΜ, the mRNA level of Ajp105 and AjLBP/BPI1, were up regulated by 1.6-fold and 2.1-fold, respectively. Combined all the results in our study suggested that indole could alter the expressions of the virulence related genes in pathogenic V. splendidus Vs as well as the immune related genes in A. japonicus.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Ningning Liu
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Tongxiang Song
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Huijie Liu
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Wei Xu
- Louisiana State University, Agricultural Center, USA
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Louisiana State University, Agricultural Center, USA.
| |
Collapse
|
102
|
Bhattacharjee A, Khan M, Kleiman M, Hochbaum AI. Effects of Growth Surface Topography on Bacterial Signaling in Coculture Biofilms. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18531-18539. [PMID: 28485146 DOI: 10.1021/acsami.7b04223] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacteria form interface-associated communities called biofilms, often comprising multiple species. Biofilms can be detrimental or beneficial in medical, industrial, and technological settings, and their stability and function are determined by interspecies communication via specific chemical signaling or metabolite exchange. The deterministic control of biofilm development, behavior, and properties remains an unmet challenge, limiting our ability to inhibit the formation of detrimental biofilms in biomedical settings and promote the growth of beneficial biofilms in biotechnology applications. Here, we describe the development of growth surfaces that promote the growth of commensal Escherichia coli instead of the opportunistic pathogen Pseudomonas aeruginosa. Periodically patterned growth surfaces induced robust morphological changes in surface-associated E. coli biofilms and influenced the antibiotic susceptibilities of E. coli and P. aeruginosa biofilms. Changes in the biofilm architecture resulted in the accumulation of a metabolite, indole, which controls the competition dynamics between the two species. Our results show that the surface on which a biofilm grows has important implications for species colonization, growth, and persistence when exposed to antibiotics.
Collapse
Affiliation(s)
| | - Mughees Khan
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Cambridge, Massachusetts 02138, United States
| | | | | |
Collapse
|
103
|
Bodelón G, Montes-García V, Costas C, Pérez-Juste I, Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM. Imaging Bacterial Interspecies Chemical Interactions by Surface-Enhanced Raman Scattering. ACS NANO 2017; 11:4631-4640. [PMID: 28460167 DOI: 10.1021/acsnano.7b00258] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Microbes produce bioactive chemical compounds to influence the physiology and growth of their neighbors, and our understanding of their biological activities may be enhanced by our ability to visualize such molecules in vivo. We demonstrate here the application of surface-enhanced Raman scattering spectroscopy for simultaneous detection of quorum-sensing-regulated pyocyanin and violacein, produced respectively by Pseudomonas aeruginosa and Chromobacterium violaceum bacterial colonies, grown as a coculture on agar-based plasmonic substrates. Our plasmonic approach allowed us to visualize the expression and spatial distribution of the microbial metabolites in the coculture taking place as a result of interspecies chemical interactions. By combining surface-enhanced Raman scattering spectroscopy with analysis of gene expression we provide insight into the chemical interplay occurring between the interacting bacterial species. This highly sensitive, cost-effective, and easy to implement approach allows spatiotemporal imaging of cellular metabolites in live microbial colonies grown on agar with no need for sample preparation, thereby providing a powerful tool for the analysis of microbial chemotypes.
Collapse
Affiliation(s)
- Gustavo Bodelón
- Departamento de Química Física and Biomedical Research Center (CINBIO), Universidade de Vigo , 36310 Vigo, Spain
| | - Verónica Montes-García
- Departamento de Química Física and Biomedical Research Center (CINBIO), Universidade de Vigo , 36310 Vigo, Spain
| | - Celina Costas
- Departamento de Química Física and Biomedical Research Center (CINBIO), Universidade de Vigo , 36310 Vigo, Spain
| | - Ignacio Pérez-Juste
- Departamento de Química Física and Biomedical Research Center (CINBIO), Universidade de Vigo , 36310 Vigo, Spain
| | - Jorge Pérez-Juste
- Departamento de Química Física and Biomedical Research Center (CINBIO), Universidade de Vigo , 36310 Vigo, Spain
| | - Isabel Pastoriza-Santos
- Departamento de Química Física and Biomedical Research Center (CINBIO), Universidade de Vigo , 36310 Vigo, Spain
| | - Luis M Liz-Marzán
- Departamento de Química Física and Biomedical Research Center (CINBIO), Universidade de Vigo , 36310 Vigo, Spain
- Bionanoplasmonics Laboratory, CIC biomaGUNE , Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science , 48013 Bilbao, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN) , 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
104
|
Cope EK, Goldberg AN, Pletcher SD, Lynch SV. Compositionally and functionally distinct sinus microbiota in chronic rhinosinusitis patients have immunological and clinically divergent consequences. MICROBIOME 2017; 5:53. [PMID: 28494786 PMCID: PMC5427582 DOI: 10.1186/s40168-017-0266-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/18/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a heterogeneous disease characterized by persistent sinonasal inflammation and sinus microbiome dysbiosis. The basis of this heterogeneity is poorly understood. We sought to address the hypothesis that a limited number of compositionally distinct pathogenic bacterial microbiota exist in CRS patients and invoke discrete immune responses and clinical phenotypes in CRS patients. RESULTS Sinus brushings from patients with CRS (n = 59) and healthy individuals (n = 10) collected during endoscopic sinus surgery were analyzed using 16S rRNA gene sequencing, predicted metagenomics, and RNA profiling of the mucosal immune response. We show that CRS patients cluster into distinct sub-groups (DSI-III), each defined by specific pattern of bacterial co-colonization (permutational multivariate analysis of variance (PERMANOVA); p = 0.001, r 2 = 0.318). Each sub-group was typically dominated by a pathogenic family: Streptococcaceae (DSI), Pseudomonadaceae (DSII), Corynebacteriaceae [DSIII(a)], or Staphylococcaceae [DSIII(b)]. Each pathogenic microbiota was predicted to be functionally distinct (PERMANOVA; p = 0.005, r 2 = 0.217) and encode uniquely enriched gene pathways including ansamycin biosynthesis (DSI), tryptophan metabolism (DSII), two-component response [DSIII(b)], and the PPAR-γ signaling pathway [DSIII(a)]. Each is also associated with significantly distinct host immune responses; DSI, II, and III(b) invoked a variety of pro-inflammatory, TH1 responses, while DSIII(a), which exhibited significantly increased incidence of nasal polyps (Fisher's exact; p = 0.034, relative risk = 2.16), primarily induced IL-5 expression (Kruskal Wallis; q = 0.045). CONCLUSIONS A large proportion of CRS patient heterogeneity may be explained by the composition of their sinus bacterial microbiota and related host immune response-features which may inform strategies for tailored therapy in this patient population.
Collapse
Affiliation(s)
- Emily K. Cope
- Department of Otolaryngology, University of California, San Francisco, CA 94143 USA
- Present Address: Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011 USA
| | - Andrew N. Goldberg
- Department of Otolaryngology, University of California, San Francisco, CA 94143 USA
| | - Steven D. Pletcher
- Department of Otolaryngology, University of California, San Francisco, CA 94143 USA
| | - Susan V. Lynch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA 94143 USA
| |
Collapse
|
105
|
Zheng J, Yu J, Jia M, Zheng L, Feng Y. Indole enhances the survival of Pantoea ananatis YJ76 in face of starvation conditions. J Basic Microbiol 2017; 57:633-639. [PMID: 28485502 DOI: 10.1002/jobm.201700027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/27/2017] [Accepted: 04/18/2017] [Indexed: 11/07/2022]
Abstract
Pantoea ananatis YJ76 is an indole-producing predominant diazotrophic endophyte isolated from rice having multiple growth-promoting effects on host plant. As a decomposition metabolite of L-tryptophan (L-Trp), indole is confirmed to regulate various physiological processes of bacteria. In this research, we found that indole significantly improves the survival of YJ76 in face of starvation conditions and the promoting effect is related to the glycogen accumulation promoted by indole, which is much more significant in the middle decline phase than in other growth phases. Since carbon storage regulator CsrA is a key inhibiting factor on the storage of glycogen in bacteria, we explored the relation between indole-enhanced glycogen accumulation and csrA expression and found that there is a positive correlation between indole-enhanced glycogen accumulation and the indole-inhibited csrA expression in YJ76, which implies the potential relation between CsrA regulation and indole regulatory pathway.
Collapse
Affiliation(s)
- Jing Zheng
- School of Life Science, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Jiajia Yu
- School of Life Science, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Mengqi Jia
- School of Life Science, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Liping Zheng
- School of Life Science, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
106
|
Yang Q, Pande GSJ, Wang Z, Lin B, Rubin RA, Vora GJ, Defoirdt T. Indole signalling and (micro)algal auxins decrease the virulence of Vibrio campbellii, a major pathogen of aquatic organisms. Environ Microbiol 2017; 19:1987-2004. [PMID: 28251783 DOI: 10.1111/1462-2920.13714] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/25/2017] [Indexed: 12/23/2022]
Abstract
Vibrios belonging to the Harveyi clade are major pathogens of marine vertebrates and invertebrates, causing major losses in wild and cultured organisms. Despite their significant impact, the pathogenicity mechanisms of these bacteria are not yet completely understood. In this study, the impact of indole signalling on the virulence of Vibrio campbellii was investigated. Elevated indole levels significantly decreased motility, biofilm formation, exopolysaccharide production and virulence to crustacean hosts. Indole furthermore inhibited the three-channel quorum sensing system of V. campbellii, a regulatory mechanism that is required for full virulence of the pathogen. Further, indole signalling was found to interact with the stress sigma factor RpoS. Together with the observations that energy-consuming processes (motility and bioluminescence) are downregulated, and microarray-based transcriptomics demonstrating that indole decreases the expression of genes involved in energy and amino acid metabolism, the data suggest that indole is a starvation signal in V. campbellii. Finally, it was found that the auxins indole-3-acetic acid and indole-3-acetamide, which were produced by various (micro)algae sharing the aquatic environment with V. campbellii, have a similar effect as observed for indole. Auxins might, therefore, have a significant impact on the interactions between vibrios, (micro)algae and higher organisms, with major ecological and practical implications.
Collapse
Affiliation(s)
- Qian Yang
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Gent, Belgium
| | | | - Zheng Wang
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Baochuan Lin
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Robert A Rubin
- Mathematics Department, Whittier College, Whittier, CA, USA
| | - Gary J Vora
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Tom Defoirdt
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Gent, Belgium.,Center for Microbial Ecology and Technology (cmet), Ghent University, Gent, Belgium
| |
Collapse
|
107
|
Kim J, Shin B, Park C, Park W. Indole-Induced Activities of β-Lactamase and Efflux Pump Confer Ampicillin Resistance in Pseudomonas putida KT2440. Front Microbiol 2017; 8:433. [PMID: 28352264 PMCID: PMC5348495 DOI: 10.3389/fmicb.2017.00433] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/01/2017] [Indexed: 11/13/2022] Open
Abstract
Indole, which is widespread in microbial communities, has received attention because of its effects on bacterial physiology. Pseudomonas putida and Pseudomonas aeruginosa can acquire ampicillin (Amp) resistance during growth on indole-Amp agar. Transcriptome, mutant, and inhibitor studies have suggested that Amp resistance induced by indole can be attributed to increased gene expression of ttgAB encoding two genes of RND-type multidrug efflux operons and an ampC encoding β-lactamase. Expression, enzyme activities, and mutational analyses indicated that AmpC β-lactamase is important for acquiring Amp resistance of P. putida in the presence of indole. Here, we show, for the first time, that volatile indole increased Amp-resistant cells. Consistent with results of the volatile indole assay, a low concentration of indole in liquid culture promoted growth initially, but led to mutagenesis after indole was depleted, which could not be observed at high indole concentrations. Interestingly, ttgAB and ampC gene expression levels correlate with the concentration of indole, which might explain the low number of Amp-mutated cells in high indole concentrations. The expression levels of genes involved in mutagenesis, namely rpoS, recA, and mutS, were also modulated by indole. Our data indicates that indole reduces Amp-induced heterogeneity by promoting expression of TtgABC or MexAB-OprM efflux pumps and the indole-induced β-lactamase in P. putida and P. aeruginosa.
Collapse
Affiliation(s)
- Jisun Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul Korea
| | - Bora Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul Korea
| | - Chulwoo Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul Korea
| |
Collapse
|
108
|
Li Z, Jiang J, Yu X, Wu C, Shen D, Feng Y. Poly(A) polymerase I participates in the indole regulatory pathway of Pantoea agglomerans YS19. MICROBIOLOGY-SGM 2017; 163:197-206. [PMID: 27995867 DOI: 10.1099/mic.0.000415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pantoea agglomerans YS19 is a preponderant endophytic bacterium isolated from rice. It is characterized by the formation of symplasmata, a type of multicellular aggregate structure, contributing to a strong stress resistance and specific adaptation of YS19 in endophyte-host associations. Indole is an important signal molecule in intra- or interspecies relationships, regulating a variety of bacterial behaviours such as cell aggregation and stress resistance; however, the regulatory mechanism remains an ongoing area of investigation. This study selected YS19 as a model strain to construct a mutant library, utilizing the mTn5 transposon mutagenesis method, thus obtaining a positive mutant with an indole-inhibited mutation gene. Via thermal asymmetric interlaced PCR, the mutational site was identified as the gene of pcnB, which encodes the poly(A) polymerase I to catalyse the polyadenylation of RNAs. The full length of the pcnB sequence was 1332 bp, and phylogenetic analysis revealed that pcnB is extremely conserved among strains of P. agglomerans. The expression of the gene was significantly inhibited (by 36.6 % as detected via quantitative PCR) by indole (0.5 mM). Many physiological behaviours of YS19 were affected by this mutation: the cell decay rate in the post-stationary growth phase was promoted, symplasmata formation and motility were inhibited in the late stationary growth phase and the colonization ability and growth-promoting effect of YS19 on the host plant were also inhibited. This study discusses the indole regulatory pathways from the point of RNA post-transcriptional modification, thus enriching our knowledge of polyadenylation and expanding current research ideas of indole regulation.
Collapse
Affiliation(s)
- Zihua Li
- School of Life Science, Beijing Institute of Technology, Beijing, PR China
| | - Jing Jiang
- School of Life Science, Beijing Institute of Technology, Beijing, PR China
| | - Xuemei Yu
- School of Life Science, Beijing Institute of Technology, Beijing, PR China
| | - Cunxiang Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Delong Shen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology, Beijing, PR China
| |
Collapse
|
109
|
Lee JH, Kim YG, Kim M, Kim E, Choi H, Kim Y, Lee J. Indole-associated predator-prey interactions between the nematode Caenorhabditis elegans and bacteria. Environ Microbiol 2017; 19:1776-1790. [PMID: 28028877 DOI: 10.1111/1462-2920.13649] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/29/2022]
Abstract
Indole is an intercellular and interkingdom signalling molecule found in diverse ecological niches. Caenorhabditis elegans is a bacterivorous nematode that lives in soil and compost environments and a useful model host for studies of host-microbe interactions. Although various bacteria and some plants produce large quantities of extracellular indole, little is known about the effects of indole, its derivatives, or of indole-producing bacteria on the behaviours of C. elegans or other animals. Here, they show that C. elegans senses and moves toward indole and several indole-producing bacteria, but avoids non-indole producing pathogenic bacteria. Furthermore, it was found indole-producing and non-indole-producing bacteria exert divergent effects on the egg-laying behaviour of C. elegans, and that various indole derivatives also modulate chemotaxis, egg-laying behaviour and the survival of C. elegans. In contrast, indole at high concentration can kill C. elegans, which in turn, has the ability to detoxify indole by oxidation and glucosylation. Transcriptional analysis showed indole markedly up-regulated the gene expressions of cytochrome P450s, UDP-glucuronosyltransferases and glutathione S-transferase, which well explained the modification of indole by C. elegans while indole down-regulated the expressions of collagen and F-box genes. Their findings suggest that indole and its derivatives are important signalling molecules during bacteria-nematode interactions.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Minsu Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Eonmi Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Younghoon Kim
- Department of Animal Science, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
110
|
Kim JS, Wood TK. Persistent Persister Misperceptions. Front Microbiol 2016; 7:2134. [PMID: 28082974 PMCID: PMC5187198 DOI: 10.3389/fmicb.2016.02134] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/19/2016] [Indexed: 01/31/2023] Open
Abstract
Persister cells survive antibiotic treatment due to their lack of metabolism, rather than through genetic change, as shown via four seminal experiments conducted by the discoverers of the phenotype (Hobby et al., 1942; Bigger, 1944). Unfortunately, over seven decades of persister cell research, the literature has been populated by misperceptions that do not withstand scrutiny. This opinion piece examines some of those misunderstandings in the literature with the hope that by shining some light on these inaccuracies, the field may be advanced and subsequent manuscripts may be reviewed more critically.
Collapse
Affiliation(s)
- Jun-Seob Kim
- Department of Chemical Engineering, Pennsylvania State University, University Park PA, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park PA, USA
| |
Collapse
|
111
|
Tomberlin JK, Crippen TL, Wu G, Griffin AS, Wood TK, Kilner RM. Indole: An evolutionarily conserved influencer of behavior across kingdoms. Bioessays 2016; 39. [DOI: 10.1002/bies.201600203] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Tawni L. Crippen
- Southern Plains Agricultural Research Center, Agricultural Research Service; U.S. Department of Agriculture; College Station TX USA
| | - Guoyao Wu
- Department of Animal Science; Texas A&M University; College Station TX USA
| | | | - Thomas K. Wood
- Department of Chemical Engineering; Pennsylvania State University; University Park PA USA
| | | |
Collapse
|
112
|
Lee JH, Kim YG, Gwon G, Wood TK, Lee J. Halogenated indoles eradicate bacterial persister cells and biofilms. AMB Express 2016; 6:123. [PMID: 27921270 PMCID: PMC5138170 DOI: 10.1186/s13568-016-0297-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 02/09/2023] Open
Abstract
The emergence of antibiotic resistance has necessitated new therapeutic approaches to combat recalcitrant bacterial infections. Persister cells, often found in biofilms, are metabolically dormant, and thus, are highly tolerant to all traditional antibiotics and represent a major drug resistance mechanism. In the present study, 36 diverse indole derivatives were investigated with the aim of identifying novel compounds that inhibit persisters and biofilm formation by Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. 5-Iodoindole and other halogenated indoles, 4-fluoroindole, 7-chloroindole, and 7-bromoindole, eradicated persister formation by E. coli and S. aureus, and 5-iodoindole most potently inhibited biofilm formation by the two bacteria. Unlike other antibiotics, 5-iodoindole did not induce persister cell formation, and 5-iodoindole inhibited the production of the immune-evasive carotenoid staphyloxanthin in S. aureus; hence, 5-iodoindole diminished the production of virulence factors in this strain. These results demonstrate halogenated indoles are potentially useful for controlling bacterial antibiotic resistance.
Collapse
|
113
|
Lai Y, Xu Z, Yan A. A novel regulatory circuit to control indole biosynthesis protectsEscherichia colifrom nitrosative damages during the anaerobic respiration of nitrate. Environ Microbiol 2016; 19:598-610. [DOI: 10.1111/1462-2920.13527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/08/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Yong Lai
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
| | - Zeling Xu
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
| | - Aixin Yan
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
| |
Collapse
|
114
|
Zhao Y, McAnulty MJ, Wood TK. Toxin YafQ Reduces Escherichia coli Growth at Low Temperatures. PLoS One 2016; 11:e0161577. [PMID: 27557125 PMCID: PMC4996492 DOI: 10.1371/journal.pone.0161577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/08/2016] [Indexed: 11/19/2022] Open
Abstract
Toxin/antitoxin (TA) systems reduce metabolism under stress; for example, toxin YafQ of the YafQ/DinJ Escherichia coli TA system reduces growth by cleaving transcripts with in-frame 5'-AAA-G/A-3' sites, and antitoxin DinJ is a global regulator that represses its locus as well as controls levels of the stationary sigma factor RpoS. Here we investigated the influence on cell growth at various temperatures and found that deletion of the antitoxin gene, dinJ, resulted in both reduced metabolism and slower growth at 18°C but not at 37°C. The reduction in growth could be complemented by producing DinJ from a plasmid. Using a transposon screen to reverse the effect of the absence of DinJ, two mutations were found that inactivated the toxin YafQ; hence, the toxin caused the slower growth only at low temperatures rather than DinJ acting as a global regulator. Corroborating this result, a clean deletion of yafQ in the ΔdinJ ΔKmR strain restored both metabolism and growth at 18°C. In addition, production of YafQ was more toxic at 18°C compared to 37°C. Furthermore, by overproducing all the E. coli proteins, the global transcription repressor Mlc was found that counteracts YafQ toxicity only at 18°C. Therefore, YafQ is more effective at reducing metabolism at low temperatures, and Mlc is its putative target.
Collapse
Affiliation(s)
- Yueju Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802-4400, United States of America
| | - Michael J. McAnulty
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802-4400, United States of America
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802-4400, United States of America
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802-4400, United States of America
- * E-mail:
| |
Collapse
|
115
|
Fecal Indole as a Biomarker of Susceptibility to Cryptosporidium Infection. Infect Immun 2016; 84:2299-306. [PMID: 27245413 DOI: 10.1128/iai.00336-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/22/2016] [Indexed: 01/16/2023] Open
Abstract
Cryptosporidium causes significant diarrhea worldwide, especially among children and immunocompromised individuals, and no effective drug treatment is currently available for those who need it most. In this report, previous volunteer infectivity studies have been extended to examine the association between fecal indole and indole-producing (IP) gut microbiota on the outcome of a Cryptosporidium infection. Fecal indole concentrations (FICs) of 50 subjects and 19 taxa of common gut microbiota, including six IP taxa (11 subjects) were determined in stool samples collected before and after a challenge with Cryptosporidium oocysts. At the baseline, the mean FIC (± the standard deviation) was 1.66 ± 0.80 mM in those who became infected after a challenge versus 3.20 ± 1.23 mM in those who remained uninfected (P = 0.0001). Only 11.1% of the subjects with a FIC of >2.5 mM became infected after a challenge versus 65.2% of the subjects with a FIC of <2.5 mM. In contrast, the FICs of infected subjects at the baseline or during diarrhea were not correlated with infection intensity or disease severity. The relative abundances (percent) of Escherichia coli, Bacillus spp., and Clostridium spp. were greater ≥2.5-fold in volunteers with a baseline FIC of >2.5 mM, while those of Bacteroides pyogenes, B. fragilis, and Akkermansia muciniphila were greater in those with a baseline FIC of <2.5 mM. These data indicate that some IP bacteria, or perhaps indole alone, can influence the ability of Cryptosporidium to establish an infection. Thus, preexisting indole levels in the gut join the oocyst dose and immune status as important factors that determine the outcome of Cryptosporidium exposure.
Collapse
|
116
|
Chlamydia trachomatis Genital Tract Infections: When Host Immune Response and the Microbiome Collide. Trends Microbiol 2016; 24:750-765. [PMID: 27320172 DOI: 10.1016/j.tim.2016.05.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/06/2016] [Accepted: 05/25/2016] [Indexed: 02/08/2023]
Abstract
Genital infections with Chlamydia trachomatis continue to be a major health problem worldwide. While some individuals clear their infection (presumed to be the result of an effective Th1/interferon-γ response), others develop chronic infections and some are prone to repeat infections. In females in particular, chronic asymptomatic infections are common and can lead to pelvic inflammatory disease and infertility. Recent studies suggest that the genital tract microbiota could be a significant factor and explain person-to-person variation in C. trachomatis infections. One hypothesis suggests that C. trachomatis can use its trpBA genes to rescue tryptophan from indole, which is a product of anaerobic members of the genital tract microbiota. Women with particular microbiota types, such as seen in bacterial vaginosis, have increased numbers of anaerobes, and this would enable the chlamydia in these individuals to overcome the host's interferon-γ attempts to eliminate it, resulting in more repeat and/or chronic infections.
Collapse
|
117
|
Nuidate T, Tansila N, Saengkerdsub S, Kongreung J, Bakkiyaraj D, Vuddhakul V. Role of Indole Production on Virulence of Vibrio cholerae Using Galleria mellonella Larvae Model. Indian J Microbiol 2016; 56:368-74. [PMID: 27407302 DOI: 10.1007/s12088-016-0592-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022] Open
Abstract
Cell to cell communication facilitated by chemical signals plays crucial roles in regulating various cellular functions in bacteria. Indole, one such signaling molecule has been demonstrated to control various bacterial phenotypes such as biofilm formation and virulence in diverse bacteria including Vibrio cholerae. The present study explores some key factors involved in indole production and the subsequent pathogenesis of V. cholerae. Indole production was higher at 37 °C than at 30 °C, although the growth at 37 °C was slightly higher. A positive correlation was observed between indole production and biofilm formation in V. cholerae. Maximum indole production was detected at pH 7. There was no significant difference in indole production between clinical and environmental V. cholerae isolates, although indole production in one environmental isolate was significantly different. Both growth and indole production showed relevant changes with differences in salinity. An indole negative mutant strain was constructed using transposon mutagenesis and the direct effect of indole on the virulence of V. cholerae was evaluated using Galleria mellonella larvae model. Comparison to the wild type strain, the mutant significantly reduced the mortality of G. mellonella larvae which regained its virulence after complementation with exogenous indole. A gene involved in indole production and the virulence of V. cholerae was identified.
Collapse
Affiliation(s)
- Taiyeebah Nuidate
- Food Safety and Health Research Unit, Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, 90110 Thailand
| | - Natta Tansila
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, 90110 Thailand
| | - Suwat Saengkerdsub
- Department of Food Technology, Faculty of Agroindustry, Prince of Songkla University, Hat Yai, 90110 Thailand
| | - Jetnaphang Kongreung
- Food Safety and Health Research Unit, Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, 90110 Thailand
| | - Dhamodharan Bakkiyaraj
- Food Safety and Health Research Unit, Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, 90110 Thailand
| | - Varaporn Vuddhakul
- Food Safety and Health Research Unit, Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, 90110 Thailand
| |
Collapse
|
118
|
Isolation of Indole Utilizing Bacteria Arthrobacter sp. and Alcaligenes sp. From Livestock Waste. Indian J Microbiol 2016; 56:158-166. [PMID: 27570307 DOI: 10.1007/s12088-016-0570-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/04/2016] [Indexed: 01/10/2023] Open
Abstract
Indole is an interspecies and interkingdom signaling molecule widespread in different environmental compartment. Although multifaceted roles of indole in different biological systems have been established, little information is available on the microbial utilization of indole in the context of combating odor emissions from different types of waste. The present study was aimed at identifying novel bacteria capable of utilizing indole as the sole carbon and energy source. From the selective enrichment of swine waste and cattle feces, we identified Gram-positive and Gram-negative bacteria belonging to the genera Arthrobacter and Alcaligenes. Bacteria belonging to the genus Alcaligenes showed higher rates of indole utilization than Arthrobacter. Indole at 1.0 mM for growth was completely utilized by Alcaligenes sp. in 16 h. Both strains produced two intermediates, anthranilic acid and isatin, during aerobic indole metabolism. These isolates were also able to grow on several indole derivatives. Interestingly, an adaptive response in terms of a decrease in cell size was observed in both strains in the presence of indole. The present study will help to explain the degradation of indole by different bacteria and also the pathways through which it is catabolized. Furthermore, these novel bacterial isolates could be potentially useful for the in situ attenuation of odorant indole and its derivatives emitted from different types of livestock waste.
Collapse
|
119
|
Audrain B, Létoffé S, Ghigo JM. Airborne Bacterial Interactions: Functions Out of Thin Air? Front Microbiol 2015; 6:1476. [PMID: 26733998 PMCID: PMC4686687 DOI: 10.3389/fmicb.2015.01476] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/08/2015] [Indexed: 12/23/2022] Open
Abstract
Bacteria produce and release a large diversity of small molecules including organic and inorganic volatile compounds, hereafter referred to as bacterial volatile compounds (BVCs). Whereas BVCs were often only considered as wasted metabolic by-product sometimes perceived by animal olfactory systems, it is increasingly clear that they can also mediate cross-kingdom interactions with fungi, plants and animals. Recently, in vitro studies also reported the impact of BVCs on bacterial biology through modulation of antibiotic resistance, biofilm formation and virulence. Here, we review BVCs influence on bacterial adaptation to their environment and discuss the biological relevance of recently reported inter- and intra-species bacterial interactions mediated by BVCs.
Collapse
Affiliation(s)
- Bianca Audrain
- Genetics of Biofilms Laboratory, Department of Microbiology, Institut Pasteur Paris, France
| | - Sylvie Létoffé
- Genetics of Biofilms Laboratory, Department of Microbiology, Institut Pasteur Paris, France
| | - Jean-Marc Ghigo
- Genetics of Biofilms Laboratory, Department of Microbiology, Institut Pasteur Paris, France
| |
Collapse
|
120
|
Tyc O, Zweers H, de Boer W, Garbeva P. Volatiles in Inter-Specific Bacterial Interactions. Front Microbiol 2015; 6:1412. [PMID: 26733959 PMCID: PMC4683202 DOI: 10.3389/fmicb.2015.01412] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/27/2015] [Indexed: 01/08/2023] Open
Abstract
The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities.
Collapse
Affiliation(s)
- Olaf Tyc
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands; Department of Soil Quality, Wageningen University and Research CentreWageningen, Netherlands
| | - Hans Zweers
- Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands; Department of Soil Quality, Wageningen University and Research CentreWageningen, Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands
| |
Collapse
|
121
|
Lee JH, Wood TK, Lee J. Roles of Indole as an Interspecies and Interkingdom Signaling Molecule. Trends Microbiol 2015; 23:707-718. [DOI: 10.1016/j.tim.2015.08.001] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/22/2015] [Accepted: 08/05/2015] [Indexed: 02/08/2023]
|
122
|
Wood TK. Combatting bacterial persister cells. Biotechnol Bioeng 2015; 113:476-83. [DOI: 10.1002/bit.25721] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Thomas K. Wood
- Department of Chemical EngineeringPennsylvania State UniversityUniversity ParkPennsylvania
- Department Biochemistry, Molecular BiologyPennsylvania State UniversityUniversity ParkPennsylvania16802‐4400
| |
Collapse
|
123
|
Ziesche L, Bruns H, Dogs M, Wolter L, Mann F, Wagner-Döbler I, Brinkhoff T, Schulz S. Homoserine Lactones, Methyl Oligohydroxybutyrates, and Other Extracellular Metabolites of Macroalgae-Associated Bacteria of the Roseobacter Clade: Identification and Functions. Chembiochem 2015. [PMID: 26212108 DOI: 10.1002/cbic.201500189] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Twenty-four strains of marine Roseobacter clade bacteria were isolated from macroalgae and investigated for the production of quorum-sensing autoinducers, N-acylhomoserine lactones (AHLs). GC/MS analysis of the extracellular metabolites allowed us to evaluate the release of other small molecules as well. Nineteen strains produced AHLs, ranging from 3-OH-C10:0-HSL (homoserine lactone) to (2E,11Z)-C18:2-HSL, but no specific phylogenetic or ecological pattern of individual AHL occurrence was observed when cluster analysis was performed. Other identified compounds included indole, tropone, methyl esters of oligomers of 3-hydroxybutyric acid, and various amides, such as N-9-hexadecenoylalanine methyl ester (9-C16:1-NAME), a structural analogue of AHLs. Several compounds were tested for their antibacterial and antialgal activity on marine isolates likely to occur in the habitat of the macroalgae. Both AHLs and 9-C16:1-NAME showed high antialgal activity against Skeletonema costatum, whereas their antibacterial activity was low.
Collapse
Affiliation(s)
- Lisa Ziesche
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Hilke Bruns
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Marco Dogs
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Straße 9-11, 26111, Oldenburg, Germany
| | - Laura Wolter
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Straße 9-11, 26111, Oldenburg, Germany
| | - Florian Mann
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Straße 9-11, 26111, Oldenburg, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.
| |
Collapse
|
124
|
Castillo-Juárez I, Maeda T, Mandujano-Tinoco EA, Tomás M, Pérez-Eretza B, García-Contreras SJ, Wood TK, García-Contreras R. Role of quorum sensing in bacterial infections. World J Clin Cases 2015; 3:575-598. [PMID: 26244150 PMCID: PMC4517333 DOI: 10.12998/wjcc.v3.i7.575] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/30/2014] [Accepted: 04/20/2015] [Indexed: 02/05/2023] Open
Abstract
Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed.
Collapse
|
125
|
Indole: a signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration? J Microbiol 2015; 53:421-8. [PMID: 26115989 DOI: 10.1007/s12275-015-5273-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
Indole is an organic compound that is widespread in microbial communities inhabiting diverse habitats, like the soil environment and human intestines. Measurement of indole production is a traditional method for the identification of microbial species. Escherichia coli can produce millimolar concentrations of indole in the stationary growth phase under nutrient-rich conditions. Indole has received considerable attention because of its remarkable effects on various biological functions of the microbial communities, for example, biofilm formation, motility, virulence, plasmid stability, and antibiotic resistance. Indole may function as an intercellular signaling molecule, like a quorum-sensing signal. Nevertheless, a receptor system for indole and the function of this compound in coordinated behavior of a microbial population (which are requirements for a true signaling molecule) have not yet been confirmed. Recent findings suggest that a long-known quorum-sensing regulator, E. coli's SdiA, cannot recognize indole and that this compound may simply cause membrane disruption and energy reduction, which can lead to various changes in bacterial physiology including unstable folding of a quorum-sensing regulator. Indole appears to be responsible for acquisition of antibiotic resistance via the formation of persister cells and activation of an exporter. This review highlights and summarizes the current knowledge about indole as a multitrophic molecule among bacteria, together with recently identified new avenues of research.
Collapse
|
126
|
|
127
|
An Integrated Modeling and Experimental Approach to Study the Influence of Environmental Nutrients on Biofilm Formation of Pseudomonas aeruginosa. BIOMED RESEARCH INTERNATIONAL 2015; 2015:506782. [PMID: 25954752 PMCID: PMC4411446 DOI: 10.1155/2015/506782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/09/2015] [Indexed: 12/18/2022]
Abstract
The availability of nutrient components in the environment was identified as a critical regulator of virulence and biofilm formation in Pseudomonas aeruginosa. This work proposes the first systems-biology approach to quantify microbial biofilm formation upon the change of nutrient availability in the environment. Specifically, the change of fluxes of metabolic reactions that were positively associated with P. aeruginosa biofilm formation was used to monitor the trend for P. aeruginosa to form a biofilm. The uptake rates of nutrient components were changed according to the change of the nutrient availability. We found that adding each of the eleven amino acids (Arg, Tyr, Phe, His, Iso, Orn, Pro, Glu, Leu, Val, and Asp) to minimal medium promoted P. aeruginosa biofilm formation. Both modeling and experimental approaches were further developed to quantify P. aeruginosa biofilm formation for four different availability levels for each of the three ions that include ferrous ions, sulfate, and phosphate. The developed modeling approach correctly predicted the amount of biofilm formation. By comparing reaction flux change upon the change of nutrient concentrations, metabolic reactions used by P. aeruginosa to regulate its biofilm formation are mainly involved in arginine metabolism, glutamate production, magnesium transport, acetate metabolism, and the TCA cycle.
Collapse
|
128
|
Inhibition of Pseudomonas aeruginosa swarming motility by 1-naphthol and other bicyclic compounds bearing hydroxyl groups. Appl Environ Microbiol 2015; 81:2808-18. [PMID: 25681177 DOI: 10.1128/aem.04220-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many bacteria convert bicyclic compounds, such as indole and naphthalene, to oxidized compounds, including hydroxyindoles and naphthols. Pseudomonas aeruginosa, a ubiquitous bacterium that inhabits diverse environments, shows pathogenicity against animals, plants, and other microorganisms, and increasing evidence has shown that several bicyclic compounds alter the virulence-related phenotypes of P. aeruginosa. Here, we revealed that hydroxyindoles (4- and 5-hydroxyindoles) and naphthalene derivatives bearing hydroxyl groups specifically inhibit swarming motility but have minor effects on other motilities, including swimming and twitching, in P. aeruginosa. Further analyses using 1-naphthol showed that this effect is also associated with clinically isolated hyperswarming P. aeruginosa cells. Swarming motility is associated with the dispersion of cells from biofilms, and the addition of 1-naphthol maintained biofilm biomass without cell dispersion. We showed that this 1-naphthol-dependent swarming inhibition is independent of changes of rhamnolipid production and the intracellular level of signaling molecule cyclic-di-GMP (c-di-GMP). Transcriptome analyses revealed that 1-naphthol increases gene expression associated with multidrug efflux and represses gene expression associated with aerotaxis and with pyochelin, flagellar, and pilus synthesis. In the present study, we showed that several bicyclic compounds bearing hydroxyl groups inhibit the swarming motility of P. aeruginosa, and these results provide new insight into the chemical structures that inhibit the specific phenotypes of P. aeruginosa.
Collapse
|
129
|
Audrain B, Farag MA, Ryu CM, Ghigo JM. Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 2015; 39:222-33. [PMID: 25725014 DOI: 10.1093/femsre/fuu013] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bacterial interactions with neighboring microorganisms via production of small metabolites enable bacteria to respond and adapt to environmental changes. The study of intercellular interactions primarily focused on soluble metabolites, but bacteria also produce and release into their headspace a wide variety of volatile secondary metabolites, the ecological roles of which have generally been overlooked. However, bacterial volatile compounds are known to contribute to interkingdom interactions (plant, fungi and nematodes), and recent studies also identified their at-a-distance influence on bacterial behavior. The present review describes the biological roles of bacterial volatile compounds in inter- and intraspecies bacterial interactions, a new and yet unexplored research area, with potential clinical and industrial applications.
Collapse
Affiliation(s)
- Bianca Audrain
- Institut Pasteur, Genetics of Biofilms Unit, Department of Microbiology, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Mohamed A Farag
- Cairo University, Faculty of Pharmacy, Pharmacognosy Department, Kasr El Aini Street, P.B. 11562, Cairo, Egypt
| | - Choong-Min Ryu
- KRIBB, Molecular Phytobacteriology Laboratory, Daejeon 305-806, South Korea
| | - Jean-Marc Ghigo
- Institut Pasteur, Genetics of Biofilms Unit, Department of Microbiology, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| |
Collapse
|
130
|
Anthranilate deteriorates the structure of Pseudomonas aeruginosa biofilms and antagonizes the biofilm-enhancing indole effect. Appl Environ Microbiol 2015; 81:2328-38. [PMID: 25616795 DOI: 10.1128/aem.03551-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anthranilate and indole are alternative degradation products of tryptophan, depending on the bacterial species. While indole enhances the biofilm formation of Pseudomonas aeruginosa, we found that anthranilate, the tryptophan degradation product of P. aeruginosa, had an opposite effect on P. aeruginosa biofilm formation, in which anthranilate deteriorated the mushroom structure of biofilm. The anthranilate effect on biofilm formation was differentially exerted depending on the developmental stage and the presence of shear force. Anthranilate slightly accelerated the initial attachment of P. aeruginosa at the early stage of biofilm development and appeared to build more biofilm without shear force. But anthranilate weakened the biofilm structure in the late stage, deteriorating the mushroom structure of biofilms with shear force to make a flat biofilm. To investigate the interplay of anthranilate with indole in biofilm formation, biofilms were cotreated with anthranilate and indole, and the results showed that anthranilate antagonized the biofilm-enhancing effect of indole. Anthranilate was able to deteriorate the preformed biofilm. The effect of anthranilate and indole on biofilm formation was quorum sensing independent. AntR, a regulator of anthranilate-degrading metabolism was synergistically activated by cotreatment with anthranilate and indole, suggesting that indole might enhance biofilm formation by facilitating the degradation of anthranilate. Anthranilate slightly but significantly affected the cyclic diguaniylate (c-di-GMP) level and transcription of major extracellular polysaccharide (Psl, Pel, and alginate) operons. These results suggest that anthranilate may be a promising antibiofilm agent and antagonize the effect of indole on P. aeruginosa biofilm formation.
Collapse
|
131
|
Kwan BW, Osbourne DO, Hu Y, Benedik MJ, Wood TK. Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole. Biotechnol Bioeng 2014; 112:588-600. [PMID: 25219496 DOI: 10.1002/bit.25456] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/25/2014] [Accepted: 09/02/2014] [Indexed: 12/18/2022]
Abstract
Persisters are bacteria that are highly tolerant to antibiotics due to their dormant state and are of clinical significance owing to their role in infections. Given that the population of persisters increases in biofilms and that cyclic diguanylate (c-di-GMP) is an intracellular signal that increases biofilm formation, we sought to determine whether c-di-GMP has a role in bacterial persistence. By examining the effect of 30 genes from Escherichia coli, including diguanylate cyclases that synthesize c-di-GMP and phosphodiesterases that breakdown c-di-GMP, we determined that DosP (direct oxygen sensing phosphodiesterase) increases persistence by over a thousand fold. Using both transcriptomic and proteomic approaches, we determined that DosP increases persistence by decreasing tryptophanase activity and thus indole. Corroborating this effect, addition of indole reduced persistence. Despite the role of DosP as a c-di-GMP phosphodiesterase, the decrease in tryptophanase activity was found to be a result of cyclic adenosine monophosphate (cAMP) phosphodiesterase activity. Corroborating this result, the reduction of cAMP via CpdA, a cAMP-specific phosphodiesterase, increased persistence and reduced indole levels similarly to DosP. Therefore, phosphodiesterase DosP increases persistence by reducing the interkingdom signal indole via reduction of the global regulator cAMP.
Collapse
Affiliation(s)
- Brian W Kwan
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | | | | | | | | |
Collapse
|
132
|
Kaihami GH, de Almeida JRF, dos Santos SS, Netto LES, de Almeida SR, Baldini RL. Involvement of a 1-Cys peroxiredoxin in bacterial virulence. PLoS Pathog 2014; 10:e1004442. [PMID: 25329795 PMCID: PMC4199769 DOI: 10.1371/journal.ppat.1004442] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/02/2014] [Indexed: 12/31/2022] Open
Abstract
The killing of bacterial pathogens by macrophages occurs via the oxidative burst and bacteria have evolved to overcome this challenge and survive, using several virulence and defense strategies, including antioxidant mechanisms. We show here that the 1-Cys peroxiredoxin LsfA from the opportunistic pathogen Pseudomonas aeruginosa is endowed with thiol-dependent peroxidase activity that protects the bacteria from H(2)O(2) and that this protein is implicated in pathogenicity. LsfA belongs to the poorly studied Prx6 subfamily of peroxiredoxins. The function of these peroxiredoxins has not been characterized in bacteria, and their contribution to host-pathogen interactions remains unknown. Infection of macrophages with the lsfA mutant strains resulted in higher levels of the cytokine TNF-α production due to the activation of the NF-kB and MAPK pathways, that are partially inhibited by the wild-type P. aeruginosa strain. A redox fluorescent probe was more oxidized in the lsfA mutant-infected macrophages than it was in the macrophages infected with the wild-type strain, suggesting that the oxidative burst was overstimulated in the absence of LsfA. Although no differences in the phagocytosis rates were observed when macrophages were infected with wild-type and mutant bacteria in a gentamicin exclusion assay, a higher number of wild-type bacterial cells was found in the supernatant. This difference was not observed when macrophages were pre-treated with a NADPH oxidase inhibitor, confirming the role of LsfA in the bacterial resistance to ROS generated via NADPH oxidase. In an acute pneumonia model, mice infected with the mutant strains presented higher cytokine release in the lungs and increased activated neutrophil recruitment, with reduced bacterial burden and improved survival rates compared to mice infected with the wild-type bacteria. LsfA is the first bacterial 1-Cys Prx shown to modulate host immune responses and its characterization will allow a better understanding of the role of redox signaling in host-pathogen interactions.
Collapse
Affiliation(s)
- Gilberto Hideo Kaihami
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Suelen Silvana dos Santos
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sandro Rogério de Almeida
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Regina Lúcia Baldini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
133
|
Real-time bioluminescence imaging of mixed mycobacterial infections. PLoS One 2014; 9:e108341. [PMID: 25265287 PMCID: PMC4180448 DOI: 10.1371/journal.pone.0108341] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/28/2014] [Indexed: 01/18/2023] Open
Abstract
Molecular analysis of infectious processes in bacteria normally involves construction of isogenic mutants that can then be compared to wild type in an animal model. Pathogenesis and antimicrobial studies are complicated by variability between animals and the need to sacrifice individual animals at specific time points. Live animal imaging allows real-time analysis of infections without the need to sacrifice animals, allowing quantitative data to be collected at multiple time points in all organs simultaneously. However, imaging has not previously allowed simultaneous imaging of both mutant and wild type strains of mycobacteria in the same animal. We address this problem by using both firefly (Photinus pyralis) and click beetle (Pyrophorus plagiophthalamus) red luciferases, which emit distinct bioluminescent spectra, allowing simultaneous imaging of two different mycobacterial strains during infection. We also demonstrate that these same bioluminescence reporters can be used to evaluate therapeutic efficacy in real-time, greatly facilitating our ability to screen novel antibiotics as they are developed. Due to the slow growth rate of mycobacteria, novel imaging technologies are a pressing need, since they can they can impact the rate of development of new therapeutics as well as improving our understanding of virulence mechanisms and the evaluation of novel vaccine candidates.
Collapse
|
134
|
Characterization of tryptophanase from Vibrio cholerae. Appl Biochem Biotechnol 2014; 175:243-52. [PMID: 25253268 DOI: 10.1007/s12010-014-1263-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
Tryptophanase (Trpase) is a pyridoxal phosphate (PLP)-dependent enzyme responsible for the production of indole, an important intra- and interspecies signaling molecule in bacteria. In this study, the tnaA gene of Vibrio cholerae coding for VcTrpase was cloned into the pET-20b(+) vector and expressed in Escherichia coli BL21(DE3) tn5:tnaA. Using Ni(2+)-nitrilotriacetic acid (NTA) chromatography, VcTrpase was purified, and it possessed a molecular mass of ∼49 kDa with specific absorption peaks at 330 and 435 nm and a specific activity of 3 U/mg protein. The VcTrpase had an 80 % homology to the Trpase of Haemophilus influenzae and E. coli, but only around 50 % identity to the Trpase of Proteus vulgaris and Porphyromonas gingivalis. The optimum conditions for the enzyme were at pH 9.0 and 45 °C. Recombinant VcTrpase exhibited analogous kinetic reactivity to the EcTrpase with K m and k cat values of 0.612 × 10(-3) M and 5.252 s(-1), respectively. The enzyme catalyzed S-methyl-L-cysteine and S-benzyl-L-cysteine degradation, but not L-phenylalanine and L-serine. Using a site-directed mutagenesis technique, eight residues (Thr52, Tyr74, Arg103, Asp137, Arg230, Lys269, Lys270, and His463) were conserved for maintaining enzyme catalysis. All amino acid substitutions at these sites either eliminated or remarkably diminished Trpase activity. These sites are thus potential targets for the design of drugs to control the V. cholerae Trpase and to further investigate its functions.
Collapse
|
135
|
Melander RJ, Minvielle MJ, Melander C. Controlling bacterial behavior with indole-containing natural products and derivatives. Tetrahedron 2014; 70:6363-6372. [PMID: 25267859 PMCID: PMC4175420 DOI: 10.1016/j.tet.2014.05.089] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Indole has recently been implicated as an important small molecule signal utilized by many bacteria to coordinate various forms of behavior. Indole plays a role in numerous bacterial processes, including: biofilm formation and maintenance, virulence factor production, antibiotic resistance and persister cell formation. Intercepting indole-signaling pathways with appropriately designed small molecules provides a n opportunity to control unwanted bacterial behaviors, and is an attractive anti-virulence therapeutic strategy. In this review, we give an overview of the process controlled by indole signaling, and summarize current efforts to design indole-containing small molecules to intercept these pathways, and detail the synthetic efforts towards accessing indole derived bioactive small molecules.
Collapse
Affiliation(s)
- Roberta J. Melander
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695
| | - Marine J. Minvielle
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695
| | - Christian Melander
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695
| |
Collapse
|
136
|
Culotti A, Packman AI. Pseudomonas aeruginosa promotes Escherichia coli biofilm formation in nutrient-limited medium. PLoS One 2014; 9:e107186. [PMID: 25198725 PMCID: PMC4157881 DOI: 10.1371/journal.pone.0107186] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
Biofilms have been implicated as an important reservoir for pathogens and commensal enteric bacteria such as Escherichia coli in natural and engineered water systems. However, the processes that regulate the survival of E. coli in aquatic biofilms have not been thoroughly studied. We examined the effects of hydrodynamic shear and nutrient concentrations on E. coli colonization of pre-established Pseudomonas aeruginosa biofilms, co-inoculation of E. coli and P. aeruginosa biofilms, and P. aeruginosa colonization of pre-established E. coli biofilms. In nutritionally-limited R2A medium, E. coli dominated biofilms when co-inoculated with P. aeruginosa, and successfully colonized and overgrew pre-established P. aeruginosa biofilms. In more enriched media, P. aeruginosa formed larger clusters, but E. coli still extensively overgrew and colonized the interior of P. aeruginosa clusters. In mono-culture, E. coli formed sparse and discontinuous biofilms. After P. aeruginosa was introduced to these biofilms, E. coli growth increased substantially, resulting in patterns of biofilm colonization similar to those observed under other sequences of organism introduction, i.e., E. coli overgrew P. aeruginosa and colonized the interior of P. aeruginosa clusters. These results demonstrate that E. coli not only persists in aquatic biofilms under depleted nutritional conditions, but interactions with P. aeruginosa can greatly increase E. coli growth in biofilms under these experimental conditions.
Collapse
Affiliation(s)
- Alessandro Culotti
- Department of Civil and Environmental Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Aaron I. Packman
- Department of Civil and Environmental Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
137
|
Hidalgo-Romano B, Gollihar J, Brown SA, Whiteley M, Valenzuela E, Kaplan HB, Wood TK, McLean RJC. Indole inhibition of N-acylated homoserine lactone-mediated quorum signalling is widespread in Gram-negative bacteria. MICROBIOLOGY-SGM 2014; 160:2464-2473. [PMID: 25165125 DOI: 10.1099/mic.0.081729-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The LuxI/R quorum-sensing system and its associated N-acylated homoserine lactone (AHL) signal is widespread among Gram-negative bacteria. Although inhibition by indole of AHL quorum signalling in Pseudomonas aeruginosa and Acinetobacter oleivorans has been reported previously, it has not been documented among other species. Here, we show that co-culture with wild-type Escherichia coli, but not with E. coli tnaA mutants that lack tryptophanase and as a result do not produce indole, inhibits AHL-regulated pigmentation in Chromobacterium violaceum (violacein), Pseudomonas chlororaphis (phenazine) and Serratia marcescens (prodigiosin). Loss of pigmentation also occurred during pure culture growth of Chro. violaceum, P. chlororaphis and S. marcescens in the presence of physiologically relevant indole concentrations (0.5-1.0 mM). Inhibition of violacein production by indole was counteracted by the addition of the Chro. violaceum cognate autoinducer, N-decanoyl homoserine lactone (C10-HSL), in a dose-dependent manner. The addition of exogenous indole or co-culture with E. coli also affected Chro. violaceum transcription of vioA (violacein pigment production) and chiA (chitinase production), but had no effect on pykF (pyruvate kinase), which is not quorum regulated. Chro. violaceum AHL-regulated elastase and chitinase activity were inhibited by indole, as was motility. Growth of Chro. violaceum was not affected by indole or C10-HSL supplementation. Using a nematode-feeding virulence assay, we observed that survival of Caenorhabditis elegans exposed to Chro. violaceum, P. chlororaphis and S. marcescens was enhanced during indole supplementation. Overall, these studies suggest that indole represents a general inhibitor of AHL-based quorum signalling in Gram-negative bacteria.
Collapse
Affiliation(s)
- Benjamin Hidalgo-Romano
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Jimmy Gollihar
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Stacie A Brown
- Department of Biology, Southwestern University, Georgetown, TX 78626, USA
| | - Marvin Whiteley
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ernesto Valenzuela
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Heidi B Kaplan
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, USA
| | - Robert J C McLean
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| |
Collapse
|
138
|
Hu Y, Kwan BW, Osbourne DO, Benedik MJ, Wood TK. Toxin YafQ increases persister cell formation by reducing indole signalling. Environ Microbiol 2014; 17:1275-85. [PMID: 25041421 DOI: 10.1111/1462-2920.12567] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/05/2014] [Indexed: 01/04/2023]
Abstract
Persister cells survive antibiotic and other environmental stresses by slowing metabolism. Since toxins of toxin/antitoxin (TA) systems have been postulated to be responsible for persister cell formation, we investigated the influence of toxin YafQ of the YafQ/DinJ Escherichia coli TA system on persister cell formation. Under stress, YafQ alters metabolism by cleaving transcripts with in-frame 5'-AAA-G/A-3' sites. Production of YafQ increased persister cell formation with multiple antibiotics, and by investigating changes in protein expression, we found that YafQ reduced tryptophanase levels (TnaA mRNA has 16 putative YafQ cleavage sites). Consistently, TnaA mRNA levels were also reduced by YafQ. Tryptophanase is activated in the stationary phase by the stationary-phase sigma factor RpoS, which was also reduced dramatically upon production of YafQ. Tryptophanase converts tryptophan into indole, and as expected, indole levels were reduced by the production of YafQ. Corroborating the effect of YafQ on persistence, addition of indole reduced persistence. Furthermore, persistence increased upon deleting tnaA, and persistence decreased upon adding tryptophan to the medium to increase indole levels. Also, YafQ production had a much smaller effect on persistence in a strain unable to produce indole. Therefore, YafQ increases persistence by reducing indole, and TA systems are related to cell signalling.
Collapse
Affiliation(s)
- Ying Hu
- Department of Chemical Engineering and, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | | | | | | | | |
Collapse
|
139
|
Lee JH, Kim YG, Baek KH, Cho MH, Lee J. The multifaceted roles of the interspecies signalling molecule indole inAgrobacterium tumefaciens. Environ Microbiol 2014; 17:1234-44. [DOI: 10.1111/1462-2920.12560] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/02/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering; Yeungnam University; Gyeongsan 712-749 Korea
| | - Yong-Guy Kim
- School of Chemical Engineering; Yeungnam University; Gyeongsan 712-749 Korea
| | - Kwang-Hyun Baek
- School of Biotechnology; Yeungnam University; Gyeongsan 712-749 Korea
| | - Moo Hwan Cho
- School of Chemical Engineering; Yeungnam University; Gyeongsan 712-749 Korea
| | - Jintae Lee
- School of Chemical Engineering; Yeungnam University; Gyeongsan 712-749 Korea
| |
Collapse
|
140
|
Dinda BK, Basak S, Mal D. Regiospecific Synthesis of 7-Hydroxyindoles from Pyrroles by Anionic Benzannulation. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402486] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
141
|
Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 2014; 44:377-86. [PMID: 25130096 DOI: 10.1016/j.ijantimicag.2014.06.001] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/20/2014] [Indexed: 11/22/2022]
Abstract
With reports of pandrug-resistant bacteria causing untreatable infections, the need for new antibacterial therapies is more pressing than ever. Alkaloids are a large and structurally diverse group of compounds that have served as scaffolds for important antibacterial drugs such as metronidazole and the quinolones. In this review, we highlight other alkaloids with development potential. Natural, semisynthetic and synthetic alkaloids of all classes are considered, looking first at those with direct antibacterial activity and those with antibiotic-enhancing activity. Potent examples include CJ-13,136, a novel actinomycete-derived quinolone alkaloid with a minimum inhibitory concentration of 0.1 ng/mL against Helicobacter pylori, and squalamine, a polyamine alkaloid from the dogfish shark that renders Gram-negative pathogens 16- to >32-fold more susceptible to ciprofloxacin. Where available, information on toxicity, structure-activity relationships, mechanisms of action and in vivo activity is presented. The effects of alkaloids on virulence gene regulatory systems such as quorum sensing and virulence factors such as sortases, adhesins and secretion systems are also described. The synthetic isoquinoline alkaloid virstatin, for example, inhibits the transcriptional regulator ToxT in Vibrio cholerae, preventing expression of cholera toxin and fimbriae and conferring in vivo protection against intestinal colonisation. The review concludes with implications and limitations of the described research and directions for future research.
Collapse
|
142
|
Short FL, Murdoch SL, Ryan RP. Polybacterial human disease: the ills of social networking. Trends Microbiol 2014; 22:508-16. [PMID: 24938173 PMCID: PMC4158425 DOI: 10.1016/j.tim.2014.05.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/17/2014] [Accepted: 05/22/2014] [Indexed: 02/06/2023]
Abstract
Bacteria are typically found within complex microbial communities in nature. Molecular interactions between co-infecting bacteria can profoundly affect disease prognosis and treatment. In vivo models and genomic tools are providing new insights into interbacterial behavior during infection. There is potential to target interbacterial interactions as part of a therapeutic strategy.
Polybacterial diseases involve multiple organisms that act collectively to facilitate disease progression. Although this phenomenon was highlighted early in the 20th century, recent technological advances in diagnostics have led to the appreciation that many infections are far more complex than originally believed. Furthermore, it is apparent that although most treatments focus on the dominant bacterial species in an infection, other microbes, including commensals, can have a profound impact on both the response to therapy and virulence. Very little is known about the molecular mechanisms that underpin interactions between bacteria during such infections. Here, we discuss recent studies identifying and characterizing mechanisms of bacterial interaction and the biological processes they govern during certain diseases. We also highlight how possible strategies for targeting these interbacterial interactions may afford a route towards development of new therapies, with consequences for disease control.
Collapse
Affiliation(s)
- Francesca L Short
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK
| | - Sarah L Murdoch
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK
| | - Robert P Ryan
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
143
|
Lee JH, Kim YG, Cho MH, Lee J. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol Res 2014; 169:888-96. [PMID: 24958247 DOI: 10.1016/j.micres.2014.05.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 11/19/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa produces a variety of virulence factors, and biofilms of this bacterium are much more resistant to antibiotics than planktonic cells. Thirty-six metal ions have been investigated to identify antivirulence and antibiofilm metal ions. Zinc ions and ZnO nanoparticles were found to markedly inhibit biofilm formation and the production of pyocyanin, Pseudomonas quinolone signal (PQS), pyochelin, and hemolytic activity of P. aeruginosa without affecting the growth of planktonic cells. Transcriptome analyses showed that ZnO nanoparticles induce the zinc cation efflux pump czc operon and several important transcriptional regulators (porin gene opdT and type III repressor ptrA), but repress the pyocyanin-related phz operon, which explains observed phenotypic changes. A mutant study showed that the effects of ZnO nanoparticles on the control of pyocyanin production and biofilm formation require the czc regulator CzcR. In addition, ZnO nanoparticles markedly increased the cellular hydrophilicity of P. aeruginosa cells. Our results support that ZnO nanoparticles are potential antivirulence materials against recalcitrant P. aeruginosa infections and possibly other important pathogens.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea.
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea.
| | - Moo Hwan Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea.
| |
Collapse
|
144
|
Kimura N. Metagenomic approaches to understanding phylogenetic diversity in quorum sensing. Virulence 2014; 5:433-42. [PMID: 24429899 DOI: 10.4161/viru.27850] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Quorum sensing, a form of cell-cell communication among bacteria, allows bacteria to synchronize their behaviors at the population level in order to control behaviors such as luminescence, biofilm formation, signal turnover, pigment production, antibiotics production, swarming, and virulence. A better understanding of quorum-sensing systems will provide us with greater insight into the complex interaction mechanisms used widely in the Bacteria and even the Archaea domain in the environment. Metagenomics, the use of culture-independent sequencing to study the genomic material of microorganisms, has the potential to provide direct information about the quorum-sensing systems in uncultured bacteria. This article provides an overview of the current knowledge of quorum sensing focused on phylogenetic diversity, and presents examples of studies that have used metagenomic techniques. Future technologies potentially related to quorum-sensing systems are also discussed.
Collapse
Affiliation(s)
- Nobutada Kimura
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba, Ibaraki Japan
| |
Collapse
|
145
|
Molina-Santiago C, Daddaoua A, Fillet S, Duque E, Ramos JL. Interspecies signalling: Pseudomonas putida efflux pump TtgGHI is activated by indole to increase antibiotic resistance. Environ Microbiol 2014; 16:1267-81. [PMID: 24373097 DOI: 10.1111/1462-2920.12368] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/14/2013] [Indexed: 12/13/2022]
Abstract
In Gram-negative bacteria, multidrug efflux pumps are responsible for the extrusion of chemicals that are deleterious for growth. Some of these efflux pumps are induced by endogenously produced effectors, while abiotic or biotic signals induce the expression of other efflux pumps. In Pseudomonas putida, the TtgABC efflux pump is the main antibiotic extrusion system that respond to exogenous antibiotics through the modulation of the expression of this operon mediated by TtgR. The plasmid-encoded TtgGHI efflux pump in P. putida plays a minor role in antibiotic resistance in the parental strain; however, its role is critical in isogenic backgrounds deficient in TtgABC. Expression of ttgGHI is repressed by the TtgV regulator that recognizes indole as an effector, although P. putida does not produce indole itself. Because indole is not produced by Pseudomonas, the indole-dependent antibiotic resistance seems to be part of an antibiotic resistance programme at the community level. Pseudomonas putida recognizes indole added to the medium or produced by Escherichia coli in mixed microbial communities. Transcriptomic analyses revealed that the indole-specific response involves activation of 43 genes and repression of 23 genes. Indole enhances not only the expression of the TtgGHI pump but also a set of genes involved in iron homeostasis, as well as genes for amino acid catabolism. In a ttgABC-deficient P. putida, background ampicillin and other bactericidal compounds lead to cell death. Co-culture of E. coli and P. putida ΔttgABC allowed growth of the P. putida mutant in the presence of ampicillin because of induction of the indole-dependent efflux pump.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, 18008, Granada, Spain
| | | | | | | | | |
Collapse
|
146
|
Minvielle MJ, Eguren K, Melander C. Highly active modulators of indole signaling alter pathogenic behaviors in Gram-negative and Gram-positive bacteria. Chemistry 2013; 19:17595-602. [PMID: 24243627 PMCID: PMC5798242 DOI: 10.1002/chem.201303510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Indexed: 11/09/2022]
Abstract
Indole is a universal signal that regulates various bacterial behaviors, such as biofilm formation and antibiotic resistance. To generate mechanistic probes of indole signaling and control indole-mediated pathogenic phenotypes in both Gram-positive and Gram-negative bacteria, we have investigated the use of desformylflustrabromine (dFBr) derivatives to generate highly active indole mimetics. We have developed non-microbicidal dFBr derivatives that are 27-2000 times more active than indole in modulating biofilm formation, motility, acid resistance, and antibiotic resistance. The activity of these analogues parallels indole, because they are dependent on temperature, the enzyme tryptophanase TnaA, and the transcriptional regulator SdiA. This investigation demonstrates that molecules based on the dFBr scaffold can alter pathogenic behaviors by mimicking indole-signaling pathways.
Collapse
Affiliation(s)
- Marine J Minvielle
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204 (USA), Fax: (+1) 919-515-5079
| | | | | |
Collapse
|
147
|
Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS One 2013; 8:e80604. [PMID: 24278294 PMCID: PMC3835565 DOI: 10.1371/journal.pone.0080604] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 10/04/2013] [Indexed: 12/14/2022] Open
Abstract
Microbiota have been shown to have a great influence on functions of intestinal epithelial cells (ECs). The role of indole as a quorum-sensing (QS) molecule mediating intercellular signals in bacteria has been well appreciated. However, it remains unknown whether indole has beneficial effects on maintaining intestinal barriers in vivo. In this study, we analyzed the effect of indole on ECs using a germ free (GF) mouse model. GF mice showed decreased expression of junctional complex molecules in colonic ECs. The feces of specific pathogen-free (SPF) mice contained a high amount of indole; however the amount was significantly decreased in the feces of GF mice by 27-fold. Oral administration of indole-containing capsules resulted in increased expression of both tight junction (TJ)- and adherens junction (AJ)-associated molecules in colonic ECs in GF mice. In accordance with the increased expression of these junctional complex molecules, GF mice given indole-containing capsules showed higher resistance to dextran sodium sulfate (DSS)-induced colitis. A similar protective effect of indole on DSS-induced epithelial damage was also observed in mice bred in SPF conditions. These findings highlight the beneficial role of indole in establishing an epithelial barrier in vivo.
Collapse
|
148
|
El-Halfawy OM, Valvano MA. Communication is key: do bacteria use a universal 'language' to spread resistance? Future Microbiol 2013; 8:1357-9. [PMID: 24199793 DOI: 10.2217/fmb.13.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Omar M El-Halfawy
- Center for Human Immunology & Department of Microbiology & Immunology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | | |
Collapse
|
149
|
Abstract
Bacterial cells may escape the effects of antibiotics without undergoing genetic change; these cells are known as persisters. Unlike resistant cells that grow in the presence of antibiotics, persister cells do not grow in the presence of antibiotics. These persister cells are a small fraction of exponentially growing cells (due to carryover from the inoculum) but become a significant fraction in the stationary phase and in biofilms (up to 1%). Critically, persister cells may be a major cause of chronic infections. The mechanism of persister cell formation is not well understood, and even the metabolic state of these cells is debated. Here, we review studies relevant to the formation of persister cells and their metabolic state and conclude that the best model for persister cells is still dormancy, with the latest mechanistic studies shedding light on how cells reach this dormant state.
Collapse
|
150
|
Kim J, Park W. Indole inhibits bacterial quorum sensing signal transmission by interfering with quorum sensing regulator folding. MICROBIOLOGY-SGM 2013; 159:2616-2625. [PMID: 24025605 DOI: 10.1099/mic.0.070615-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Quorum sensing (QS)-dependent biofilm formation and motility were controlled by AqsR in Acinetobacter oleivorans DR1. QS-controlled phenotypes appeared to be inhibited by indole and the aqsR mutant had the same phenotypes. We demonstrated that the turnover rate of AqsR became more rapid without the N-acylhomoserine lactone (AHL) signal, and that indole could increase the expression of many protease and chaperone proteins. The addition of exogenous indole decreased the expression of two AqsR-targeted genes: AOLE_03905 (putative surface adhesion protein) and AOLE_11355 (L-asparaginase). The overexpression of AqsR in Escherichia coli was impossible with the indole treatment. Surprisingly, our [(35)S]methionine pulse-labelling data demonstrated that the stability and folding of AqsR protein decreased in the presence of indole without changing aqsR mRNA expression in E. coli. Interestingly, indole resulted in a loss of TraR-dependent traG expression in an Agrobacterium tumefaciens indicator strain. However, when indole was added after incubation with exogenous AHL, indole could not inhibit the TraR-dependent expression of the traG promoter. This indicated that AHL-bound TraR could be protective against indole, but TraR without AHL could not be active in the presence of indole. Here, we provided evidence for the first time showing that the indole effect on QS-controlled bacterial phenotypes is due to inhibited QS regulator folding and not a reduced QS signal.
Collapse
Affiliation(s)
- Jisun Kim
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Woojun Park
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|