101
|
Geffroy B. Energy as the cornerstone of environmentally driven sex allocation. Trends Endocrinol Metab 2022; 33:670-679. [PMID: 35934660 DOI: 10.1016/j.tem.2022.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022]
Abstract
In recent years, observations of distinct organisms have linked the quality of the environment experienced by a given individual and the sex it will develop. In most described cases, facing relatively harsh conditions resulted in masculinization, while thriving in favorable conditions promoted the development of an ovary. This was shown indistinctively in some species presenting a genetic sex determination (GSD), which were able to sex-reverse, and in species with an environmental sex determination (ESD) system. However, this pattern strongly depends on evolutionary constrains and is detected only when females need more energy for reproduction. Here, I describe the mechanisms involved in this environmentally driven sex allocation (EDSA), which involves two main energy pathways, lipid and carbohydrate metabolism. These pathways act through various enzymes and are not necessarily independent of the previously known transducers of environmental signals in species with ESD: calcium-redox, epigenetic, and stress regulation pathways. Overall, there is evidence of a link between energy level and the sexual fate of individuals of various species, including reptiles, fish, amphibians, insects, and nematodes. As energy pathways are evolutionarily conserved, this knowledge opens new avenues to advance our understanding of the mechanisms that allow animals to adapt their sex according to the local environment.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC, Univ Montpellier, Ifremer, IRD, CNRS, Montpellier, France.
| |
Collapse
|
102
|
Vasdravanidis C, Alvanou MV, Lattos A, Papadopoulos DK, Chatzigeorgiou I, Ravani M, Liantas G, Georgoulis I, Feidantsis K, Ntinas GK, Giantsis IA. Aquaponics as a Promising Strategy to Mitigate Impacts of Climate Change on Rainbow Trout Culture. Animals (Basel) 2022; 12:ani12192523. [PMID: 36230264 PMCID: PMC9559468 DOI: 10.3390/ani12192523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Climate change and overexploitation of natural resources drive the need for innovative food production within a sustainability corridor. Aquaponics, combining the technology of recirculation aquaculture systems (RAS) and hydroponics in a closed-loop network, could contribute to addressing these problems. Aquaponic systems have lower freshwater demands than agriculture, greater land use efficiency, and decreased environmental impact combined with higher fish productivity. Rainbow trout is one of the major freshwater fish cultured worldwide, which, however, has not yet been commercially developed in aquaponics. Nevertheless, research conducted so far indicates that the trout species represents a good candidate for aquaponics. Abstract The impact of climate change on both terrestrial and aquatic ecosystems tends to become more progressively pronounced and devastating over the years. The sector of aquaculture is severely affected by natural abiotic factors, on account of climate change, that lead to various undesirable phenomena, including aquatic species mortalities and decreased productivity owing to oxidative and thermal stress of the reared organisms. Novel innovative technologies, such as aquaponics that are based on the co-cultivation of freshwater fish with plants in a sustainable manner under the context of controlled abiotic factors, represent a promising tool for mitigating the effect of climate change on reared fish. The rainbow trout (Oncorhynchus mykiss) constitutes one of the major freshwater-reared fish species, contributing to the national economies of numerous countries, and more specifically, to regional development, supporting mountainous areas of low productivity. However, it is highly vulnerable to climate change effects, mainly due to the concrete raceways, in which it is reared, that are constructed on the flow-through of rivers and are, therefore, dependent on water’s physical properties. The current review study evaluates the suitability, progress, and challenges of developing innovative and sustainable aquaponic systems to rear rainbow trout in combination with the cultivation of plants. Although not commercially developed to a great extent yet, research has shown that the rainbow trout is a valuable experimental model for aquaponics that may be also commercially exploited in the future. In particular, abiotic factors required in rainbow trout farming along, with the high protein proportion required in the ratios due to the strict carnivorous feeding behavior, result in high nitrate production that can be utilized by plants as a source of nitrogen in an aquaponic system. Intensive farming of rainbow trout in aquaponic systems can be controlled using digital monitoring of the system parameters, mitigating the obstacles originating from extreme temperature fluctuations.
Collapse
Affiliation(s)
- Christos Vasdravanidis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Maria V. Alvanou
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Athanasios Lattos
- Oecon Group, Business & Development Consultants, Frixou 9, 54627 Thessaloniki, Greece
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios K. Papadopoulos
- Oecon Group, Business & Development Consultants, Frixou 9, 54627 Thessaloniki, Greece
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioanna Chatzigeorgiou
- Oecon Group, Business & Development Consultants, Frixou 9, 54627 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Maria Ravani
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Georgios Liantas
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Ioannis Georgoulis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios K. Ntinas
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
- Correspondence:
| |
Collapse
|
103
|
Fang Z, Li X, Wang Y, Lu W, Hou J, Cheng J. Steroidogenic Effects of Salinity Change on the Hypothalamus-Pituitary-Gonad (HPG) Axis of Male Chinese Sea Bass ( Lateolabrax maculatus). Int J Mol Sci 2022; 23:ijms231810905. [PMID: 36142817 PMCID: PMC9503316 DOI: 10.3390/ijms231810905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
As lower vertebrates, teleost species could be affected by dynamic aquatic environments and may respond to environmental changes through the hypothalamus–pituitary–gonad (HPG) axis to ensure their normal growth and sexual development. Chinese sea bass (Lateolabrax maculatus), euryhaline marine teleosts, have an extraordinary ability to deal with a wide range of salinity changes, whereas the salinity decrease during their sex-maturation season may interfere with the HPG axis and affect their steroid hormone metabolism, resulting in abnormal reproductive functioning. To this end, in this study, 40 HPG axis genes in the L. maculatus genome were systematically characterized and their copy numbers, phylogenies, gene structures, and expression patterns were investigated, revealing the conservation of the HPG axis among teleost lineages. In addition, freshwater acclimation was carried out with maturing male L. maculatus, and their serum cortisol and 11-ketotestosterone (11-KT) levels were both increased significantly after the salinity change, while their testes were found to be partially degraded. After salinity reduction, the expression of genes involved in cortisol and 11-KT synthesis (cyp17a, hsd3b1, cyp21a, cyp11c, hsd11b2, and hsd17b3) showed generally upregulated expression in the head kidneys and testes, respectively. Moreover, cyp11c and hsd11b2 were involved in the synthesis and metabolism of both cortisol and 11-KT, and after salinity change their putative interaction may contribute to steroid hormone homeostasis. Our results proved the effects of salinity change on the HPG axis and steroidogenic pathway in L. maculatus and revealed the gene interactions involved in the regulation of steroid hormone levels. The coordinated interaction of steroidogenic genes provides comprehensive insights into steroidogenic pathway regulation, as well as sexual development, in teleost species.
Collapse
Affiliation(s)
- Zhenru Fang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Xujian Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Yapeng Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Juncheng Hou
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
- Correspondence: ; Tel.: +86-0532-82031986
| |
Collapse
|
104
|
Zhou J, Xu Z, Wang S. A novel hybrid learning paradigm with feature extraction for carbon price prediction based on Bi-directional long short-term memory network optimized by an improved sparrow search algorithm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65585-65598. [PMID: 35488159 DOI: 10.1007/s11356-022-20450-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
An efficient carbon trading market can effectively curb excessive carbon emissions and thus slow down the pace of global warming, which heightens the necessity of improving the accuracy of carbon price forecasting. In order to overcome the weakness of previous prediction model that always trained data in one-way neural networks and propagated the data sequentially, this paper proposes a novel hybrid learning paradigm WPD-ISSA-BiLSTM combining wavelet packet decomposition (WPD), improved sparrow search algorithm (ISSA), and Bi-directional long short-term memory network for deep feature exploration of carbon prices. Firstly, WPD decomposes and reconstructs the original carbon price series into several independent subseries. Then, the input features of the all subseries are filtered with random forest to select the best input features for the prediction model. Finally, a Bi-directional long short-term memory network optimized by the ISSA is employed to deeply delineate the intrinsic evolutionary trends of carbon prices, and the prediction results of all subseries are superimposed on each other to obtain the final carbon price prediction results. The actual carbon emission trading prices are collected as input to the model, and the experimental results show that the RMSE values of the proposed model are 0.2516 and 0.2962 under the mild and severe volatility scenarios, respectively. The proposed model has superiority and robustness compared to the comparison model and several existing models and better understands the intrinsic correlation between historical carbon price data. The results of this study can provide meaningful references for the carbon market development and emission reduction pathways.
Collapse
Affiliation(s)
- Jianguo Zhou
- Department of Economics and Management, North China Electric Power University, Baoding, Hebei, 071000, China
| | - Zhongtian Xu
- Department of Economics and Management, North China Electric Power University, Baoding, Hebei, 071000, China.
| | - Shiguo Wang
- Department of Economics and Management, North China Electric Power University, Baoding, Hebei, 071000, China
| |
Collapse
|
105
|
Mollenhauer R, Lamont MM, Foley A. Long‐term apparent survival of a cold‐stunned subpopulation of juvenile green turtles. Ecosphere 2022. [DOI: 10.1002/ecs2.4221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Robert Mollenhauer
- U.S. Geological Survey Wetland and Aquatic Research Center Gainesville Florida USA
| | - Margaret M. Lamont
- U.S. Geological Survey Wetland and Aquatic Research Center Gainesville Florida USA
| | - Allen Foley
- Florida Fish and Wildlife Conservation Commission, Jacksonville Field Laboratory Fish and Wildlife Research Institute Jacksonville Florida USA
| |
Collapse
|
106
|
Stavrakidis-Zachou O, Lika K, Pavlidis M, Asaad MH, Papandroulakis N. Metabolic scope, performance and tolerance of juvenile European sea bass Dicentrarchus labrax upon acclimation to high temperatures. PLoS One 2022; 17:e0272510. [PMID: 35960751 PMCID: PMC9374223 DOI: 10.1371/journal.pone.0272510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
European sea bass is a species of great commercial value for fisheries and aquaculture. Rising temperatures may jeopardize the performance and survival of the species across its distribution and farming range, making the investigation of its thermal responses highly relevant. In this article, the metabolic scope, performance, and tolerance of juvenile E. sea bass reared under three high water temperatures (24, 28, 33°C), for a period of three months was evaluated via analysis of selected growth performance and physiological indicators. Effects on molecular, hormonal, and biochemical variables were analyzed along with effects of acclimation temperature on the metabolic rate and Critical Thermal maximum (CTmax). Despite signs of thermal stress at 28°C indicated by high plasma cortisol and lactate levels as well as the upregulation of genes coding for Heat Shock Proteins (HSP), E. sea bass can maintain high performance at that temperature which is encouraging for the species culture in the context of a warming ocean. Critical survivability thresholds appear sharply close to 33°C, where the aerobic capacity declines and the overall performance diminishes. European sea bass demonstrates appreciable capacity to cope with acute thermal stress exhibiting CTmax as high as 40°C for fish acclimated at high temperatures, which may indicate resilience to future heatwaves events.
Collapse
Affiliation(s)
- Orestis Stavrakidis-Zachou
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
- * E-mail:
| | - Konstadia Lika
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Michail Pavlidis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Mohamed H. Asaad
- Beacon Development, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nikos Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
| |
Collapse
|
107
|
Campbell LJ, Castillo NA, Dunn CD, Perez A, Schmitter-Soto JJ, Mejri SC, Boucek RE, Corujo RS, Adams AJ, Rehage JS, Goldberg TL. Viruses of Atlantic Bonefish ( Albula vulpes) in Florida and the Caribbean show geographic patterns consistent with population declines. ENVIRONMENTAL BIOLOGY OF FISHES 2022; 106:303-317. [PMID: 35965638 PMCID: PMC9362051 DOI: 10.1007/s10641-022-01306-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Atlantic Bonefish (Albula vulpes) are economically important due to their popularity with recreational anglers. In the State of Florida, USA, bonefish population numbers declined by approximately 60% between the 1990s and 2015. Habitat loss, water quality impairment, chemical inputs, and other anthropogenic factors have been implicated as causes, but the role of pathogens has been largely overlooked, especially with respect to viruses. We used a metagenomic approach to identify and quantify viruses in the blood of 103 A. vulpes sampled throughout their Western Atlantic range, including populations in Florida that have experienced population declines and populations in Belize, Mexico, Puerto Rico, and The Bahamas that have remained apparently stable. We identified four viruses, all of which are members of families known to infect marine fishes (Flaviviridae, Iflaviridae, Narnaviridae, and Nodaviridae), but all of which were previously undescribed. Bonefish from Florida and Mexico had higher viral richness (numbers of distinct viruses per individual fish) than fish sampled from other areas, and bonefish from the Upper Florida Keys had the highest prevalence of viral infection (proportion of positive fish) than fish sampled from any other location. Bonefish from Florida also had markedly higher viral loads than fish sampled from any other area, both for a novel narnavirus and for all viruses combined. Bonefish viruses may be indicators of environmentally driven physiological and immunological compromise, causes of ill health, or both. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10641-022-01306-9.
Collapse
Affiliation(s)
- Lewis J. Campbell
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Nicholas A. Castillo
- Department of Earth and Environment, Florida International University, Miami, FL USA
| | - Christopher D. Dunn
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| | | | - Juan J. Schmitter-Soto
- Departamento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur, Q.R, Campeche, Mexico
| | - Sahar C. Mejri
- Department of Aquaculture and Stock Enhancement, Florida Atlantic University, Fort Pierce, FL USA
| | | | | | - Aaron J. Adams
- Bonefish & Tarpon Trust, Miami, FL USA
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL USA
| | - Jennifer S. Rehage
- Department of Earth and Environment, Florida International University, Miami, FL USA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
108
|
Xiang K, Yang Q, Liu M, Yang X, Li J, Hou Z, Wen H. Crosstalk between Growth and Osmoregulation of GHRH-SST-GH-IGF Axis in Triploid Rainbow Trout ( Oncorhynchus mykiss). Int J Mol Sci 2022; 23:ijms23158691. [PMID: 35955823 PMCID: PMC9369269 DOI: 10.3390/ijms23158691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Smolting is an important development stage of salmonid, and an energy trade-off occurs between osmotic regulation and growth during smolting in rainbow trout (Oncorhynchus mykiss). Growth hormone releasing hormone, somatostatin, growth hormone and insulin-like growth factor (GHRH-SST-GH-IGF) axis exhibit pleiotropic effects in regulating growth and osmotic adaptation. Due to salmonid specific genome duplication, increased paralogs are identified in the ghrh-sst-gh-igf axis, however, their physiology in modulating osmoregulation has yet to be investigated. In this study, seven sst genes (sst1a, sst1b, sst2, sst3a, sst3b, sst5, sst6) were identified in trout. We further investigated the ghrh-sst-gh-igf axis of diploid and triploid trout in response to seawater challenge. Kidney sst (sst1b, sst2, sst5) and sstr (sstr1b1, sstr5a, sstr5b) expressions were changed (more than 2-fold increase (except for sstr5a with 1.99-fold increase) or less than 0.5-fold decrease) due to osmoregulation, suggesting a pleiotropic physiology of SSTs in modulating growth and smoltification. Triploid trout showed significantly down-regulated brain sstr1b1 and igfbp2a1 (p < 0.05), while diploid trout showed up-regulated brain igfbp1a1 (~2.61-fold, p = 0.057) and igfbp2a subtypes (~1.38-fold, p < 0.05), suggesting triploid trout exhibited a better acclimation to the seawater environment. The triploid trout showed up-regulated kidney igfbp5a subtypes (~6.62 and 7.25-fold, p = 0.099 and 0.078) and significantly down-regulated igfbp5b2 (~0.37-fold, p < 0.05), showing a conserved physiology of teleost IGFBP5a in regulating osmoregulation. The IGFBP6 subtypes are involved in energy and nutritional regulation. Distinctive igfbp6 subtypes patterns (p < 0.05) potentially indicated trout triggered energy redistribution in brain and kidney during osmoregulatory regulation. In conclusion, we showed that the GHRH-SST-GH-IGF axis exhibited pleiotropic effects in regulating growth and osmoregulatory regulation during trout smolting, which might provide new insights into seawater aquaculture of salmonid species.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhishuai Hou
- Correspondence: (Z.H.); (H.W.); Tel.: +86-133-4524-7715 (Z.H.); +86-532-8203-1825 (H.W.)
| | - Haishen Wen
- Correspondence: (Z.H.); (H.W.); Tel.: +86-133-4524-7715 (Z.H.); +86-532-8203-1825 (H.W.)
| |
Collapse
|
109
|
Goikoetxea A, Servili A, Houdelet C, Mouchel O, Hermet S, Clota F, Aerts J, Fernandino JI, Allal F, Vandeputte M, Blondeau-Bidet E, Geffroy B. Natural cortisol production is not linked to the sexual fate of European sea bass. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1117-1135. [PMID: 35917042 DOI: 10.1007/s10695-022-01104-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In this study, we aimed to investigate the relationship between cortisol and the determination of sexual fate in the commercially important European sea bass (Dicentrarchus labrax). To test our hypothesis, we designed two temperature-based experiments (19 ℃, 21 ℃ and 23 ℃, experiment 1; 16 ℃ and 21 ℃, experiment 2) to assess the effects of these thermal treatments on European sea bass sex determination and differentiation. In the fish from the first experiment, we evaluated whether blood cortisol levels and expression of stress key regulatory genes were different between differentiating (149 to 183 dph) males and females. In the second experiment, we assessed whether cortisol accumulated in scales over time during the labile period for sex determination as well as the neuroanatomical localisation of brain cells expressing brain aromatase (cyp19a1b) and corticotropin-releasing factor (crf) differed between males and females undergoing molecular sex differentiation (117 to 124 dph). None of the gathered results allowed to detect differences between males and females regarding cortisol production and regulatory mechanisms. Altogether, our data provide strong physiological, molecular and histochemical evidence, indicating that in vivo cortisol regulation has no major effects on the sex of European sea bass.
Collapse
Affiliation(s)
| | - Arianna Servili
- Ifremer, IFREMER, Univ Brest, CNRS, IRD, LEMAR, 29280, Plouzané, France
| | - Camille Houdelet
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Olivier Mouchel
- Ifremer, IFREMER, Univ Brest, CNRS, IRD, LEMAR, 29280, Plouzané, France
| | - Sophie Hermet
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Fréderic Clota
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Johan Aerts
- Stress Physiology Research Group, Faculty of Sciences, Ghent University, Ostend, Belgium
| | | | - François Allal
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Marc Vandeputte
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | - Benjamin Geffroy
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| |
Collapse
|
110
|
Techno-Economic Analysis of a Wind-Energy-Based Charging Station for Electric Vehicles in High-Rise Buildings in Malaysia. ENERGIES 2022. [DOI: 10.3390/en15155412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Renewable energy sources have become necessary for long-term energy sustainability due to the increased demand for electric cars and worrisome rises in carbon dioxide emissions from traditional energy sources. Furthermore, transportation is one of the sectors that uses the most energy on the planet, accounting for 24% of overall consumption. Fossil fuels are still the dominant energy source for balancing global demand/supply dynamics. Supporting laws and regulations have enhanced the first phase of environmentally friendly energy-resource consumption. This has spurred the development of new solutions that cut greenhouse-gas emissions and reduce the air pollution produced by internal combustion engines that are fuelled by fossil fuels. Wind energy is one of the clean energy sources that may be utilised for this purpose. Wind energy has been used to power electric-car-charging infrastructure, generally in a hybrid mode with another renewable source. This research examines the possibility of using wind energy as a standalone energy source to support electric-vehicle-charging infrastructure. Using data from Malacca, Malaysia, and HOMER software, the project will build and optimise a standalone wind-powered charging station. An RC-5K-A wind turbine coupled to a battery and converter is the appropriate choice for the system. The findings demonstrate that the turbine can produce 214,272 kWh per year at the cost of USD 0.081/kWh, confirming wind’s future feasibility as an energy-infrastructure support source.
Collapse
|
111
|
Moreira JM, Mendes AC, Maulvault AL, Marques A, Rosa R, Pousão-Ferreira P, Sousa T, Anacleto P, Marques GM. Impacts of ocean warming and acidification on the energy budget of three commercially important fish species. CONSERVATION PHYSIOLOGY 2022; 10:coac048. [PMID: 35875680 PMCID: PMC9305255 DOI: 10.1093/conphys/coac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
A mechanistic model based on Dynamic Energy Budget (DEB) theory was developed to predict the combined effects of ocean warming, acidification and decreased food availability on growth and reproduction of three commercially important marine fish species: white seabream (Diplodus sargus), zebra seabream (Diplodus cervinus) and Senegalese sole (Solea senegalensis). Model simulations used a parameter set for each species, estimated by the Add-my-Pet method using data from laboratory experiments complemented with bibliographic sources. An acidification stress factor was added as a modifier of the somatic maintenance costs and estimated for each species to quantify the effect of a decrease in pH from 8.0 to 7.4 (white seabream) or 7.7 (zebra seabream and Senegalese sole). The model was used to project total length of individuals along their usual lifespan and number of eggs produced by an adult individual within one year, under different climate change scenarios for the end of the 21st century. For the Intergovernmental Panel on Climate Change SSP5-8.5, ocean warming led to higher growth rates during the first years of development, as well as an increase of 32-34% in egg production, for the three species. Ocean acidification contributed to reduced growth for white seabream and Senegalese sole and a small increase for zebra seabream, as well as a decrease in egg production of 48-52% and 14-33% for white seabream and Senegalese sole, respectively, and an increase of 4-5% for zebra seabream. The combined effect of ocean warming and acidification is strongly dependent on the decrease of food availability, which leads to significant reduction in growth and egg production. This is the first study to assess the combined effects of ocean warming and acidification using DEB models on fish, therefore, further research is needed for a better understanding of these climate change-related effects among different taxonomic groups and species.
Collapse
Affiliation(s)
- José M Moreira
- Corresponding author. MARETEC—Marine, Environment & Technology Center, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Ana Candeias Mendes
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| | - Ana Luísa Maulvault
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
- MARE—Marine and Environmental Sciences Centre, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon, Av. Nossa Sra do Cabo 939, 2750-374 Cascais, Portugal
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology—NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - António Marques
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Rui Rosa
- MARE—Marine and Environmental Sciences Centre, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon, Av. Nossa Sra do Cabo 939, 2750-374 Cascais, Portugal
- Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Pousão-Ferreira
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| | - Tânia Sousa
- MARETEC—Marine, Environment & Technology Center, LARSyS, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Patrícia Anacleto
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
- MARE—Marine and Environmental Sciences Centre, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon, Av. Nossa Sra do Cabo 939, 2750-374 Cascais, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Gonçalo M Marques
- MARETEC—Marine, Environment & Technology Center, LARSyS, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
112
|
Fu CW, Horng JL, Chou MY. Fish Behavior as a Neural Proxy to Reveal Physiological States. Front Physiol 2022; 13:937432. [PMID: 35910555 PMCID: PMC9326089 DOI: 10.3389/fphys.2022.937432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Behaviors are the integrative outcomes of the nervous system, which senses and responds to the internal physiological status and external stimuli. Teleosts are aquatic organisms which are more easily affected by the surrounding environment compared to terrestrial animals. To date, behavioral tests have been widely used to assess potential environmental risks using fish as model animals. In this review, we summarized recent studies regarding the effects of internal and external stimuli on fish behaviors. We concluded that behaviors reflect environmental and physiological changes, which have possible implications for environmental and physiological assessments.
Collapse
Affiliation(s)
- Chih-Wei Fu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- *Correspondence: Ming-Yi Chou,
| |
Collapse
|
113
|
Ugelvik MS, Mæhle S, Dalvin S. Temperature affects settlement success of ectoparasitic salmon lice (Lepeophtheirus salmonis) and impacts the immune and stress response of Atlantic salmon (Salmo salar). JOURNAL OF FISH DISEASES 2022; 45:975-990. [PMID: 35397139 PMCID: PMC9320951 DOI: 10.1111/jfd.13619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/01/2023]
Abstract
In this study, the effect of temperature on Atlantic salmon (Salmo salar) stress and immune response to the ectoparasitic salmon lice (Lepeophtheirus salmonis) was investigated. We found that infestation affected the expression of several immune and wound healing transcripts in the skin especially at the site of lice attachment compared to un-infested control fish. Moreover, expression patterns in the skin of infested fish suggest that host immune responses towards salmon lice are impaired at low temperatures. However, reduced lice infestation success and survival at the lowest investigated temperatures suggest that cold water temperatures are more detrimental to the lice than their fish hosts. Finally, temperature affected the stress response of the fish and infected fish had a higher increase in cortisol levels in response to handling (a stressor) than un-infested controls.
Collapse
Affiliation(s)
| | - Stig Mæhle
- Institute of Marine ResearchBergenNorway
| | | |
Collapse
|
114
|
Structural and functional characterization of turbot pparγ: Activation during high temperature and regulation of lipid metabolism. J Therm Biol 2022; 108:103279. [DOI: 10.1016/j.jtherbio.2022.103279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/26/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
|
115
|
Kumar MS, Baisvar VS, Kushwaha B, Kumar R, Singh M, Mishra AK. Thermal stress induces expression of Nuclear protein and Parkin genes in endangered catfish, Clarias magur. Gene 2022; 825:146388. [PMID: 35288199 DOI: 10.1016/j.gene.2022.146388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022]
Abstract
Fluctuation in water temperature can create thermal stress, which may impact many aspects of fish life, such as survival, growth, reproduction, disease occurrence etc. The endangered catfish, Clarias magur, has been reported to survive at higher thermal stress, even though the exact mechanism is unknown. The genes coding for Nuclear protein 1 (Nupr1) and Parkin E3 ubiquitin protein ligase (Park2) have been reported to protect cells from stress-induced damage and death. In this study, we characterized both the genes and assessed their quantitative expression in C. magur. Structural features of both the genes were found similar to a related catfish, Ictalurus punctatus, and model fish zebrafish. The genes were fairly conserved in fishes as observed through phylogenetic analysis. The real time expression of the two stress-associated genes were also assessed in brain, kidney, liver and muscle tissues of C. magur exposed to warm (34 °C) and cold (15 °C) water. RT-PCR analysis revealed up-regulation in the relative expression levels of Nupr1 and Park2 genes at both temperatures with maximum positive fold change during stress to cold water, even though the posteriori Dunnett's test after ANOVA revealed that there were significant differences between the control and challenged groups. The study indicated that Nupr1 gene plays role in muscle tissue at both high and low thermal stress, but at high thermal stress in liver, while Park2 plays role in muscle, brain and kidney at low temperature and in liver at high temperature stress in C. magur. The study has generated first-hand information under warm- and cold water, which pave the way to understand the expression response of these genes to thermal vacillations and to establish evolutionary significance in catfishes and other species.
Collapse
Affiliation(s)
- Murali Sanjeev Kumar
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226 002, India
| | - Vishwamitra Singh Baisvar
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226 002, India
| | - Basdeo Kushwaha
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226 002, India
| | - Ravindra Kumar
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226 002, India.
| | - Mahender Singh
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226 002, India
| | - Akhilesh Kumar Mishra
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226 002, India
| |
Collapse
|
116
|
Yang S, Xu W, Tan C, Li M, Li D, Zhang C, Feng L, Chen Q, Jiang J, Li Y, Du Z, Luo W, Li C, Gong Q, Huang X, Du X, Du J, Liu G, Wu J. Heat Stress Weakens the Skin Barrier Function in Sturgeon by Decreasing Mucus Secretion and Disrupting the Mucosal Microbiota. Front Microbiol 2022; 13:860079. [PMID: 35558118 PMCID: PMC9087187 DOI: 10.3389/fmicb.2022.860079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Heat stress induced by global warming has damaged the well-being of aquatic animals. The skin tissue plays a crucial role as a defense barrier to protect organism, however, little is known about the effect of heat stress on fish skin, particularly in cold-water fish species. Here, we investigated the effects of mild heat stress (24°C, MS) and high heat stress (28°C, HS) on Siberian sturgeon skin using RNA-seq, histological observation, and microbial diversity analysis. In RNA-seq, 8,819 differentially expressed genes (DEGs) in MS vs. C group and 12,814 DEGs in HS vs. C group were acquired, of which the MS vs. C and HS vs. C groups shared 3,903 DEGs, but only 1,652 DEGs were successfully annotated. The shared DEGs were significantly enriched in pathways associating with mucins synthesis. Histological observation showed that the heat stresses significantly reduced the number of skin mucous cells and induced the damages of epidermis. The microbial diversity analysis elicited that heat stress markedly disrupted the diversity and abundance of skin microbiota by increasing of potential pathogens (Vibrionimonas, Mesorhizobium, and Phyllobacterium) and decreasing of probiotics (Bradyrhizobium and Methylovirgula). In conclusion, this study reveals that heat stress causes adverse effects on sturgeon skin, reflecting in decreasing the mucus secretion and disordering the mucosal microbiota, which may contribute to develop the preventive strategy for heat stress caused by global warming.
Collapse
Affiliation(s)
- Shiyong Yang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenqiang Xu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chaolun Tan
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Minghao Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Datian Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chaoyang Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Langkun Feng
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qianyu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jun Jiang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yunkun Li
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zongjun Du
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Caiyi Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Quan Gong
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaogang Du
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Jun Du
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Guangxun Liu
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jiayun Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
117
|
Almeida J, Lopes AR, Ribeiro L, Castanho S, Candeias-Mendes A, Pousão-Ferreira P, Faria AM. Effects of exposure to elevated temperature and different food levels on the escape response and metabolism of early life stages of white seabream, Diplodus sargus. CONSERVATION PHYSIOLOGY 2022; 10:coac023. [PMID: 35586725 PMCID: PMC9109722 DOI: 10.1093/conphys/coac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Recent literature suggests that anthropogenic stressors can disrupt ecologically relevant behaviours in fish, such as the ability to escape from predators. Disruption of these behaviours at critical life history transitions, such as the transition from the pelagic environment to the juvenile/adult habitat, may have even greater repercussions. The literature suggests that an increase in temperature can affect fish escape response, as well as metabolism; however, few studies have focused on the acute sensitivity responses and the potential for acclimation through developmental plasticity. Here, we aimed at evaluating the acute and long-term effects of exposure to warming conditions on the escape response and routine metabolic rate (RMR) of early life stages of the white seabream, Diplodus sargus. Additionally, as food availability may modulate the response to warming, we further tested the effects of long-term exposure to high temperature and food shortage, as individual and interacting drivers, on escape response and RMR. Temperature treatments were adjusted to ambient temperature (19°C) and a high temperature (22°C). Feeding treatments were established as high ration and low ration (50% of high ration). Escape response and RMR were measured after the high temperature was reached (acute exposure) and after 4 weeks (prolonged exposure). Acute warming had a significant effect on escape response and generated an upward trend in RMR. In the long term, however, there seems to be an acclimation of the escape response and RMR. Food shortage, interacting with high temperature, led to an increase in latency response and a significant reduction in RMR. The current study provides relevant experimental data on fishes' behavioural and physiological responses to the combined effects of multiple stressors. This knowledge can be incorporated in recruitment models, thereby contributing to fine-tuning of models required for fisheries management and species conservation.
Collapse
Affiliation(s)
- João Almeida
- MARE - Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, 1149-041, Lisbon, Portugal
| | - Ana Rita Lopes
- MARE - Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, 1149-041, Lisbon, Portugal
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, 8700-194, Lisbon, Portugal
| | - Laura Ribeiro
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Sara Castanho
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Ana Candeias-Mendes
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Pedro Pousão-Ferreira
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Ana M Faria
- Corresponding author: MARE - Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, Lisbon, Portugal. Tel: + 351 218 811 700. E-mail:
| |
Collapse
|
118
|
Li Q, Jiang B, Zhang Z, Huang Y, Xu Z, Chen X, Huang Y, Jian J. SP protects Nile tilapia (Oreochromis niloticus) against acute Streptococcus agalatiae infection. FISH & SHELLFISH IMMUNOLOGY 2022; 123:218-228. [PMID: 35257891 DOI: 10.1016/j.fsi.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Substance P (SP) is a neuropeptide that involves in a wide variety of physiological and pathological events, mainly exerts its roles by neurokinin 1 receptor (NK1R), also modulates immune function. However, the roles of SP during immune response to acute bacterial infection of Nile tilapia (Oreochromis niloticus) remain unclear. In this study, the gene of SP precursor (tachykinin precursor 1, TAC1) and the gene of SP receptor (NK1R) from Nile tilapia were identified, and the roles of SP during an acute bacterial infection in a warm water environment were investigated. On-TAC1(Oreochromis niloticus-TAC1) contains conservative SP & NKA peptide sequences and On-NK1R contains seven conservative transmembrane domains. Their transcriptional levels were most abundant in brain and the On-TAC1 transcripts can be induced in the tilapia challenged with Streptococcus agalactiae. Furthermore, the experimental results revealed that On-SP could promote pyroptosis, suppress inflammation, and improve survival rate during acute bacterial infection. The present data lays a theoretical foundation to further elucidate the mechanism of SP protecting fish against pathogens.
Collapse
Affiliation(s)
- Qi Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhou Xu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Xinjin Chen
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| |
Collapse
|
119
|
Kundu S, Pal S, Talukdar S, Mahato S, Singha P. Integration of satellite image-derived temperature and water depth for assessing fish habitability in dam controlled flood plain wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28083-28097. [PMID: 34988818 DOI: 10.1007/s11356-021-17869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
The present study attempted to investigate the changes in temperature conducive to fish habitability during the summer months in a hydrologically modified wetland following damming over a river. Satellite image-driven temperature and depth data calibrated with field data were used to analyse fish habitability and the presence of thermally optimum habitable zones in some fishes, such as labeo rohita, cirrhinus mrigala, tilapia fish, small shrimp, and catfish. The study was conducted both at the water's surface and at the optimum depth of survival. It is very obvious from the analysis that a larger part of the wetland has become an area that destroyed aquatic habitat during the post-dam period, and existing wetlands have suffered significant shallowing of water depth. This has resulted in a shrinking of the thermally optimum area of fish survival in relation to surface water temperature (from 100.09 to 74.24 km2 before the dam to 93.97 to 0 km2 after the dam) and an improvement in the optimum habitable condition in the comfortable depth niche of survival. In the post-dam period, it increased from 75.49 to 99.76%. Since the damming effect causes a 30.53 to 100% depletion of the optimum depth niche, improving the thermal environment has no effect on fish habitability. More water must be released from dams for restoration. Image-driven depth and temperature data calibrated with field information has been successfully applied in data sparse conditions, and it is further recommended in future work.
Collapse
Affiliation(s)
- Sonali Kundu
- Department of Geography, University of Gour Banga, Malda, India
| | - Swades Pal
- Department of Geography, University of Gour Banga, Malda, India.
| | - Swapan Talukdar
- Department of Geography, Faculty of Natural Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Susanta Mahato
- Special Centre for Disaster Research, Jawaharlal Nehru University, New Delhi, 110 067, India.
| | - Pankaj Singha
- Department of Geography, University of Gour Banga, Malda, India
| |
Collapse
|
120
|
Effects of Social Hierarchy Establishment on Stress Response and Cell Phagocytosis in Gilt-Head Sea Bream (Sparus aurata). FISHES 2022. [DOI: 10.3390/fishes7020075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Social stress can affect the ability of fish to respond to various stressors, such as pathogens or environmental variations. In this paper, the effects of social stress on gilt-head bream (Sparus aurata) were investigated. To study the effects of physiological stress, we evaluated biochemical and cellular parameters, such as cortisol, glucose, lactate, osmolarity, and phagocytosis, 24 h after the establishment of social hierarchy in a group of three fish. Social hierarchy was determined and characterized by behavioral observation (aggressive acts and feeding order) of the specimens (dominant: “α”; subordinate: “β” and “γ”). After the establishment of social hierarchy, we observed that, overall, levels of plasma cortisol and other biochemical plasmatic stress markers (glucose and lactate) were higher in subordinate individuals than in dominant individuals. In addition, the modulation of phagocytic activity of the peritoneal exudate cells (PECs) demonstrated that social stress appeared to affect immune response. Finally, principal component analysis clearly separated the subordinate fish groups from the dominant groups, based on stress markers and the phagocytic activity of peritoneal exudate cells. This study contributes to current knowledge on gilt-head sea bream, helping to understand the link between social stress, behavior, and physiology of this species, relevant in the aquaculture sector, where fish are subjected to several kinds of stress.
Collapse
|
121
|
Porter E, Clow K, Sandrelli R, Gamperl A. Acute and chronic cold exposure differentially affect cardiac control, but not cardiorespiratory function, in resting Atlantic salmon (S almo salar). Curr Res Physiol 2022; 5:158-170. [PMID: 35359619 PMCID: PMC8960890 DOI: 10.1016/j.crphys.2022.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
No studies have examined the effects of cold temperatures (∼0-1 °C) on in vivo cardiac function and control, and metabolism, in salmonids. Thus, we examined: 1) how acclimation to 8 °C vs. acclimation (>3 weeks) or acute exposure (8-1 °C at 1 °C h-1) to 1 °C influenced cardiorespiratory parameters in resting Atlantic salmon; and 2) if/how the control of cardiac function was affected. Oxygen consumption ( M ˙ O 2 ) and cardiac function [i.e., heart rate (f H) and cardiac output (Q ˙ ) ] were 50% lower in the acutely cooled and 1oC-acclimated salmon as compared to 8 °C fish, whereas stroke volume (VS) was unchanged. Intrinsic f H was not affected by whether the fish were acutely exposed or acclimated to 1 °C (values ∼51, 24 and 21 beats min-1 in 8 and 1 °C-acclimated fish, and 8-1 °C fish, respectively), and in all groups f H was primarily under adrenergic control/tone (cholinergic tone 13-18%; adrenergic tone 37-70%). However, β-adrenergic blockade resulted in a 50% increase in VS in the 1oC-acclimated group, and this was surprising as circulating catecholamine levels were ∼1-3 nM in all groups. Overall, the data suggest that this species has a limited capacity to acclimate to temperatures approaching 0 °C. However, we cannot exclude the possibility that cardiac and metabolic responses are evoked when salmon are cooled to ∼ 0-1 °C, and that this prevented further declines in these parameters (i.e., they 'reset' quickly). Our data also provide further evidence that VS is temperature insensitive, and strongly suggest that changes in adrenoreceptor mediated control of venous pressure/capacitance occur when salmon are acclimated to 1 °C.
Collapse
Affiliation(s)
- E.S. Porter
- Dept. of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - K.A. Clow
- Dept. of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - R.M. Sandrelli
- Dept. of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - A.K. Gamperl
- Dept. of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
122
|
Ariano‐Sánchez D, Mortensen RM, Wilson RP, Bjureke P, Reinhardt S, Rosell F. Temperature and barometric pressure affect the activity intensity and movement of an endangered thermoconforming lizard. Ecosphere 2022. [DOI: 10.1002/ecs2.3990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Daniel Ariano‐Sánchez
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
- Centro de Estudios Ambientales y Biodiversidad Universidad del Valle de Guatemala Guatemala City Guatemala
| | - Rasmus M. Mortensen
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| | - Rory P. Wilson
- Biosciences, College of Science Swansea University Swansea Wales UK
| | - Peder Bjureke
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| | - Stefanie Reinhardt
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| | - Frank Rosell
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| |
Collapse
|
123
|
Chan SKN, Suresh S, Munday P, Ravasi T, Bernal MA, Schunter C. The alternative splicing landscape of a coral reef fish during a marine heatwave. Ecol Evol 2022; 12:e8738. [PMID: 35342554 PMCID: PMC8933327 DOI: 10.1002/ece3.8738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
Alternative splicing is a molecular mechanism that enables a single gene to encode multiple transcripts and proteins by post-transcriptional modification of pre-RNA molecules. Changes in the splicing scheme of genes can lead to modifications of the transcriptome and the proteome. This mechanism can enable organisms to respond to environmental fluctuations. In this study, we investigated patterns of alternative splicing in the liver of the coral reef fish Acanthochromis polyacanthus in response to the 2016 marine heatwave on the Great Barrier Reef. The differentially spliced (DS; n = 40) genes during the onset of the heatwave (i.e., 29.49°C or +1°C from average) were related to essential cellular functions such as the MAPK signaling system, Ca(2+) binding, and homeostasis. With the persistence of the heatwave for a period of one month (February to March), 21 DS genes were detected, suggesting that acute warming during the onset of the heatwave is more influential on alternative splicing than the continued exposure to elevated temperatures. After the heatwave, the water temperature cooled to ~24.96°C, and fish showed differential splicing of genes related to cyto-protection and post-damage recovery (n = 26). Two-thirds of the DS genes detected across the heatwave were also differentially expressed, revealing that the two molecular mechanisms act together in A. polyacanthus to cope with the acute thermal change. This study exemplifies how splicing patterns of a coral reef fish can be modified by marine heatwaves. Alternative splicing could therefore be a potential mechanism to adjust cellular physiological states under thermal stress and aid coral reef fishes in their response to more frequent acute thermal fluctuations in upcoming decades.
Collapse
Affiliation(s)
- Stanley Kin Nok Chan
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Sneha Suresh
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Phillip Munday
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonJapan
| | - Moisés A. Bernal
- Department of Biological SciencesCollege of Science and MathematicsAuburn UniversityAuburnAlabamaUSA
| | - Celia Schunter
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| |
Collapse
|
124
|
Bernal MA, Ravasi T, Rodgers GG, Munday PL, Donelson JM. Plasticity to ocean warming is influenced by transgenerational, reproductive, and developmental exposure in a coral reef fish. Evol Appl 2022; 15:249-261. [PMID: 35233246 PMCID: PMC8867710 DOI: 10.1111/eva.13337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
Global warming is expected to drive some ectothermic species beyond their thermal tolerance in upcoming decades. Phenotypic plasticity, via developmental or transgenerational acclimation, is a critical mechanism for compensation in the face of environmental change. Yet, it remains to be determined if the activation of beneficial phenotypes requires direct exposure throughout development, or if compensation can be obtained just through the experience of previous generations. In this study, we exposed three generations of a tropical damselfish to combinations of current-day (Control) and projected future (+1.5°C) water temperatures. Acclimation was evaluated with phenotypic (oxygen consumption, hepatosomatic index, physical condition) and molecular (liver gene expression) measurements of third-generation juveniles. Exposure of grandparents/parents to warm conditions improved the aerobic capacity of fish regardless of thermal conditions experienced afterwards, representing a true transgenerational effect. This coincided with patterns of gene expression related to inflammation and immunity seen in the third generation. Parental effects due to reproductive temperature significantly affected the physical condition and routine metabolic rate (oxygen consumption) of offspring, but had little impact on gene expression of the F3. Developmental temperature of juveniles, and whether they matched conditions during parental reproduction, had the largest influence on the liver transcriptional program. Using a combination of both phenotypic and molecular approaches, this study highlights how the conditions experienced by both previous and current generations can influence plasticity to global warming in upcoming decades.
Collapse
Affiliation(s)
- Moisés A. Bernal
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Timothy Ravasi
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐son, OkinawaJapan
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQLDAustralia
| | - Giverny G. Rodgers
- College of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| | - Philip L. Munday
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQLDAustralia
| | - Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQLDAustralia
| |
Collapse
|
125
|
Mitchell A, Booth DJ, Nagelkerken I. Ocean warming and acidification degrade shoaling performance and lateralization of novel tropical-temperate fish shoals. GLOBAL CHANGE BIOLOGY 2022; 28:1388-1401. [PMID: 34918444 DOI: 10.1111/gcb.16022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Gregarious behaviours are common in animals and provide various benefits such as food acquisition and protection against predators. Many gregarious tropical species are shifting poleward under current ocean warming, creating novel species and social interactions with local temperate taxa. However, how the dynamics of these novel shoals might be altered by future ocean warming and acidification remains untested. Here we evaluate how novel species interactions, ocean acidification and warming affect shoaling dynamics, motor lateralization and boldness of range-extending tropical and co-shoaling temperate fishes under controlled laboratory conditions. Fishes were exposed to 1 of 12 treatments (combinations of three temperature levels, two pCO2 levels and two shoal type levels: mixed species or temperate only) for 38 days. Lateralization (a measure of asymmetric expression of cognitive function in group coordination and predator escape) of tropical and temperate species was right-side biased under present-day conditions, but side bias significantly diminished in tropical and temperate fishes under ocean acidification. Ocean acidification also decreased shoal cohesion irrespective of shoaling type, with mixed-species shoals showing significantly lower cohesion than temperate-only shoals irrespective of climate stressors. Tropical fish became bolder under ocean acidification (after 4 weeks), and temperate fish became bolder with increasing temperature, while ocean acidification dampened temperate fish boldness. Our findings highlight the direct effect of climate stressors on fish behaviour and the interplay with the indirect effects of novel species interactions. Because strong shoal cohesion and lateralization are key determinants of species fitness, their degradation under ocean warming and acidification could adversely affect species performance in novel assemblages in a future ocean, and might slow down tropical species range extensions.
Collapse
Affiliation(s)
- Angus Mitchell
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - David J Booth
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
126
|
Agudelo JFG, Mastrochirico‐Filho VA, de Souza Borges CH, Ariede RB, Lira LVG, de Oliveira Neto RR, de Freitas MV, Sucerquia GAL, Vera M, Berrocal MHM, Hashimoto DT. Genomic selection signatures in farmed Colossoma macropomum from tropical and subtropical regions in South America. Evol Appl 2022; 15:679-693. [PMID: 35505878 PMCID: PMC9046916 DOI: 10.1111/eva.13351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/21/2021] [Accepted: 01/21/2022] [Indexed: 11/26/2022] Open
Abstract
Tambaqui or cachama (Colossoma macropomum) is one of the most important neotropical freshwater fish used for aquaculture in South America, and its production is concentrated at low latitudes (close to the Equator, 0°), where the water temperature is warm. Therefore, understanding how selection shapes genetic variations and structure in farmed populations is of paramount importance in evolutionary biology. High‐throughput sequencing to generate genome‐wide data for fish species allows for elucidating the genomic basis of adaptation to local or farmed conditions and uncovering genes that control the phenotypes of interest. The present study aimed to detect genomic selection signatures and analyze the genetic variability in farmed populations of tambaqui in South America using single‐nucleotide polymorphism (SNP) markers obtained with double‐digest restriction site‐associated DNA sequencing. Initially, 199 samples of tambaqui farmed populations from different locations (located in Brazil, Colombia, and Peru), a wild population (Amazon River, Brazil), and the base population of a breeding program (Aquaculture Center, CAUNESP, Jaboticabal, SP, Brazil) were genotyped. Observed and expected heterozygosity was 0.231–0.350 and 0.288–0.360, respectively. Significant genetic differentiation was observed using global FST analyses of SNP loci (FST = 0.064, p < 0.050). Farmed populations from Colombia and Peru that differentiated from the Brazilian populations formed distinct groups. Several regions, particularly those harboring the genes of significance to aquaculture, were identified to be under positive selection, suggesting local adaptation to stress under different farming conditions and management practices. Studies aimed at improving the knowledge of genomics of tambaqui farmed populations are essential for aquaculture to gain deeper insights into the evolutionary history of these fish and provide resources for the establishment of breeding programs.
Collapse
Affiliation(s)
| | | | | | - Raquel Belini Ariede
- São Paulo State University (Unesp) Aquaculture Center of Unesp 14884‐900 Jaboticabal SP Brazil
| | | | | | | | | | - Manuel Vera
- Facultad de Veterinaria Universidad de Santiago de Compostela (USC) ES27002 Lugo Spain
| | | | - Diogo Teruo Hashimoto
- São Paulo State University (Unesp) Aquaculture Center of Unesp 14884‐900 Jaboticabal SP Brazil
| |
Collapse
|
127
|
Larval Development in Tropical Gar (Atractosteus tropicus) Is Dependent on the Embryonic Thermal Regime: Ecological Implications under a Climate Change Context. FISHES 2022. [DOI: 10.3390/fishes7010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In ectotherm species, environmental temperature plays a key role in development, growth, and survival. Thus, determining how temperature affects fish populations is of utmost importance to accurately predict the risk of climate change over fisheries and aquaculture, critical to warrant nutrition and food security in the coming years. Here, the potential effects of abnormal thermal regimes (24, 28 and 32 °C; TR24, TR28, and TR32, respectively) exclusively applied during embryogenesis in tropical gar (Atractosteus tropicus) has been explored to decipher the potential consequences on hatching and growth from fertilization to 16 days post-fertilization (dpf), while effects on skeletal development and body morphology were explored at fertilization and 16 dpf. Egg incubation at higher temperatures induced an early hatching and mouth opening. A higher hatching rate was obtained in eggs incubated at 28 °C when compared to those at 24 °C. No differences were found in fish survival at 16 dpf, with values ranging from 84.89 to 88.86%, but increased wet body weight and standard length were found in larvae from TR24 and TR32 groups. Thermal regime during embryogenesis also altered the rate at which the skeletal development occurs. Larvae from the TR32 group showed an advanced skeletal development, with a higher development of cartilaginous structures at hatching but reduced at 16 dpf when compared with the TR24 and TR28 groups. Furthermore, this advanced skeletal development seemed to determine the fish body morphology. Based on biometric measures, a principal component analysis showed how along development, larvae from each thermal regime were clustered together, but with each population remaining clearly separated from each other. The current study shows how changes in temperature may induce craniofacial and morphological alterations in fish during early stages and contribute to understanding the possible effects of global warming in early development of fish and its ecological implications.
Collapse
|
128
|
Mugwanya M, Dawood MA, Kimera F, Sewilam H. Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
129
|
Thunell V, Lindmark M, Huss M, Gårdmark A. Effects of Warming on Intraguild Predator Communities with Ontogenetic Diet Shifts. Am Nat 2021; 198:706-718. [PMID: 34762572 DOI: 10.1086/716927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractSpecies interactions mediate how warming affects community composition via individual growth and population size structure. While predictions on how warming affects composition of size- or stage-structured communities have so far focused on linear (food chain) communities, mixed competition-predation interactions, such as intraguild predation, are common. Intraguild predation often results from changes in diet over ontogeny ("ontogenetic diet shifts") and strongly affects community composition and dynamics. Here, we study how warming affects a community of intraguild predators with ontogenetic diet shifts, consumers, and shared prey by analyzing a stage-structured bioenergetics multispecies model with temperature- and body size-dependent individual-level rates. We find that warming can strengthen competition and decrease predation, leading to a loss of a cultivation mechanism (the feedback between predation on and competition with consumers exerted by predators) and ultimately predator collapse. Furthermore, we show that the effect of warming on community composition depends on the extent of the ontogenetic diet shift and that warming can cause a sequence of community reconfigurations in species with partial diet shifts. Our findings contrast previous predictions concerning individual growth of predators and the mechanisms behind predator loss in warmer environments and highlight how feedbacks between temperature and intraspecific size structure are important for understanding such effects on community composition.
Collapse
|
130
|
In Vitro Fish Models for the Analysis of Ecotoxins and Temperature Increase in the Context of Global Warming. TOXICS 2021; 9:toxics9110286. [PMID: 34822677 PMCID: PMC8618082 DOI: 10.3390/toxics9110286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023]
Abstract
Rising temperatures can affect fish survival, especially from shallower waters, as temperatures increase faster and more intensively in these areas; thus, species-specific temperature tolerance can be exceeded. Additionally, the amounts of anthropogenic pollutants are higher in coastal waters. Although increasing metabolic activity at higher temperatures could lead to stronger effects of toxins, there are hardly any studies on this topic. Subsequently, the aim was to investigate the response of fish cells upon exposure to industrial solvents (ethanol, isopropanol, dimethyl sulfoxide (DMSO)) in relation to a temperature increase (20 °C and 25 °C). Concerning the 3Rs (the replacement, reduction and refinement of animal experiments), in vitro tests were used for two threatened, vulnerable fish species: maraena whitefish (Coregonus maraena) and Atlantic sturgeon (Acipenser oxyrinchus). Both cell lines exhibited higher proliferation at 25 °C. However, ecotoxicological results indicated significant differences regarding the cell line, toxin, temperature and exposure time. The evolutionarily older fish lineage, Atlantic sturgeon, demonstrated lower mortality rates in the presence of isopropanol and recovered better during long-term ethanol exposure than the maraena whitefish. Atlantic sturgeon cells have higher adaptation potential for these alcohols. In summary, fish species respond very specifically to toxins and changes in temperature, and new ecotoxicological questions arise with increasing water temperatures.
Collapse
|
131
|
Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-embryonic acute developmental processes mainly allow the transition from one life stage in a specific ecological niche to the next life stage in a different ecological niche. Metamorphosis, an emblematic type of these post-embryonic developmental processes, has occurred repeatedly and independently in various phylogenetic groups throughout metazoan evolution, such as in cnidarian, insects, molluscs, tunicates, or vertebrates. This review will focus on metamorphoses and developmental transitions in vertebrates, including typical larval metamorphosis in anuran amphibians, larval and secondary metamorphoses in teleost fishes, egg hatching in sauropsids and birth in mammals. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in the regulation of these life transitions. The review will address the molecular and functional evolution of these axes and their interactions. Mechanisms of integration of internal and environmental cues, and activation of these neuroendocrine axes represent key questions in an “eco-evo-devo” perspective of metamorphosis. The roles played by developmental transitions in the innovation, adaptation, and plasticity of life cycles throughout vertebrates will be discussed. In the current context of global climate change and habitat destruction, the review will also address the impact of environmental factors, such as global warming and endocrine disruptors on hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal/interrenal axes, and regulation of developmental transitions.
Collapse
|
132
|
Butzge AJ, Yoshinaga TT, Acosta ODM, Fernandino JI, Sanches EA, Tabata YA, de Oliveira C, Takahashi NS, Hattori RS. Early warming stress on rainbow trout juveniles impairs male reproduction but contrastingly elicits intergenerational thermotolerance. Sci Rep 2021; 11:17053. [PMID: 34426625 PMCID: PMC8382822 DOI: 10.1038/s41598-021-96514-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/11/2021] [Indexed: 01/10/2023] Open
Abstract
The exposure of adult fish to warm or high temperatures is known to impair reproduction, yet the long-term reproductive impacts for treatments at early life are not well clarified. This study aimed to evaluate the effects of warm temperature (WT) during juvenile stage on gonad maturation, gamete quality, and offspring thermotolerance in rainbow trout. While the comparison of basic reproductive parameters in WT females did not reveal any kind of impairment, many WT males showed an atrophied, undeveloped gonad, or a smaller testis with lower milt volume; sperm quality parameters in WT males and deformity rates in the respective progeny were also highly affected. However, despite of such negative effects, many of the remaining progeny presented better rates of survival and growth when exposed to the same conditions as those of parental fish (WT), suggesting that thermal stress in parr stage males elicited intergenerational thermotolerance after a single generation. The present results support that prolonged warming stress during early life stages can adversely affect key reproductive aspects, but contrastingly increase offspring performance at upper thermal ranges. These findings have implications on the capacity of fish to adapt and to cope with global warming.
Collapse
Affiliation(s)
- Arno Juliano Butzge
- Department of Structural and Functional Biology, Institute of Biosciences, Botucatu São Paulo State University (UNESP), Botucatu, 18618-689, Brazil
| | - Tulio Teruo Yoshinaga
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, Brazil
| | - Omar David Moreno Acosta
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Nacional de San Martín (CONICET/UNSAM), 7130, Chascomús, Argentina
| | - Juan Ignacio Fernandino
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Nacional de San Martín (CONICET/UNSAM), 7130, Chascomús, Argentina
| | - Eduardo Antônio Sanches
- Fishery Engineering Course and Aquaculture Centre (CAUNESP), São Paulo State University, Registro, 11900-000, Brazil
| | - Yara Aiko Tabata
- Salmonid Experimental Station At Campos Do Jordão, UPD-CJ (APTA/SAA), Campos do Jordão, 12460-000, Brazil
| | - Claudio de Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, Botucatu São Paulo State University (UNESP), Botucatu, 18618-689, Brazil
| | - Neuza Sumico Takahashi
- Centro de Pesquisa de Aquicultura, Sao Paulo Fisheries Institute (APTA/SAA), São Paulo, 05001-900, Brazil
| | - Ricardo Shohei Hattori
- Salmonid Experimental Station At Campos Do Jordão, UPD-CJ (APTA/SAA), Campos do Jordão, 12460-000, Brazil.
| |
Collapse
|
133
|
Uncoupling Thermotolerance and Growth Performance in Chinook Salmon: Blood Biochemistry and Immune Capacity. Metabolites 2021; 11:metabo11080547. [PMID: 34436488 PMCID: PMC8398542 DOI: 10.3390/metabo11080547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Ocean warming and extreme sea surface temperature anomalies are threatening wild and domesticated fish stocks in various regions. Understanding mechanisms for thermotolerance and processes associated with divergent growth performance is key to the future success of aquaculture and fisheries management. Herein, we exposed Chinook salmon (Oncorhynchus tshawytscha) to environmentally relevant water temperatures (19–20 °C) approaching their upper physiological limit for three months and sought to identify blood biomarkers associated with thermal stress and resilience. In parallel, blood biochemical associations with growth performance were also investigated. Temperature stress-activated leukocyte apoptosis induced a minor immune response, and influenced blood ion profiles indicative of osmoregulatory perturbation, regardless of how well fish grew. Conversely, fish displaying poor growth performance irrespective of temperature exhibited numerous biomarker shifts including haematology indices, cellular-based enzyme activities, and blood clinical chemistries associated with malnutrition and disturbances in energy metabolism, endocrine functioning, immunocompetence, redox status, and osmoregulation. Findings provide insight into mechanisms of stress tolerance and compromised growth potential. Biochemical phenotypes associated with growth performance and health can potentially be used to improve selective breeding strategies.
Collapse
|
134
|
Geffroy B, Gesto M, Clota F, Aerts J, Darias MJ, Blanc MO, Ruelle F, Allal F, Vandeputte M. Parental selection for growth and early-life low stocking density increase the female-to-male ratio in European sea bass. Sci Rep 2021; 11:13620. [PMID: 34193934 PMCID: PMC8245542 DOI: 10.1038/s41598-021-93116-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/21/2021] [Indexed: 11/09/2022] Open
Abstract
In European sea bass (Dicentrarchus labrax), as in many other fish species, temperature is known to influence the sex of individuals, with more males produced at relatively high temperatures. It is however unclear to what extent growth or stress are involved in such a process, since temperature is known to influence both growth rate and cortisol production. Here, we designed an experiment aiming at reducing stress and affecting early growth rate. We exposed larvae and juveniles originating from both captive and wild parents to three different treatments: low stocking density, food supplemented with tryptophan and a control. Low stocking density and tryptophan treatment respectively increased and decreased early growth rate. Each treatment influenced the stress response depending on the developmental stage, although no clear pattern regarding the whole-body cortisol concentration was found. During sex differentiation, fish in the low-density treatment exhibited lower expression of gr1, gr2, mr, and crf in the hypothalamus when compared to the control group. Fish fed tryptophan displayed lower crf in the hypothalamus and higher level of serotonin in the telencephalon compared to controls. Overall, fish kept at low density produced significantly more females than both control and fish fed tryptophan. Parents that have been selected for growth for three generations also produced significantly more females than parents of wild origin. Our findings did not allow to detect a clear effect of stress at the group level and rather point out a key role of early sexually dimorphic growth rate in sex determination.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.
| | - Manuel Gesto
- Techn Section for Aquaculture, DTU Aqua, Technical University of Denmark, Willemoesvej 2, 9850, Hirtshals, Denmark
| | - Fréderic Clota
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.,Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Johan Aerts
- Stress Physiology Research Group, Faculty of Sciences, Ghent University, Ostend, Belgium
| | - Maria J Darias
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Marie-Odile Blanc
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - François Ruelle
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - François Allal
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Marc Vandeputte
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.,Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| |
Collapse
|
135
|
Rosado D, Xavier R, Cable J, Severino R, Tarroso P, Pérez-Losada M. Longitudinal sampling of external mucosae in farmed European seabass reveals the impact of water temperature on bacterial dynamics. ISME COMMUNICATIONS 2021; 1:28. [PMID: 36739461 PMCID: PMC9723769 DOI: 10.1038/s43705-021-00019-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Fish microbiota are intrinsically linked to health and fitness, but they are highly variable and influenced by both biotic and abiotic factors. Water temperature particularly limits bacterial adhesion and growth, impacting microbial diversity and bacterial infections on the skin and gills. Aquaculture is heavily affected by infectious diseases, especially in warmer months, and industry practices often promote stress and microbial dysbiosis, leading to an increased abundance of potentially pathogenic bacteria. In this regard, fish mucosa health is extremely important because it provides a primary barrier against pathogens. We used 16 rRNA V4 metataxonomics to characterize the skin and gill microbiota of the European seabass, Dicentrarchus labrax, and the surrounding water over 12 months, assessing the impact of water temperature on microbial diversity and function. We show that the microbiota of external mucosae are highly dynamic with consistent longitudinal trends in taxon diversity. Several potentially pathogenic genera (Aliivibrio, Photobacterium, Pseudomonas, and Vibrio) were highly abundant, showing complex interactions with other bacterial genera, some of which with recognized probiotic activity, and were also significantly impacted by changes in temperature. The surrounding water temperature influenced fish microbial composition, structure and function over time (days and months). Additionally, dysbiosis was more frequent in warmer months and during transitions between cold/warm months. We also detected a strong seasonal effect in the fish microbiota, which is likely to result from the compound action of several unmeasured environmental factors (e.g., pH, nutrient availability) beyond temperature. Our results highlight the importance of performing longitudinal studies to assess the impact of environmental factors on fish microbiotas.
Collapse
Affiliation(s)
- Daniela Rosado
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal.
| | - Raquel Xavier
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal.
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Ricardo Severino
- Piscicultura Vale da Lama, Sapal do Vale da Lama, Odiáxere, Lagos, Portugal
| | - Pedro Tarroso
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Marcos Pérez-Losada
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| |
Collapse
|
136
|
Summer Is Coming! Tackling Ocean Warming in Atlantic Salmon Cage Farming. Animals (Basel) 2021; 11:ani11061800. [PMID: 34208637 PMCID: PMC8234874 DOI: 10.3390/ani11061800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Atlantic salmon (Salmo salar) cage farming has traditionally been located at higher latitudes where cold seawater temperatures favor this practice. However, these regions can be impacted by ocean warming and heat waves that push seawater temperature beyond the thermo-tolerance limits of this species. As more mass mortality events are reported every year due to abnormal sea temperatures, the Atlantic salmon cage aquaculture industry acknowledges the need to adapt to a changing ocean. This paper reviews adult Atlantic salmon thermal tolerance limits, as well as the deleterious eco-physiological consequences of heat stress, with emphasis on how it negatively affects sea cage aquaculture production cycles. Biotechnological solutions targeting the phenotypic plasticity of Atlantic salmon and its genetic diversity, particularly that of its southernmost populations at the limit of its natural zoogeographic distribution, are discussed. Some of these solutions include selective breeding programs, which may play a key role in this quest for a more thermo-tolerant strain of Atlantic salmon that may help the cage aquaculture industry to adapt to climate uncertainties more rapidly, without compromising profitability. Omics technologies and precision breeding, along with cryopreservation breakthroughs, are also part of the available toolbox that includes other solutions that can allow cage farmers to continue to produce Atlantic salmon in the warmer waters of the oceans of tomorrow.
Collapse
|
137
|
McKenzie DJ, Geffroy B, Farrell AP. Effects of global warming on fishes and fisheries. JOURNAL OF FISH BIOLOGY 2021; 98:1489-1492. [PMID: 34312853 DOI: 10.1111/jfb.14762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- David J McKenzie
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Benjamin Geffroy
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
138
|
Geffroy B, Wedekind C. Effects of global warming on sex ratios in fishes. JOURNAL OF FISH BIOLOGY 2020; 97:596-606. [PMID: 32524610 DOI: 10.1111/jfb.14429] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/18/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
In fishes, sex is determined by genetics, the environment or an interaction of both. Temperature is among the most important environmental factors that can affect sex determination. As a consequence, changes in temperature at critical developmental stages can induce biases in primary sex ratios in some species. However, early sex ratios can also be biased by sex-specific tolerances to environmental stresses that may, in some cases, be amplified by changes in water temperature. Sex-specific reactions to environmental stress have been observed at early larval stages before gonad formation starts. It is therefore necessary to distinguish between temperature effects on sex determination, generally acting through the stress axis or epigenetic mechanisms, and temperature effects on sex-specific mortality. Both are likely to affect sex ratios and hence population dynamics. Moreover, in cases where temperature effects on sex determination lead to genotype-phenotype mismatches, long-term effects on population dynamics are possible, for example temperature-induced masculinization potentially leading to the loss of Y chromosomes or feminization to male-biased operational sex ratios in future generations. To date, most studies under controlled conditions conclude that if temperature affects sex ratios, elevated temperatures mostly lead to a male bias. The few studies that have been performed on wild populations seem to confirm this general trend. Recent findings suggest that transgenerational plasticity could mitigate the effects of warming on sex ratios in some populations.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC, University of Montpellier, Ifremer, IRD, CNRS, Palavas-les-Flots, France
| | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|