101
|
Morelli VM, Sejrup JK, Småbrekke B, Rinde LB, Grimnes G, Isaksen T, Hansen JB, Hindberg K, Brækkan SK. The Role of Stroke as a Trigger for Incident Venous Thromboembolism: Results from a Population-based Case-Crossover Study. TH OPEN 2019; 3:e50-e57. [PMID: 31249982 PMCID: PMC6524907 DOI: 10.1055/s-0039-1681020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/21/2019] [Indexed: 12/21/2022] Open
Abstract
Stroke is associated with a short-term increased risk of subsequent venous thromboembolism (VTE). It is unclear to what extent this association is mediated by stroke-related complications that are potential triggers for VTE, such as immobilization and infection. We aimed to investigate the role of acute stroke as a trigger for incident VTE while taking other concomitant VTE triggers into account. We conducted a population-based case-crossover study with 707 VTE patients. Triggers were registered during the 90 days before a VTE event (hazard period) and in four preceding 90-day control periods. Conditional logistic regression was used to estimate odds ratios with 95% confidence intervals (CIs) for VTE according to triggers. Stroke was registered in 30 of the 707 (4.2%) hazard periods and in 6 of the 2,828 (0.2%) control periods, resulting in a high risk of VTE, with odds ratios of 20.0 (95% CI: 8.3–48.1). After adjustments for immobilization and infection, odds ratios for VTE conferred by stroke were attenuated to 6.0 (95% CI: 1.6–22.1), and further to 4.0 (95% CI: 1.1–14.2) when other triggers (major surgery, red blood cell transfusion, trauma, and central venous catheter) were added to the regression model. A mediation analysis revealed that 67.8% of the total effect of stroke on VTE risk could be mediated through immobilization and infection. Analyses restricted to ischemic stroke yielded similar results. In conclusion, acute stroke was a trigger for VTE, and the association between stroke and VTE risk appeared to be largely mediated by immobilization and infection.
Collapse
Affiliation(s)
- Vânia M Morelli
- K. G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Joakim K Sejrup
- K. G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Birgit Småbrekke
- K. G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ludvig B Rinde
- K. G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Gro Grimnes
- K. G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway.,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Trond Isaksen
- K. G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway.,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - John-Bjarne Hansen
- K. G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway.,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Kristian Hindberg
- K. G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway.,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Sigrid K Brækkan
- K. G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway.,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
102
|
Patel P, Walborn A, Rondina M, Fareed J, Hoppensteadt D. Markers of Inflammation and Infection in Sepsis and Disseminated Intravascular Coagulation. Clin Appl Thromb Hemost 2019; 25:1076029619843338. [PMID: 30991817 PMCID: PMC6714897 DOI: 10.1177/1076029619843338] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 01/12/2023] Open
Abstract
Sepsis is a severe systemic inflammatory response to infection that manifests with widespread inflammation as well as endothelial and coagulation dysfunction that may lead to hypotension, organ failure, shock, and death. Disseminated intravascular coagulation (DIC) is a complication of sepsis involving systemic activation of the fibrinolytic and coagulation pathways that can lead to multi-organ dysfunction, thrombosis, and bleeding, with a 2-fold increase in mortality. This study demonstrates the diagnostic and prognostic value of profiling various biomarkers of inflammation and infection in patients with sepsis-associated DIC to assess the severity of illness. Deidentified samples were obtained from adult patients with sepsis and suspected DIC. Platelet count, prothrombin time, D-dimer, and fibrinogen levels were used to assign International Society of Thrombosis and Hemostasis DIC scores to plasma samples from 103 patients with sepsis and suspected DIC. Using commercially available enzyme-linked immunosorbent assay, chromogenic assay, and RANDOX Biochip methods, levels of procalcitonin (PCT), extracellular nucleosomes, interleukin (IL) 6, IL-8, IL-10, and tumor necrosis factor α (TNFα) were measured in patients with sepsis and DIC and compared to levels in healthy individuals. Elevated levels of PCT, IL-6, IL-8, IL-10, and TNFα were observed in most patients with sepsis and DIC. Additionally, the levels of these markers show significant positive correlations with each other and with DIC score. Currently, no single biomarker can effectively diagnose DIC in patients with sepsis. This study lays the groundwork for the development of a diagnostic algorithm using several markers of inflammation and infection and DIC score as parameters in assessing severity of sepsis-associated coagulopathy in a clinical setting.
Collapse
Affiliation(s)
- Priya Patel
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
- Department of Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| | - Amanda Walborn
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
- Department of Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| | - Matthew Rondina
- Department of Internal Medicine and the Molecular Medicine Program, University of Utah and the GRECC, George E. Wahlen VAMC, Salt Lake City, UT, USA
| | - Jawed Fareed
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
- Department of Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| | - Debra Hoppensteadt
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
- Department of Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
103
|
Walborn A, Rondina M, Mosier M, Fareed J, Hoppensteadt D. Endothelial Dysfunction Is Associated with Mortality and Severity of Coagulopathy in Patients with Sepsis and Disseminated Intravascular Coagulation. Clin Appl Thromb Hemost 2019; 25:1076029619852163. [PMID: 31140293 PMCID: PMC6714948 DOI: 10.1177/1076029619852163] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/08/2023] Open
Abstract
The role of the endothelium in sepsis-associated disseminated intravascular coagulation (DIC) is multifaceted and may contribute substantially to disease severity and outcome. The purpose of this study was to quantify measures of endothelial function, including markers of activation (endocan, Angiopoietin-2 [Ang-2], and von Willebrand Factor), endogenous anticoagulants (tissue factor pathway inhibitor and protein C), and damage-associated factors (High Mobility Group Box 1 [HMGB-1]) in the plasma of patients with sepsis and DIC, and to determine the relationship of these factors with severity of illness and outcome. Plasma samples were collected from 103 adult patients with sepsis within 48 hours of intensive care unit admission. Biomarker levels were measured using commercially available, standardized methods. Disseminated intravascular coagulation was diagnosed according to the International Society of Thrombosis and Hemostasis scoring algorithm. Twenty-eight-day mortality was used as the primary end point. In this study, endothelial damage and dysfunction were associated with the severity of coagulopathy and mortality in DIC patients. Loss of the endogenous anticoagulant protein C and elevation in the vascular regulator Ang-2 were associated with the development of overt DIC. In addition to Ang-2 and protein C, endocan, a biomarker of endothelial activation, and HMGB-1, a mediator of endothelial damage and activation, were significantly associated with mortality. This underscores the contribution of the endothelium to the pathogenesis of sepsis-associated DIC.
Collapse
Affiliation(s)
- Amanda Walborn
- Departments of Pathology and Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| | - Matthew Rondina
- Department of Internal Medicine and the Molecular Medicine Program, University of Utah and the GRECC, George E. Wahlen VAMC, Salt Lake City, UT, USA
| | - Michael Mosier
- General Surgery, The Oregon Clinic, Surgical and Burn Specialists at Emanuel, Portland, OR, USA
| | - Jawed Fareed
- Departments of Pathology and Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| | - Debra Hoppensteadt
- Departments of Pathology and Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
104
|
Liu Z, Wang Z, Jia E, Ouyang T, Pan M, Lu J, Ge Q, Bai Y. Analysis of genome-wide in cell free DNA methylation: progress and prospect. Analyst 2019; 144:5912-5922. [DOI: 10.1039/c9an00935c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work, we focus on the detection methods of cfDNA methylation based on NGS and the latest progress.
Collapse
Affiliation(s)
- Zhiyu Liu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Zexin Wang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Erteng Jia
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Tinglan Ouyang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Min Pan
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Jiafeng Lu
- Center of Reproduction and Genetics
- Affiliated Suzhou Hospital of Nanjing Medical University
- Suzhou Municipal Hospital
- Suzhou 215002
- China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|
105
|
Wang S, Xie T, Sun S, Wang K, Liu B, Wu X, Ding W. DNase-1 Treatment Exerts Protective Effects in a Rat Model of Intestinal Ischemia-Reperfusion Injury. Sci Rep 2018; 8:17788. [PMID: 30542063 PMCID: PMC6290768 DOI: 10.1038/s41598-018-36198-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
A growing number of studies have recently revealed a potential role for neutrophil extracellular traps (NETs) in the development of inflammation, coagulation and cell death. Deleterious consequences of NETs have been identified in ischemia-reperfusion (I/R)-induced organ damage, thrombosis and sepsis. And exogenous DNase-I has been suggested as a therapeutic strategy to attenuate ischemia-reperfusion (I/R) injuries in the kidney, brain and myocardium. Herein, we designed a study to investigate whether NETs contribute to the pathogenesis of intestinal I/R injury and evaluated the therapeutic value of DNase-1 in a rat model of intestinal I/R injury. In this rat model of intestinal I/R injury, we found that extracellular DNA was readily detectable in rat serum after 1 h of ischemia and 2 h of reperfusion. Treatment with DNase-1 significantly reduced the inflammatory response, restored intestinal barrier integrity and increased the expression of tight junction proteins. Our results indicate the existence of NETs in I/R-challenged intestinal tissues and firstly provide more evidence that DNase-1 may be an effective treatment for attenuating intestinal I/R injury.
Collapse
Affiliation(s)
- Shikai Wang
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu Province, P.R. China
| | - Tian Xie
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu Province, P.R. China
| | - Shilong Sun
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu Province, P.R. China
| | - Kai Wang
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu Province, P.R. China
| | - Baochen Liu
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu Province, P.R. China
| | - Xingjiang Wu
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu Province, P.R. China
| | - Weiwei Ding
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu Province, P.R. China.
| |
Collapse
|
106
|
Duplessis C, Gregory M, Frey K, Bell M, Truong L, Schully K, Lawler J, Langley RJ, Kingsmore SF, Woods CW, Rivers EP, Jaehne AK, Quackenbush EB, Fowler VG, Tsalik EL, Clark D. Evaluating the discriminating capacity of cell death (apoptotic) biomarkers in sepsis. J Intensive Care 2018; 6:72. [PMID: 30459950 PMCID: PMC6234551 DOI: 10.1186/s40560-018-0341-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022] Open
Abstract
Background Sepsis biomarker panels that provide diagnostic and prognostic discrimination in sepsis patients would be transformative to patient care. We assessed the mortality prediction and diagnostic discriminatory accuracy of two biomarkers reflective of cell death (apoptosis), circulating cell-free DNA (cfDNA), and nucleosomes. Methods The cfDNA and nucleosome levels were assayed in plasma samples acquired in patients admitted from four emergency departments with suspected sepsis. Subjects with non-infectious systemic inflammatory response syndrome (SIRS) served as controls. Samples were acquired at enrollment (T0) and 24 h later (T24). We assessed diagnostic (differentiating SIRS from sepsis) and prognostic (28-day mortality) predictive power. Models incorporating procalcitonin (diagnostic prediction) and APACHE II scores (mortality prediction) were generated. Results Two hundred three subjects were included (107 provided procalcitonin measurements). Four subjects exhibited uncomplicated sepsis, 127 severe sepsis, 35 septic shock, and 24 had non-infectious SIRS. There were 190-survivors and 13 non-survivors. Mortality prediction models using cfDNA, nucleosomes, or APACHEII yielded AUC values of 0.61, 0.75, and 0.81, respectively. A model combining nucleosomes with the APACHE II score improved the AUC to 0.84. Diagnostic models distinguishing sepsis from SIRS using procalcitonin, cfDNA(T0), or nucleosomes(T0) yielded AUC values of 0.64, 0.65, and 0.63, respectively. The three parameter model yielded an AUC of 0.74. Conclusions To our knowledge, this is the first head-to-head comparison of cfDNA and nucleosomes in diagnosing sepsis and predicting sepsis-related mortality. Both cfDNA and nucleosome concentrations demonstrated a modest ability to distinguish sepsis survivors and non-survivors and provided additive diagnostic predictive accuracy in differentiating sepsis from non-infectious SIRS when integrated into a diagnostic prediction model including PCT and APACHE II. A sepsis biomarker strategy incorporating measures of the apoptotic pathway may serve as an important component of a sepsis diagnostic and mortality prediction tool.
Collapse
Affiliation(s)
- Christopher Duplessis
- 1Biological Defense Research Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| | - Michael Gregory
- 1Biological Defense Research Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| | - Kenneth Frey
- 1Biological Defense Research Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| | - Matthew Bell
- 1Biological Defense Research Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| | - Luu Truong
- 1Biological Defense Research Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| | - Kevin Schully
- 1Biological Defense Research Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| | - James Lawler
- 1Biological Defense Research Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| | - Raymond J Langley
- 2Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, USA
| | - Stephen F Kingsmore
- 3Rady Pediatric Genomic and Systems Medicine Institute, Rady Children's Hospital, Encinitas, USA
| | - Christopher W Woods
- 4Division of Infectious Diseases and International Health, Department of Medicine, Duke University School of Medicine, Durham, USA.,5Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University School of Medicine, Durham, USA.,6Section on Infectious Diseases, Durham Veteran's Affairs Medical Center, Durham, USA
| | - Emanuel P Rivers
- 7Department of Emergency Medicine, Henry Ford Hospital, Wayne State University, Detroit, USA
| | - Anja K Jaehne
- 7Department of Emergency Medicine, Henry Ford Hospital, Wayne State University, Detroit, USA
| | - Eugenia B Quackenbush
- 8Department of Emergency Medicine, University of North Carolina Health Care, Chapel Hill, USA
| | - Vance G Fowler
- 4Division of Infectious Diseases and International Health, Department of Medicine, Duke University School of Medicine, Durham, USA
| | - Ephraim L Tsalik
- 4Division of Infectious Diseases and International Health, Department of Medicine, Duke University School of Medicine, Durham, USA.,5Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University School of Medicine, Durham, USA.,9Emergency Medicine Service, Durham Veteran's Affairs Medical Center, Durham, USA
| | - Danielle Clark
- 1Biological Defense Research Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| |
Collapse
|
107
|
Tawil N, Chennakrishnaiah S, Bassawon R, Johnson R, D'Asti E, Rak J. Single cell coagulomes as constituents of the oncogene-driven coagulant phenotype in brain tumours. Thromb Res 2018; 164 Suppl 1:S136-S142. [PMID: 29703472 DOI: 10.1016/j.thromres.2018.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
Abstract
Molecular profiling of human cancers revealed a startling diversity in disease-causing mechanisms superseding histological and anatomical commonalities. The emerging molecular subtypes and disease entities are often driven by distinct oncogenic pathways and their effectors, including those acting extracellularly on the vascular and coagulation systems. Indeed, several oncogenic mutations such as those affecting protein-coding genes (RAS, EGFR, PTEN, TP53) and non-coding RNA (microRNA) regulate multiple effectors of the coagulation system (coagulome), including tissue factor, protease activated receptors, clotting factors, mediators of platelet function and fibrinolysis. This is exemplified by differential coagulome profiles in the molecular subtypes of glioblastoma, medulloblastoma and other human tumours. There is mounting clinical evidence that the mutational status of cancer driver genes such as KRAS or IDH1 may influence the risk of venous thromboembolism in patients with colorectal, lung or brain cancers. Notably, single cell sequencing in glioblastoma revealed a remarkable intra-tumoural heterogeneity of cancer cell populations with regard to their individual coagulomes, suggesting a combinatorial and dynamic nature of the global pro-thrombotic phenotype. We suggest that the cellular complexity of specific cancers may define their mechanisms of interactions with the coagulation system, and the risks of thrombosis. Thus, more biologically- based, disease-specific and personalized approaches may be needed to diagnose and manage cancer-related thrombosis.
Collapse
Affiliation(s)
- Nadim Tawil
- McGill University, Montreal Children's Hospital, RI MUHC, Montreal, Quebec, Canada
| | | | - Rayhaan Bassawon
- McGill University, Montreal Children's Hospital, RI MUHC, Montreal, Quebec, Canada
| | - Radia Johnson
- McGill University, Montreal Children's Hospital, RI MUHC, Montreal, Quebec, Canada
| | - Esterina D'Asti
- McGill University, Montreal Children's Hospital, RI MUHC, Montreal, Quebec, Canada
| | - Janusz Rak
- McGill University, Montreal Children's Hospital, RI MUHC, Montreal, Quebec, Canada.
| |
Collapse
|
108
|
Elia E, Montecucco F, Portincasa P, Sahebkar A, Mollazadeh H, Carbone F. Update on pathological platelet activation in coronary thrombosis. J Cell Physiol 2018; 234:2121-2133. [PMID: 30317596 DOI: 10.1002/jcp.27575] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/17/2018] [Indexed: 12/19/2022]
Abstract
Although coronary thrombosis (CT) is integral to cardiovascular outcomes, the underlying pathophysiological mechanisms remain unclear. CT may occur in case of atherosclerotic plaque erosion/rupture, or even after stenting implantation. Platelets (PLT) activation is the keystone of atherothrombosis and depends on many dysregulated elements, including endothelial dysfunction, oxidized lipoproteins, and immune response. Besides the classical view of PLT as an effector of hemostatic response, a new repertoire of PLT activities is emerging. PLT lipidome oxidation is a self-maintaining process which promotes PLT reactivity, coagulation cascade, and inflammatory cell activation. PLT-innate immune cell interaction is also sustained by neutrophil extracellular traps and NLRP3 inflammasome pathways. Other noteworthy emerging mechanisms are implicated in the crosstalk between PLT and surrounding cells. Especially, microvesicles (MVs) released from PLT may extend their signaling network far beyond the classical cell-cell interactions. Moreover, the recognition of noncoding RNA in PLT MVs introduce another layer of complexity in terms of intercellular signaling by a direct regulation of messenger RNA profile and gene expression in the recipient cells. The aim of this narrative review is to update the recent advance in CT and intracoronary stent thrombosis, including causal factors and potential translation of experimental evidence into the clinical setting.
Collapse
Affiliation(s)
- Edoardo Elia
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy.,Department of Internal Medicine, First Clinic of Internal Medicine, Ospedale Policlinico San Martino, 10 Largo Benzi, Genoa, Italy.,Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri," University of Bari Medical School, Bari, Italy
| | - Amirhossein Sahebkar
- Department of Pharmaceutical Biotechnology, Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Federico Carbone
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
109
|
Letendre JA, Goggs R. Determining prognosis in canine sepsis by bedside measurement of cell-free DNA and nucleosomes. J Vet Emerg Crit Care (San Antonio) 2018; 28:503-511. [PMID: 30299568 DOI: 10.1111/vec.12773] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/26/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate the use of plasma cell-free DNA (cfDNA) and nucleosome concentrations as prognostic biomarkers in canine sepsis. DESIGN Prospective, observational cohort study conducted from June 2015 to February 2016. SETTING University teaching hospital. ANIMALS Forty-five dogs with sepsis, 10 dogs with nonseptic systemic inflammatory response syndrome (nSIRS), and 15 healthy controls were consecutively enrolled and followed to hospital discharge. Patients were eligible for enrollment if they met ≥2 SIRS criteria and had a documented or highly suspected bacterial infection. Dogs <3 kg or with a known coagulopathy were excluded. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Acute Patient Physiology and Laboratory Evaluation scores (APPLE) were calculated and outcomes recorded. Plasma cfDNA was measured using a benchtop fluorimeter. Plasma nucleosome concentrations were determined by ELISA. Plasma nucleosome and cfDNA concentrations in dogs with sepsis or nSIRS were compared to those of healthy controls and cfDNA concentrations in septic dogs with and without bacteremia were compared. Associations between cfDNA concentrations and nucleosomes, leukocyte count, neutrophil count, and APPLE scores were evaluated. For septic dogs, cfDNA concentrations relative to neutrophil count and nucleosome concentrations in survivors and nonsurvivors were compared. Alpha was set at 0.05. cfDNA concentrations were significantly higher in dogs with sepsis or nSIRS compared to healthy controls (P < 0.0001 and P = 0.0034, respectively). Nucleosome concentrations were significantly higher in dogs with sepsis compared to healthy controls (P = 0.007). There was limited association between cfDNA and nucleosome concentrations (rs = 0.266), and no association between cfDNA concentration and leukocyte count, neutrophil count, and APPLEfull scores. Concentrations of cfDNA were positively correlated with APPLEfast score (rs = 0.335, P = 0.025); however, cfDNA concentrations were significantly higher in dogs with bacteremia (P = 0.0299). In dogs with sepsis, cfDNA concentrations relative to neutrophil count were significantly higher in nonsurvivors than in survivors (P = 0.008). CONCLUSIONS In dogs with sepsis, high cfDNA concentrations relative to neutrophil count are associated with nonsurvival. Point-of-care cfDNA measurement may aid identification of bacteremia.
Collapse
Affiliation(s)
- Jo-Annie Letendre
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853
| | - Robert Goggs
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853
| |
Collapse
|
110
|
Roushan M, Jorfi M, Mishra A, Wong KHK, Jorgensen J, Ell E, Markmann JF, Lee J, Irimia D. Trapped Chromatin Fibers Damage Flowing Red Blood Cells. ADVANCED BIOSYSTEMS 2018; 2:1800040. [PMID: 31223642 PMCID: PMC6586417 DOI: 10.1002/adbi.201800040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 11/11/2022]
Abstract
Neutrophils are the most abundant white blood cells in the circulation and serve antimicrobial functions. One of their antimicrobial mechanisms involves the release of neutrophil extracellular traps (NETs), long chromatin fibers decorated with antimicrobial granular proteins that contribute to the elimination of pathogens. However, the release of NETs has also been associated with disease processes. While recent research has focused on biochemical reactions catalyzed by NETs, significantly less is known about the mechanical effect of NETs in circulation. Here, microfluidic devices and biophysical models are employed to study the consequences of the interactions between NETs trapped in channels and red blood cells (RBCs) flowing in blood over the NETs. It has been found that the RBCs can be deformed and ruptured after interactions with NETs, generating RBC fragments. Significant increases in the number of RBC fragments have also been found in the circulation of patients with conditions in which NETs have been demonstrated to be present in circulation, including sepsis and kidney transplant. Further studies will probe the potential utility of RBC fragments in the diagnostic, monitoring, and treatment of diseases associated with the presence of NETs in circulation.
Collapse
Affiliation(s)
- Maedeh Roushan
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA,
| | - Mehdi Jorfi
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA,
| | - Avanish Mishra
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA,
| | - Keith H K Wong
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA,
| | - Julianne Jorgensen
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA,
| | - Eric Ell
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA,
| | - James F Markmann
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jarone Lee
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel Irimia
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA,
| |
Collapse
|
111
|
Chennakrishnaiah S, Meehan B, D'Asti E, Montermini L, Lee TH, Karatzas N, Buchanan M, Tawil N, Choi D, Divangahi M, Basik M, Rak J. Leukocytes as a reservoir of circulating oncogenic DNA and regulatory targets of tumor-derived extracellular vesicles. J Thromb Haemost 2018; 16:1800-1813. [PMID: 29971917 DOI: 10.1111/jth.14222] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Essentials Tumor-bearing mice were employed to follow oncogenic HRAS sequences in plasma, and blood cells. Cancer DNA accumulated in leukocytes above levels detected in exosomes, platelets and plasma. Extracellular vesicles and nucleosomes are required for uptake of tumor DNA by leukocytes. Uptake of tumor-derived extracellular vesicles by leukocytes triggers coagulant phenotype. SUMMARY Background Tumor-derived extracellular vesicles (EVs) and free nucleosomes (NSs) carry into the circulation a wealth of cancer-specific, bioactive and poorly understood molecular cargoes, including genomic DNA (gDNA). Objective Here we investigated the distribution of extracellular oncogenic gDNA sequences (HRAS and HER2) in the circulation of tumor-bearing mice. Methods and Results Surprisingly, circulating leukocytes (WBCs), especially neutrophils, contained the highest levels of mutant gDNA, which exceeded the amount of this material recovered from soluble fractions of plasma, circulating EVs, platelets, red blood cells (RBCs) and peripheral organs, as quantified by digital droplet PCR (ddPCR). Tumor excision resulted in disappearance of the WBC-associated gDNA signal within 2-9 days, which is in line with the expected half-life of these cells. EVs and nucleosomes were essential for the uptake of tumor-derived extracellular DNA by neutrophil-like cells and impacted their phenotype. Indeed, the exposure of granulocytic HL-60 cells to EVs from HRAS-driven cancer cells resulted in a selective increase in tissue factor (TF) procoagulant activity and interleukin 8 (IL-8) production. The levels of circulating thrombin-antithrombin complexes (TAT) were markedly elevated in mice harboring HRAS-driven xenografts. Conclusions Myeloid cells may represent a hitherto unrecognized reservoir of cancer-derived, EV/NS-associated oncogenic gDNA in the circulation, and a possible novel platform for liquid biopsy in cancer. In addition, uptake of this material alters the phenotype of myeloid cells, induces procoagulant and proinflammatory activity and may contribute to systemic effects associated with cancer.
Collapse
Affiliation(s)
- S Chennakrishnaiah
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| | - B Meehan
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| | - E D'Asti
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| | - L Montermini
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| | - T-H Lee
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| | - N Karatzas
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| | - M Buchanan
- Department of Oncology and Surgery, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - N Tawil
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| | - D Choi
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| | - M Divangahi
- Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill International TB Centre, McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - M Basik
- Department of Oncology and Surgery, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - J Rak
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| |
Collapse
|
112
|
Vazquez-Garza E, Jerjes-Sanchez C, Navarrete A, Joya-Harrison J, Rodriguez D. Venous thromboembolism: thrombosis, inflammation, and immunothrombosis for clinicians. J Thromb Thrombolysis 2018; 44:377-385. [PMID: 28730407 DOI: 10.1007/s11239-017-1528-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Venous thromboembolism (VTE) is a worldwide disease related with mortality, cardiovascular disability, impaired quality of life and, cause major long-term complications. Clinicians related to the acute and long-term patients care must be involved in the molecular mechanisms of thrombosis. The vessel wall and its inner lining of the endothelium are critical to the maintenance of a patent vasculature. After endothelial disruption, collagen (first line of endothelial defense) and intravascular tissue factor (second line of endothelial defense) are exposed to blood flow, starting the formation of a thrombus. Anticoagulant endovascular proteins and endogenous fibrinolysis have an active role in hemostasis. Currently, the process of coagulation is a cell surface-based model that includes three overlapping phases: initiation, amplification, and propagation. From a simple view, inflammation is one of the first responses of the immune system to infection; inflammation is driven by eicosanoids and cytokines, which are released by injured or infected cells. Common cytokines, which regulate inflammatory response, include interleukins (mainly interleukin-6) that are responsible for communication among white blood cells, chemokines that promote chemotaxis, and interferons that have anti-viral effects. Acute infections have been associated with a transient increase in the risk of myocardial infarction, stroke and recently with venous thrombosis, supporting the notion that systemic and respiratory infections increase the risk of thromboembolic events. Recently, immunothrombosis, another thrombosis mechanism that includes innate immune mechanisms, the neutrophil extracellular genetic traps, and the immunothrombosis dysregulation, could explain some cases of "unprovoked" VTE especially in elderly, a high-risk population for thrombosis.
Collapse
Affiliation(s)
- Eduardo Vazquez-Garza
- Centro de Investigacion Biomedica del Hospital Zambrano Hellion, TecSalud. Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Batallón de San Patricio 112, Real San Agustin, 66278, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | - Carlos Jerjes-Sanchez
- Centro de Investigacion Biomedica del Hospital Zambrano Hellion, TecSalud. Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Batallón de San Patricio 112, Real San Agustin, 66278, San Pedro Garza Garcia, Nuevo Leon, Mexico. .,Instituto de Cardiología y Medicina Vascular, TecSalud and Centro de Investigacion Biomedica del Hospital Zambrano Hellion, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico.
| | - Aline Navarrete
- Programa Multicéntrico de Residencias Médicas - Tecnologico de Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | - Jorge Joya-Harrison
- Programa Multicéntrico de Residencias Médicas - Tecnologico de Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | - David Rodriguez
- Instituto de Cardiología y Medicina Vascular, TecSalud and Centro de Investigacion Biomedica del Hospital Zambrano Hellion, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| |
Collapse
|
113
|
Letendre JA, Goggs R. Concentrations of Plasma Nucleosomes but Not Cell-Free DNA Are Prognostic in Dogs Following Trauma. Front Vet Sci 2018; 5:180. [PMID: 30105230 PMCID: PMC6077184 DOI: 10.3389/fvets.2018.00180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/11/2018] [Indexed: 01/28/2023] Open
Abstract
Trauma is common in dogs and causes significant morbidity and mortality, but it remains a challenge to assess prognosis in these patients. This study aimed to investigate the use of plasma cell-free DNA (cfDNA) and nucleosome concentrations as prognostic biomarkers in canine trauma. Using a prospective, observational case-control study design, 49 dogs with trauma were consecutively enrolled from 07/2015 to 10/2017 and followed to hospital discharge. Dogs with animal trauma triage (ATT) scores ≥3 at presentation were eligible for enrollment. Dogs <3 kg or with pre-existing coagulopathies were excluded. Thirty-three healthy control dogs were also enrolled. Illness and injury severity scores were calculated using at-presentation data. Plasma cfDNA was measured in triplicate using a benchtop fluorimeter. Plasma nucleosome concentrations were determined in duplicate by ELISA. Mann-Whitney U tests were used to compare biomarker concentrations between groups and between survivors and non-survivors. Associations between biomarkers were evaluated using Spearman's correlation coefficients. Alpha was set at 0.05. Concentrations of cfDNA and nucleosomes were significantly higher in injured dogs compared to healthy controls (P ≤ 0.0001). Nucleosomes and cfDNA concentrations were positively correlated (rs 0.475, P < 0.001). Concentrations of both cfDNA and nucleosomes were correlated with shock index (rs 0.367, P = 0.010, rs 0.358, P = 0.012 respectively), but only nucleosomes were correlated with ATT (rs 0.327, P = 0.022) and acute patient physiology and laboratory evaluation (APPLE) scores (rs 0.356, P = 0.012). Median nucleosome concentrations were significantly higher in non-survivors than in survivors [8.2 AU (3.1-26.4) vs. 1.6 AU (0.5-5.2); P = 0.01]. Among illness severity scores, only APPLE was discriminant for survival (AUROC 0.912, P < 0.001). In summary, in moderately-severely injured dogs, high nucleosome concentrations are significantly associated with non-survival.
Collapse
Affiliation(s)
| | - Robert Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
114
|
Eisenbeis J, Saffarzadeh M, Peisker H, Jung P, Thewes N, Preissner KT, Herrmann M, Molle V, Geisbrecht BV, Jacobs K, Bischoff M. The Staphylococcus aureus Extracellular Adherence Protein Eap Is a DNA Binding Protein Capable of Blocking Neutrophil Extracellular Trap Formation. Front Cell Infect Microbiol 2018; 8:235. [PMID: 30038902 PMCID: PMC6047304 DOI: 10.3389/fcimb.2018.00235] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/19/2018] [Indexed: 01/07/2023] Open
Abstract
The extracellular adherence protein (Eap) of Staphylococcus aureus is a secreted protein known to exert a number of adhesive and immunomodulatory properties. Here we describe the intrinsic DNA binding activity of this multifunctional secretory factor. By using atomic force microscopy, we provide evidence that Eap can bind and aggregate DNA. While the origin of the DNA substrate (e.g., eukaryotic, bacterial, phage, and artificial DNA) seems to not be of major importance, the DNA structure (e.g., linear or circular) plays a critical role with respect to the ability of Eap to bind and condense DNA. Further functional assays corroborated the nature of Eap as a DNA binding protein, since Eap suppressed the formation of "neutrophil extracellular traps" (NETs), composed of DNA-histone scaffolds, which are thought to function as a neutrophil-mediated extracellular trapping mechanism. The DNA binding and aggregation activity of Eap may thereby protect S. aureus against a specific anti-microbial defense reaction from the host.
Collapse
Affiliation(s)
- Janina Eisenbeis
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Mona Saffarzadeh
- Department of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Henrik Peisker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Philipp Jung
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Nicolas Thewes
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Klaus T. Preissner
- Department of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Centre National de la Recherche Scientifique, UMR 5235, Université de Montpellier, Montpellier, France
| | - Brian V. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Karin Jacobs
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| |
Collapse
|
115
|
A novel CXCL8-IP10 hybrid protein is effective in blocking pulmonary pathology in a mouse model of Klebsiella pneumoniae infection. Int Immunopharmacol 2018; 62:40-45. [PMID: 29990693 DOI: 10.1016/j.intimp.2018.06.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 01/01/2023]
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a hospital-acquired infectious agent that causes a range of diseases. Herein we have developed a novel CXCL8-IP10 hybrid protein and evaluated its efficacy in an animal model of K. pneumoniae infection. Neutrophil chemotaxis data revealed that CXCL8-IP10 could inhibit human neutrophil chemotactic responses induced by the ELR-CXC chemokine CXCL8. To evaluate the effect of CXCL8-IP10 on K. pneumoniae infection, C57BL/6 mice were challenged with K. pneumoniae followed by treatment with CXCL8-IP10 (500 μg/kg, i.p.), or dexamethasone (0.8 mg/kg, s.c.), or ceftazidime (200 mg/kg, s.c.) individually. CXCL8-IP10, dexamethasone or ceftazidime markedly inhibit Klebsiella-induced pulmonary inflammation as assessed by gross examination and histopathology. Moreover, the chemotactic responses of neutrophils was blocked by CXCL8-IP10 rather than dexamethasone or ceftazidime. Furthermore, the levels of inflammatory factors IL-1β, IFN-γ and TNF-α were decreased after CXCL8-IP10, dexamethasone or ceftazidime treatment. Together, these results suggest that CXCL8-IP10 may provide a novel strategy for treating K. pneumoniae infection.
Collapse
|
116
|
Ulusoy E, Duman M, Çağlar A, Küme T, Er A, Akgül F, Çitlenbik H, Yılmaz D, Ören H. Acute Traumatic Coagulopathy: The Value of Histone in Pediatric Trauma Patients. Turk J Haematol 2018; 35:122-128. [PMID: 29589832 PMCID: PMC5972334 DOI: 10.4274/tjh.2017.0444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Acute traumatic coagulopathy occurs after trauma with impairment of hemostasis and activation of fibrinolysis. Some endogenous substances may play roles in this failure of the coagulation system. Extracellular histone is one such molecule that has recently attracted attention. This study investigated the association between plasma histone-complexed DNA (hcDNA) fragments and coagulation abnormalities in pediatric trauma patients. MATERIALS AND METHODS This prospective case-control study was conducted in pediatric patients with trauma. Fifty trauma patients and 30 healthy controls were enrolled. Demographic data, anatomic injury characteristics, coagulation parameters, computerized tomography findings, trauma, and International Society on Thrombosis and Haemostasis disseminated intravascular coagulation (ISTH DIC) scores were recorded. Blood samples for hcDNA were collected and assessed by enzyme-linked immunosorbent assay. RESULTS Thirty-two patients had multiple trauma, while 18 patients had isolated brain injury. hcDNA levels were significantly higher in trauma patients than healthy controls (0.474 AU and 0.145 AU, respectively). There was an association between plasma hcDNA levels and trauma severity. Thirteen patients had acute coagulopathy of trauma shock (ACoTS). ACoTS patients had higher plasma histone levels than those without ACoTS (0.703 AU and 0.398 AU, respectively). Plasma hcDNA levels were positively correlated with the ISTH DIC score and length of stay in the intensive care unit and were negatively correlated with fibrinogen level. CONCLUSION This study indicated that hcDNA levels were increased in pediatric trauma patients and associated with the early phase of coagulopathy. Further studies are needed to clarify the role of hcDNA levels in mortality and disseminated intravascular coagulation.
Collapse
Affiliation(s)
- Emel Ulusoy
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Emergency Care, İzmir, Turkey
| | - Murat Duman
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Emergency Care, İzmir, Turkey
| | - Aykut Çağlar
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Emergency Care, İzmir, Turkey
| | - Tuncay Küme
- Dokuz Eylül University Faculty of Medicine, Department of Biochemistry, İzmir, Turkey
| | - Anıl Er
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Emergency Care, İzmir, Turkey
| | - Fatma Akgül
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Emergency Care, İzmir, Turkey
| | - Hale Çitlenbik
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Emergency Care, İzmir, Turkey
| | - Durgül Yılmaz
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Emergency Care, İzmir, Turkey
| | - Hale Ören
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Hematology, İzmir, Turkey
| |
Collapse
|
117
|
|
118
|
Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat Commun 2018; 9:1523. [PMID: 29670076 PMCID: PMC5906636 DOI: 10.1038/s41467-018-03925-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 03/23/2018] [Indexed: 12/14/2022] Open
Abstract
Leukocyte-released antimicrobial peptides contribute to pathogen elimination and activation of the immune system. Their role in thrombosis is incompletely understood. Here we show that the cathelicidin LL-37 is abundant in thrombi from patients with acute myocardial infarction. Its mouse homologue, CRAMP, is present in mouse arterial thrombi following vascular injury, and derives mainly from circulating neutrophils. Absence of hematopoietic CRAMP in bone marrow chimeric mice reduces platelet recruitment and thrombus formation. Both LL-37 and CRAMP induce platelet activation in vitro by involving glycoprotein VI receptor with downstream signaling through protein tyrosine kinases Src/Syk and phospholipase C. In addition to acute thrombosis, LL-37/CRAMP-dependent platelet activation fosters platelet–neutrophil interactions in other inflammatory conditions by modulating the recruitment and extravasation of neutrophils into tissues. Absence of CRAMP abrogates acid-induced lung injury, a mouse pneumonia model that is dependent on platelet–neutrophil interactions. We suggest that LL-37/CRAMP represents an important mediator of platelet activation and thrombo-inflammation. Cathelicidins are antimicrobial peptides that eliminate pathogens and contribute to the innate immune response. Here the authors show that neutrophil-derived LL-37/CRAMP induces platelet activation and promotes arterial thrombosis and thrombo-inflammation.
Collapse
|
119
|
Waldvogel Abramowski S, Tirefort D, Lau P, Guichebaron A, Taleb S, Modoux C, Lemoine Chaduc C, Bruyere Cerdan P, Roux Lombard P, Lecompte T, Preynat-Seauve O. Cell-free nucleic acids are present in blood products and regulate genes of innate immune response. Transfusion 2018; 58:1671-1681. [PMID: 29664127 DOI: 10.1111/trf.14613] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Extracellular nucleic acids circulate in plasma. They are expected to be present in manufactured blood products eligible for transfusion, but little is known about their biological activity on human cells. The aim of this study is to investigate whether cell-free nucleic acids (CFNAs) are present and biologically active in red blood cell units (RBCUs), fresh frozen plasmas, and platelet concentrates. STUDY DESIGN AND METHODS CFNAs were extracted from RBCUs, fresh frozen plasma, and platelet concentrates. Their nature and structure were analyzed by regular methods of nucleic acid detection/quantification. A normalized polymerase chain reaction combining amplification of a CFNA marker (Alu 115) and amplification of an internal nonhuman DNA control spiked in all samples (phiX 174) was developed to study CFNA release after RBCU storage. The impact of CFNAs on gene regulation was tested by microarray after coculture with peripheral blood mononuclear cells and macrophages. RESULTS Extracellular double-stranded DNA was present in all blood products, with higher amounts found in cellular suspensions (RBCUs and platelet concentrates). Storage up to 40 days did not influence release from RBCUs, and CFNA amount varied considerably from one unit to another. Microarray experiments showed that exposition of macrophages to CFNA increased the expression of genes involved in the innate immune response including chemokines, chemokine receptors, and receptors of the innate response. CONCLUSION CFNAs are present in blood products. Immunoregulatory properties of CFNA are shown in vitro, providing new insights on biologically active components of blood products besides those for intended therapeutic use.
Collapse
Affiliation(s)
- Sophie Waldvogel Abramowski
- Academic Department of Medical Specialties, Geneva University Hospitals, Geneva, Switzerland.,Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Diderik Tirefort
- Academic Department of Medical Specialties, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre Lau
- Academic Department of Medical Specialties, Geneva University Hospitals, Geneva, Switzerland
| | - Arthur Guichebaron
- Academic Department of Medical Specialties, Geneva University Hospitals, Geneva, Switzerland
| | - Sofiane Taleb
- Academic Department of Medical Specialties, Geneva University Hospitals, Geneva, Switzerland
| | - Christine Modoux
- Laboratory of Clinical Immunology and Allergy, Geneva University Hospitals, Geneva, Switzerland
| | - Coralie Lemoine Chaduc
- Academic Department of Medical Specialties, Geneva University Hospitals, Geneva, Switzerland
| | - Pascale Bruyere Cerdan
- Laboratory of Clinical Immunology and Allergy, Geneva University Hospitals, Geneva, Switzerland
| | - Pascale Roux Lombard
- Laboratory of Clinical Immunology and Allergy, Geneva University Hospitals, Geneva, Switzerland
| | - Thomas Lecompte
- Academic Department of Medical Specialties, Geneva University Hospitals, Geneva, Switzerland
| | - Olivier Preynat-Seauve
- Academic Department of Medical Specialties, Geneva University Hospitals, Geneva, Switzerland.,Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
120
|
Zeng H, He B, Yi C, Peng J. Liquid biopsies: DNA methylation analyses in circulating cell-free DNA. J Genet Genomics 2018; 45:185-192. [PMID: 29706556 DOI: 10.1016/j.jgg.2018.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/10/2018] [Accepted: 02/01/2018] [Indexed: 12/29/2022]
Abstract
Analysis of patient's materials like cells or nucleic acids obtained in a minimally invasive or noninvasive manner through the sampling of blood or other body fluids serves as liquid biopsies, which has huge potential for numerous diagnostic applications. Circulating cell-free DNA (cfDNA) is explored as a prognostic or predictive marker of liquid biopsies with the improvements in genomic and molecular methods. DNA methylation is an important epigenetic marker known to affect gene expression. cfDNA methylation detection is a very promising approach as abnormal distribution of DNA methylation is one of the hallmarks of many cancers and methylation changes occur early during carcinogenesis. This review summarizes the various investigational applications of cfDNA methylation and its oxidized derivatives as biomarkers for cancer diagnosis, prenatal diagnosis and organ transplantation monitoring. The review also provides a brief overview of the technologies for cfDNA methylation analysis based on next generation sequencing.
Collapse
Affiliation(s)
- Hu Zeng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Bo He
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
121
|
|
122
|
Abstract
INTRODUCTION Neutrophils extracellular traps (NETs) have recently emerged as a new potential link between inflammation, immunity, and thrombosis and could play a key role in septic shock-induced disseminated intravascular coagulation (DIC) pathogenesis. The objective of our study was to investigate a potential link between NETosis and septic shock-induced DIC. METHODS Twenty patients with septic shock (10 without and 10 with DIC according to JAAM 2006 score) were prospectively included in our study. Vascular cell activation was assessed by microparticle (MP) measurement. NETosis was investigated at days 1, 3, and 7 using two different approaches: probing and measurement of neutrophil DNA decompaction by neutrophil-side fluorescence light (NEUT-SFL) as recorded by an automated blood cell cytometer and the assessment of nucleosomes and NETs (DNA-bound myeloperoxidase, DNA-MPO). RESULTS Endothelial-derived CD105-MPs, leucocyte-derived CD11a-MPs/leucocyte, and neutrophil-derived CD66b-MPs/neutrophil count ratios significantly increased in DIC compared with non-DIC patients, indicating on-going cell activation (P <0.05). NEUT-SFL, indicating DNA decompaction, was significantly higher in DIC patients. Circulating nucleosomes and DNA-MPO were increased in DIC patients (P <0.05). There were significant correlations between: nucleosomes and NETs (r = 0.397, P = 0.004), NEUT-SFL and nucleosomes (r = 0.243, P = 0.032), NEUT-SFL and DNA-MPO (r = 0.266, P = 0.024). CONCLUSION NEUT-SFL, NETs, and elevated nucleosome concentrations were all correlated to DIC (P <0.05). We have shown that NETosis is significantly correlated to septic shock-induced DIC.
Collapse
|
123
|
Deep vein thrombosis in mice is regulated by platelet HMGB1 through release of neutrophil-extracellular traps and DNA. Sci Rep 2018; 8:2068. [PMID: 29391442 PMCID: PMC5794752 DOI: 10.1038/s41598-018-20479-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022] Open
Abstract
Venous thromboembolic (VTE) disease, consisting of deep venous thrombosis (DVT) and pulmonary embolism (PE) is a leading cause of morbidity and mortality. Current prophylactic measures are insufficient to prevent all occurrence in part due to an incomplete understanding of the underlying pathophysiology. Mounting evidence describes interplay between activation of the innate immune system and thrombus development. Recent work has demonstrated that platelet release of HMGB1 leads to increased microvascular complications following injury. Additionally, platelet HMGB1 was found to enhance DVT and increase the formation of neutrophil extracellular traps (NETs), although the role of HMGB1 induced NET release in thrombosis remains unexplored. Utilizing a transgenic mouse lacking HMGB1 specifically from platelets and megakaryocytes we now demonstrate the specific role of platelet-derived HMGB1 in acute and subacute/chronic venous thrombosis. Platelets account for the majority of circulating HMGB1 and HMGB1 deposition within the developing clot. The pro-thrombotic effect of platelet-derived HMGB1 is mediated through enhanced neutrophil recruitment, NET formation and specifically release of extracellular DNA during NET formation. Taken together, these data suggest that platelet HMGB1 mediated NET release is a primary regulator of DVT formation in mice.
Collapse
|
124
|
Dwivedi DJ, Grin PM, Khan M, Prat A, Zhou J, Fox-Robichaud AE, Seidah NG, Liaw PC. Differential Expression of PCSK9 Modulates Infection, Inflammation, and Coagulation in a Murine Model of Sepsis. Shock 2018; 46:672-680. [PMID: 27405064 DOI: 10.1097/shk.0000000000000682] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Proprotein convertase subtilisin/kexin type 9 (PCSK9) targets lipoprotein receptors for degradation, thereby reducing hepatic lipid clearance. PCSK9 inhibition reduces mortality in septic mice, presumably through increased hepatic clearance of pathogen lipids due to increased lipoprotein receptor concentrations. However, PCSK9 overexpression in vivo has not been studied in sepsis. Therefore, this study aimed to evaluate the effects of differential PCSK9 expression on systemic infection, inflammation, and coagulation in sepsis. METHODS Wild-type, PCSK9 knockout (KO), and transgenic (Tg) mice that overexpress PCSK9 were subjected to sham surgery or cecal ligation and puncture (CLP). Bacterial loads were measured in lungs, peritoneal cavity fluid, and blood. Organ pathology was assessed in lungs, liver, and kidneys. Lung myeloperoxidase activity, and plasma concentrations of alanine aminotransferase (ALT), creatinine, cell-free DNA (cfDNA), protein C, thrombin-antithrombin (TAT) complexes, interleukin (IL)-6, and IL-10 were also measured 6 h postoperatively. Morbidity was assessed for 16 h following CLP. RESULTS Overexpression of PCSK9 in mice increased liver and kidney pathology, plasma IL-6, ALT, and TAT concentrations during sepsis, whereas PCSK9 KO mice exhibited reduced bacterial loads, lung and liver pathology, myeloperoxidase activity, plasma IL-10, and cfDNA during CLP-induced sepsis. All septic mice had reduced plasma levels of protein C, but the protein C ratio relative to normal was significantly decreased in PCSK9 Tg mice. Dyspnea, cyanosis, and overall grimace scores were greatest in septic mice overexpressing PCSK9, whereas PCSK9 KO mice retained core body temperature during sepsis. CONCLUSION These findings demonstrate that PCSK9 deficiency confers protection against systemic bacterial dissemination, organ pathology, and tissue inflammation, particularly in the lungs and liver, while PCSK9 overexpression exacerbates multi-organ pathology as well as the hypercoagulable and pro-inflammatory states in early sepsis.
Collapse
Affiliation(s)
- Dhruva J Dwivedi
- *Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada †Department of Medicine, McMaster University, Hamilton, Ontario, Canada ‡Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada §Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), University of Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
The nephrons of the kidney are independent functional units harboring cells of a low turnover during homeostasis. As such, physiological renal cell death is a rather rare event and dead cells are flushed away rapidly with the urinary flow. Renal cell necrosis occurs in acute kidney injuries such as thrombotic microangiopathies, necrotizing glomerulonephritis, or tubular necrosis. All of these are associated with intense intrarenal inflammation, which contributes to further renal cell loss, an autoamplifying process referred to as necroinflammation. But how does renal cell necrosis trigger inflammation? Here, we discuss the role of danger-associated molecular patterns (DAMPs), mitochondrial (mito)-DAMPs, and alarmins, as well as their respective pattern recognition receptors. The capacity of DAMPs and alarmins to trigger cytokine and chemokine release initiates the recruitment of leukocytes into the kidney that further amplify necroinflammation. Infiltrating neutrophils often undergo neutrophil extracellular trap formation associated with neutrophil death or necroptosis, which implies a release of histones, which act not only as DAMPs but also elicit direct cytotoxic effects on renal cells, namely endothelial cells. Proinflammatory macrophages and eventually cytotoxic T cells further drive kidney cell death and inflammation. Dissecting the molecular mechanisms of necroinflammation may help to identify the best therapeutic targets to limit nephron loss in kidney injury.
Collapse
Affiliation(s)
- Shrikant R Mulay
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Santhosh V Kumar
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Maciej Lech
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Jyaysi Desai
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
126
|
Naumann DN, Hazeldine J, Dinsdale RJ, Bishop JR, Midwinter MJ, Harrison P, Hutchings SD, Lord JM. Endotheliopathy is associated with higher levels of cell-free DNA following major trauma: A prospective observational study. PLoS One 2017; 12:e0189870. [PMID: 29261771 PMCID: PMC5736230 DOI: 10.1371/journal.pone.0189870] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cell free deoxyribonucleic acid (cfDNA) has been proposed as a biomarker of secondary complications following trauma. Raised thrombomodulin and syndecan-1 levels have been used to indicate endotheliopathy, and are associated with inflammation, coagulopathy, and mortality. The current study aimed to analyse the association between cfDNA and biomarkers of endotheliopathy in a cohort of trauma patients, and whether raised levels of cfDNA were associated with poorer clinical outcomes. METHODS Serum thrombomodulin and syndecan-1 were used as biomarkers of endotheliopathy and compared to plasma cfDNA in trauma patients from two prospective longitudinal observational studies. Cohort A (n = 105) had a predicted injury severity score (ISS) >8, and had blood sampled within 1h of injury and at 4-12h. Cohort B (n = 17) had evidence of haemorrhagic shock, and had blood sampled at a median time of 3.5h after injury. Relationships between biomarkers were tested using multivariable linear regression models that included the covariates of gender, age, ISS, Glasgow Coma Scale, lactate, systolic blood pressure, and heart rate. A model was fitted to investigate whether changes in cfDNA were associated with similar changes in endothelial biomarkers. RESULTS The mean age was 41 (SD 19), and the median ISS was 25 (IQR 12-34). There was a significant association between cfDNA levels and both syndecan-1 and thrombomodulin levels (both p<0.001). This was independent of all covariates except for ISS, which significantly correlated with cfDNA levels. 50 ng/ml change in syndecan-1 and 1 ng/ml change in thrombomodulin corresponded to 15% and 20% increases in cfDNA levels respectively (both p<0.001). Patients who died had significantly higher prehospital and in-hospital cfDNA levels (both p<0.05). CONCLUSIONS Raised cfDNA levels are associated with markers of endotheliopathy following trauma, and are associated with mortality. This relationship is present within the first hour of injury, and a change in one biomarker level is reflected by similar changes in the others. These findings are in keeping with the hypothesis that circulating DNA and endothelial injury share a common pathway following trauma.
Collapse
Affiliation(s)
- David N. Naumann
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, United Kingdom
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, United Kingdom
- * E-mail:
| | - Jon Hazeldine
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, United Kingdom
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Robert J. Dinsdale
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Jon R. Bishop
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Mark J. Midwinter
- Department of Surgery, University of Queensland, Rural Clinical School, Bundaberg, Queensland, Australia
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Sam D. Hutchings
- Department of Intensive Care Medicine, Kings College Hospital, Denmark Hill, London, United Kingdom
| | - Janet M. Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
127
|
Helms J, Clere-Jehl R, Bianchini E, Le Borgne P, Burban M, Zobairi F, Diehl JL, Grunebaum L, Toti F, Meziani F, Borgel D. Thrombomodulin favors leukocyte microvesicle fibrinolytic activity, reduces NETosis and prevents septic shock-induced coagulopathy in rats. Ann Intensive Care 2017; 7:118. [PMID: 29222696 PMCID: PMC5722785 DOI: 10.1186/s13613-017-0340-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Septic shock-induced disseminated intravascular coagulation is responsible for increased occurrence of multiple organ dysfunction and mortality. Immunothrombosis-induced coagulopathy may contribute to hypercoagulability. We aimed at determining whether recombinant human thrombomodulin (rhTM) could control exaggerated immunothrombosis by studying procoagulant responses, fibrinolysis activity borne by microvesicles (MVs) and NETosis in septic shock. METHODS In a septic shock model after a cecal ligation and puncture-induced peritonitis (H0), rats were treated with rhTM or a placebo at H18, resuscitated and monitored during 4 h. At H22, blood was sampled to perform coagulation tests, to characterize MVs and to detect neutrophils extracellular traps (NETs). Lungs were stained with hematoxylin-eosin for inflammatory injury assessment. RESULTS Coagulopathy was attenuated in rhTM-treated septic rats compared to placebo-treated rats, as attested by a significant decrease in procoagulant annexin A5+-MVs and plasma procoagulant activity of phospholipids and by a significant increase in antithrombin levels (84 ± 8 vs. 64 ± 6%, p < 0.05), platelet count (582 ± 157 vs. 319 ± 91 × 109/L, p < 0.05) and fibrinolysis activity borne by MVs (2.9 ± 0.26 vs. 0.48 ± 0.29 U/mL urokinase, p < 0.05). Lung histological injury score showed significantly less leukocyte infiltration. Decreased procoagulant activity and lung injury were concomitant with decreased leukocyte activation as attested by plasma leukocyte-derived MVs and NETosis reduction after rhTM treatment (neutrophil elastase/DNA: 93 ± 33 vs. 227 ± 48 and citrullinated histones H3/DNA: 96 ± 16 vs. 242 ± 180, mOD for 109 neutrophils/L, p < 0.05). CONCLUSION Thrombomodulin limits procoagulant responses and NETosis and at least partly restores hemostasis control during immunothrombosis. Neutrophils might thus stand as a promising therapeutic target in septic shock-induced coagulopathy.
Collapse
Affiliation(s)
- Julie Helms
- UMR INSERM 1176-Universite Paris Sud, Hôpital Bicêtre, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
- Réanimation Médicale, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, 20 Rue Leblanc, 75015 Paris, France
| | - Raphaël Clere-Jehl
- Université de Strasbourg (UNISTRA), Faculté de Médecine, Hôpitaux universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Elsa Bianchini
- UMR INSERM 1176-Universite Paris Sud, Hôpital Bicêtre, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Pierrick Le Borgne
- Service d’Accueil des Urgences, Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue de Molière, 67200 Strasbourg, France
| | - Mélanie Burban
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Fatiha Zobairi
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Jean-Luc Diehl
- Réanimation Médicale, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, 20 Rue Leblanc, 75015 Paris, France
| | - Lelia Grunebaum
- Laboratoire d’hématologie et hémostase, Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue de Molière, 67200 Strasbourg, France
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Ferhat Meziani
- Université de Strasbourg (UNISTRA), Faculté de Médecine, Hôpitaux universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Delphine Borgel
- UMR INSERM 1176-Universite Paris Sud, Hôpital Bicêtre, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
128
|
Delabranche X, Helms J, Meziani F. Immunohaemostasis: a new view on haemostasis during sepsis. Ann Intensive Care 2017; 7:117. [PMID: 29197958 PMCID: PMC5712298 DOI: 10.1186/s13613-017-0339-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Host infection by a micro-organism triggers systemic inflammation, innate immunity and complement pathways, but also haemostasis activation. The role of thrombin and fibrin generation in host defence is now recognised, and thrombin has become a partner for survival, while it was seen only as one of the "principal suspects" of multiple organ failure and death during septic shock. This review is first focused on pathophysiology. The role of contact activation system, polyphosphates and neutrophil extracellular traps has emerged, offering new potential therapeutic targets. Interestingly, newly recognised host defence peptides (HDPs), derived from thrombin and other "coagulation" factors, are potent inhibitors of bacterial growth. Inhibition of thrombin generation could promote bacterial growth, while HDPs could become novel therapeutic agents against pathogens when resistance to conventional therapies grows. In a second part, we focused on sepsis-induced coagulopathy diagnostic challenge and stratification from "adaptive" haemostasis to "noxious" disseminated intravascular coagulation (DIC) either thrombotic or haemorrhagic. Besides usual coagulation tests, we discussed cellular haemostasis assessment including neutrophil, platelet and endothelial cell activation. Then, we examined therapeutic opportunities to prevent or to reduce "excess" thrombin generation, while preserving "adaptive" haemostasis. The fail of international randomised trials involving anticoagulants during septic shock may modify the hypothesis considering the end of haemostasis as a target to improve survival. On the one hand, patients at low risk of mortality may not be treated to preserve "immunothrombosis" as a defence when, on the other hand, patients at high risk with patent excess thrombin and fibrin generation could benefit from available (antithrombin, soluble thrombomodulin) or ongoing (FXI and FXII inhibitors) therapies. We propose to better assess coagulation response during infection by an improved knowledge of pathophysiology and systematic testing including determination of DIC scores. This is one of the clues to allocate the right treatment for the right patient at the right moment.
Collapse
Affiliation(s)
- Xavier Delabranche
- Université de Strasbourg, Faculté de Médecine & Hôpitaux Universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, Strasbourg, France
| | - Julie Helms
- Université de Strasbourg, Faculté de Médecine & Hôpitaux Universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM, EFS Grand Est, BPPS UMR-S 949, Université de Strasbourg, Strasbourg, France
| | - Ferhat Meziani
- Université de Strasbourg, Faculté de Médecine & Hôpitaux Universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
129
|
Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res 2017; 371:567-576. [PMID: 29178039 PMCID: PMC5820397 DOI: 10.1007/s00441-017-2727-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023]
Abstract
Neutrophils are well known for their role in infection and inflammatory disease and are first responders at sites of infection or injury. Platelets have an established role in hemostasis and thrombosis and are first responders at sites of vascular damage. However, neutrophils are increasingly recognized for their role in thrombosis, while the immunemodulatory properties of platelets are being increasingly studied. Platelets and neutrophils interact during infection, inflammation and thrombosis and modulate each other’s functions. This review will discuss the consequences of platelet–neutrophil interactions in infection, thrombosis, atherosclerosis and tissue injury and repair.
Collapse
|
130
|
Bruchim Y, Horowitz M, Aroch I. Pathophysiology of heatstroke in dogs - revisited. Temperature (Austin) 2017; 4:356-370. [PMID: 29435477 PMCID: PMC5800390 DOI: 10.1080/23328940.2017.1367457] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/09/2023] Open
Abstract
Heatstroke results from a failure to dissipate accumulated heat during exposure to hot environments, or during strenuous physical exercise under heat stress. It is characterized by core body temperatures > 41°C, with central nervous system dysfunction. Functional morphology and thermoregulatory effectors differences between dogs and humans may require special heatstroke protective adaptations in dogs, however, the risk factors for developing heatstroke are similar in both. In dogs, these include hot, especially highly humid environments, excessive physical activity, obesity, large (>15 kg) body weight, being of certain breed (e.g., Labrador retrievers and brachycephalic breeds), upper airway obstruction and prolonged seizures. Lack of acclimation to heat and physical fitness decreases the survival of heat stroked dogs. At the systemic level, blood pooling within the large internal organs (e.g., spleen, liver) is a major contributor to the development of shock and consequent intestinal ischemia, hypoxia and endothelial hyperpermeability, commonly occurring in heatstroke patients. Evoked serious complications include rhabdomyolysis, acute kidney injury, acute respiratory distress syndrome and ultimately, sepsis and disseminated intravascular coagulation. The most common clinical signs in dogs include acute collapse, tachypnea, spontaneous bleeding, shock signs and mental abnormalities, including depression, disorientation or delirium, seizures, stupor and coma. In such dogs, presence of peripheral blood nucleated red blood cells uniquely occurs, and is a highly sensitive diagnostic and prognostic biomarker. Despite early, appropriate body cooling, and intensive supportive treatment, with no available specific treatment to ameliorate the severe inflammatory and hemostatic derangements, the mortality rate is around 50%, similar to that of human heatstroke victims. This review discusses the pathophysiology of canine heatstroke from a veterinarian's point of view, integrating new and old studies and knowledge.
Collapse
Affiliation(s)
- Yaron Bruchim
- The Hebrew University Veterinary Teaching Hospital and Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem
| | - Itamar Aroch
- The Hebrew University Veterinary Teaching Hospital and Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| |
Collapse
|
131
|
Tumor-Derived Exosomes Induce the Formation of Neutrophil Extracellular Traps: Implications For The Establishment of Cancer-Associated Thrombosis. Sci Rep 2017; 7:6438. [PMID: 28743887 PMCID: PMC5526939 DOI: 10.1038/s41598-017-06893-7] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/19/2017] [Indexed: 12/17/2022] Open
Abstract
Cancer patients are at an increased risk of developing thromboembolic complications. Several mechanisms have been proposed to explain cancer-associated thrombosis including the release of tumor-derived extracellular vesicles and the activation of host vascular cells. It was proposed that neutrophil extracellular traps (NETs) contribute to the prothrombotic phenotype in cancer. In this study, we evaluated the possible cooperation between tumor-derived exosomes and NETs in cancer-associated thrombosis. Female BALB/c mice were orthotopically injected with 4T1 breast cancer cells. The tumor-bearing animals exhibited increased levels of plasma DNA and myeloperoxidase in addition to significantly increased numbers of circulating neutrophils. Mice were subjected to either Rose Bengal/laser-induced venous thrombosis or ferric chloride-induced arterial thrombosis models. The tumor-bearing mice exhibited accelerated thrombus formation in both models compared to tumor-free animals. Treatment with recombinant human DNase 1 reversed the prothrombotic phenotype of tumor-bearing mice in both models. Remarkably, 4T1-derived exosomes induced NET formation in neutrophils from mice treated with granulocyte colony-stimulating factor (G-CSF). In addition, tumor-derived exosomes interacted with NETs under static conditions. Accordingly, the intravenous administration of 4T1-derived exosomes into G-CSF-treated mice significantly accelerated venous thrombosis in vivo. Taken together, our observations suggest that tumor-derived exosomes and neutrophils may act cooperatively in the establishment of cancer-associated thrombosis.
Collapse
|
132
|
Műzes G, Kiss AL, Tulassay Z, Sipos F. Cell-free DNA-induced alteration of autophagy response and TLR9-signaling: Their relation to amelioration of DSS-colitis. Comp Immunol Microbiol Infect Dis 2017; 52:48-57. [PMID: 28673462 DOI: 10.1016/j.cimid.2017.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/21/2017] [Accepted: 06/04/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND The influence of cell-free DNA (fDNA) administration on the TLR9-autophagy regulatory crosstalk within inflammatory circumstances remains unclear. AIMS To examine the immunobiologic effects of iv. fDNA injection on the TLR9-mediated autophagy response in murine DSS-colitis. METHODS Different types of modified fDNAs were administered to DSS-colitic mice. Disease and histological activities, spleen index were measured. Changes of the TLR9-associated and autophagy-related gene expression profiles of lamina proprial cells and splenocytes were assayed by quantitative real-time PCR, and validated by immunohistochemistries. Ultrastructural changes of the colon were examined by transmission electron microscopy (TEM). RESULTS A single intravenous injection of colitic fDNA (C-DNA) exhibited beneficial clinical and histological effects on DSS-colitis, compared to normal (N-DNA). C-DNA administration displayed a more prominent impact on the outcome of the TLR9-autophagy response than N-DNA. C-DNA resulted in a decreased spleen index in DSS-colitic mice. C-DNA treatment of normal mice resulted in a downregulation of Beclin1 and ATG16L1 mRNA and protein expression in the colon. These as well as LC3B were downregulated in the spleen. In contrast, the Beclin1, ATG16L1 and LC3B gene and protein expressions were upregulated in both the colon and the spleen by C-DNA injection. Moreover, C-DNA administration to DSS-colitic mice resulted in a remarkable increase of epithelial autophagic vacuoles representing an intensified macroautophagy. CONCLUSIONS The effect of intravenously administered fDNA on the TLR9-mediated autophagy response is expressly dependent on the origin of fDNA (i.e. inflammatory or not) and on the characteristics of the local immunobiologic milieu (i.e. inflammatory or not, as well).
Collapse
Affiliation(s)
- Györgyi Műzes
- 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary.
| | - Anna L Kiss
- Department of Human Morphology and Developmental Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Zsolt Tulassay
- 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary; Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, 1051, Hungary
| | - Ferenc Sipos
- 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
133
|
Jeppesen AN, Hvas AM, Grejs AM, Duez CHV, Sorensen BS, Kirkegaard H. Post-cardiac arrest level of free-plasma DNA and DNA-histone complexes. Acta Anaesthesiol Scand 2017; 61:523-531. [PMID: 28337742 DOI: 10.1111/aas.12882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Plasma DNA-histone complexes and total free-plasma DNA have the potential to quantify the ischaemia-reperfusion damages occurring after cardiac arrest. Furthermore, DNA-histone complexes may have the potential of being a target for future treatment. The aim was to examine if plasma DNA-histone complexes and the levels of total free-plasma DNA were elevated in post-cardiac arrest patients compared with healthy individuals, and to examine if these biomarkers were capable of predicting mortality. METHODS We included 42 comatose out-of-hospital cardiac arrest patients and collected blood samples after 22, 46 and 70 h. Samples for DNA-histone complexes were quantified by Cell Death Detection ELISAplus . The total free-plasma DNA analyses were quantified with qPCR by analysing the Beta-2 microglobulin gene. The control group comprised 40 healthy individuals. RESULTS We found no difference in the level of DNA-histone complexes between the 22-h sample and healthy individuals (P = 0.10). In the 46-h sample, there was an increased level of DNA-histone complexes in non-survivors compared with survivors 30 days after the cardiac arrest (P < 0.01) and the area under the ROC curve was 0.78 (95% confidence interval: 0.59;0.96). The level of total free-plasma DNA was increased in the 22-h sample compared with healthy individuals (P < 0.001) but no significant difference was found between non-survivors and survivors 30 days after the cardiac arrest (all P ≥ 0.06). CONCLUSION An increased level of DNA-histone complexes was associated with increased mortality and that the level of total free-plasma DNA was elevated post-cardiac arrest.
Collapse
Affiliation(s)
- A. N. Jeppesen
- Department of Anaesthesiology and Intensive Care Medicine; Aarhus University Hospital; Aarhus N Denmark
| | - A.-M. Hvas
- Department of Clinical Biochemistry; Aarhus University Hospital; Aarhus N Denmark
| | - A. M. Grejs
- Department of Anaesthesiology and Intensive Care Medicine; Aarhus University Hospital; Aarhus N Denmark
| | - C. H. V. Duez
- Department of Anaesthesiology and Intensive Care Medicine; Aarhus University Hospital; Aarhus N Denmark
| | - B. S. Sorensen
- Department of Clinical Biochemistry; Aarhus University Hospital; Aarhus N Denmark
| | - H. Kirkegaard
- Research Centre for Emergency Medicine; Aarhus University Hospital; Aarhus C Denmark
| |
Collapse
|
134
|
Schneck E, Samara O, Koch C, Hecker A, Padberg W, Lichtenstern C, Weigand MA, Uhle F. Plasma DNA and RNA differentially impact coagulation during abdominal sepsis—an explorative study. J Surg Res 2017; 210:231-243. [DOI: 10.1016/j.jss.2016.11.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/30/2016] [Accepted: 11/23/2016] [Indexed: 12/15/2022]
|
135
|
Bravo-Barrera J, Kourilovitch M, Galarza-Maldonado C. Neutrophil Extracellular Traps, Antiphospholipid Antibodies and Treatment. Antibodies (Basel) 2017; 6:antib6010004. [PMID: 31548520 PMCID: PMC6698875 DOI: 10.3390/antib6010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 12/22/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are a network of extracellular fibers, compounds of chromatin, neutrophil DNA and histones, which are covered with antimicrobial enzymes with granular components. Autophagy and the production of reactive oxygen species (ROS) by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase are essential in the formation of NETs. There is increasing evidence that suggests that autoantibodies against beta-2-glycoprotein-1 (B2GP1) induce NETs and enhance thrombosis. Past research on new mechanisms of thrombosis formation in antiphospholipid syndrome (APS) has elucidated the pharmacokinetics of the most common medication in the treatment of the disease.
Collapse
Affiliation(s)
- Jessica Bravo-Barrera
- UNERA (Unit of Rheumatic and Autoimmune Diseases), Hospital Monte Sinaí, Miguel Cordero 6-111 y av. Solano, Cuenca, Ecuador.
- Department of Hematology and Hemostasis, CDB, Hospital Clinic, Villaroel 170, 08036 Barcelona, Catalonia, Spain.
| | - Maria Kourilovitch
- UNERA (Unit of Rheumatic and Autoimmune Diseases), Hospital Monte Sinaí, Miguel Cordero 6-111 y av. Solano, Cuenca, Ecuador.
- Faculty of Medicine and Health Science, Doctorate Programme "Medicine and Translational Research", Barcelona University, Casanova, 143, 08036 Barcelona, Catalonia, Spain.
| | - Claudio Galarza-Maldonado
- UNERA (Unit of Rheumatic and Autoimmune Diseases), Hospital Monte Sinaí, Miguel Cordero 6-111 y av. Solano, Cuenca, Ecuador.
- Department of Investigation (DIUC-Dirección de Investigación de Universidad de Cuenca), Cuenca State University, Av. 12 de Abril y Agustin Cueva, Cuenca, Ecuador.
| |
Collapse
|
136
|
Ginsburg I, van Heerden PV, Koren E. From amino acids polymers, antimicrobial peptides, and histones, to their possible role in the pathogenesis of septic shock: a historical perspective. J Inflamm Res 2017; 10:7-15. [PMID: 28203100 PMCID: PMC5293372 DOI: 10.2147/jir.s126150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This paper describes the evolution of our understanding of the biological role played by synthetic and natural antimicrobial cationic peptides and by the highly basic nuclear histones as modulators of infection, postinfectious sequelae, trauma, and coagulation phenomena. The authors discuss the effects of the synthetic polymers of basic poly α amino acids, poly l-lysine, and poly l-arginine on blood coagulation, fibrinolysis, bacterial killing, and blood vessels; the properties of natural and synthetic antimicrobial cationic peptides as potential replacements or adjuncts to antibiotics; polycations as opsonizing agents promoting endocytosis/phagocytosis; polycations and muramidases as activators of autolytic wall enzymes in bacteria, causing bacteriolysis and tissue damage; and polycations and nuclear histones as potential virulence factors and as markers of sepsis, septic shock, disseminated intravasclar coagulopathy, acute lung injury, pancreatitis, trauma, and other additional clinical disorders.
Collapse
Affiliation(s)
- Isaac Ginsburg
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem
| | | | - Erez Koren
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem
| |
Collapse
|
137
|
De Candia E. NETosis in arterial and venous thrombosis: a one size fits all mechanism? Intern Emerg Med 2017; 12:9-11. [PMID: 28066864 DOI: 10.1007/s11739-016-1600-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Erica De Candia
- Servizio Malattie Emorragiche e Trombotiche, Area di Ematologia, Fondazione Policlinico Agostino Gemelli, Istituto di Medicina Interna, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy.
| |
Collapse
|
138
|
Marin Oyarzún CP, Carestia A, Lev PR, Glembotsky AC, Castro Ríos MA, Moiraghi B, Molinas FC, Marta RF, Schattner M, Heller PG. Neutrophil extracellular trap formation and circulating nucleosomes in patients with chronic myeloproliferative neoplasms. Sci Rep 2016; 6:38738. [PMID: 27958278 PMCID: PMC5153854 DOI: 10.1038/srep38738] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/14/2016] [Indexed: 12/15/2022] Open
Abstract
The mechanisms underlying increased thrombotic risk in chronic myeloproliferative neoplasms (MPN) are incompletely understood. We assessed whether neutrophil extracellular traps (NETs), which promote thrombosis, contribute to the procoagulant state in essential thrombocythemia, polycythemia vera and myelofibrosis (MF) patients. Although MPN neutrophils showed increased basal reactive oxygen species (ROS), enhanced NETosis by unstimulated neutrophils was an infrequent finding, whereas PMA-triggered NETosis was impaired, particularly in MF, due to decreased PMA-triggered ROS production. Elevated circulating nucleosomes were a prominent finding and were higher in patients with advanced disease, which may have potential prognostic implication. Histone-MPO complexes, proposed as specific NET biomarker, were seldomly detected, suggesting NETs may not be the main source of nucleosomes in most patients, whereas their correlation with high LDH points to increased cell turn-over as a plausible origin. Lack of association of nucleosomes or NETs with thrombosis or activation markers does not support their use as predictors of thrombosis although prospective studies in a larger cohort may help define their potential contribution to MPN thrombosis. These results do not provide evidence for relevant in vivo NETosis in MPN patients under steady state conditions, although availability of standardized NET biomarkers may contribute to further research in this field.
Collapse
Affiliation(s)
- Cecilia P Marin Oyarzún
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Agostina Carestia
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (IMEX)- CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Paola R Lev
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Ana C Glembotsky
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | | | - Beatriz Moiraghi
- Department of Hematology, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Felisa C Molinas
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Rosana F Marta
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Mirta Schattner
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (IMEX)- CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Paula G Heller
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
139
|
Extracellular histones, cell-free DNA, or nucleosomes: differences in immunostimulation. Cell Death Dis 2016; 7:e2518. [PMID: 27929534 PMCID: PMC5261016 DOI: 10.1038/cddis.2016.410] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022]
Abstract
In inflammation, extensive cell death may occur, which results in the release of chromatin components into the extracellular environment. Individually, the purified chromatin components double stranded (ds)DNA and histones have been demonstrated, both in vitro and in vivo, to display various immunostimulatory effects, for example, histones induce cytotoxicity and proinflammatory signaling through toll-like receptor (TLR)2 and 4, while DNA induces signaling through TLR9 and intracellular nucleic acid sensing mechanisms. However, DNA and histones are organized in nucleosomes in the nucleus, and evidence suggests that nucleosomes are released as such in inflammation. The cytotoxicity and proinflammatory signaling induced by nucleosomes have not been studied as extensively as the separate effects brought about by histones and dsDNA, and there appear to be some marked differences. Remarkably, little distinction between the different forms in which histones circulate has been made throughout literature. This is partly due to the limitations of existing techniques to differentiate between histones in their free or DNA-bound form. Here we review the current understanding of immunostimulation induced by extracellular histones, dsDNA and nucleosomes, and discuss the importance of techniques that in their detection differentiate between these different chromatin components.
Collapse
|
140
|
Pfeiler S, Stark K, Massberg S, Engelmann B. Propagation of thrombosis by neutrophils and extracellular nucleosome networks. Haematologica 2016; 102:206-213. [PMID: 27927771 DOI: 10.3324/haematol.2016.142471] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/17/2016] [Indexed: 12/23/2022] Open
Abstract
Neutrophils, early mediators of the innate immune defense, are recruited to developing thrombi in different types of thrombosis. They amplify intravascular coagulation by stimulating the tissue factor-dependent extrinsic pathway via inactivation of endogenous anticoagulants, enhancing factor XII activation or decreasing plasmin generation. Neutrophil-dependent prothrombotic mechanisms are supported by the externalization of decondensed nucleosomes and granule proteins that together form neutrophil extracellular traps. These traps, either in intact or fragmented form, are causally involved in various forms of experimental thrombosis as first indicated by their role in the enhancement of both microvascular thrombosis during bacterial infection and carotid artery thrombosis. Neutrophil extracellular traps can be induced by interactions of neutrophils with activated platelets; vice versa, these traps enhance adhesion of platelets via von Willebrand factor. Neutrophil-induced microvascular thrombus formation can restrict the dissemination and survival of blood-borne bacteria and thereby sustain intravascular immunity. Dysregulation of this innate immune pathway may support sepsis-associated coagulopathies. Notably, neutrophils and extracellular nucleosomes, together with platelets, critically promote fibrin formation during flow restriction-induced deep vein thrombosis. Neutrophil extracellular traps/extracellular nucleosomes are increased in thrombi and in the blood of patients with different vaso-occlusive pathologies and could be therapeutically targeted for the prevention of thrombosis. Thus, during infections and in response to blood vessel damage, neutrophils and externalized nucleosomes are major promoters of intravascular blood coagulation and thrombosis.
Collapse
Affiliation(s)
- Susanne Pfeiler
- Institut für Laboratoriumsmedizin, Ludwig-Maximilians-Universität, Munich, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
| | - Bernd Engelmann
- Institut für Laboratoriumsmedizin, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
141
|
Joshi MB, Baipadithaya G, Balakrishnan A, Hegde M, Vohra M, Ahamed R, Nagri SK, Ramachandra L, Satyamoorthy K. Elevated homocysteine levels in type 2 diabetes induce constitutive neutrophil extracellular traps. Sci Rep 2016; 6:36362. [PMID: 27811985 PMCID: PMC5095649 DOI: 10.1038/srep36362] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/13/2016] [Indexed: 12/26/2022] Open
Abstract
Constitutively active neutrophil extracellular traps (NETs) and elevated plasma homocysteine are independent risk factors for Type 2 Diabetes (T2D) associated vascular diseases. Here, we show robust NETosis due to elevated plasma homocysteine levels in T2D subjects and increased components of NETs such as neutrophil elastase and cell free DNA. Cooperative NETs formation was observed in neutrophils exposed to homocysteine, IL-6 and high glucose suggesting acute temporal changes tightly regulate constitutive NETosis. Homocysteine induced NETs by NADPH oxidase dependent and independent mechanisms. Constitutively higher levels of calcium and mitochondrial superoxides under hyperglycemic conditions were further elevated in response to homocysteine leading to accelerated NETosis. Homocysteine showed robust interaction between neutrophils and platelets by inducing platelet aggregation and NETosis in an interdependent manner. Our data demonstrates that homocysteine can alter innate immune function by promoting NETs formation and disturbs homeostasis between platelets and neutrophils which may lead to T2D associated vascular diseases.
Collapse
Affiliation(s)
| | | | | | - Mangala Hegde
- School of Life Sciences, Manipal University, Manipal, India
| | - Manik Vohra
- School of Life Sciences, Manipal University, Manipal, India
| | - Rayees Ahamed
- School of Life Sciences, Manipal University, Manipal, India
| | - Shivashankara K Nagri
- Department of Medicine, Kasturba Medical College, Manipal University, Manipal, India
| | | | | |
Collapse
|
142
|
Du Pont-Thibodeau G, Tucci M, Lacroix J. Fresh versus old red blood cell units: Does it matter in severely ill children? Am Heart J 2016; 181:153-155. [PMID: 27823687 DOI: 10.1016/j.ahj.2016.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 11/15/2022]
Affiliation(s)
- Geneviève Du Pont-Thibodeau
- Division of Pediatric Critical Care, Department of Pediatrics, Sainte-Justine Hospital, Université de Montréal, Montréal, Canada
| | - Marisa Tucci
- Division of Pediatric Critical Care, Department of Pediatrics, Sainte-Justine Hospital, Université de Montréal, Montréal, Canada
| | - Jacques Lacroix
- Division of Pediatric Critical Care, Department of Pediatrics, Sainte-Justine Hospital, Université de Montréal, Montréal, Canada.
| |
Collapse
|
143
|
Schulz C, Hecht J, Krüger-Genge A, Kratz K, Jung F, Lendlein A. Generating Aptamers Interacting with Polymeric Surfaces for Biofunctionalization. Macromol Biosci 2016; 16:1776-1791. [PMID: 27689917 DOI: 10.1002/mabi.201600319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/26/2016] [Indexed: 12/23/2022]
Abstract
Common strategies for biofunctionalization of surfaces comprise the immobilization of bioactive molecules used as cell-binding ligands for cell recruitment. Besides covalent binding, multivalent noncovalent physical forces between substrate and ligand are an alternative way to equip surfaces with biomacromolecules. In this study, polymer binding ligands are screened by means of a DNA-based in vitro selection process. As candidate biomaterials poly(ether imide) (PEI), polystyrene, and poly[ethylene-co-(vinyl acetate)] are selected, due to their different chemical structure, but similar macroscopic interface properties, allowing physical interaction with nucleotide bases by varying valences. Multivalent interacting aptamers are successfully enriched by SELEX method and an area-wide surface functionalization is achieved, which can be used for further binding of bioactive molecules. In vitro selection against the polymers result in thymine-dominated aptamer binding motifs. The preferential interaction with thymine is attributed to its chemical structure, connected with a decreased electrostatic repulsion of the π-system and the hydrophobic character maximizing entropy. The aptamer binding stability correlates with available valences for interaction, resulting in a more stable functionalization of PEI.
Collapse
Affiliation(s)
- Christian Schulz
- Institute of Biomaterial Science and Berlin-Brandenburger Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstraße 55, 14513, Teltow, Germany
| | - Jochen Hecht
- Charité - Universitätsmedizin Berlin, Berlin-Brandenburger Centre for Regenerative Therapies, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Anne Krüger-Genge
- Institute of Biomaterial Science and Berlin-Brandenburger Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstraße 55, 14513, Teltow, Germany
| | - Karl Kratz
- Institute of Biomaterial Science and Berlin-Brandenburger Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstraße 55, 14513, Teltow, Germany.,Helmholtz Virtual Institute, Multifunctional Biomaterials for Medicine, Kantstraße 55, 14513, Teltow, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburger Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstraße 55, 14513, Teltow, Germany.,Helmholtz Virtual Institute, Multifunctional Biomaterials for Medicine, Kantstraße 55, 14513, Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburger Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstraße 55, 14513, Teltow, Germany.,Helmholtz Virtual Institute, Multifunctional Biomaterials for Medicine, Kantstraße 55, 14513, Teltow, Germany
| |
Collapse
|
144
|
Pozzi N, Di Cera E. Dual effect of histone H4 on prothrombin activation. J Thromb Haemost 2016; 14:1814-8. [PMID: 27359051 PMCID: PMC5035593 DOI: 10.1111/jth.13400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 11/30/2022]
Abstract
UNLABELLED Essentials Prothrombin converts slowly to thrombin upon interaction with histone H4. Histone H4 may also affect the reactivity of prothrombin toward factor Xa. Histone H4 enhances or inhibits activation by factor Xa depending on cofactor Va. The results reveal an unanticipated dual effect of histone H4 on prothrombin activation by factor Xa. SUMMARY Background Recent studies have documented the ability of prothrombin to convert to the mature protease thrombin upon interaction with histone H4. The effect is abrogated by mutation of the catalytic Ser and requires the Gla domain. Objectives To explore the effect of histone H4 on the reactivity of prothrombin to its physiological activator factor (F) Xa, free or assembled in the prothrombinase complex. Methods The effect of histone H4 on prothrombin activation by FXa and prothrombinase is studied with kinetic assays. The potential epitope of prothrombin recognizing histone H4 is explored with electrostatic calculations using recent crystal structures. Results and Conclusions Binding of histone H4 has a dual effect on prothrombin activation by FXa that is of mechanistic significance: it enhances the reaction > 10-fold in the absence of cofactor Va, but produces complete inhibition in the presence of cofactor. Histone H4 binding to prothrombin produces very slow autoactivation independent of the coagulation cascade and promotes slow thrombin generation by FXa in the absence of phospholipids. In addition, histone H4 has a rapid and drastic inhibitory effect on prothrombin activation by prothrombinase that is likely to dominate pathophysiology.
Collapse
Affiliation(s)
- N Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - E Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
145
|
Nitzsche R, Köhler J, Kreikemeyer B, Oehmcke-Hecht S. Streptococcus pyogenes Escapes Killing from Extracellular Histones through Plasminogen Binding and Activation by Streptokinase. J Innate Immun 2016; 8:589-600. [PMID: 27533300 DOI: 10.1159/000448039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/28/2016] [Indexed: 01/05/2023] Open
Abstract
Histones are small basic proteins and highly conserved among eukaryotes. Their main function is binding, packaging and organizing of DNA in the nucleus, but extracellular histones are also potent antimicrobial proteins. Here we found that Streptococcus pyogenes - an important human pathogen - protects itself from histone-killing by the acquisition of plasminogen. Plasminogen, bound to the streptococcal surface, efficiently prevents histone-mediated killing. Moreover, the streptokinase/plasminogen complex degrades all classes of histones and abrogates their antibacterial and hemolytic effects. This novel streptokinase-mediated virulence mechanism may contribute to the escape of S. pyogenes from the human innate immune system.
Collapse
Affiliation(s)
- Ramona Nitzsche
- University Medicine, Institute of Medical Microbiology, Virology and Hygiene, Rostock University, Rostock, Germany
| | | | | | | |
Collapse
|
146
|
Xu XR, Zhang D, Oswald BE, Carrim N, Wang X, Hou Y, Zhang Q, Lavalle C, McKeown T, Marshall AH, Ni H. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit Rev Clin Lab Sci 2016; 53:409-30. [PMID: 27282765 DOI: 10.1080/10408363.2016.1200008] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Platelets are small anucleate blood cells generated from megakaryocytes in the bone marrow and cleared in the reticuloendothelial system. At the site of vascular injury, platelet adhesion, activation and aggregation constitute the first wave of hemostasis. Blood coagulation, which is initiated by the intrinsic or extrinsic coagulation cascades, is the second wave of hemostasis. Activated platelets can also provide negatively-charged surfaces that harbor coagulation factors and markedly potentiate cell-based thrombin generation. Recently, deposition of plasma fibronectin, and likely other plasma proteins, onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that may occur even earlier than the first wave of hemostasis, platelet accumulation. Although no experimental evidence currently exists, it is conceivable that platelets may also contribute to this protein wave of hemostasis by releasing their granule fibronectin and other proteins that may facilitate fibronectin self- and non-self-assembly on the vessel wall. Thus, platelets may contribute to all three waves of hemostasis and are central players in this critical physiological process to prevent bleeding. Low platelet counts in blood caused by enhanced platelet clearance and/or impaired platelet production are usually associated with hemorrhage. Auto- and allo-immune thrombocytopenias such as idiopathic thrombocytopenic purpura and fetal and neonatal alloimmune thrombocytopenia may cause life-threatening bleeding such as intracranial hemorrhage. When triggered under pathological conditions such as rupture of an atherosclerotic plaque, excessive platelet activation and aggregation may result in thrombosis and vessel occlusion. This may lead to myocardial infarction or ischemic stroke, the major causes of mortality and morbidity worldwide. Platelets are also involved in deep vein thrombosis and thromboembolism, another leading cause of mortality. Although fibrinogen has been documented for more than half a century as essential for platelet aggregation, recent studies demonstrated that fibrinogen-independent platelet aggregation occurs in both gene deficient animals and human patients under physiological and pathological conditions (non-anti-coagulated blood). This indicates that other unidentified platelet ligands may play important roles in thrombosis and might be novel antithrombotic targets. In addition to their critical roles in hemostasis and thrombosis, emerging evidence indicates that platelets are versatile cells involved in many other pathophysiological processes such as innate and adaptive immune responses, atherosclerosis, angiogenesis, lymphatic vessel development, liver regeneration and tumor metastasis. This review summarizes the current knowledge of platelet biology, highlights recent advances in the understanding of platelet production and clearance, molecular and cellular events of thrombosis and hemostasis, and introduces the emerging roles of platelets in the immune system, vascular biology and tumorigenesis. The clinical implications of these basic science and translational research findings will also be discussed.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,c Department of Medicine , Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , P.R. China
| | - Dan Zhang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,c Department of Medicine , Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , P.R. China
| | - Brigitta Elaine Oswald
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada
| | - Naadiya Carrim
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada
| | - Xiaozhong Wang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,f The Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , P.R. China
| | - Yan Hou
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,g Jilin Provincial Center for Disease Prevention and Control , Changchun , Jilin , P.R. China
| | - Qing Zhang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,h State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University , Guangzhou , Guangdong , P.R. China , and
| | - Christopher Lavalle
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada
| | - Thomas McKeown
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada
| | - Alexandra H Marshall
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada
| | - Heyu Ni
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada .,i Department of Medicine , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
147
|
Pozzi N, Bystranowska D, Zuo X, Di Cera E. Structural Architecture of Prothrombin in Solution Revealed by Single Molecule Spectroscopy. J Biol Chem 2016; 291:18107-16. [PMID: 27435675 DOI: 10.1074/jbc.m116.738310] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 01/29/2023] Open
Abstract
The coagulation factor prothrombin has a complex spatial organization of its modular assembly that comprises the N-terminal Gla domain, kringle-1, kringle-2, and the C-terminal protease domain connected by three intervening linkers. Here we use single molecule Förster resonance energy transfer to access the conformational landscape of prothrombin in solution and uncover structural features of functional significance that extend recent x-ray crystallographic analysis. Prothrombin exists in equilibrium between two alternative conformations, open and closed. The closed conformation predominates (70%) and features an unanticipated intramolecular collapse of Tyr(93) in kringle-1 onto Trp(547) in the protease domain that obliterates access to the active site and protects the zymogen from autoproteolytic conversion to thrombin. The open conformation (30%) is more susceptible to chymotrypsin digestion and autoactivation, and features a shape consistent with recent x-ray crystal structures. Small angle x-ray scattering measurements of prothrombin wild type stabilized 70% in the closed conformation and of the mutant Y93A stabilized 80% in the open conformation directly document two envelopes that differ 50 Å in length. These findings reveal important new details on the conformational plasticity of prothrombin in solution and the drastic structural difference between its alternative conformations. Prothrombin uses the intramolecular collapse of kringle-1 onto the active site in the closed form to prevent autoactivation. The open-closed equilibrium also defines a new structural framework for the mechanism of activation of prothrombin by prothrombinase.
Collapse
Affiliation(s)
- Nicola Pozzi
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Dominika Bystranowska
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Xiaobing Zuo
- the X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Enrico Di Cera
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| |
Collapse
|
148
|
Abstract
During apoptosis or activation, cells can release a subcellular structure, called a membrane microvesicle (also known as microparticle) into the extracellular environment. Microvesicles bud-off as a portion of cell membrane with its associated proteins and lipids surrounding a cytosolic core that contains intracellular proteins, lipids, and nucleic acids (DNA, RNA, siRNA, microRNA, lncRNA). Biologically active molecules on the microvesicle surface and encapsulated within can act on recipient cells as a novel mode of intercellular communication. Apoptosis has long been known to be involved in the development of diseases of autoimmunity. Abnormally persistent microvesicles, particularly apoptotic microvesicles, can accelerate autoimmune responses locally in specific organs and tissues as well as systemically. In this review, we focus on studies implicating microvesicles in the pathogenesis of autoimmune diseases and their complications.
Collapse
|
149
|
Volik S, Alcaide M, Morin RD, Collins C. Cell-free DNA (cfDNA): Clinical Significance and Utility in Cancer Shaped By Emerging Technologies. Mol Cancer Res 2016; 14:898-908. [DOI: 10.1158/1541-7786.mcr-16-0044] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/30/2016] [Indexed: 11/16/2022]
|
150
|
Thachil J. Disseminated intravascular coagulation - new pathophysiological concepts and impact on management. Expert Rev Hematol 2016; 9:803-14. [PMID: 27314681 DOI: 10.1080/17474086.2016.1203250] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Disseminated intravascular coagulation (DIC) is an intermediary mechanism of disease which develops secondary to many causes including sepsis, trauma and malignancies. This review attempts to summarise the new pathophysiological developments and the impact they have on the current and future management of DIC. AREAS COVERED Several publications detailing the pathophysiology of DIC and the clinical management were identified using a pubmed search. Expert commentary: In recent years, on the initiatives of the international society of thrombosis and haemostasis, important advances have been made on the diagnostic aspect of DIC. In addition, several researchers have focused on the pathophysiology of the condition which is likely to provide better diagnostic markers and targeted therapy. However, some confusion still exists in the definition and management of DIC since various specialists understands the mechanisms involved in DIC from different perspectives.
Collapse
Affiliation(s)
- Jecko Thachil
- a Department of Haematology , Central Manchester University Hospitals NHS Foundation Trust , Manchester , UK
| |
Collapse
|