101
|
Yu W, Hu S, Yang R, Lin L, Mao C, Jin M, Gu Y, Li G, Jiang B, Gong Y, Lu E. Upregulated Vanins and their potential contribution to periodontitis. BMC Oral Health 2022; 22:614. [PMID: 36527111 PMCID: PMC9758802 DOI: 10.1186/s12903-022-02583-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although Vanins are closely related to neutrophil regulation and response to oxidative stress, and play essential roles in inflammatory diseases with clinical significance, their contribution to periodontitis remains to be determined. This research was designed to assess the expression of Vanins in human gingiva, and to define the relationship between Vanins and periodontitis. METHODS Forty-eight patients with periodontitis and forty-two periodontal healthy individuals were enrolled for gingival tissue sample collection. Expression levels of VNN1, VNN2 and VNN3 were evaluated by RT-qPCR and validated in datasets GSE10334 and GSE16134. Western blot and immunohistochemistry identified specific proteins within gingiva. The histopathological changes in gingival sections were investigated using HE staining. Correlations between Vanins and clinical parameters, PD and CAL; between Vanins and inflammation, IL1B; and between Vanins and MPO in periodontitis were investigated by Spearman's correlation analysis respectively. Associations between VNN2 and indicators of neutrophil adherence and migration were further validated in two datasets. RESULTS Vanins were at higher concentrations in diseased gingival tissues in both RT-qPCR and dataset analysis (p < 0.01). Assessment using western blot and immunohistochemistry presented significant upregulations of VNN1 and VNN2 in periodontitis (p < 0.05). The higher expression levels of Vanins, the larger the observed periodontal parameters PD and CAL (p < 0.05), and IL1B (p < 0.001). Moreover, positive correlations existed between VNN2 and MPO, and between VNN2 and neutrophil-related indicators. CONCLUSION Our study demonstrated upregulation of Vanins in periodontitis and the potential contribution of VNN2 to periodontitis through neutrophils-related pathological processes.
Collapse
Affiliation(s)
- Weijun Yu
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Shucheng Hu
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Ruhan Yang
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Lu Lin
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Chuanyuan Mao
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Min Jin
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Yuting Gu
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Guanglong Li
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Bin Jiang
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Yuhua Gong
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Eryi Lu
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| |
Collapse
|
102
|
Li Q, Luo K, Su Z, Huang F, Wu Y, Zhou F, Li Y, Peng X, Li J, Ren B. Dental calculus: A repository of bioinformation indicating diseases and human evolution. Front Cell Infect Microbiol 2022; 12:1035324. [PMID: 36579339 PMCID: PMC9791188 DOI: 10.3389/fcimb.2022.1035324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
Dental calculus has long been considered as a vital contributing factor of periodontal diseases. Our review focuses on the role of dental calculus as a repository and discusses the bioinformation recently reported to be concealed in dental calculus from three perspectives: time-varying oral condition, systemic diseases, and anthropology at various times. Molecular information representing an individual's contemporary oral health status could be detected in dental calculus. Additionally, pathogenic factors of systemic diseases were found in dental calculus, including bacteria, viruses and toxic heavy metals. Thus, dental calculus has been proposed to play a role as biological data storage for detection of molecular markers of latent health concerns. Through the study of environmental debris in dental calculus, an overview of an individual's historical dietary habits and information about the environment, individual behaviors and social culture changes can be unveiled. This review summarizes a new role of dental calculus as a repository of bioinformation, with potential use in the prediction of oral diseases, systemic diseases, and even anthropology.
Collapse
Affiliation(s)
- Qinyang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kaihua Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhifei Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangting Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yajie Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangjie Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China,*Correspondence: Jiyao Li, ; Biao Ren,
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China,*Correspondence: Jiyao Li, ; Biao Ren,
| |
Collapse
|
103
|
Zhu B, Li L, Wang B, Miao L, Zhang J, Wu J. Introducing Nanozymes: New Horizons in Periodontal and Dental Implant Care. Chembiochem 2022; 24:e202200636. [PMID: 36510344 DOI: 10.1002/cbic.202200636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The prevalence of periodontal and peri-implant diseases has been increasing worldwide and has gained a lot of attention. As multifunctional nanomaterials with enzyme-like activity, nanozymes have earned a place in the biomedical field. In periodontics and implantology, nanozymes have contributed greatly to research on maintaining periodontal health and improving implant success rates. To highlight this progress, we review nanozymes for antimicrobial therapy, anti-inflammatory therapy, tissue regeneration promotion, and synergistic effects in periodontal and peri-implant diseases. The future prospects of nanozymes in periodontology and implantology are also discussed along with challenges.
Collapse
Affiliation(s)
- Bijun Zhu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Linfeng Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Bao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Jinli Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiangjiexing Wu
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
104
|
Hu QY, Hu J, Li H, Fang X, Sun ZJ, Xu Z, Zhang L. Anti-inflammatory and antioxidant effects of rhein loaded nanomicelles in periodontitis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
105
|
Ardila CM, Vivares-Builes AM. Antibiotic Resistance in Patients with Peri-Implantitis: A Systematic Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315609. [PMID: 36497685 PMCID: PMC9737312 DOI: 10.3390/ijerph192315609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 05/31/2023]
Abstract
The implementation of adjunctive antibiotics has been recommended for the therapy of peri-implantitis (PI). In this review, antibiotic resistance patterns in PI patients were assessed. A systematic scoping review of observational studies and trials was established in conjunction with the PRISMA extension for scoping reviews. The SCOPUS, PubMed/MEDLINE, EMBASE, SCIELO, Web of Science, and LILACS databases were reviewed along with the gray literature. The primary electronic examination produced 139 investigations. Finally, four observational studies met the selection criteria. These studies evaluated 214 implants in 168 patients. Porphyromonas gingivalis and Fusobacterium nucleatum mainly presented high resistance to tetracycline, metronidazole, and erythromycin in PI patients. Similarly, Aggregatibacter actinomycetemcomitans was also highly resistant to clindamycin and doxycycline. Other microorganisms such as Tannerella forsythia, Parvimonas micra, and Prevotella intermedia/nigrescens also presented significant levels of resistance to other antibiotics including amoxicillin, azithromycin, and moxifloxacin. However, most microorganisms did not show resistance to the combination amoxicillin metronidazole. Although the management of adjunctive antimicrobials in the therapy of PI is controversial, in this review, the resistance of relevant microorganisms to antibiotics used to treat PI, and usually prescribed in dentistry, was observed. Clinicians should consider the antibiotic resistance demonstrated in the treatment of PI patients and its public health consequences.
Collapse
Affiliation(s)
- Carlos M. Ardila
- Basic Studies Department, School of Dentistry, Universidad de Antioquia UdeA, Medellín 050010, Colombia
| | | |
Collapse
|
106
|
Maybodi FR, Fakhari M, Tavakoli F. Effects of omega-3 supplementation as an adjunct to non-surgical periodontal therapy on periodontal parameters in periodontitis patients: a randomized clinical trial. BMC Oral Health 2022; 22:521. [DOI: 10.1186/s12903-022-02569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Abstract
Objectives
This study aimed to assess the effects of omega-3 fatty acid supplementation as an adjunct to non-surgical periodontal therapy in patients with periodontitis.
Materials and methods
This randomized clinical trial was conducted on 30 patients with periodontitis. All patients received standard non-surgical periodontal therapy, and were randomly divided into two groups of intervention and control by a table of random numbers (n = 15). The intervention group consumed 1000 mg natural fish oil soft-gels daily (300 mg Omega-3 marine triglycerides, 180 mg Eicosapentaenoic acid and 120 mg Docosahexaenoic acid) while the control group used soft-gels contained only some soybean oil for 3 months. Clinical attachment loss (CAL), probing depth (PD), and bleeding index (BI) were recorded at baseline (before the intervention) and after 3 months. The two groups were compared regarding the clinical parameters by t-test (alpha = 0.05).
Results
All three clinical parameters decreased in both groups at 3 months compared with baseline (P = 0.001). The improvement in PD and CAL in the intervention group was significantly greater than that in the control group (P = 0.001); however, the difference in BI was not significant between the two groups (P = 0.283).
Conclusion
Omega-3 supplementation as an adjunct to non-surgical periodontal therapy significantly improved the clinical parameters in periodontitis patients compared to soybean oil supplements.
Collapse
|
107
|
Efficacy of Systemic Amoxicillin–Metronidazole in Periodontitis Patients with Diabetes Mellitus: A Systematic Review of Randomized Clinical Trials. Medicina (B Aires) 2022; 58:medicina58111605. [DOI: 10.3390/medicina58111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
Abstract
Systemic amoxicillin–metronidazole was proven to be effective in managing periodontitis in systemically healthy patients. It was demonstrated that systemic antibiotic therapy can effectively improve clinical periodontal parameters and reduce periodontopathogenic organisms in the subgingival biofilm. However, the evidence for prescribing this drug combination to patients with diabetes remains insufficient. This systematic review was designed to evaluate the effectiveness of a systemic amoxicillin–metronidazole combination as an adjunct to nonsurgical periodontal therapy in patients with diabetes presenting with chronic periodontitis. The PubMed, Scopus, and Web of Science databases were electronically searched for randomized clinical trials in January 2022. Randomized clinical trials evaluating systemic amoxicillin–metronidazole therapy as an adjunct to nonsurgical periodontal therapy in patients with type 2 diabetes presenting with periodontitis were selected for screening. The qualities of the studies were assessed using the Cochrane Collaboration’s Tool for Assessing Risk of Bias Version 2.0 (ROB-2), and a GRADE assessment was applied to estimate the overall certainty of the evidence. Using predefined eligibility criteria, four clinical trials examining 209 patients were selected from the 611 articles identified in the search. Two studies reported a better reduction in clinical parameters when SRP was combined with systemic amoxicillin–metronidazole. Systemic amoxicillin–metronidazole was found to be as effective as clindamycin. Surgical therapy with systemic amoxicillin–metronidazole was more effective than nonsurgical therapy with systemic amoxicillin–metronidazole, even though both resulted in reduced clinical parameters. Combined amoxicillin–metronidazole was observed to reduce periodontal probing depth (PPD), clinical attachment level (CAL), and bleeding on probing (BOP) compared to no treatment or NSPT alone. However, the effect was not greater when compared to NSPT with clindamycin or surgical therapy with amoxicillin–metronidazole. Further randomized trials are required before clinical guidelines can be established for the use of systemic amoxicillin–metronidazole. Future randomized controlled clinical trials with long-term follow-ups are required to assess the efficacy of systemic antibiotic therapy in managing periodontitis in patients with diabetes.
Collapse
|
108
|
Liu C, Li Y, Han G. Advances of Mesenchymal Stem Cells Released Extracellular Vesicles in Periodontal Bone Remodeling. DNA Cell Biol 2022; 41:935-950. [PMID: 36315196 DOI: 10.1089/dna.2022.0359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles that include exosomes, microvesicles, and apoptotic bodies; they interact with target cell surface receptors and transport contents, including mRNA, proteins, and enzymes into the cytoplasm of target cells to function. The biological fingerprints of EVs practically mirror those of the parental cells they originated from. In the bone remodeling microenvironment, EVs could act on osteoblasts to regulate the bone formation, promote osteoclast differentiation, and regulate bone resorption. Therefore, there have been many attempts wherein EVs were used to achieve targeted therapy in bone-related diseases. Periodontitis, a common bacterial infectious disease, could cause severe alveolar bone resorption, resulting in tooth loss, whereas research on periodontal bone regeneration is also an urgent question. Therefore, EVs-related studies are important for periodontal bone remodeling. In this review, we summarize the current knowledge of mesenchymal stem cell-EVs involved in periodontal bone remodeling and explore the functional gene expression through a comparative analysis of transcriptomic content.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
109
|
Effects of Temoporfin-Based Photodynamic Therapy on the In Vitro Antibacterial Activity and Biocompatibility of Gelatin-Hyaluronic Acid Cross-Linked Hydrogel Membranes. Pharmaceutics 2022; 14:pharmaceutics14112314. [PMID: 36365133 PMCID: PMC9699569 DOI: 10.3390/pharmaceutics14112314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
This study was performed to design a hydrogel membrane that exhibits antibacterial properties and guides different tissues. Gelatin and hyaluronic acid were used as the main structures, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) was used as a cross-linker, and temoporfin was used as an antibacterial agent. The results revealed that the hydrogel membrane impregnated with temoporfin (HM-T) had a fixation index of >89%. Temoporfin was used in conjunction with a diode laser and did not significantly affect EDC-induced cross-linking. The inhibitory activity of temoporfin showed that HM-T15 and HM-T30 (light exposure for 15 and 30 min, respectively) had remarkable antibacterial properties. The cell survival rate of HM-T15 was 73% of that of the control group, indicating that temoporfin exposure for 15 min did not exert cytotoxic effects on L-929 cells. HM and HM-T15 hydrogel membranes showed good cell adhesion and proliferation after 14 days of dark incubation. However, the hydrogel membrane containing temoporfin significantly reduced pro-inflammatory gene expression. In summary, the HM-T15 group showed potential as a biodegradable material for biocompatible tissue-guarded regeneration membranes with antibacterial properties. This study demonstrated the potential of temoporfin for innovative biomaterials and delivery systems applied to new regenerative periodontal therapies.
Collapse
|
110
|
Yadav E, Sebastian S, Gupta MK. Aminopyridinyl Tricosanamide Based Pseudoplastic and Thermoreversible Oleogels for pH‐Dependant
in vitro
Release of Metronidazole. ChemistrySelect 2022. [DOI: 10.1002/slct.202203014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Eqvinshi Yadav
- Department of Chemistry School of Basic Sciences Central University of Haryana Mahendergarh-123 031 Haryana India
| | - Sharol Sebastian
- Department of Chemistry School of Basic Sciences Central University of Haryana Mahendergarh-123 031 Haryana India
| | - Manoj K. Gupta
- Department of Chemistry School of Basic Sciences Central University of Haryana Mahendergarh-123 031 Haryana India
| |
Collapse
|
111
|
El Mobadder M, Nammour S, Matys J, Grzech-Leśniak K. Sodium Hypochlorite and Diode Laser in Non-Surgical Treatment of Periodontitis: Clinical and Bacteriological Study with Real Time Polymerase Chain Reaction (PCR). Life (Basel) 2022; 12:life12101637. [PMID: 36295072 PMCID: PMC9605566 DOI: 10.3390/life12101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022] Open
Abstract
Increasing the disinfection during non-surgical treatment of periodontitis is primordial. This study assesses the effectiveness of sodium hypochlorite and a 980 nm diode laser in non-surgical treatment of periodontitis. Thirty sites of localized periodontitis with a probing pocket depth (PPD) of ≥ 6 mm were included. Fifteen underwent scaling root planing (SRP group) and 15 underwent SRP + 0.5% NaOCl and a 980 nm diode laser (study group). A biological molecular test and real time polymerase chain reaction (RT-PCR) were performed before (T0) and after intervention (T1). Total bacterial count and counts of Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, Prevotella intermedia, Peptostreptococcus micros, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Eubacterium nodatum, Capnocytophaga gingivalis were assessed. Plaque index (PI), bleeding on probing (BOP), gingival recession (GR), PPD and clinical attachment loss (CAL) were evaluated at T0, and 3 and 6 months after. Study group showed a statistically significant reduction of TBC (5.66 × 108 CFU/mL) compared to SRP (6.2 × 109 CFU/mL). Both groups showed a statistically significant reduction of Treponema denticola, Tannerella forsythia, Prevotella intermedia, Peptostrep. (micromonas) micros and Fusobacterium nucleatum; however, a significant reduction of Eubacterium nodatum and Capnocytophaga gingivalis was observed in the study group. At T6, both groups had a statistically significant reduction of PI, BOP, GR, PD and CAL. The study group showed more GR compared to SRP and a significant reduction of PD (4.03 mm ± 0.49) compared to SRP (5.28 mm ± 0.67). This study reveals that NaOCl and a diode laser are effective as an adjunctive to the non-surgical treatment of periodontitis.
Collapse
Affiliation(s)
- Marwan El Mobadder
- Dental Surgery Department, Wroclaw Medical University, 50-425 Wroclaw, Poland
- Correspondence: or ; Tel.: +961-71343767
| | - Samir Nammour
- Department of Dental Sciences, Faculty of Medicine, University of Liege, 4000 Liege, Belgium
| | - Jacek Matys
- Dental Surgery Department, Wroclaw Medical University, 50-425 Wroclaw, Poland
| | | |
Collapse
|
112
|
Vargas-Alfredo N, Munar-Bestard M, Ramis JM, Monjo M. Synthesis and Modification of Gelatin Methacryloyl (GelMA) with Antibacterial Quaternary Groups and Its Potential for Periodontal Applications. Gels 2022; 8:630. [PMID: 36286131 PMCID: PMC9601335 DOI: 10.3390/gels8100630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 09/02/2023] Open
Abstract
Gelatin methacryloyl (GelMA) hydrogels have been widely used for different biomedical applications due to their tunable physical characteristics and appropriate biological properties. In addition, GelMA could be modified with the addition of functional groups providing inherent antibacterial capabilities. Here, GelMA-based hydrogels were developed through the combination of a GelMA unmodified and modified polymer with quaternary ammonium groups (GelMAQ). The GelMAQ was synthesized from GelMA with a low degree of substitution of methacrylamide groups (DSMA) and grafted with glycidyltrimethylammonium chloride in the free amine groups of the lysine moieties present in the original gelatin. GelMAs with high DSMA and GelMAQ were combined 50/50% or 25/75% (w/w), respectively, and compared to controls GelMA and GelMA with added chlorhexidine (CHX) at 0.2%. The different hydrogels were characterized using 1H-NMR spectroscopy and swelling behavior and tested in (1) Porphyromonas gingivalis to evaluate their antibacterial properties and (2) human gingival fibroblast to evaluate their cell biocompatibility and regenerative properties. GelMA/GelMAQ 25/75% showed good antibacterial properties but also excellent biocompatibility and regenerative properties toward human fibroblasts in the wound healing assay. Taken together, these results suggest that the modification of GelMA with quaternary groups could facilitate periodontal tissue regeneration, with good biocompatibility and added antibacterial properties.
Collapse
Affiliation(s)
- Nelson Vargas-Alfredo
- Cell Therapy and Tissue Engineering Group, Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, University Hospital Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Marta Munar-Bestard
- Cell Therapy and Tissue Engineering Group, Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, University Hospital Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Joana Maria Ramis
- Cell Therapy and Tissue Engineering Group, Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, University Hospital Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group, Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, University Hospital Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| |
Collapse
|
113
|
Li C, Wu Y, Xie Y, Zhang Y, Jiang S, Wang J, Luo X, Chen Q. Oral manifestations serve as potential signs of ulcerative colitis: A review. Front Immunol 2022; 13:1013900. [PMID: 36248861 PMCID: PMC9559187 DOI: 10.3389/fimmu.2022.1013900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
As an immune dysregulation-related disease, although ulcerative colitis (UC) primarily affects the intestinal tract, extraintestinal manifestations of the disease are evident, particularly in the oral cavity. Herein, we have reviewed the various oral presentations, potential pathogenesis, and treatment of oral lesions related to UC. The oral manifestations of UC include specific and nonspecific manifestations, with the former including pyostomatitis vegetans and the latter encompassing recurrent aphthous ulcers, atrophic glossitis, burning mouth syndrome, angular cheilitis, dry mouth, taste change, halitosis, and periodontitis. Although the aetiology of UC has not been fully determined, the factors leading to its development include immune system dysregulation, dysbiosis, and malnutrition. The principle of treating oral lesions in UC is to relieve pain, accelerate the healing of lesions, and prevent secondary infection, and the primary procedure is to control intestinal diseases. Systemic corticosteroids are the preferred treatment options, besides, topical and systemic administration combined with dietary guidance can also be applied. Oral manifestations of UC might accompany or precede the diagnosis of UC, albeit with the absence of intestinal symptoms; therefore, oral lesions, especially pyostomatitis vegetans, recurrent aphthous ulcer and periodontitis, could be used as good mucocutaneous signs to judge the occurrence and severity of UC, thus facilitating the early diagnosis and treatment of UC and avoiding severe consequences, such as colon cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaobo Luo
- *Correspondence: Qianming Chen, ; Xiaobo Luo,
| | | |
Collapse
|
114
|
Zhao P, Chen W, Feng Z, Liu Y, Liu P, Xie Y, Yu DG. Electrospun Nanofibers for Periodontal Treatment: A Recent Progress. Int J Nanomedicine 2022; 17:4137-4162. [PMID: 36118177 PMCID: PMC9480606 DOI: 10.2147/ijn.s370340] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is a major threat to oral health, prompting scientists to continuously study new treatment techniques. The nanofibrous membrane prepared via electrospinning has a large specific surface area and high porosity. On the one hand, electrospun nanofibers can improve the absorption capacity of proteins and promote the expression of specific genes. On the other hand, they can improve cell adhesion properties and prevent fibroblasts from passing through the barrier membrane. Therefore, electrospinning has unique advantages in periodontal treatment. At present, many oral nanofibrous membranes with antibacterial, anti-inflammatory, and tissue regeneration properties have been prepared for periodontal treatment. First, this paper introduces the electrospinning process. Then, the commonly used polymers of electrospun nanofibrous membranes for treating periodontitis are summarized. Finally, different types of nanofibrous membranes prepared via electrospinning for periodontal treatment are presented, and the future evolution of electrospinning to treat periodontitis is described.
Collapse
Affiliation(s)
- Ping Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Wei Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200433, People's Republic of China.,Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Yufeng Xie
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, 200093, People's Republic of China
| |
Collapse
|
115
|
Andrei V, Fiț NI, Matei I, Barabás R, Bizo LA, Cadar O, Boșca BA, Farkas NI, Marincaș L, Muntean DM, Dinte E, Ilea A. In Vitro Antimicrobial Effect of Novel Electrospun Polylactic Acid/Hydroxyapatite Nanofibres Loaded with Doxycycline. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6225. [PMID: 36143537 PMCID: PMC9502851 DOI: 10.3390/ma15186225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The present study aimed to assess the in vitro antimicrobial effects of a novel biomaterial containing polylactic acid (PLA), nano-hydroxyapatite (nano-HAP) and Doxycycline (Doxy) obtained by electrospinning and designed for the non-surgical periodontal treatment. The antimicrobial activity of two samples (test sample, PLA-HAP-Doxy7: 5% PLA, nano-HAP, 7% Doxy and control sample, PLA-HAP: 5% PLA, nano-HAP) against two periodontal pathogens—Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis—was assessed using the Kirby−Bauer Disk Diffusion Susceptibility Test and compared with the effect of four antibiotics used as adjuvants in periodontal therapy: Amoxicillin, Ampicillin, Doxy and Metronidazole. The test sample (embedded with Doxy) showed higher inhibitory effects than commonly used antibiotics used in the treatment of periodontitis, while the control sample showed no inhibitory effects. Moreover, significant differences were observed between the inhibition zones of the two samples (p < 0.05). The Doxy-loaded PLA nanofibres had an antimicrobial effect against the periodontal pathogens. Based on these results, the novel biomaterial could be a promising candidate as adjuvant for the non-surgical local treatment in periodontitis.
Collapse
Affiliation(s)
- Vlad Andrei
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Nicodim Iosif Fiț
- Department of Microbiology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Ioana Matei
- Department of Microbiology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Réka Barabás
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, 400028 Cluj-Napoca, Romania
| | - Liliana Antonela Bizo
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 400293 Cluj-Napoca, Romania
| | - Bianca Adina Boșca
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Noémi-Izabella Farkas
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Laura Marincaș
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Dana-Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
116
|
Clinical and radiographic evaluation of low-speed platelet-rich fibrin (PRF) for the treatment of intra-osseous defects of stage-III periodontitis patients: a randomized controlled clinical trial. Clin Oral Investig 2022; 26:6671-6680. [PMID: 35876893 PMCID: PMC9643252 DOI: 10.1007/s00784-022-04627-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022]
Abstract
Aim The current randomized controlled trial assessed for the first time the effect of a low-speed platelet-rich fibrin (PRF) with open flap debridement (OFD) versus OFD alone in the treatment of periodontal intra-osseous defects of stage-III periodontitis patients. Methods Twenty-two periodontitis patients with ≥ 6 mm probing depth (PD) and ≥ 3 mm intra-osseous defects were randomized into test (PRF + OFD; n = 11) and control (OFD; n = 11) groups. Clinical attachment level (CAL)–gain (primary outcome), PD-reduction, gingival recession depth (GRD), full-mouth bleeding scores (FMBS), full-mouth plaque scores (FMPS), radiographic linear defect depth (RLDD), and radiographic bone fill (secondary-outcomes) were examined over 9 months post-surgically. Results Low-speed PRF + OFD and OFD demonstrated significant intra-group CAL-gain and PD- and RLDD-reduction at 3, 6, and 9 months (p < 0.01). Low-speed PRF + OFD exhibited a significant CAL-gain of 3.36 ± 1.12 mm at 6 months (2.36 ± 0.81 mm for the control group; p < 0.05), and a significantly greater PD-reduction of 3.36 ± 1.12 mm at 3 months, of 3.64 ± 1.12 mm at 6 months and of 3.73 ± 1.19 mm at 9 months (2.00 ± 0.89 mm, 2.09 ± 1.04 mm, and 2.18 ± 1.17 mm in the control group respectively; p < 0.05). No significant differences were notable regarding GRD, FMPS, FMBS, RLDD, or bone fill between both groups (p > 0.05). Conclusions Within the current clinical trial’s limitations, the use of low-speed PRF in conjunction with OFD improved CAL and PD post-surgically, and could provide a cost-effective modality to augment surgical periodontal therapy of intra-osseous defects of stage-III periodontitis patients. Clinical relevance Low-speed PRF could provide a cost-effective modality to improve clinical attachment gain and periodontal probing depth reduction with open flap debridement approaches.
Supplementary Information The online version contains supplementary material available at 10.1007/s00784-022-04627-2.
Collapse
|
117
|
Clinical Efficacy and Safety of Antimicrobial Photodynamic Therapy in Residual Periodontal Pockets during the Maintenance Phase. Pharmaceuticals (Basel) 2022; 15:ph15080924. [PMID: 35893748 PMCID: PMC9332381 DOI: 10.3390/ph15080924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 02/04/2023] Open
Abstract
Antimicrobial photodynamic therapy (a-PDT) in combination with scaling root planing (SRP) is more effective at improving periodontal status than SRP alone. However, the effectiveness of a-PDT in combination with irrigation for patients undergoing periodontal maintenance has not been clarified. This study evaluated the efficacy and safety of a-PDT in the maintenance phase. Patients who had multiple sites with bleeding on probing (BOP) and periodontal probing depth (PPD) of 4–6 mm in the maintenance phase were treated with a split-mouth design. These sites were randomly assigned to one of two groups: the a-PDT group and the irrigation group. In the a-PDT group, the periodontal pockets were treated with light-sensitive toluidine blue and a light irradiator. In the irrigation group, the periodontal pockets were simply irrigated using an ultrasonic scaler. After 7 days, the safety and efficacy of a-PDT were assessed. The mean PPD of the a-PDT group had reduced from 4.50 mm to 4.13 mm, whereas negligible change was observed in the irrigation group. BOP significantly improved from 100% to 33% in the PDT group, whereas it hardly changed in the irrigation group. No adverse events were observed in any patients. a-PDT may be useful as a noninvasive treatment in the maintenance phase, especially in patients with relatively deep periodontal pocket.
Collapse
|
118
|
Liu Y, Li T, Sun M, Cheng Z, Jia W, Jiao K, Wang S, Jiang K, Yang Y, Dai Z, Liu L, Liu G, Luo Y. ZIF-8 modified multifunctional injectable photopolymerizable GelMA hydrogel for the treatment of periodontitis. Acta Biomater 2022; 146:37-48. [PMID: 35364317 DOI: 10.1016/j.actbio.2022.03.046] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022]
Abstract
Periodontitis is a chronic inflammatory disease caused by plaque that leads to alveolar bone resorption. In the treatment of periodontitis, it is necessary to reduce the bacterial load and promote alveolar bone regeneration. In this study, zeolitic imidazolate framework-8 (ZIF-8) is used in the treatment of periodontitis, and an injectable photopolymerizable ZIF-8/gelatin methacryloyl (GelMA) composite hydrogel (GelMA-Z) is constructed. We confirm that ZIF-8 nanoparticles are successfully loaded into GelMA, which demonstrates fluidity and photopolymerizability. GelMA-Z continuously releases Zn2+ and shows good cytocompatibility. In vitro, GelMA-Z can effectively upregulate the expression of osteogenesis-related genes and proteins, increase alkaline phosphatase activity, promote extracellular matrix mineralization by rat bone mesenchymal stem cells, and exert an obvious antibacterial effect against Porphyromonas gingivalis. In vivo, GelMA-Z reduces the bacterial load, relieves inflammation and promotes alveolar bone regeneration in a rat model. The above results show that GelMA-Z has potential prospects in the treatment of periodontitis. STATEMENT OF SIGNIFICANCE: Various methods have been explored for the treatment of periodontitis. However, current regiments have difficulty achieving ideal alveolar bone regeneration. In this study, we constructed a zeolitic imidazolate framework-8 (ZIF-8)/gelatin methacryloyl (GelMA) composite hydrogel (GelMA-Z). (1) The injectable and photopolymerizable GelMA-Z showed biocompatibility in vitro and in vivo. (2) GelMA-Z continually released zinc ions to promote the osteogenic differentiation of bone mesenchymal stem cells and kill bacteria in vitro. (3) In a rat model, the GelMA-Z pregel solution was used to fill the periodontal pocket and then crosslinked by UV exposure. GelMA-Z can stably remain in the periodontal pocket to reduce the bacterial load, relieve inflammation and promote alveolar bone regeneration. In conclusion, GelMA-Z has great potential for use in the treatment of periodontitis, especially in promoting alveolar bone regeneration.
Collapse
Affiliation(s)
- Yun Liu
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Ting Li
- Department of Gastroenterology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Maolei Sun
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agriculture University, Changchun 130000, China
| | - Wenyuan Jia
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130000, China
| | - Kun Jiao
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Shaoru Wang
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Kongzhao Jiang
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yuheng Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130000, China
| | - Zhihui Dai
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Liping Liu
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Guomin Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130000, China.
| | - Yungang Luo
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
119
|
Zhang Z, Yu Y, Zhu G, Zeng L, Xu S, Cheng H, Ouyang Z, Chen J, Pathak JL, Wu L, Yu L. The Emerging Role of Plant-Derived Exosomes-Like Nanoparticles in Immune Regulation and Periodontitis Treatment. Front Immunol 2022; 13:896745. [PMID: 35757759 PMCID: PMC9231591 DOI: 10.3389/fimmu.2022.896745] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is an infectious oral disease, which leads to the destruction of periodontal tissues and tooth loss. Although the treatment of periodontitis has improved recently, the effective treatment of periodontitis and the periodontitis-affected periodontal tissues is still a challenge. Therefore, it is urgent to explore new therapeutic strategies for periodontitis. Natural products show anti-microbial, anti-inflammatory, anti-oxidant and bone protective effects to periodontitis and most of these natural products are safe and cost-effective. Among these, the plant-derived exosome-like nanoparticles (PELNs), a type of natural nanocarriers repleted with lipids, proteins, RNAs, and other active molecules, show the ability to enter mammalian cells and regulate cellular activities. Reports from the literature indicate the great potential of PELNs in the regulation of immune functions, inflammation, microbiome, and tissue regeneration. Moreover, PELNs can also be used as drug carriers to enhance drug stability and cellular uptake in vivo. Since regulation of immune function, inflammation, microbiome, and tissue regeneration are the key phenomena usually targeted during periodontitis treatment, the PELNs hold the promising potential for periodontitis treatment. This review summarizes the recent advances in PELNs-related research that are related to the treatment of periodontitis and regeneration of periodontitis-destructed tissues and the underlying mechanisms. We also discuss the existing challenges and prospects of the application of PELNs-based therapeutic approaches for periodontitis treatment.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Yang Yu
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
| | - Guanxiong Zhu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Liting Zeng
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Shaofen Xu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Haoyu Cheng
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Zhaoguang Ouyang
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Jianwei Chen
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lihong Wu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Lina Yu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
120
|
Systemic Dietary Hesperidin Modulation of Osteoclastogenesis, Bone Homeostasis and Periodontal Disease in Mice. Int J Mol Sci 2022; 23:ijms23137100. [PMID: 35806105 PMCID: PMC9266620 DOI: 10.3390/ijms23137100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate the effects of hesperidin (HE) on in vitro osteoclastogenesis and dietary supplementation on mouse periodontal disease and femoral bone phenotype. RAW 264.7 cells were stimulated with RANKL in the presence or absence of HE (1, 100 or 500 µM) for 5 days, and evaluated by TRAP, TUNEL and Western Blot (WB) analyses. In vivo, C57BL/6 mice were given HE via oral gavage (125, 250 and 500 mg/kg) for 4 weeks. A sterile silk ligature was placed between the first and second right maxillary molars for 10 days and microcomputed tomography (μCT), histopathological and immunohistochemical evaluation were performed. Femoral bones subjected or not to dietary HE (500 mg/kg) for 6 and 12 weeks were evaluated using μCT. In vitro, HE 500 µM reduced formation of RANKL-stimulated TRAP-positive(+) multinucleated cells (500 µM) as well as c-Fos and NFATc1 protein expression (p < 0.05), markers of osteoclasts. In vivo, dietary HE 500 mg/kg increased the alveolar bone resorption in ligated teeth (p < 0.05) and resulted in a significant increase in TRAP+ cells (p < 0.05). Gingival inflammatory infiltrate was greater in the HE 500 mg/kg group even in the absence of ligature. In femurs, HE 500 mg/kg protected trabecular and cortical bone mass at 6 weeks of treatment. In conclusion, HE impaired in vitro osteoclastogenesis, but on the contrary, oral administration of a high concentration of dietary HE increased osteoclast numbers and promoted inflammation-induced alveolar bone loss. However, HE at 500 mg/kg can promote a bone-sparing effect on skeletal bone under physiological conditions.
Collapse
|
121
|
Clinical Benefits of Minimally Invasive Non-Surgical Periodontal Therapy as an Alternative of Conventional Non-Surgical Periodontal Therapy-A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127456. [PMID: 35742702 PMCID: PMC9223734 DOI: 10.3390/ijerph19127456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023]
Abstract
Minimally invasive procedures were introduced in periodontics, which could enhance clinical outcomes and reduce post-operative discomfort. However, minimally invasive non-surgical periodontal therapy (MINST) as an alternative modality of conventional non-surgical root surface debridement has not been clearly evaluated by randomized controlled clinical trial. The present study aimed to investigate clinical outcomes and patients’ comfort feedback of MINST compared to conventional non-surgical periodontal therapy (CNST). Patients with moderate to severe periodontitis were included. Nine out of ten patients were recruited and completed the post-treatment re-evaluation in this study. Randomized split-mouth design, CNST and MINST on each side, was performed. Clinical parameters, including periodontal probing depth (PD), gingival recession (REC), clinical attachment level (CAL), and gingival bleeding on probing (BOP), were recorded on baseline, 1 month and 3 months post-treatment. Non-parametric statistics were used for analysis. PD, REC, CAL, and BOP were improved after treatment in both CNST and MINST groups. Comfort feedback and gingival recession showed better outcomes in the MINST group than in the CNST group. No statistical significance of parameters was found between CNST and MINST. Within the limitations, minimally invasive non-surgical periodontal therapy could be an alternative modality of conventional non-surgical periodontal therapy. Further studies are required to establish clinical protocol and evidence of MINST.
Collapse
|
122
|
Vaillancourt K, Ben Lagha A, Grenier D. Effects of a Berry Polyphenolic Fraction on the Pathogenic Properties of Porphyromonas gingivalis. FRONTIERS IN ORAL HEALTH 2022; 3:923663. [PMID: 35784661 PMCID: PMC9245044 DOI: 10.3389/froh.2022.923663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Porphyromonas gingivalis expresses a broad array of virulence factors that enable it to play a central role in the etiopathogenesis of periodontitis. The objective of the present study was to assess the effects of a berry polyphenolic fraction (Orophenol®) composed of extracts from cranberry, wild blueberry, and strawberry on the main pathogenic determinants of P. gingivalis. Orophenol® attenuated the growth of P. gingivalis and decreased its hemolytic activity, its adherence to a basement membrane matrix model, and its proteinase activities. The berry polyphenolic fraction also impaired the production of reactive oxygen species (ROS) by oral keratinocytes stimulated with P. gingivalis. Lastly, using an in vitro model of oral keratinocyte barrier, the fraction exerted a protective effect against the damages mediated by P. gingivalis. In conclusion, the berry polyphenolic fraction investigated in the present study attenuated several pathogenic properties of P. gingivalis. Although future clinical investigations are required, our study provided evidence that the polyphenols contained in this fraction may represent bioactive molecules of high interest for the prevention and/or treatment of periodontal disease.
Collapse
|
123
|
D’Ambrosio F, Pisano M, Amato A, Iandolo A, Caggiano M, Martina S. Periodontal and Peri-Implant Health Status in Traditional vs. Heat-Not-Burn Tobacco and Electronic Cigarettes Smokers: A Systematic Review. Dent J (Basel) 2022; 10:103. [PMID: 35735645 PMCID: PMC9222105 DOI: 10.3390/dj10060103] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 12/19/2022] Open
Abstract
The aim of the present systematic review was to evaluate and possibly differentiate the effects of traditional cigarettes, heat-not-burn tobacco, and electronic cigarettes on periodontal and peri-implant health status. Electronic cigarettes and heat-not-burn tobacco have become very popular in recent years and have been proposed to consumers as a safer alternative to conventional tobacco smoke, although their effect on periodontal and peri-implant health remains unclear. The study protocol was developed according to PRISMA guidelines, and the focus question was formulated according to the PICO strategy. A literature search was conducted across PubMed/MEDLINE and the COCHRANE library from 2003 to April 2022. From the 1935 titles initially identified, 18 articles were finally included in the study and extracted data were qualitatively synthesized. It may be carefully concluded that e-cigarettes may cause attenuated clinical inflammatory signs of periodontitis and, hypothetically, of peri-implantitis when compared to conventional tobacco smoke. Both alternative smoking products, containing nicotine, may likewise exert negative effects on periodontal and peri-implant health, as demonstrated by in vitro studies. Further investigations are needed to assess the impact of electronic cigarettes and heat-not-burn tobacco products on periodontal and peri-implant health status.
Collapse
Affiliation(s)
- Francesco D’Ambrosio
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.P.); (A.A.); (A.I.); (M.C.); (S.M.)
| | | | | | | | | | | |
Collapse
|
124
|
Wang H, Qiao X, Zhang C, Hou J, Qi S. Long non-coding RNA LINC00616 promotes ferroptosis of periodontal ligament stem cells via the microRNA-370 / transferrin receptor axis. Bioengineered 2022; 13:13070-13081. [PMID: 35611986 PMCID: PMC9276003 DOI: 10.1080/21655979.2022.2076508] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was designed to explore the role of lncRNA LINC00616 in the regulation of periodontitis. Cellular functions were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays. The content of reactive oxygen species, Fe2+, glutathione, and malondialdehyde were measured to determine ferroptosis in Porphyromonas gingivalis lipopolysaccharide (LPS-PG) treated periodontal ligament stem cells (PDLSCs), as well as expression of glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11, and acyl-CoA synthetase long-chain family member 4 proteins mRNA and miRNA levels were measured by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Western blot analysis was performed to assess protein expression. Targeting relationships were predicted using StarBase and TargetScan and verified by a dual luciferase reporter assay. The lncRNA LINC00616 was upregulated in periodontitis ligament tissues of patients with periodontitis and in PDLSCs treated with LPS-PG. Inhibition of LINC00616 promoted cell viability and suppressed ferroptosis of PDLSCs. miR-370 was verified to be a target of LINC00616, and suppressed miR-370 reversed the effects of LINC00616 knockdown on cell viability and ferroptosis in PDLSCs. Additionally, miR-370 targeting the transferrin receptor protein and upregulated transferrin receptor (TFRC) abolished the effects of overexpressed miR-370 on cell viability and ferroptosis of PDLSCs. LINC00616 acted as a competitive endogenous RNA (ceRNA) to promote ferroptosis of PDLSCs via the miR-370/TFRC axis. Therefore, LINC00616 knockdown may be a promising therapeutic strategy for periodontitis.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Orthodontics, Eye Hospital of Hebei, Xingtai, Hebei, China
| | - Xiaotong Qiao
- Department of Oral Medicine, College of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Zhang
- Department of Orthodontics, Eye Hospital of Hebei, Xingtai, Hebei, China
| | - Jingyi Hou
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Suqing Qi
- Department of Orthodontics, Eye Hospital of Hebei, Xingtai, Hebei, China
| |
Collapse
|
125
|
Satokata AAC, de Souza JH, Silva LLO, Santiago MB, Ramos SB, Assis LRD, Theodoro RDS, Oliveira LRE, Regasini LO, Martins CHG. Chalcones with potential antibacterial and antibiofilm activities against periodontopathogenic bacteria. Anaerobe 2022; 76:102588. [PMID: 35618163 DOI: 10.1016/j.anaerobe.2022.102588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Periodontitis is a pathology resulting from complex interaction of microorganisms in the dental biofilm with the host's immune system. Increased use of antibiotics associated with their inappropriate use has increased resistance levels in anaerobic bacteria. Therefore, identifying new antimicrobial compounds, such as chalcones, is urgent. This study evaluates the antibacterial activity and the antibiofilm activity of 15 chalcones against the periodontopathogenic bacteria Prevotella nigrescens (ATCC 33563), P. oralis (ATCC 33269), Peptostreptococcus anaerobius (ATCC 27337), Actinomyces viscosus (ATCC 43146), Porphyromonas asaccharolytica (ATCC 25260), and Fusobacterium nucleatum (ATCC 25586). METHODS The compounds were evaluated by minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC) tests. RESULTS Compounds 1-6 showed good antibacterial and antibiofilm activities against most of the evaluated bacteria: MIC was lower than or equal to 6.25 μg/mL, biofilm biomass was reduced by 95%, and the compounds at concentrations between 0.78 and 100 μg/mL totally inhibited cell viability. Among the tested chalcones, 3 stood out: it was effective against all the bacteria, as revealed by the MIC and MBIC results. CONCLUSIONS Our results have consolidated a base for the development of new studies on the effects of the tested chalcones as agents to combat and to prevent periodontitis.
Collapse
Affiliation(s)
- Alessandra Akemi Cury Satokata
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Jonathan Henrique de Souza
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Luana Luiza Oliveira Silva
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Mariana Brentini Santiago
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Leticia Ribeiro de Assis
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Reinaldo Dos Santos Theodoro
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Lígia Rodrigues E Oliveira
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Luis Octavio Regasini
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
126
|
Targeting Nrf2 with Probiotics and Postbiotics in the Treatment of Periodontitis. Biomolecules 2022; 12:biom12050729. [PMID: 35625655 PMCID: PMC9139160 DOI: 10.3390/biom12050729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is a destructive disease of the tooth-surrounding tissues. Infection is the etiological cause of the disease, but its extent and severity depend on the immune–inflammatory response of the host. Immune cells use reactive oxygen species to suppress infections, and there is homeostasis between oxidative and antioxidant mechanisms during periodontal health. During periodontitis, however, increased oxidative stress triggers tissue damage, either directly by activating apoptosis and DNA damage or indirectly by activating proteolytic cascades. Periodontal treatment aims to maintain an infection and inflammation-free zone and, in some cases, regenerate lost tissues. Although mechanical disruption of the oral biofilm is an indispensable part of periodontal treatment, adjunctive measures, such as antibiotics or anti-inflammatory medications, are also frequently used, especially in patients with suppressed immune responses. Recent studies have shown that probiotics activate antioxidant mechanisms and can suppress extensive oxidative stress via their ability to activate nuclear factor erythroid 2-related factor 2 (Nrf2). The aim of this narrative review is to describe the essential role of Nrf2 in the maintenance of periodontal health and to propose possible mechanisms to restore the impaired Nrf2 response in periodontitis, with the aid of probiotic and postbiotics.
Collapse
|
127
|
Calciolari E, Ercal P, Dourou M, Akcali A, Tagliaferri S, Donos N. The efficacy of adjunctive periodontal therapies during supportive periodontal care in patients with residual pockets. A systematic review and meta-analysis. J Periodontal Res 2022; 57:671-689. [PMID: 35579234 DOI: 10.1111/jre.13001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022]
Abstract
While it is well-established that patients that develop signs of relapsing periodontitis in supportive periodontal care (SPC) will need to repeat subgingival instrumentation of the residual pockets, less certainty is available in terms of which protocol should be followed and whether the use of adjunctive therapies or physical agents might provide additional benefits to repeated instrumentation alone. The aim of this systematic review was therefore to assess whether repeating subgingival instrumentation in combination with adjunctive therapies (other than antimicrobials) might provide a significant benefit in terms of pocket closure, probing pocket depth (PPD) reduction or clinical attachment level (CAL) gain in patients during SPC with residual/relapsing pockets. Four databases were searched to identify randomized controlled trials (RCTs) and controlled clinical trials (CCTs) with a minimum follow-up of 3 months that investigated the use of adjunctive therapies (other than antimicrobials) in case of residual/relapsing pockets in patients in SPC since at least 3 months. Data extraction and risk of bias assessment were performed in the studies meeting the inclusion criteria and meta-analysis was performed when ≥3 studies assessing the same adjunctive therapy were identified. 12 studies (2 CCTs and 10 RCTs) were included for qualitative analysis. Meta-analysis was performed only for 3 studies on the adjunctive use of photodynamic therapy (PDT) and it indicated a nonsignificant benefit compared to the placebo in terms of PPD reduction and CAL gain at 3 months (weighted mean difference 0.07 and -0.03, respectively) and at 6 months of follow-up (weighted mean difference -0.09 and -0.18, respectively). While antiseptics did not provide significant benefits, one study on probiotics and one on the use of vitamin D and calcium supplementation showed significant improvements in periodontal parameters. There is currently insufficient/poor evidence to determine the efficacy of adjunctive strategies (other than antimicrobials) to improve the outcomes of SPC in case of residual/relapsing pockets.
Collapse
Affiliation(s)
- Elena Calciolari
- Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Dental School, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Pinar Ercal
- Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Marina Dourou
- Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aliye Akcali
- Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Periodontology, Faculty of Dentistry, Dokuz Eylul University, Izmir, Turkey
| | - Sara Tagliaferri
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Centre for Research in Toxicology (CERT), University of Parma, Parma, Italy
| | - Nikolaos Donos
- Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
128
|
Andere NMRB, Castro Dos Santos NC, Araújo CF, Paz HES, Shaddox LM, Casarin RCV, Santamaria MP. Open flap debridement compared to repeated applications of photodynamic therapy in the treatment of residual pockets. A randomized clinical trial. J Periodontol 2022; 93:1671-1681. [PMID: 35536044 DOI: 10.1002/jper.22-0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND The aim of the present study was to compare repeated applications of antimicrobial photodynamic therapy (aPDT) to open flap debridement (OFD) in the treatment of residual periodontal pockets in non-furcation sites. METHODS Forty-six subjects with a diagnosis of Stage III or IV Grade C periodontitis, that had been previously treated, participated in the study. Residual pockets were divided between two groups: 1) aPDT group: received ultrasonic periodontal debridement followed by immediate application of aPDT, and repeated on1st, 2nd, 7th and 14th days; and 2) OFD group: treated by modified papilla preservation technique, where granulation tissue and visible calculus were removed with hand curettes and an ultrasonic device. Clinical, immunological and microbiological parameters were evaluated before and after treatment. RESULTS Both treatments were effective reducing clinical parameters of disease. OFD resulted in a greater mean probing pocket depths (PPD) reduction in deep pockets (p = 0.001). However, aPDT resulted in a lower occurrence of gingival recession (GR), dentin hypersensitivity and analgesic intake. Reduction in Porphyromonas gingivalis was observed in both groups. Only the OFD group had a significant reduction in Aggregatibacter actinomycetemcomitans. aPDT group had greater increase in IL-10 levels and a greater reduction of IL-1β at 14 days when compared to the OFD group (p<0.05). CONCLUSION OFD was superior in reducing PPD in deep pockets compared to the aPDT. However, OFD resulted in greater GR. Both treatments lowered P. gingivalis levels but only OFD reduced levels of A. actinomycemtemcomitans. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Naira M R B Andere
- Division of Periodontics, Institute of Science and Technology, São Paulo State University, (Unesp), São José dos Campos, São Paulo, Brazil
| | - Nídia C Castro Dos Santos
- Division of Periodontics, Institute of Science and Technology, São Paulo State University, (Unesp), São José dos Campos, São Paulo, Brazil.,Dental Research Division, Guarulhos University (UNG), Guarulhos, São Paulo, Brazil
| | - Cássia F Araújo
- Division of Periodontics, Institute of Science and Technology, São Paulo State University, (Unesp), São José dos Campos, São Paulo, Brazil
| | - Hélvis E S Paz
- Division of Periodontics, Piracicaba Dental School, University of Campinas (Unicamp), Piracicaba, São Paulo, Brazil
| | - Luciana M Shaddox
- Division of Periodontology, College of Dentistry, University of Kentucky (UK), Lexington, Kentucky, USA
| | - Renato C V Casarin
- Division of Periodontics, Piracicaba Dental School, University of Campinas (Unicamp), Piracicaba, São Paulo, Brazil
| | - Mauro P Santamaria
- Division of Periodontics, Institute of Science and Technology, São Paulo State University, (Unesp), São José dos Campos, São Paulo, Brazil.,Division of Periodontology, College of Dentistry, University of Kentucky (UK), Lexington, Kentucky, USA
| |
Collapse
|
129
|
Hussain B, Karaca EO, Kuru BE, Gursoy H, Haugen HJ, Wohlfahrt JC. Treatment of residual pockets using an oscillating chitosan device versus regular curettes alone-A randomized, feasibility parallel-arm clinical trial. J Periodontol 2022; 93:780-789. [PMID: 34710240 DOI: 10.1002/jper.21-0496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND A brush made of chitosan has shown to be an effective and harmless device for non-surgical treatment of mild to moderate peri-implantitis. To date, no study has evaluated the use of a chitosan brush in the non-surgical treatment of residual pockets in periodontal treatment. METHODS Seventy-eight patients with periodontitis were included in this multicenter, randomized, examiner-blind clinical trial of 6 months duration. Patients with residual probing pocket depth (PPD) of ≥5 mm and ≤7 mm following previous active periodontal treatment were included. Patients were assigned either subgingival treatment with curettes (control) or an oscillating chitosan brush (test). Changes in bleeding on probing (BoP) and PPD between baseline and terminal evaluation at 6 months were evaluated. RESULTS A significant reduction in both PPD and BoP was seen within both groups. There was no significant difference in BoP between test and control groups after 6 months, but the reduction in PPD was significantly improved in the test group (P ≤ 0.01). The combined outcome of no BOP and PPD ≤4 mm was significantly better in the test group (P ≤ 0.01). No adverse reactions were seen. CONCLUSION Treatment of residual periodontal pockets (PPD = 5 to 7 mm) with a chitosan brush disclosed equal or better clinical results as compared to regular curettes. This study supports that a chitosan brush can be used for subgingival biofilm removal and soft tissue curretage in the treatment of periodontitis.
Collapse
Affiliation(s)
- Badra Hussain
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Ebru Ozkan Karaca
- Department of Periodontology, Yeditepe University School of Dentistry, Istanbul, Turkey
| | - Bahar Eren Kuru
- Department of Periodontology, Yeditepe University School of Dentistry, Istanbul, Turkey
| | - Hare Gursoy
- Department of Periodontology, Yeditepe University School of Dentistry, Istanbul, Turkey
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Johan Caspar Wohlfahrt
- Department of Periodontology, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway.,Bjerke Tannmedisin, Oslo, Norway
| |
Collapse
|
130
|
Mirzaeei S, Ezzati A, Mehrandish S, Asare-Addo K, Nokhodchi A. An overview of guided tissue regeneration (GTR) systems designed and developed as drug carriers for management of periodontitis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
131
|
Li Q, Zhou H, Wang C, Zhu Z. Long non-coding RNA Linc01133 promotes osteogenic differentiation of human periodontal ligament stem cells via microRNA-30c / bone gamma-carboxyglutamate protein axis. Bioengineered 2022; 13:9602-9612. [PMID: 35435112 PMCID: PMC9161927 DOI: 10.1080/21655979.2022.2054912] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Periodontitis is a chronic inflammation caused by the deposition of dental plaque on the tooth surface. Human periodontal ligament stem cells (hPDLSCs) have the potential of osteogenic differentiation. Long non-coding RNAs (lncRNAs) are collectively involved in periodontitis. This study was designed to explore the roles of Linc01133 in osteogenic differentiation of hPDLSCs. hPDLSCs obtained from the periodontal ligament (PDL) of patients with periodontitis were used to collect Linc01133, microRNA-30c (miR-30c), and bone gamma-carboxyglutamate protein (BGLAP) expression data, and their expression changes were traced during osteogenic differentiation of hPDLSCs. Quantitative reverse-transcription polymerase chain reaction as well as western blotting were used to analyze the levels of RNAs and proteins. Dual-luciferase reporter and RNA pull-down assays demonstrated the relationship between Linc01133, miR-30c, and BGLAP. Furthermore, alkaline phosphatase (ALP) staining and alizarin red staining were applied to evaluate the degree of osteogenic differentiation. Linc01133 was downregulated in the PDL of patients with periodontitis. Upregulated Linc01133 promoted osteogenic differentiation of hPDLSCs. Linc01133 could inhibit miR-30c expression by sponging miR-30c. miR-30c suppressed osteogenic differentiation. Additionally, miR-30c targeted BGLAP. Knockdown of BGLAP abrogated the effects of decreased miR-30c on osteogenic differentiation of hPDLSCs. Linc01133 acted as a ceRNA to regulate osteogenic differentiation of hPDLSCs via the miR-30c/BGLAP axis. Therefore, Linc01133 may participate in the progress of periodontitis.
Collapse
Affiliation(s)
- Qiang Li
- Maxillofacial surgery, Deyang Stomatology Department, Chengdu Seventh People’s Hospital, Chengdu, Sichuan, China
| | - Hangyu Zhou
- Plastic and maxillofacial surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, Sichuan, China
| | - Chuan Wang
- Deyang Stomatological Hospital, Deyang, Sichuan, China
| | - Zhibin Zhu
- Maxillofacial surgery, Deyang Stomatology Department, Chengdu Seventh People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
132
|
PLA Nanofibers for Microenvironmental-Responsive Quercetin Release in Local Periodontal Treatment. Molecules 2022; 27:molecules27072205. [PMID: 35408602 PMCID: PMC9000246 DOI: 10.3390/molecules27072205] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 01/10/2023] Open
Abstract
The management of periodontitis remains a vital clinical challenge due to the interplay between the microorganisms of the dental biofilm and the host inflammatory response leading to a degenerative process in the surrounding tissues. Quercetin (QUE), a natural flavonol found in many foods, including apples, onions and tea, has exhibited prolonged and strong antibiofilm and anti-inflammatory effects both in vitro and in vivo. However, its clinical application is limited by its poor stability and water solubility, as well as its low bioavailability. Thus, in the present study, electrospun polylactic acid (PLA) nanofibers loaded with different amounts (5−10% w/w) of QUE were produced to rapidly respond to the acidic microenvironment typical of periodontal pockets during periodontal disease. This strategy demonstrated that PLA-QUE membranes can act as a drug reservoir releasing high QUE concentrations in the presence of oral bacterial infection (pH < 5.5), and thus limiting Pseudomonas aeruginosa PAO1 and Streptococcus mutans biofilm maturation. In addition, released QUE exerts antioxidant and anti-inflammatory effects on P. gingivalis Lipopolysaccharide (LPS)-stimulated human gingival fibroblast (HGFs). The reported results confirmed that PLA-QUE membranes could inhibit subgingival biofilm maturation while reducing interleukin release, thereby limiting host inflammatory response. Overall, this study provided an effective pH-sensitive drug delivery system as a promising strategy for treating periodontitis.
Collapse
|
133
|
Vaillancourt K, Ben Lagha A, Grenier D. A Phenolic-rich Extract of Cocoa (Theobroma cacao L.) Beans Impairs the Pathogenic Properties of Porphyromonas gingivalis and Attenuates the Activation of Nuclear Factor Kappa B in a Monocyte Model. FRONTIERS IN ORAL HEALTH 2022; 3:867793. [PMID: 35392377 PMCID: PMC8980215 DOI: 10.3389/froh.2022.867793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
Periodontitis, an inflammatory disease that affects tooth-supporting tissues, is the result of a polymicrobial infection involving mainly Gram negative anaerobic bacteria. The aim of the present study was to investigate the effects of a phenolic-rich extract of cocoa (Theobroma cacao L.) beans on the pathogenic properties of Porphyromonas gingivalis, which is well-known as a keystone pathogen in the development of periodontitis. The effect of the cocoa extract on P. gingivalis-induced activation of the nuclear factor kappa B (NF-κB) transcription factor in a monocyte model was also assessed. The cocoa extract, whose major phenolic compound was epicatechin, inhibited the growth, hemolytic activity, proteolytic activities, and adherence properties (basement membrane matrix, erythrocytes) of P. gingivalis in a dose-dependent manner. It also protected the barrier function of a keratinocyte model against the deleterious effects mediated by P. gingivalis, and attenuated reactive oxygen species (ROS) production by oral keratinocytes treated with P. gingivalis. Lastly, the cocoa extract showed an anti-inflammatory property by preventing P. gingivalis-induced NF-κB activation in monocytes. In conclusion, this in vitro study highlighted the potential value of an epicatechin-rich extract of cocoa beans for preventing and/or treating periodontal diseases.
Collapse
|
134
|
Liu RY, Li L, Zhang ZT, Wu T, Lin S, Zhang XT. Clinical efficacy of melatonin as adjunctive therapy to non-surgical treatment of periodontitis: a systematic review and meta-analysis. Inflammopharmacology 2022; 30:695-704. [PMID: 35290552 DOI: 10.1007/s10787-022-00959-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study aimed to evaluate the effect of adjunctive melatonin supplementation on clinical outcomes after non-surgical periodontal treatment. METHODS PubMed, Embase, and Web of Science databases were systematically searched for randomised controlled trials (RCTs) of melatonin adjuvant therapy for periodontitis from inception until May 2021. The systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and registered on The International Prospective Register of Systematic Reviews (PROSPERO) (CRD42021250630). The risk of bias of included studies was assessed according to the Cochrane Handbook for Systematic Reviews of Interventions. The pooled effect estimates were calculated by a random-effects model, and results were expressed as weighted mean differences (WMD). RESULTS Seven RCTs comprising 412 participants were included in the meta-analysis. The pooled results showed that adjuvant use of melatonin for non-surgical periodontal treatment significantly improved the probing depth (PD) [WMD = - 1.18, 95% CI (- 1.75, - 0.62) I2 = 85.7%], clinical attachment loss (CAL) [WMD = - 1.16, 95% CI (- 1.60, - 0.72) I2 = 76.7%] and gingival index (WMD = - 0.29, 95%CI [- 0.48, - 0.11], I2 = 63.6%) compared with non-surgical treatment alone. In addition, subgroup analysis showed that higher doses of melatonin (3-10 mg) significantly improved PD [WMD = - 1.32, 95%CI (- 2.31, - 0.15) I2 = 93%] and CAL [WMD = - 1.30, 95%CI (- 1.80, - 0.81) I2 = 73.7%] compared with lower doses of melatonin (< 3 mg). CONCLUSIONS We found that adjunctive melatonin supplementation can significantly improve the periodontal status after non-surgical treatment, suggesting that melatonin may be a new adjuvant therapy for periodontitis when non-surgical periodontal treatment alone cannot achieve the desired improvement.
Collapse
Affiliation(s)
- Ru-Yue Liu
- VIP Department, School of Stomatology, China Medical University, Shenyang, China
| | - Lin Li
- VIP Department, School of Stomatology, China Medical University, Shenyang, China
| | - Zhong-Ti Zhang
- VIP Department, School of Stomatology, China Medical University, Shenyang, China.
| | - Ting Wu
- VIP Department, School of Stomatology, China Medical University, Shenyang, China
| | - Shuang Lin
- VIP Department, School of Stomatology, China Medical University, Shenyang, China
| | - Xu-Tong Zhang
- VIP Department, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
135
|
Tian Y, Li Y, Liu J, Lin Y, Jiao J, Chen B, Wang W, Wu S, Li C. Photothermal therapy with regulated Nrf2/NF-κB signaling pathway for treating bacteria-induced periodontitis. Bioact Mater 2022; 9:428-445. [PMID: 34820581 PMCID: PMC8586811 DOI: 10.1016/j.bioactmat.2021.07.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is an inflammatory disease initiated by bacterial infection, developed by excessive immune response, and aggravated by high level of reactive oxygen species (ROS). Hence, herein, a versatile metal-organic framework (MOF)-based nanoplatform is prepared using mesoporous Prussian blue (MPB) nanoparticles to load BA, denoted as MPB-BA. The established MPB-BA nanoplatform serves as a shelter and reservoir for vulnerable immunomodulatory drug BA, which possesses antioxidant, anti-inflammatory and anti-bacterial effects. Thus, MPB-BA can exert its antioxidant, anti-inflammatory functions through scavenging intracellular ROS to switch macrophages from M1 to M2 phenotype so as to relieve inflammation. The underlying molecular mechanism lies in the upregulation of phosphorylated nuclear factor erythroid 2-related factor 2 (Nrf2) to scavenge ROS and subsequently inhibit the nuclear factor kappa-B (NF-κB) signal pathway. Moreover, MPB-BA also exhibited efficient photothermal antibacterial activity against periodontal pathogens under near-infrared (NIR) light irradiation. In vivo RNA sequencing results revealed the high involvement of both antioxidant and anti-inflammatory pathways after MPB-BA application. Meanwhile, micro-CT and immunohistochemical staining of p-Nrf2 and p-P65 further confirmed the superior therapeutic effects of MPB-BA than minocycline hydrochloride. This work may provide an insight into the treatment of periodontitis by regulating Nrf2/NF-κB signaling pathway through photothermal bioplatform-assisted immunotherapy.
Collapse
Affiliation(s)
- Yujuan Tian
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Ying Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Jialin Liu
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Yi Lin
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Jian Jiao
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Bo Chen
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Wanmeng Wang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Shuilin Wu
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Changyi Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| |
Collapse
|
136
|
Advances in Modification Methods Based on Biodegradable Membranes in Guided Bone/Tissue Regeneration: A Review. Polymers (Basel) 2022; 14:polym14050871. [PMID: 35267700 PMCID: PMC8912280 DOI: 10.3390/polym14050871] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Guided tissue/bone regeneration (GTR/GBR) is commonly applied in dentistry to aid in the regeneration of bone/tissue at a defective location, where the assistive material eventually degrades to be substituted with newly produced tissue. Membranes separate the rapidly propagating soft tissue from the slow-growing bone tissue for optimal tissue regeneration results. A broad membrane exposure area, biocompatibility, hardness, ductility, cell occlusion, membrane void ratio, tissue integration, and clinical manageability are essential functional properties of a GTR/GBR membrane, although no single modern membrane conforms to all of the necessary characteristics. This review considers ongoing bone/tissue regeneration engineering research and the GTR/GBR materials described in this review fulfill all of the basic ISO requirements for human use, as determined through risk analysis and rigorous testing. Novel modified materials are in the early stages of development and could be classified as synthetic polymer membranes, biological extraction synthetic polymer membranes, or metal membranes. Cell attachment, proliferation, and subsequent tissue development are influenced by the physical features of GTR/GBR membrane materials, including pore size, porosity, and mechanical strength. According to the latest advances, key attributes of nanofillers introduced into a polymer matrix include suitable surface area, better mechanical capacity, and stability, which enhances cell adhesion, proliferation, and differentiation. Therefore, it is essential to construct a bionic membrane that satisfies the requirements for the mechanical barrier, the degradation rate, osteogenesis, and clinical operability.
Collapse
|
137
|
Yi M, Wang G, Niu J, Peng M, Liu Y. Pterostilbene attenuates the proliferation and differentiation of TNF‑α‑treated human periodontal ligament stem cells. Exp Ther Med 2022; 23:304. [PMID: 35340874 PMCID: PMC8931590 DOI: 10.3892/etm.2022.11233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Min Yi
- Department of Integrative Therapy, Shanghai Huangpu District 2nd Dental Disease Prevention and Treatment Institute, Shanghai 200001, P.R. China
| | - Guanglei Wang
- Department of Stomatology, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Jianhua Niu
- Department of Integrative Therapy, Shanghai Huangpu District 2nd Dental Disease Prevention and Treatment Institute, Shanghai 200001, P.R. China
| | - Minghui Peng
- Department of Integrative Therapy, Shanghai Huangpu District 2nd Dental Disease Prevention and Treatment Institute, Shanghai 200001, P.R. China
| | - Yi Liu
- Department of Stomatology, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| |
Collapse
|
138
|
Suh H, Lee J, Ahn SH, Song W, Li L, Lee YM, Seol YJ, Koo KT. Repeated irradiation by light-emitting diodes may impede the spontaneous progression of experimental periodontitis: a preclinical study. J Periodontal Implant Sci 2022; 53:120-134. [PMID: 36468480 PMCID: PMC10133817 DOI: 10.5051/jpis.2202320116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/31/2022] [Accepted: 08/30/2022] [Indexed: 11/05/2022] Open
Abstract
PURPOSE We investigated whether repeated irradiation with light-emitting diodes (LEDs) at a combination of 470 nm and 525 nm could suppress the progression of experimental periodontitis. METHODS A experimental periodontitis model was established in the second, third, and fourth premolars of the mandible in beagle dogs for 2 months. The spontaneous progression of periodontitis was monitored under the specified treatment regimen for 3 months. During this period, the animals were subjected to treatments of either plaque control only (control) or plaque control with LED application (test) at 2-week intervals. The clinical parameters included the probing pocket depth (PPD), gingival recession (GR), and the clinical attachment level (CAL). Histomorphometric analysis was performed using measurements of the length of the junctional epithelium, connective tissue (CT) zone, and total soft tissue (ST). RESULTS There were significant differences in PPD between the control and test groups at baseline and 12 weeks. When the change in PPD was stratified based on time intervals, it was shown that greater differences occurred in the test group, with statistical significance for baseline to 12 weeks, 6 to 12 weeks, and baseline to 6 weeks. There was no significant difference in GR between the control and test groups at any time points. Likewise, no statistically significant differences were found in GR at any time intervals. CAL showed a statistically significant difference between the control and test groups at baseline only, although significant differences in CAL were observed between baseline and 12 weeks and between 6 and 12 weeks. The proportion of CT to ST was smaller for both buccal and lingual areas in the control group than in the test group. CONCLUSIONS Repeated LED irradiation with a combination of 470-nm and 525-nm wavelengths may help suppress the progression of periodontal disease.
Collapse
Affiliation(s)
- Hyemee Suh
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
- Department of Periodontology, Seoul National University Dental Hospital, Seoul, Korea
| | - Jungwon Lee
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
- One-Stop Specialty Center, Seoul National University Dental Hospital, Seoul, Korea
| | - Sun-Hee Ahn
- Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju, Korea
| | - Woosub Song
- Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju, Korea
| | - Ling Li
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Yong-Moo Lee
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
- Department of Periodontology, Seoul National University Dental Hospital, Seoul, Korea
| | - Yang-Jo Seol
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
- Department of Periodontology, Seoul National University Dental Hospital, Seoul, Korea
| | - Ki-Tae Koo
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
- Department of Periodontology, Seoul National University Dental Hospital, Seoul, Korea
| |
Collapse
|
139
|
Vinel A, Al Halabi A, Roumi S, Le Neindre H, Millavet P, Simon M, Cuny C, Barthet JS, Barthet P, Laurencin-Dalicieux S. Non-surgical Periodontal Treatment: SRP and Innovative Therapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:303-327. [DOI: 10.1007/978-3-030-96881-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
140
|
Formulation and characterization of hydroxyethyl cellulose-based gel containing metronidazole-loaded solid lipid nanoparticles for buccal mucosal drug delivery. Int J Biol Macromol 2022; 194:1010-1018. [PMID: 34843817 DOI: 10.1016/j.ijbiomac.2021.11.161] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022]
Abstract
Local delivery of drug is a promising strategy to manage periodontitis characterized by chronic inflammation of the soft tissue surrounding the teeth. An optimized system should prolong the drug retention time and exhibit controlled drug permeation through the buccal mucosal layer. This study was aimed to develop hydroxyethyl cellulose (HEC)-based gel containing metronidazole (MTZ) loaded in solid lipid nanoparticles (SLNs), and to enhance the antimicrobial activity of MTZ. SLNs were prepared using a combination method of solvent evaporation and hot homogenization. The results showed that the fabricated SLNs, comprising of Precirol (2.93%, w/v), Tween 80 (1.8%, w/v), and the drug:lipid ratio of 19.3% (w/w), were approximately 200 nm in size, with a narrow distribution. The HEC (3%, w/w)-based gel formed a smooth, homogeneous structure and had preferable mechanical and rheological properties. Moreover, the MTZ-loaded SLNs-based HEC gel (equivalent to 1% of MTZ, w/w) exhibited a sustained in vitro drug release pattern, optimal ex vivo permeability, and enhanced in vitro antimicrobial activity after 24 h of treatment. These findings indicate the potential of the MTZ-loaded SLNs-based HEC formulation for local drug delivery at the buccal mucosa in managing periodontal disease.
Collapse
|
141
|
Zhao X, Yang Y, Yu J, Ding R, Pei D, Zhang Y, He G, Cheng Y, Li A. Injectable hydrogels with high drug loading through B–N coordination and ROS-triggered drug release for efficient treatment of chronic periodontitis in diabetic rats. Biomaterials 2022; 282:121387. [DOI: 10.1016/j.biomaterials.2022.121387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/10/2022] [Accepted: 01/22/2022] [Indexed: 12/27/2022]
|
142
|
Mady M, ALOtaibi RA, ALJohani RA, Almutair SH, Msaud JM, AlBarakati JA, ALMakhalas AF, AlSakhin FZ, AlNajem SA, AlAshjai AM, Houmady RA, Barnawi NI. The Effect of Periodontal Disease on Quality of Life: Literature Review. ANNALS OF DENTAL SPECIALTY 2022. [DOI: 10.51847/lyo7bismil] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
143
|
Periodontal Cell Therapy: A Systematic Review and Meta-analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:377-397. [DOI: 10.1007/978-3-030-96881-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
144
|
Abdulkareem A, Abdulbaqi H, Gul S, Milward M, Chasib N, Alhashimi R. Classic vs. Novel Antibacterial Approaches for Eradicating Dental Biofilm as Adjunct to Periodontal Debridement: An Evidence-Based Overview. Antibiotics (Basel) 2021; 11:antibiotics11010009. [PMID: 35052887 PMCID: PMC8773342 DOI: 10.3390/antibiotics11010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Periodontitis is a multifactorial chronic inflammatory disease that affects tooth-supporting soft/hard tissues of the dentition. The dental plaque biofilm is considered as a primary etiological factor in susceptible patients; however, other factors contribute to progression, such as diabetes and smoking. Current management utilizes mechanical biofilm removal as the gold standard of treatment. Antibacterial agents might be indicated in certain conditions as an adjunct to this mechanical approach. However, in view of the growing concern about bacterial resistance, alternative approaches have been investigated. Currently, a range of antimicrobial agents and protocols have been used in clinical management, but these remain largely non-validated. This review aimed to evaluate the efficacy of adjunctive antibiotic use in periodontal management and to compare them to recently suggested alternatives. Evidence from in vitro, observational and clinical trial studies suggests efficacy in the use of adjunctive antimicrobials in patients with grade C periodontitis of young age or where the associated risk factors are inconsistent with the amount of bone loss present. Meanwhile, alternative approaches such as photodynamic therapy, bacteriophage therapy and probiotics showed limited supportive evidence, and more studies are warranted to validate their efficiency.
Collapse
Affiliation(s)
- Ali Abdulkareem
- College of Dentistry, University of Baghdad, Medical City of Baghdad, Baghdad 10011, Iraq; (H.A.); (N.C.); (R.A.)
- Correspondence:
| | - Hayder Abdulbaqi
- College of Dentistry, University of Baghdad, Medical City of Baghdad, Baghdad 10011, Iraq; (H.A.); (N.C.); (R.A.)
| | - Sarhang Gul
- College of Dentistry, University of Sulaimani, Sulaymaniyah 40062, Iraq;
| | - Mike Milward
- College of Dentistry, University of Birmingham, Birmingham B5 7EG, UK;
| | - Nibras Chasib
- College of Dentistry, University of Baghdad, Medical City of Baghdad, Baghdad 10011, Iraq; (H.A.); (N.C.); (R.A.)
| | - Raghad Alhashimi
- College of Dentistry, University of Baghdad, Medical City of Baghdad, Baghdad 10011, Iraq; (H.A.); (N.C.); (R.A.)
| |
Collapse
|
145
|
Xin S, Li SM, Gao L, Zheng JJ, Wu YW, Shao CL, Ren WH, Zhi K. CHNQD-00603 Promotes Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells by the miR-452-3p-Mediated Autophagy Pathway. Front Cell Dev Biol 2021; 9:779287. [PMID: 34993197 PMCID: PMC8724776 DOI: 10.3389/fcell.2021.779287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/24/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Periodontitis is a chronic and progressive disease accompanied by bone loss. It is still a challenge to restore the bone structure. The osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) plays a decisive role in bone restoration and regeneration. Marine natural products (MNPs) have multiple biological activities, including anti-tumor and anti-inflammatory properties. However, the exploration of MNPs in osteogenesis is far from sufficient. Methods: We obtained a series of derivatives through structural optimization from 4-phenyl-3,4-dihydroquinolin-2(1H)-one alkaloid isolated from Scopulariopsis sp. Some preliminary cytological experiments showed that CHNQD-00603, obtained by adding a methoxy group to the position C3 and a hydroxyl group to the position C4 of 4-phenyl-3,4-dihydroquinolin-2(1H)-one, might promote the osteogenic differentiation of BMSCs. To further investigate the effects of CHNQD-00603 on BMSCs, we performed a CCK-8 assay and qRT-PCR, alkaline phosphatase staining (ALP), and alizarin red S staining to assess the cytotoxicity and the ability of osteogenic differentiation of CHNQD-00603. The autophagy level was assessed and validated by WB, qRT-PCR, and transmission electron microscopy. Then, 3-methyladenine (3-MA) was added to further examine the role of autophagy. Based on the expression of autophagy-related genes, we predicted and examined the potential miRNAs by bioinformatics. Results: CCK-8 assay showed that CHNQD-00603 at 1 µg/ml did not influence BMSCs activity. However, the proliferation rate decreased from the seventh day. qRT-PCR, ALP staining, ALP activity assay, and Alizarin red S staining showed that the best concentration of CHNQD-00603 to promote osteogenic differentiation was 1 µg/ml. Further investigations indicated that CHNQD-00603 activated autophagy, and the inhibition of autophagy by 3-MA attenuated CHNQD-00603-enhanced osteogenic differentiation. Subsequently, the findings from bioinformatics and qRT-PCR indicated that miR-452-3p might be a regulator of autophagy and osteogenesis. Furthermore, we transfected BMSCs with miR-452-3p NC and mimics separately to further determine the function of miR-452-3p. The data showed that the overexpression of miR-452-3p moderated the level of autophagy and osteogenic differentiation of CHNQD-00603-treated BMSCs. Conclusion: Our data suggested that CHNQD-00603 promoted the osteogenic differentiation of BMSCs by enhancing autophagy. Meanwhile, miR-452-3p played a regulatory role in this process.
Collapse
Affiliation(s)
- Shanshan Xin
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Shao-Ming Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing-Jing Zheng
- Department of Endodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Wei Wu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wen-Hao Ren
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Keqian Zhi, ,
| |
Collapse
|
146
|
Can Plant Materials Be Valuable in the Treatment of Periodontal Diseases? Practical Review. Pharmaceutics 2021; 13:pharmaceutics13122185. [PMID: 34959467 PMCID: PMC8705740 DOI: 10.3390/pharmaceutics13122185] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Periodontal diseases are one of the most significant challenges in dental health. It is estimated that only a few percent of the worldwide population have entirely healthy teeth, and according to WHO, oral diseases may affect up to 3.5 billion people worldwide. One of the most serious oral diseases is periodontitis, an inflammatory disease affecting periodontal tissues, caused by pathogenic bacteria and environmental factors such as the ageing population, abuse of tobacco products, and lack of adequate oral hygiene due low public awareness. Plant materials are widely and successfully used in the management of many conditions, including periodontitis. Plant materials for periodontitis exhibit antibacterial, anti-inflammatory, antioxidant activities and affect the periodontium structure. Numerous studies demonstrate the advantages of phytotherapy for periodontitis relief and indicate the usefulness of Baikal skullcap root, Pomegranate fruit peel and root cortex, Tea leaves, Chamomile flowers, Magnolia bark, Blackberry leaves and fruits, Cranberry fruits and Lippia sidoides essential oil. This review aims to analyze the use and applicability of selected plant materials in periodontitis management since it is of paramount importance to evaluate the evidence of the traditionally used plant materials in light of continuously growing interest in phytotherapy and its adjuvant role in the treatment of periodontitis.
Collapse
|
147
|
Luo L, Zheng W, Chen C, Sun S. Searching for essential genes and drug discovery in breast cancer and periodontitis via text mining and bioinformatics analysis. Anticancer Drugs 2021; 32:1038-1045. [PMID: 34183495 PMCID: PMC8517104 DOI: 10.1097/cad.0000000000001108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/30/2021] [Indexed: 11/25/2022]
Abstract
The primary purpose of the study was (1) to search for the essential genes associated with breast cancer and periodontitis, and (2) to identify candidate drugs targeted to these genes for expanding the potential drug indications. The genes related to both breast cancer and periodontitis were determined by text mining. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis were performed on these genes, and protein-protein interaction analysis was carried out to export significant module genes. Drug-gene interaction database was employed for potential drug discovery. We identified 221 genes common to both breast cancer and periodontitis. The top six significant enrichment terms and 15 enriched signal pathways were selected. Among 24 significant genes demonstrated as a gene cluster, we found SERPINA1 and TF were significantly related to poor overall survival between the relatively high and low groups in patients. Using the final two genes, 12 drugs were identified that had potential therapeutic effects. SERPINA1 and TF were screened out as essential genes related to both breast cancer and periodontitis, targeting 12 candidate drugs that may expand drug indications. Drug discovery using text mining and analysis of different databases can promote the identification of existing drugs that have the potential of administration to improve treatment in breast cancer.
Collapse
Affiliation(s)
- Lan Luo
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Weijie Zheng
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Chuang Chen
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Shengrong Sun
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| |
Collapse
|
148
|
Kanmaz M, Kanmaz B, Buduneli N. Periodontal treatment outcomes in smokers: A narrative review. Tob Induc Dis 2021; 19:77. [PMID: 34707470 PMCID: PMC8494073 DOI: 10.18332/tid/142106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/19/2021] [Accepted: 09/09/2021] [Indexed: 01/01/2023] Open
Abstract
Smoking is considered as the major environmental risk factor for periodontal diseases. Smokers have a higher risk for severe periodontitis with more periodontal tissue destruction, more gingival recession, and more susceptibility for tooth loss. The aim of this narrative review is to provide up-to-date evidence on the clinical outcomes of periodontal treatment in smokers. Electronic databases were searched for studies that compare the clinical outcomes in smokers and non-smokers following non-surgical and surgical periodontal treatment modalities and also during the supportive periodontal treatment. Clinical studies published before May 2021 were included in the review. Smokers have a higher risk for recurrence of periodontal disease and the response to non-surgical as well as surgical periodontal treatment is not as good as that of non-smokers. Moreover, there is a dose-response effect in the adverse effects of smoking on periodontal health. Compared to non-smokers, smoker patients with periodontitis tend to respond less favorably to non-surgical and surgical periodontal treatment, and exhibit recurrence more frequently during supportive periodontal treatment. Along with the periodontal treatment, smokers may be encouraged to quit. Long follow-up and the communication between the dentist and the patient give a great opportunity for such counseling.
Collapse
Affiliation(s)
- Mehmet Kanmaz
- Department of Periodontology, Faculty of Dentistry, Izmir Tınaztepe University, Izmir, Turkey
| | - Burcu Kanmaz
- Department of Periodontology, Faculty of Dentistry, Izmir University of Democracy, Izmir, Turkey
| | - Nurcan Buduneli
- Department of Periodontology, Faculty of Dentistry, Ege University, Izmir, Turkey
| |
Collapse
|
149
|
Development and Evaluation of Thermosensitive Hydrogels with Binary Mixture of Scutellariae baicalensis radix Extract and Chitosan for Periodontal Diseases Treatment. Int J Mol Sci 2021; 22:ijms222111319. [PMID: 34768748 PMCID: PMC8583119 DOI: 10.3390/ijms222111319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 01/28/2023] Open
Abstract
Scutellaria baicalensis root displays anti-inflammatory and antibacterial properties due to the presence of flavonoids, particularly baicalin, baicalein, and wogonin. Our work aimed at developing thermosensitive hydrogels containing a binary mixture of S. baicalensis radix lyophilized extract and chitosan as a novel approach for periodontal diseases treatment. Two types of chitosan were employed in preliminary studies on binary mixtures with S. baicalensis radix lyophilized extract standardized for baicalin, baicalein, and wogonin. Thermosensitive hydrogels were prepared of poloxamer 407, alginate sodium, and cellulose derivatives and evaluated in terms of rheological and mucoadhesive behavior. The presence of chitosan altered the release profile of active compounds but did not affect their in vitro permeation behavior in PAMPA assay. The synergistic effects of S. baicalensis radix lyophilized extract and chitosan toward ferrous ion-chelating activity, inhibition of hyaluronidase, and pathogen growth were observed. The thermosensitive gelling system showed shear-thinning properties, gelation temperature between 25 and 27 °C, and favorable mucoadhesiveness in contact with porcine buccal mucosa, which was enhanced in the presence of binary mixture of S. baicalensis radix extract and chitosan. The release tests showed that baicalin and baicalein were liberated in a prolonged manner with a fast onset from hydrogel formulations.
Collapse
|
150
|
Tobias G, Sgan-Cohen H, Spanier AB, Mann J. Perceptions and Attitudes Toward the Use of a Mobile Health App for Remote Monitoring of Gingivitis and Willingness to Pay for Mobile Health Apps (Part 3): Mixed Methods Study. JMIR Form Res 2021; 5:e26125. [PMID: 34609320 PMCID: PMC8527382 DOI: 10.2196/26125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/13/2020] [Accepted: 08/07/2021] [Indexed: 01/19/2023] Open
Abstract
Background Gum infection, known as gingivitis, is a global issue. Gingivitis does not cause pain; however, if left untreated, it can worsen, leading to bad breath, bleeding gums, and even tooth loss, as the problem spreads to the underlying structures anchoring the teeth in the jaws. The asymptomatic nature of gingivitis leads people to postpone dental appointments until clinical signs are obvious or pain is evident. The COVID-19 pandemic has necessitated social distancing, which has caused many people to postpone dental visits and neglect gingival health. iGAM is a dental mobile health (mHealth) app that remotely monitors gum health, and an observational study demonstrated the ability of iGAM to reduce gingivitis. We found that a weekly dental selfie using the iGAM app reduced the signs of gingivitis and promoted oral health in a home-based setting. Objective The aim of this mixed methods study is to assess perceptions, attitudes, willingness to pay, and willingness to use an mHealth app. Methods The first qualitative phase of the study included eight semistructured interviews, and the second quantitative phase included data collected from responses to 121 questionnaires. Results There was a consensus among all interviewees that apps dealing with health-related issues (mHealth apps) can improve health. Three themes emerged from the interviews: the iGAM app is capable of improving health, the lack of use of medical apps, and a contradiction between the objective state of health and the self-definition of being healthy. Participants were grouped according to how they responded to the question about whether they believed that mHealth apps could improve their health. Participants who believed that mHealth apps can enhance health (mean 1.96, SD 1.01) had a higher willingness to pay for the service (depending on price) than those who did not believe in app efficacy (mean 1.31, SD 0.87; t119=−2417; P=.02). A significant positive correlation was found between the amount a participant was willing to pay and the benefits offered by the app (rs=0.185; P=.04). Conclusions Potential mHealth users will be willing to pay for app use depending on their perception of the app’s ability to help them personally, provided they define themselves as currently unhealthy.
Collapse
Affiliation(s)
- Guy Tobias
- Department of Community Dentistry, Faculty of Dental Medicine, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Harold Sgan-Cohen
- Department of Community Dentistry, Faculty of Dental Medicine, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Assaf B Spanier
- Department of Software Engineering, Azrieli College of Engineering, Jerusalem, Israel
| | - Jonathan Mann
- Department of Community Dentistry, Faculty of Dental Medicine, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| |
Collapse
|