101
|
Zhang Z, Wang Z, Yan M, Yu J, Dekker A, Zhao L, Wee L. Radiomics and Dosiomics Signature From Whole Lung Predicts Radiation Pneumonitis: A Model Development Study With Prospective External Validation and Decision-curve Analysis. Int J Radiat Oncol Biol Phys 2023; 115:746-758. [PMID: 36031028 DOI: 10.1016/j.ijrobp.2022.08.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE Radiation pneumonitis (RP) is one of the common side effects of radiation therapy in the thoracic region. Radiomics and dosiomics quantify information implicit within medical images and radiation therapy dose distributions. In this study we demonstrate the prognostic potential of radiomics, dosiomics, and clinical features for RP prediction. METHODS AND MATERIALS Radiomics, dosiomics, dose-volume histogram (DVH) metrics, and clinical parameters were obtained on 314 retrospectively collected and 35 prospectively enrolled patients diagnosed with lung cancer between 2013 to 2019. A radiomics risk score (R score) and dosiomics risk score (D score), as well as a DVH-score, were calculated based on logistic regression after feature selection. Six models were built using different combinations of R score, D score, DVH score, and clinical parameters to evaluate their added prognostic power. Overoptimism was evaluated by bootstrap resampling from the training set, and the prospectively collected cohort was used as the external test set. Model calibration and decision-curve characteristics of the best-performing models were evaluated. For ease of further evaluation, nomograms were constructed for selected models. RESULTS A model built by integrating all of the R score, D score, and clinical parameters had the best discriminative ability with areas under the curve of 0.793 (95% confidence interval [CI], 0.735-0.851), 0.774 (95% CI, 0.762-0.786), and 0.855 (95% CI, 0.719-0.990) in the training, bootstrapping, and external test sets, respectively. The calibration curve image showed good agreement between the predicted and actual values, with a slope of 1.21 and intercept of -0.04. The decision curve image showed a positive net benefit for the final model based on the nomogram. CONCLUSIONS Radiomic and dosiomic features have the potential to assist with the prediction of RP, and the combination of radiomics, dosiomics, and clinical parameters led to the best prognostic model in the present study.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Radiation Oncology, MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Zhixiang Wang
- Department of Radiation Oncology, MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Meng Yan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jiaqi Yu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Andre Dekker
- Department of Radiation Oncology, MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Leonard Wee
- Department of Radiation Oncology, MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
102
|
Zhang H, Zhang K, Qiu L, Yue J, Jiang H, Deng Q, Zhou R, Yin Z, Ma S, Ke Y. Cancer-associated fibroblasts facilitate DNA damage repair by promoting the glycolysis in non-small cell lung cancer. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166670. [PMID: 36822449 DOI: 10.1016/j.bbadis.2023.166670] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/28/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Radiotherapy is an essential treatment modality for the management of non-small cell lung cancer (NSCLC) patients. Tumor radioresistance is the major factor limiting the efficacy of radiotherapy in NSCLC patients. Our study aimed to reveal whether cancer-associated fibroblasts (CAFs), one main component of the tumor microenvironment, regulated DNA damage response of NSCLC cells following irradiation and clarify the involved mechanisms. We found CAFs inhibited irradiation-induced DNA damage while promoted DNA repair of NSCLC cells and caused cell cycle arrest in the radioresistant S phase. CAFs have the ability of up-regulating and stabilizing c-Myc, leading to the transcription activation of HK2 kinase, a key rate-limiting enzyme in glycolysis by activating Wnt/β-catenin pathway. Attenuation of glycolysis significantly reversed the effect of CAFs on DNA damage response of NSCLC cells. By high-throughput screening of human cytokines/chemokines array, we found CAFs-secreted midkine led to the promotion of glycolysis by activating Wnt/β-catenin pathway in NSCLC cells. In vivo, CAFs caused the radioresistance of NSCLC cells also by promoting the glycolysis in a β-catenin signaling-dependent manner. These findings may provide novel strategies for reversing the radioresistance of NSCLC cells.
Collapse
Affiliation(s)
- Hongfang Zhang
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ke Zhang
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Liqing Qiu
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Jing Yue
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Hong Jiang
- Department of Cardiothoracic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Qinghua Deng
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Rongjing Zhou
- Department of Pathology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Zihao Yin
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shenglin Ma
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Yuehai Ke
- Department of Pathology and Pathophysiology and Department of Respiratory Medicine at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
103
|
Grassi F, Granata V, Fusco R, De Muzio F, Cutolo C, Gabelloni M, Borgheresi A, Danti G, Picone C, Giovagnoni A, Miele V, Gandolfo N, Barile A, Nardone V, Grassi R. Radiation Recall Pneumonitis: The Open Challenge in Differential Diagnosis of Pneumonia Induced by Oncological Treatments. J Clin Med 2023; 12:jcm12041442. [PMID: 36835977 PMCID: PMC9964719 DOI: 10.3390/jcm12041442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
The treatment of primary and secondary lung neoplasms now sees the fundamental role of radiotherapy, associated with surgery and systemic therapies. The improvement in survival outcomes has also increased attention to the quality of life, treatment compliance and the management of side effects. The role of imaging is not only limited to recognizing the efficacy of treatment but also to identifying, as soon as possible, the uncommon effects, especially when more treatments, such as chemotherapy, immunotherapy and radiotherapy, are associated. Radiation recall pneumonitis is an uncommon treatment complication that should be correctly characterized, and it is essential to recognize the mechanisms of radiation recall pneumonitis pathogenesis and diagnostic features in order to promptly identify them and adopt the best therapeutic strategy, with the shortest possible withdrawal of the current oncological drug. In this setting, artificial intelligence could have a critical role, although a larger patient data set is required.
Collapse
Affiliation(s)
- Francesca Grassi
- Division of Radiology, Università Degli Studi Della Campania Luigi Vanvitelli, 80127 Naples, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
- Correspondence:
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80015 Naples, Italy
| | - Federica De Muzio
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy
| | - Michela Gabelloni
- Department of Translational Research, Diagnostic and Interventional Radiology, University of Pisa, 56126 Pisa, Italy
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica Delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Ginevra Danti
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Carmine Picone
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica Delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, 16149 Genoa, Italy
| | - Antonio Barile
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
| | - Valerio Nardone
- Division of Radiology, Università Degli Studi Della Campania Luigi Vanvitelli, 80127 Naples, Italy
| | - Roberta Grassi
- Division of Radiology, Università Degli Studi Della Campania Luigi Vanvitelli, 80127 Naples, Italy
| |
Collapse
|
104
|
Kaczyńska K, Jampolska M, Wojciechowski P, Sulejczak D, Andrzejewski K, Zając D. Potential of Lactoferrin in the Treatment of Lung Diseases. Pharmaceuticals (Basel) 2023; 16:192. [PMID: 37259341 PMCID: PMC9960651 DOI: 10.3390/ph16020192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 11/07/2023] Open
Abstract
Lactoferrin (LF) is a multifunctional iron-binding glycoprotein that exhibits a variety of properties, such as immunomodulatory, anti-inflammatory, antimicrobial, and anticancer, that can be used to treat numerous diseases. Lung diseases continue to be the leading cause of death and disability worldwide. Many of the therapies currently used to treat these diseases have limited efficacy or are associated with side effects. Therefore, there is a constant pursuit for new drugs and therapies, and LF is frequently considered a therapeutic agent and/or adjunct to drug-based therapies for the treatment of lung diseases. This article focuses on a review of the existing and most up-to-date literature on the contribution of the beneficial effects of LF on the treatment of lung diseases, including asthma, viral infections, cystic fibrosis, or lung cancer, among others. Although in vitro and in vivo studies indicate significant potency of LF in the treatment of the listed diseases, only in the case of respiratory tract infections do human studies seem to confirm them by demonstrating the effectiveness of LF in reducing episodes of illness and shortening the recovery period. For lung cancer, COVID-19 and sepsis, the reports are conflicting, and for other diseases, there is a paucity of human studies conclusively confirming the beneficial effects of LF.
Collapse
Affiliation(s)
- Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Monika Jampolska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Piotr Wojciechowski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Kryspin Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Dominika Zając
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
105
|
Nie H, Han Z, Nicholas S, Maitland E, Huang Z, Chen S, Tuo Z, Ma Y, Shi X. Costs of traditional Chinese medicine treatment for inpatients with lung cancer in China: a national study. BMC Complement Med Ther 2023; 23:5. [PMID: 36624405 PMCID: PMC9827714 DOI: 10.1186/s12906-022-03819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Traditional Chinese Medicine (TCM) has long been a widely recognized medical approach and has been covered by China's basic medical insurance schemes to treat lung cancer. But there was a lack of nationwide research to illustrate the impact of the use of TCM on lung cancer patients' economic burden in mainland China. Therefore, we conduct a nationwide study to reveal whether the use of TCM could increase or decrease the medical expenditure of lung cancer inpatients in mainland China. METHODS This is a 7-year cross-sectional study from 2010 to 2016. The data is a random sample of 5% from lung cancer claims data records of Chinese Urban Employee Basic Medical Insurance (UEBMI) and Urban Resident Basic Medical Insurance (URBMI). Mann-Whitney test was used to compare inpatient cost data with positive skewness. Ordinary least squares regression analysis was performed to compare the total TCM users' hospitalization cost with TCM nonusers', to examine whether TCM use is the key factor inducing relatively high medical expenditure. RESULT A total of 47,393 lung cancer inpatients were included in this study, with 38,697 (81.7%) of them at least using one kind of TCM approach. The per inpatient medical cost of TCM users was RMB18,798 (USD2,830), which was 65.2% significantly higher than that of TCM nonusers (P < 0.001). The medication cost, conventional medication cost, and nonpharmacy cost of TCM users were all higher than TCM nonusers, illustrating the higher medical cost of TCM users was not induced by TCM only. With confounding factors fixed, there was a positive correlation between TCM cost and conventional medication cost, nonpharmacy cost (Coef. = 0.283 and 0.211, all P < 0.001), indicting synchronous increase of TCM costs and conventional medication cost for TCM users. CONCLUSION The use of TCM could not offset the utilization of conventional medicine, demonstrating TCM mainly played a complementary role but not an alternative role in the inpatient treatment of lung cancer. A joint Clinical Guideline that could balance the use of TCM and Conventional medicine should be developed for the purpose of reducing economic burden for lung cancer inpatients.
Collapse
Affiliation(s)
- Hanlin Nie
- grid.24695.3c0000 0001 1431 9176School of Management, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoran Han
- grid.24695.3c0000 0001 1431 9176School of Management, Beijing University of Chinese Medicine, Beijing, China
| | - Stephen Nicholas
- Australian National Institute of Management and Commerce, Sydney, NSW Australia ,grid.440718.e0000 0001 2301 6433Guangdong Institute for International Strategies, Guangdong University of Foreign Studies, Guangzhou, China ,grid.412735.60000 0001 0193 3951School of Economics and School of Management, Tianjin Normal University, Tianjin, China ,grid.266842.c0000 0000 8831 109XNewcastle Business School, University of Newcastle, Callaghan, NSW Australia
| | - Elizabeth Maitland
- grid.10025.360000 0004 1936 8470University of Liverpool Management School, University of Liverpool, Liverpool, UK
| | - Zhengwei Huang
- grid.10784.3a0000 0004 1937 0482The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China
| | - Sisi Chen
- grid.24695.3c0000 0001 1431 9176School of Management, Beijing University of Chinese Medicine, Beijing, China
| | - Zegui Tuo
- grid.24695.3c0000 0001 1431 9176School of Management, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Ma
- China Health Insurance Research Association, Beijing, China
| | - Xuefeng Shi
- grid.24695.3c0000 0001 1431 9176School of Management, Beijing University of Chinese Medicine, Beijing, China ,grid.24695.3c0000 0001 1431 9176National Institute of Traditional Chinese Medicine Strategy and Development, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
106
|
Jie C, Li R, Cheng Y, Wang Z, Wu Q, Xie C. Prospects and feasibility of synergistic therapy with radiotherapy, immunotherapy, and DNA methyltransferase inhibitors in non-small cell lung cancer. Front Immunol 2023; 14:1122352. [PMID: 36875059 PMCID: PMC9981667 DOI: 10.3389/fimmu.2023.1122352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
The morbidity and mortality of lung cancer are increasing, seriously threatening human health and life. Non-small cell lung cancer (NSCLC) has an insidious onset and is not easy to be diagnosed in its early stage. Distant metastasis often occurs and the prognosis is poor. Radiotherapy (RT) combined with immunotherapy, especially with immune checkpoint inhibitors (ICIs), has become the focus of research in NSCLC. The efficacy of immunoradiotherapy (iRT) is promising, but further optimization is necessary. DNA methylation has been involved in immune escape and radioresistance, and becomes a game changer in iRT. In this review, we focused on the regulation of DNA methylation on ICIs treatment resistance and radioresistance in NSCLC and elucidated the potential synergistic effects of DNA methyltransferases inhibitors (DNMTis) with iRT. Taken together, we outlined evidence suggesting that a combination of DNMTis, RT, and immunotherapy could be a promising treatment strategy to improve NSCLC outcomes.
Collapse
Affiliation(s)
- Chen Jie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rumeng Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yajie Cheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhihao Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
107
|
Chen Y, Liu S, Liao Y, Yang H, Chen Z, Hu Y, Fu S, Wu J. Albumin-Modified Gold Nanoparticles as Novel Radiosensitizers for Enhancing Lung Cancer Radiotherapy. Int J Nanomedicine 2023; 18:1949-1964. [PMID: 37070100 PMCID: PMC10105590 DOI: 10.2147/ijn.s398254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/01/2023] [Indexed: 04/19/2023] Open
Abstract
Background Considering the strong attenuation of photons and the potential to increase the deposition of radiation, high-atomic number nanomaterials are often used as radiosensitizers in cancer radiotherapy, of which gold nanoparticles (GNPs) are widely used. Materials and Methods We prepared albumin-modified GNPs (Alb-GNPs) and observed their radiosensitizing effects and biotoxicity in human non-small-cell lung carcinoma tumor-bearing mice models. Results The prepared nanoparticles (Alb-GNPs) demonstrated excellent colloidal stability and biocompatibility at the mean size of 205.06 ± 1.03 nm. Furthermore, clone formation experiments revealed that Alb-GNPs exerted excellent radiosensitization, with a sensitization enhancement ratio (SER) of 1.432, which is higher than X-ray alone. Our in vitro and in vivo data suggested that Alb-GNPs enabled favorable accumulation in tumors, and the combination of Alb-GNPs and radiotherapy exhibited a relatively greater radiosensitizing effect and anti-tumor activity. In addition, no toxicity or abnormal irritating response resulted from the application of Alb-GNPs. Conclusion Alb-GNPs can be used as an effective radiosensitizer to improve the efficacy of radiotherapy with minimal damage to healthy tissues.
Collapse
Affiliation(s)
- Yao Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yin Liao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Hanshan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Zhuo Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yuru Hu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Correspondence: Shaozhi Fu; Jingbo Wu, Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China, Tel/Fax +86 8303165696, Email ;
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, People’s Republic of China
| |
Collapse
|
108
|
Liu Y, Cheng W, Xin H, Liu R, Wang Q, Cai W, Peng X, Yang F, Xin H. Nanoparticles advanced from preclinical studies to clinical trials for lung cancer therapy. Cancer Nanotechnol 2023; 14:28. [PMID: 37009262 PMCID: PMC10042676 DOI: 10.1186/s12645-023-00174-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality. As a heterogeneous disease, it has different subtypes and various treatment modalities. In addition to conventional surgery, radiotherapy and chemotherapy, targeted therapy and immunotherapy have also been applied in the clinics. However, drug resistance and systemic toxicity still cannot be avoided. Based on the unique properties of nanoparticles, it provides a new idea for lung cancer therapy, especially for targeted immunotherapy. When nanoparticles are used as carriers of drugs with special physical properties, the nanodrug delivery system ensures the accuracy of targeting and the stability of drugs while increasing the permeability and the aggregation of drugs in tumor tissues, showing good anti-tumor effects. This review introduces the properties of various nanoparticles including polymer nanoparticles, liposome nanoparticles, quantum dots, dendrimers, and gold nanoparticles and their applications in tumor tissues. In addition, the specific application of nanoparticle-based drug delivery for lung cancer therapy in preclinical studies and clinical trials is discussed.
Collapse
Affiliation(s)
- Yifan Liu
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Jingzhou Hospital Affiliated to Yangtze University, Yangtze University, Jingzhou, 434023 Hubei China
| | - Wenxu Cheng
- grid.410654.20000 0000 8880 6009Jingzhou Hospital Affiliated to Yangtze University, Yangtze University, Jingzhou, 434023 Hubei China
| | - HongYi Xin
- The Doctoral Scientific Research Center, People’s Hospital of Lianjiang, Guangdong, 524400 China
- grid.410560.60000 0004 1760 3078The Doctoral Scientific Research Center, People’s Hospital of Lianjiang, Affiliated to Guangdong Medical University, Guangdong, 524400 China
| | - Ran Liu
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Qinqi Wang
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Wenqi Cai
- grid.49470.3e0000 0001 2331 6153Xinzhou Traditional Chinese Medicine Hospital, Zhongnan Hospital of Wuhan University (Xinzhou), Hubei, 430000 China
| | - Xiaochun Peng
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Fuyuan Yang
- grid.410654.20000 0000 8880 6009Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
| | - HongWu Xin
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
- grid.443353.60000 0004 1798 8916Research Center of Molecular Medicine, Medical College of Chifeng University, Inner Mongolian Autonomous Region, Chifeng, 024000 China
| |
Collapse
|
109
|
Ginsenoside Rg3 enhances the radiosensitivity of lung cancer A549 and H1299 cells via the PI3K/AKT signaling pathway. In Vitro Cell Dev Biol Anim 2023; 59:19-30. [PMID: 36790693 DOI: 10.1007/s11626-023-00749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Lung cancer is one of the most common cancers and the leading cause of cancer-related deaths in the world. Radiation is widely used for the treatment of lung cancer. However, radioresistance and toxicity limit its effectiveness. Ginsenoside Rg3 (Rg3) is a positive monomer extracted from ginseng and has been shown to the anti-cancer ability on many tumors. The aim of the present study was to ascertain whether Rg3 is able to enhance the radiosensitivity of lung cancer cells and investigate the underlying mechanisms. The effect of Rg3 on cell proliferation was examined by Cell Counting Kit-8 (CCK-8) and radiosensitivity was measured by colony formation assay. Flow cytometry, transwell, and wound healing assay were used to determine apoptosis, cell cycle, and metastasis. Western blot was used to detect the main protein levels of the PI3K/AKT signaling pathway. We found that Rg3 inhibited cell proliferation, promoted apoptosis, and suppressed migration and invasion in radio-induced lung cancer cells. In addition, Rg3 increased the proportion of G2/M phase cells and inhibited the formation of cell colonies. Moreover, Rg3 decreased the expression levels of PI3K, p-AKT, and PDK1 in radio-induced cells. These findings indicate that Rg3 may be able to enhance the radiosensitivity in lung cancer cells by the PI3K/AKT signaling pathway. These results demonstrate the therapeutic potential of Rg3 as a radiosensitizer for lung cancer.
Collapse
|
110
|
Wang H, Wang B, Wei J, Zheng Z, Su J, Bian C, Xin Y, Jiang X. Sulforaphane regulates Nrf2-mediated antioxidant activity and downregulates TGF-β1/Smad pathways to prevent radiation-induced muscle fibrosis. Life Sci 2022; 311:121197. [PMID: 36400201 DOI: 10.1016/j.lfs.2022.121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
AIMS This study aimed to examine the efficacy of sulforaphane (SFN) in preventing radiation-induced muscle fibrosis (RIMF) and the potential role in nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant stress. MAIN METHODS The RIMF model was established by a single irradiation of the left thigh of C57BL/6 J mice, and the mice were then randomly divided into control, SFN, irradiation (IR), and IR + SFN (IR/SFN) groups. The serum and skeletal muscle were collected eight weeks after irradiation, and changes in oxidative stress and muscle fibrosis were detected. KEY FINDINGS The IR group showed a more obvious skeletal muscle fiber atrophy, significantly higher number of collagen fibers, and higher inflammatory cell infiltration compared to control group. Compared to the IR group, the IR/SFN group had orderly arranged muscle fibers, decreased collagen fibers, and infiltration of inflammatory cells. In addition, compared with the control group, the expression of oxidative stress-related indexes was significantly increased, accompanied by activation of the transforming growth factor (TGF-β)/Smad pathway and its downstream fibrogenic molecules in the skeletal muscle of the IR group. After SFN intervention, the above indices were significantly restored. Furthermore, SFN induced the upregulation of Nrf2, activation of AKT, and inhibition of GSK-3β and Fyn accumulation. SIGNIFICANCE These results revealed that Nrf2 plays a central role in protecting against RIMF. Furthermore, SFN prevents RIMF by activating Nrf2 via the AKT/GSK-3β/Fyn pathway.
Collapse
Affiliation(s)
- Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Bin Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Jinlong Wei
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
111
|
Wu B, Chen J, Zhang X, Feng N, Xiang Z, Wei Y, Xie J, Zhang W. Prognostic factors and survival prediction for patients with metastatic lung adenocarcinoma: A population-based study. Medicine (Baltimore) 2022; 101:e32217. [PMID: 36626448 PMCID: PMC9750683 DOI: 10.1097/md.0000000000032217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The prognosis of metastatic lung adenocarcinoma (MLUAD) varies greatly. At present, no studies have constructed a satisfactory prognostic model for MLUAD. We identified 44,878 patients with MLUAD. The patients were randomized into the training and validation cohorts. Cox regression models were performed to identify independent prognostic factors. Then, R software was employed to construct a new nomogram for predicting overall survival (OS) of patients with MLUAD. Accuracy was assessed by the concordance index (C-index), receiver operating characteristic curves and calibration plots. Finally, clinical practicability was examined via decision curve analysis. The OS time range for the included populations was 0 to 107 months, and the median OS was 7.00 months. Nineteen variables were significantly associated with the prognosis, and the top 5 prognostic factors were chemotherapy, grade, age, race and surgery. The nomogram has excellent predictive accuracy and clinical applicability compared to the TNM system (C-index: 0.723 vs 0.534). The C-index values were 0.723 (95% confidence interval: 0.719-0.726) and 0.723 (95% confidence interval: 0.718-0.729) in the training and validation cohorts, respectively. The area under the curve for 6-, 12-, and 18-month OS was 0.799, 0.764, and 0.750, respectively, in the training cohort and 0.799, 0.762, and 0.746, respectively, in the validation cohort. The calibration plots show good accuracy, and the decision curve analysis values indicate good clinical applicability and effectiveness. The nomogram model constructed with the above 19 prognostic factors is suitable for predicting the OS of MLUAD and has good predictive accuracy and clinical applicability.
Collapse
Affiliation(s)
- Bo Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianhui Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nan Feng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhongtian Xiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junping Xie
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- * Correspondence: Wenxiong Zhang, Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, China (e-mail: )
| |
Collapse
|
112
|
Real-World Patterns and Decision Drivers of Radiotherapy for Lung Cancer Patients in Romania: RADIO-NET Study Results. Diagnostics (Basel) 2022; 12:diagnostics12123089. [PMID: 36553096 PMCID: PMC9777374 DOI: 10.3390/diagnostics12123089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy (RT) plays a crucial role in all stages of lung cancer. Data on recent real-world RT patterns and main drivers of RT decisions in lung cancer in Romania is scarce; we aimed to address these knowledge gaps through this physician-led medical chart review in 16 RT centers across the country. Consecutive patients with lung cancer receiving RT as part of their disease management between May-October 2019 (pre-COVID-19 pandemic) were included. Descriptive statistics were generated for all variables. This cohort included 422 patients: median age 63 years, males 76%, stages I-II 6%, III 43%, IV 50%, mostly adeno- and squamous cell carcinoma (76%), ECOG 0-1 50% at the time of RT. Curative intent RT was used in 36% of cases, palliative RT in 64%. Delays were reported in 13% of patients, mostly due to machine breakdown (67%). Most acute reported RT toxicity was esophagitis (19%). Multiple disease-, patient-, physician- and context-related drivers counted in the decision-making process. This is the first detailed analysis of RT use in lung cancer in Romania. Palliative RT still dominates the landscape. Earlier diagnosis, coordinated multidisciplinary strategies, and the true impact of the multimodal treatments on survival are strongly needed to improve lung cancer outcomes.
Collapse
|
113
|
Duan Y, Shen C, Zhang Y, Luo Y. Advanced diagnostic and therapeutic strategies in nanotechnology for lung cancer. Front Oncol 2022; 12:1031000. [PMID: 36568152 PMCID: PMC9767962 DOI: 10.3389/fonc.2022.1031000] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
As a highly invasive thoracic malignancy with increasing prevalence, lung cancer is also the most lethal cancer worldwide due to the failure of effective early detection and the limitations of conventional therapeutic strategies for advanced-stage patients. Over the past few decades, nanotechnology has emerged as an important technique to obtain desired features by modifying and manipulating different objects on a molecular level and gained a lot of attention in many fields of medical applications. Studies have shown that in lung cancer, nanotechnology may be more effective and specific than traditional methods for detecting extracellular cancer biomarkers and cancer cells in vitro, as well as imaging cancer in vivo; Nanoscale drug delivery systems have developed rapidly to overcome various forms of multi-drug resistance and reduce detrimental side effects to normal tissues by targeting cancerous tissue precisely. There is no doubt that nanotechnology has the potential to enhance healthcare systems by simplifying and improving cancer diagnostics and treatment. Throughout this review, we summarize and highlight recent developments in nanotechnology applications for lung cancer in diagnosis and therapy. Moreover, the prospects and challenges in the translation of nanotechnology-based diagnostic and therapeutic methods into clinical applications are also discussed.
Collapse
Affiliation(s)
- Yujuan Duan
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,School of Chemical Science and Engineering, Tongji University, Shanghai, China,Department of Laboratory Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Shen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, China,*Correspondence: Yao Luo, ; Yinan Zhang,
| | - Yao Luo
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Yao Luo, ; Yinan Zhang,
| |
Collapse
|
114
|
Wang X, He X, Liu C, Zhao W, Yuan X, Li R. Progress and perspectives of platinum nanozyme in cancer therapy. Front Chem 2022; 10:1092747. [DOI: 10.3389/fchem.2022.1092747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Malignant tumors, one of the worst-case scenarios within human health problems, are now posing an increasing threat to the well-being of the global population. At present, the treatment of malignant tumors mainly includes surgery, radiotherapy, chemotherapy, immunotherapy, etc. Radiotherapy and chemotherapy are often applied to inoperable tumors, and some other tumors after surgery as important adjuvant therapies. Nonetheless, both radiotherapy and chemotherapy have a series of side effects, such as radiation-induced lung injury, and chemotherapy-induced bone marrow suppression. In addition, the positioning accuracy of radiotherapy and chemotherapy is not assured and satisfactory, and the possibility of tumor cells not being sensitive to radiation and chemotherapy drugs is also problematic. Nanozymes are nanomaterials that display natural enzyme activities, and their applications to tumor therapy have made great progress recently. The most studied one, platinum nanozyme, has been shown to possess a significant correlation with radiotherapy sensitization of tumors as well as photodynamic therapy. However, there are still several issues that limited the usage of platinum-based nanozymes in vivo. In this review, we briefly summarize the representative studies regarding platinum nanozymes, and especially emphasize on the current challenges and the directions of future development for platinum nanozymes therapy.
Collapse
|
115
|
Wang Z, Yang B, Zhan P, Wang L, Wan B. The efficacy of postoperative radiotherapy for patients with non-small cell lung cancer: An updated systematic review and meta-analysis. J Cancer Res Ther 2022; 18:1910-1918. [PMID: 36647949 DOI: 10.4103/jcrt.jcrt_167_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The controversy over the efficacy of postoperative radiotherapy (PORT) has existed for a long time. The present study reassessed the overall survival (OS) and disease-free survival (DFS) data to investigate whether PORT can improve survival in resectable non-small cell lung cancer (NSCLC) patients. The following databases were used to perform literature search: PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and Embase (from January 1, 1986 to July 5, 2021). The results of overall survival (OS) and disease-free survival (DFS) were calculated as hazard ratio (HR). Confidence intervals are chosen with 95% confidence intervals. A total of 12 RCTs and 19 retrospective cohort studies were found to meet the inclusion criteria. A significant DFS improvement was detected in the PORT group (4111 patients from 15 studies), although statistical difference was not detected for OS between the non-PORT and PORT groups (31 studies, 49,342 total patients). PORT prolonged OS in patients undergoing PORT plus postoperative chemotherapy (POCT) and in pN2 patients. Patients with a median radiation dose of 50.4 Gy and a median radiation dose of 54 Gy had a better OS after PORT. However, if the total radiotherapy dose went up to 60 Gy, PORT increased the risk of death in NSCLC patients. Significant difference in OS was not found in the results of studies with regard to treatment methods, pathologic stages, study type, radiation beam quality, and radiation dose. Patients undergoing postoperative chemoradiotherapy and pN2 patients can benefit from PORT. Patients exposed to median radiation doses of 50.4 and 54 Gy demonstrated relatively good efficacy. For patients with non-small-cell lung cancer, PORT has not been proven to extend OS, but its effect on DFS remains strong.
Collapse
Affiliation(s)
- Zexu Wang
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Baixia Yang
- Department of Radiotherapy, Nantong Tumor Hospital, Jiangsu, China
| | - Ping Zhan
- Department of Radiotherapy, Nantong Tumor Hospital, Jiangsu, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
116
|
Chen H, Han Z, Luo Q, Wang Y, Li Q, Zhou L, Zuo H. Radiotherapy modulates tumor cell fate decisions: a review. Radiat Oncol 2022; 17:196. [PMID: 36457125 PMCID: PMC9714175 DOI: 10.1186/s13014-022-02171-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer has always been a worldwide problem, and the application of radiotherapy has greatly improved the survival rate of cancer patients. Radiotherapy can modulate multiple cell fate decisions to kill tumor cells and achieve its therapeutic effect. With the development of radiotherapy technology, how to increase the killing effect of tumor cells and reduce the side effects on normal cells has become a new problem. In this review, we summarize the mechanisms by which radiotherapy induces tumor cell apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis, autophagy, senescence, mitotic catastrophe, and cuproptosis. An in-depth understanding of these radiotherapy-related cell fate decisions can greatly improve the efficiency of radiotherapy for cancer.
Collapse
Affiliation(s)
| | - Zhongyu Han
- Chengdu Xinhua Hospital, Chengdu, China ,grid.411304.30000 0001 0376 205XSchool of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Luo
- Chengdu Xinhua Hospital, Chengdu, China
| | - Yi Wang
- Chengdu Xinhua Hospital, Chengdu, China
| | - Qiju Li
- Chengdu Xinhua Hospital, Chengdu, China
| | | | | |
Collapse
|
117
|
Cui Y, Yan H, Wang H, Zhang Y, Li M, Cui K, Xiao Z, Liu L, Xie W. CuS- 131I-PEG Nanotheranostics-Induced "Multiple Mild-Hyperthermia" Strategy to Overcome Radio-Resistance in Lung Cancer Brachytherapy. Pharmaceutics 2022; 14:pharmaceutics14122669. [PMID: 36559162 PMCID: PMC9785376 DOI: 10.3390/pharmaceutics14122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Brachytherapy is one mainstay treatment for lung cancer. However, a great challenge in brachytherapy is radio-resistance, which is caused by severe hypoxia in solid tumors. In this research, we have developed a PEGylated 131I-labeled CuS nanotheranostics (CuS-131I-PEG)-induced "multiple mild-hyperthermia" strategy to reverse hypoxia-associated radio-resistance. Specifically, after being injected with CuS-131I-PEG nanotheranostics, tumors were irradiated by NIR laser to mildly increase tumor temperature (39~40 °C). This mild hyperthermia can improve oxygen levels and reduce expression of hypoxia-induced factor-1α (HIF-1α) inside tumors, which brings about alleviation of tumor hypoxia and reversion of hypoxia-induced radio-resistance. During the entire treatment, tumors are treated by photothermal brachytherapy three times, and meanwhile mild hyperthermia stimulation is conducted before each treatment of photothermal brachytherapy, which is defined as a "multiple mild-hyperthermia" strategy. Based on this strategy, tumors have been completely inhibited. Overall, our research presents a simple and effective "multiple mild-hyperthermia" strategy for reversing radio-resistance of lung cancer, achieving the combined photothermal brachytherapy.
Collapse
Affiliation(s)
- Yanna Cui
- Department of Nuclear Medicine, Shanghai Chest Hospital & Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hui Yan
- Department of Nuclear Medicine, Shanghai Chest Hospital & Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haoze Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital & Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China
| | - Yongming Zhang
- Department of Nuclear Medicine, Shanghai Chest Hospital & Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Meng Li
- Department of Nuclear Medicine, Shanghai Chest Hospital & Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China
| | - Kai Cui
- Department of Nuclear Medicine, Shanghai Chest Hospital & Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zeyu Xiao
- Department of Nuclear Medicine, Shanghai Chest Hospital & Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (Z.X.); (L.L.); (W.X.)
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital & Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (Z.X.); (L.L.); (W.X.)
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital & Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (Z.X.); (L.L.); (W.X.)
| |
Collapse
|
118
|
Chen W, Wang R, Ma Z, Hua Y, Mao D, Wu H, Yang Y, Li C, Li M. A delta-radiomics model for preoperative prediction of invasive lung adenocarcinomas manifesting as radiological part-solid nodules. Front Oncol 2022; 12:927974. [DOI: 10.3389/fonc.2022.927974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
PurposeThis study aims to explore the value of the delta-radiomics (DelRADx) model in predicting the invasiveness of lung adenocarcinoma manifesting as radiological part-solid nodules (PSNs).MethodsA total of 299 PSNs histopathologically confirmed as lung adenocarcinoma (training set, n = 209; validation set, n = 90) in our hospital were retrospectively analyzed from January 2017 to December 2021. All patients underwent diagnostic noncontrast-enhanced CT (NCECT) and contrast-enhanced CT (CECT) before surgery. After image preprocessing and ROI segmentation, 740 radiomic features were extracted from NCECT and CECT, respectively, resulting in 740 DelRADx. A DelRADx model was constructed using the least absolute shrinkage and selection operator logistic (LASSO-logistic) algorithm based on the training cohort. The conventional radiomics model based on NCECT was also constructed following the same process for comparison purposes. The prediction performance was assessed using area under the ROC curve (AUC). To provide an easy-to-use tool, a radiomics-based integrated nomogram was constructed and evaluated by integrated discrimination increment (IDI), calibration curves, decision curve analysis (DCA), and clinical impact plot.ResultsThe DelRADx signature, which consisted of nine robust selected features, showed significant differences between the AIS/MIA group and IAC group (p < 0.05) in both training and validation sets. The DelRADx signature showed a significantly higher AUC (0.902) compared to the conventional radiomics model based on NCECT (AUC = 0.856) in the validation set. The IDI was significant at 0.0769 for the integrated nomogram compared with the DelRADx signature. The calibration curve of the integrated nomogram demonstrated favorable agreement both in the training set and validation set with a mean absolute error of 0.001 and 0.019, respectively. Decision curve analysis and clinical impact plot indicated that if the threshold probability was within 90%, the integrated nomogram showed a high clinical application value.ConclusionThe DelRADx method has the potential to assist doctors in predicting the invasiveness for patients with PSNs. The integrated nomogram incorporating the DelRADx signature with the radiographic features could facilitate the performance and serve as an alternative way for determining management.
Collapse
|
119
|
Yang Y, Qian Z, Feng M, Liao W, Wu Q, Wen F, Li Q. Study on the prognosis, immune and drug resistance of m6A-related genes in lung cancer. BMC Bioinformatics 2022; 23:437. [PMID: 36261786 PMCID: PMC9583491 DOI: 10.1186/s12859-022-04984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background Few studies have demonstrated that the relationship between m6A-related genes and the prognosis, tumor microenvironment and drug resistance of LC. Methods The main results were analyzed with bioinformatics methods. Results Hence, we found 10 m6A-related genes expressed less in tumor samples in comparison with normal ones. Using consensus clustering, all LC patients were grouped into 2 subgroups according to the overall expression of 10 differential expressed m6A-related genes. In two clusters, the OS and immune characteristics were different. We analyzed the predictive potential of 10 m6A-related genes in the prognosis of LC, and obtained a risk prognosis model on the strength of ZC3H13, CBLL1, ELAVL1 and YTHDF1 as the hub candidate genes through LASSO cox. The expression of 4 hub m6A-related genes was validated by IHC in the HPA database. The infiltration level of dendritic cell, CD4+ T cell and neutrophil that were affected by CNV level of m6A-related genes in LUAD and LUSC patients. Moreover, based on GSCALite database, we found that LUSC patients with hypermethylation tended to have a better overall survival. In terms of drug sensitivity, etoposide correlated negatively with ELAVL1, HNRNPC, RBM15B, YTHDF2 and CBLL1. ZC3H13 had positively association with afatinib, while HNRNPC was positively associated with dasatinib, erlotinib, lapatinib and TGX221. Crizotinib had a negative correlation with ELAVL1, CBLL1, HNRNPC and RBM15B. Conclusion In conclusion, m6A-related genes are important participants in LC and the expression levels of ZC3H13, CBLL1, ELAVL1 and YTHDF1 are significant for prediction and treatment of LC. Researches of drug resistance based on m6A-related genes need to pay more attention for producing new therapeutic strategies of LC and CBLL1 may contribute to target treatment for further research. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04984-5.
Collapse
Affiliation(s)
- Yang Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China
| | - Zhouyao Qian
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingyang Feng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China
| | - Weiting Liao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China
| | - Qiuji Wu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China. .,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.
| |
Collapse
|
120
|
The Roles of EXO1 and RPA1 Polymorphisms in Prognosis of Lung Cancer Patients Treated with Platinum-Based Chemotherapy. DISEASE MARKERS 2022; 2022:3306189. [PMID: 36277983 PMCID: PMC9584701 DOI: 10.1155/2022/3306189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022]
Abstract
Background. Lung cancer is one of the major causes of cancer-related mortality worldwide. DNA repair and damage response contribute to genomic instability that accompanies tumor progression. In this study, we focus on evaluating association between DNA repair polymorphisms of EXO1, RPA1, and prognosis in lung cancer patients whom received platinum-based chemotherapy. Methods. 593 lung cancer patients were recruited in this study. We performed genotyping of 19 single nucleotide polymorphisms (SNPs) by Sequenom MassARRAY. Cox regression analysis was used to assess overall survival (OS) and progression-free survival (PFS) among SNP genotypes. Results. Significant differences in PFS and OS were observed in RPA1 rs5030740, EXO1 rs1776148, and rs1047840. Results showed that patients with CC genotype in rs5030740 (recessive model:
) had a better PFS. Patients with AA or/and AG genotypes in rs1776148 (additive model:
; dominant model:
) and AA genotype in rs1047840 (recessive model:
) had longer OS. We also demonstrated differences in subgroup analysis between rs5030740, rs1776148, rs1047840, and prognosis. Conclusions. Our results indicated that EXO1 rs1776148, rs1047840, and RPA1 rs5030740 were significantly associated with prognosis of lung cancer. Rs1776148, rs1047840, and rs5030740 may act as prognosis markers in lung cancer patients with platinum-based chemotherapy.
Collapse
|
121
|
Li B, Zheng X, Zhang J, Lam S, Guo W, Wang Y, Cui S, Teng X, Zhang Y, Ma Z, Zhou T, Lou Z, Meng L, Ge H, Cai J. Lung Subregion Partitioning by Incremental Dose Intervals Improves Omics-Based Prediction for Acute Radiation Pneumonitis in Non-Small-Cell Lung Cancer Patients. Cancers (Basel) 2022; 14:cancers14194889. [PMID: 36230812 PMCID: PMC9564373 DOI: 10.3390/cancers14194889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: To evaluate the effectiveness of features obtained from our proposed incremental-dose-interval-based lung subregion segmentation (IDLSS) for predicting grade ≥ 2 acute radiation pneumonitis (ARP) in lung cancer patients upon intensity-modulated radiotherapy (IMRT). (1) Materials and Methods: A total of 126 non-small-cell lung cancer patients treated with IMRT were retrospectively analyzed. Five lung subregions (SRs) were generated by the intersection of the whole lung (WL) and five sub-regions receiving incremental dose intervals. A total of 4610 radiomics features (RF) from pre-treatment planning computed tomographic (CT) and 213 dosiomics features (DF) were extracted. Six feature groups, including WL-RF, WL-DF, SR-RF, SR-DF, and the combined feature sets of WL-RDF and SR-RDF, were generated. Features were selected by using a variance threshold, followed by a Student t-test. Pearson’s correlation test was applied to remove redundant features. Subsequently, Ridge regression was adopted to develop six models for ARP using the six feature groups. Thirty iterations of resampling were implemented to assess overall model performance by using the area under the Receiver-Operating-Characteristic curve (AUC), accuracy, precision, recall, and F1-score. (2) Results: The SR-RDF model achieved the best classification performance and provided significantly better predictability than the WL-RDF model in training cohort (Average AUC: 0.98 ± 0.01 vs. 0.90 ± 0.02, p < 0.001) and testing cohort (Average AUC: 0.88 ± 0.05 vs. 0.80 ± 0.04, p < 0.001). Similarly, predictability of the SR-DF model was significantly stronger than that of the WL-DF model in training cohort (Average AUC: 0.88 ± 0.03 vs. 0.70 ± 0.030, p < 0.001) and in testing cohort (Average AUC: 0.74 ± 0.08 vs. 0.65 ± 0.06, p < 0.001). By contrast, the SR-RF model significantly outperformed the WL-RF model only in the training set (Average AUC: 0.93 ± 0.02 vs. 0.85 ± 0.03, p < 0.001), but not in the testing set (Average AUC: 0.79 ± 0.05 vs. 0.77 ± 0.07, p = 0.13). (3) Conclusions: Our results demonstrated that the IDLSS method improved model performance for classifying ARP with grade ≥ 2 when using dosiomics or combined radiomics-dosiomics features.
Collapse
Affiliation(s)
- Bing Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaoli Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Saikit Lam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei Guo
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yunhan Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Sunan Cui
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, Stanford, CA 94305, USA
| | - Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yuanpeng Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zongrui Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ta Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhaoyang Lou
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Lingguang Meng
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Hong Ge
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
- Correspondence: (H.G.); (J.C.); Tel.: +852-3400-8645 (J.C.)
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
- Correspondence: (H.G.); (J.C.); Tel.: +852-3400-8645 (J.C.)
| |
Collapse
|
122
|
Burton A, Beveridge S, Hardcastle N, Lye J, Sanagou M, Franich R. Adoption of respiratory motion management in radiation therapy. Phys Imaging Radiat Oncol 2022; 24:21-29. [PMID: 36148153 PMCID: PMC9485913 DOI: 10.1016/j.phro.2022.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background and Purpose A survey on the patterns of practice of respiratory motion management (MM) was distributed to 111 radiation therapy facilities to inform the development of an end-to-end dosimetry audit including respiratory motion. Materials and methods The survey (distributed via REDCap) asked facilities to provide information specific to the combinations of MM techniques (breath-hold gating – BHG, internal target volume – ITV, free-breathing gating – FBG, mid-ventilation – MidV, tumour tracking – TT), sites treated (thorax, upper abdomen, lower abdomen), and fractionation regimes (conventional, stereotactic ablative body radiation therapy – SABR) used in their clinic. Results The survey was completed by 78% of facilities, with 98% of respondents indicating that they used at least one form of MM. The ITV approach was common to all MM-users, used for thoracic treatments by 89% of respondents, and upper and lower abdominal treatments by 38%. BHG was the next most prevalent (41% of MM users), with applications in upper abdominal and thoracic treatment sites (28% vs 25% respectively), but minimal use in the lower abdomen (9%). FBG and TT were utilised sparingly (17%, 7% respectively), and MidV was not selected at all. Conclusions Two distinct treatment workflows (including use of motion limitation, imaging used for motion assessment, dose calculation, and image guidance procedures) were identified for the ITV and BHG MM techniques, to form the basis of the initial audit. Thoracic SABR with the ITV approach was common to nearly all respondents, while upper abdominal SABR using BHG stood out as more technically challenging. Other MM techniques were sparsely used, but may be considered for future audit development.
Collapse
|
123
|
E3 Ubiquitin Ligase CHIP Inhibits the Interaction between Hsp90β and MAST1 to Repress Radiation Resistance in Non-Small-Cell Lung Cancer Stem Cells. Stem Cells Int 2022; 2022:2760899. [PMID: 36199626 PMCID: PMC9527118 DOI: 10.1155/2022/2760899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
The radiation resistance of cancer stem cells poses a critical obstacle for management of non-small-cell lung cancer (NSCLC). It is interesting to note that E3 ubiquitin ligase CHIP is involved in radiation resistance and stemness phenotypes in NSCLC, while the downstream mechanisms remain elusive. Therefore, this study is aimed at exploring the possible molecular mechanism of E3 ubiquitin ligase CHIP in radiation resistance of NSCLC stem cells. Cancer and adjacent normal tissues of NSCLC patients were collected to determine expression of CHIP, Hsp90β, and MAST1. CD133+ cells were isolated from the NSCLC tissues and the lung cancer cell line A549 by flow cytometric sorting. Accordingly, downregulated CHIP and upregulated Hsp90β and MAST1 were observed in cancer tissues from NSCLC patients and in NSCLC stem cells. Sphere formation assay, colony formation assay, and flow cytometry were performed to examine self-renewal ability, survival, and apoptosis of NSCLC stem cells. An animal model of tumor xenograft was developed in nude mice to observe the tumorigenic ability and radiation resistance of NSCLC stem cells. CHIP overexpression was demonstrated to inhibit the NSCLC stem cell properties and radiation resistance in vitro and in vivo. Mechanistically, CHIP promoted MAST1 ubiquitination by blocking Hsp90β interaction with MAST1, thus inhibiting MAST1 protein stability. Furthermore, CHIP-mediated downregulation of MAST1 protein stability inhibited the NSCLC stem cell properties and radiation resistance. Collectively, CHIP promotes the ubiquitination of MAST1 by blocking the interaction of Hsp90β with MAST1, leading to decreased MAST1 protein stability, which suppressed NSCLC stem cell properties and radiation resistance.
Collapse
|
124
|
Taha A, Flury DV, Enodien B, Taha-Mehlitz S, Schmid RA. The development of machine learning in lung surgery: A narrative review. Front Surg 2022; 9:914903. [PMID: 36171812 PMCID: PMC9510630 DOI: 10.3389/fsurg.2022.914903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Background Machine learning reflects an artificial intelligence that allows applications to improve their accuracy to predict outcomes, eliminating the need to conduct explicit programming on them. The medical field has increased its focus on establishing tools for integrating machine learning algorithms in laboratory and clinical settings. Despite their importance, their incorporation is minimal in the medical sector yet. The primary goal of this study is to review the development of machine learning in the field of thoracic surgery, especially lung surgery. Methods This article used the Preferred Reporting Items for Systematic and Meta-analyses (PRISMA). The sources used to gather data are the PubMed, Cochrane, and CINAHL databases and the Google Scholar search engine. Results The study included 19 articles, where ten concentrated on the application of machine learning in especially lung surgery, six focused on the benefits and limitations of machine learning algorithms in lung surgery, and three provided an overview of the future of machine learning in lung surgery. Conclusion The outcome of this study indicates that the field of lung surgery has attempted to integrate machine learning algorithms. However, the implementation rate is low, owing to the newness of the concept and the various challenges it encompasses. Also, this study reveals the absence of sufficient literature discussing the application of machine learning in lung surgery. The necessity for future research on the topic area remains evident.
Collapse
Affiliation(s)
- Anas Taha
- Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Allschwil, Switzerland
| | - Dominik Valentin Flury
- Department of Thoracic Surgery, Hirslanden Clinic Beau-Site (Hirslanden Group) / Lindenhof Hospital (Lindenhof Group Bern); University of Bern, Bern, Switzerland
| | - Bassey Enodien
- Department of Surgery, Wetzikon Hospital, Wetzikon, Switzerland
| | - Stephanie Taha-Mehlitz
- Clarunis, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Ralph A. Schmid
- Thorax-Schweiz, Hirslanden Cooperate Office, Glattpark, Switzerland
- Correspondence: Ralph A. Schmid
| |
Collapse
|
125
|
Zhang Y, Liu X, Zeng L, Zhao X, Chen Q, Pan Y, Bai Y, Shao C, Zhang J. Exosomal protein angiopoietin-like 4 mediated radioresistance of lung cancer by inhibiting ferroptosis under hypoxic microenvironment. Br J Cancer 2022; 127:1760-1772. [PMID: 36050447 DOI: 10.1038/s41416-022-01956-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypoxia-mediated radioresistance is a major reason for the adverse radiotherapy outcome of non-small cell lung cancer (NSCLC) in clinical, but the underlying molecular mechanisms are still obscure. METHODS Cellular and exosomal ANGPTL4 proteins under different oxygen status were examined. Colony survival, lipid peroxidation and hallmark proteins were employed to determine the correlation between ferroptosis and radioresistance. Gene regulations, western blot and xenograft models were used to explore the underlying mechanisms of the role of ANGPTL4 in radioresistance. RESULTS ANGPTL4 had a much higher level in hypoxic NSCLC cells compared to normoxic cells. Up- or down- regulation of ANGPTL4 positively interrelated to the radioresistance of NSCLC cells and xenograft tumours. GPX4-elicited ferroptosis suppression and lipid peroxidation decrease were authenticated to be involved in the hypoxia-induced radioresistance. ANGPTL4 encapsulated in the exosomes from hypoxic cells was absorbed by neighbouring normoxic cells, resulting in radioresistance of these bystander cells in a GPX4-dependent manner, which was diminished when ANGPTL4 was downregulated in the donor exosomes. CONCLUSION Hypoxia-induced ANGPTL4 rendered radioresistance of NSCLC through at least two parallel pathways of intracellular ANGPTL4 and exosomal ANGPTL4, suggesting that ANGPTL4 might applicable as a therapeutic target to improve the therapeutic efficacy of NSCLC.
Collapse
Affiliation(s)
- Yuhong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Xinglong Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Liang Zeng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Xinrui Zhao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Qianping Chen
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Yang Bai
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
126
|
Guo Q, Liu L, Chen Z, Fan Y, Zhou Y, Yuan Z, Zhang W. Current treatments for non-small cell lung cancer. Front Oncol 2022; 12:945102. [PMID: 36033435 PMCID: PMC9403713 DOI: 10.3389/fonc.2022.945102] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Despite improved methods of diagnosis and the development of different treatments, mortality from lung cancer remains surprisingly high. Non-small cell lung cancer (NSCLC) accounts for the large majority of lung cancer cases. Therefore, it is important to review current methods of diagnosis and treatments of NSCLC in the clinic and preclinic. In this review, we describe, as a guide for clinicians, current diagnostic methods and therapies (such as chemotherapy, chemoradiotherapy, targeted therapy, antiangiogenic therapy, immunotherapy, and combination therapy) for NSCLC.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
| | - Liwei Liu
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zelong Chen
- Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Artificial Intelligence and IoT Smart Medical Engineering Research Center of Henan Province, Zhengzhou, China
| | - Yannan Fan
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
| | - Yang Zhou
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhou Zhang, ; Ziqiao Yuan,
| | - Wenzhou Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhou Zhang, ; Ziqiao Yuan,
| |
Collapse
|
127
|
GATA3 Exerts Distinct Transcriptional Functions to Regulate Radiation Resistance in A549 and H1299 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9174111. [PMID: 35993027 PMCID: PMC9385326 DOI: 10.1155/2022/9174111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022]
Abstract
Background Radiation resistance of lung cancer cells is a vital factor affecting the curative effect of lung cancer. Transcription factor GATA3 is involved in cell proliferation, invasion, and migration and is significantly expressed in a variety of malignancies. However, the molecular mechanism governing GATA3 regulation in lung cancer cells' radiation resistance is unknown. Methods Radiation-resistant cell models (A549-RR and H1299-RR) were made using fractionated high-dose irradiation. Use clone formation, CCK-8, F-actin staining, cell cycle detection, and other experiments to verify whether the model is successfully constructed. Cells were transiently transfected with knockdown or overexpression plasmid. To explore the relationship between GATA3/H3K4me3 and target genes, we used ChIP-qPCR, ChIP-seq, and dual luciferase reporter gene experiments. Xenograft tumor models were used to evaluate the effect of GATA3 depletion on the tumorigenic behavior of lung cancer cells. Results We report that transcription factors GATA3 and H3K4me3 coactivate NRP1 gene transcription when A549 cells develop radiation resistance. However, the mechanism of radiation resistance in H1299 cells is that GATA3 acts as a transcription inhibitor. The decrease of GATA3 will promote the increase of NRP1 transcription, in which H3K4me3 does not play a leading role. Conclusions GATA3, an upstream transcriptional regulator of NRP1 gene, regulates the radioresistance of A549 and H1299 cells by opposite mechanisms, which provides a new target for radiotherapy of lung cancer.
Collapse
|
128
|
Meng W, Li Y, Chai B, Liu X, Ma Z. miR-199a: A Tumor Suppressor with Noncoding RNA Network and Therapeutic Candidate in Lung Cancer. Int J Mol Sci 2022; 23:8518. [PMID: 35955652 PMCID: PMC9369015 DOI: 10.3390/ijms23158518] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. miR-199a, which has two mature molecules: miR-199a-3p and miR-199a-5p, plays an important biological role in the genesis and development of tumors. We collected recent research results on lung cancer and miR-199a from Google Scholar and PubMed databases. The biological functions of miR-199a in lung cancer are reviewed in detail, and its potential roles in lung cancer diagnosis and treatment are discussed. With miR-199a as the core point and a divergence outward, the interplay between miR-199a and other ncRNAs is reviewed, and a regulatory network covering various cancers is depicted, which can help us to better understand the mechanism of cancer occurrence and provide a means for developing novel therapeutic strategies. In addition, the current methods of diagnosis and treatment of lung cancer are reviewed. Finally, a conclusion was drawn: miR-199a inhibits the development of lung cancer, especially by inhibiting the proliferation, infiltration, and migration of lung cancer cells, inhibiting tumor angiogenesis, increasing the apoptosis of lung cancer cells, and affecting the drug resistance of lung cancer cells. This review aims to provide new insights into lung cancer therapy and prevention.
Collapse
Affiliation(s)
| | | | | | | | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Science, Shanghai University, Shanghai 200444, China; (W.M.); (Y.L.); (B.C.); (X.L.)
| |
Collapse
|
129
|
Yao W, Li S, Liu R, Jiang M, Gao L, Lu Y, Liang X, Zhang H. Long non-coding RNA PVT1: A promising chemotherapy and radiotherapy sensitizer. Front Oncol 2022; 12:959208. [PMID: 35965522 PMCID: PMC9373174 DOI: 10.3389/fonc.2022.959208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022] Open
Abstract
The long non-coding RNA (lncRNA) PVT1 was first found to activate variant translocations in the plasmacytoma of mice. Human lncPVT1 is located on chromosome 8q24.21, at the same locus as the well-known MYC oncogene. LncPVT1 has been found to promote the progression of various malignancies. Chemoresistance and radioresistance seriously affect tumor treatment efficacy and are associated with the dysregulation of physiological processes in cancer cells, including apoptosis, autophagy, stemness (for cancer stem cells, CSC), hypoxia, epithelial–mesenchymal transition (EMT), and DNA damage repair. Previous studies have also implicated lncPVT1 in the regulation of these physiological mechanisms. In recent years, lncPVT1 was found to modulate chemoresistance and radioresistance in some cancers. In this review, we discuss the mechanisms of lncPVT1-mediated regulation of cellular chemoresistance and radioresistance. Due to its high expression in malignant tumors and sensitization effect in chemotherapy and radiotherapy, lncPVT1 is expected to become an effective antitumor target and chemotherapy and radiotherapy sensitizer, which requires further study.
Collapse
Affiliation(s)
- Weiping Yao
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Jinzhou Medical University, Jinzhou, China
| | - Ruiqi Liu
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Mingyun Jiang
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liang Gao
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaodong Liang
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Haibo Zhang, zhbdoctor @163.com; Xiaodong Liang,
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Haibo Zhang, zhbdoctor @163.com; Xiaodong Liang,
| |
Collapse
|
130
|
Dihydroartemisinin Reduces Irradiation-Induced Mitophagy and Radioresistance in Lung Cancer A549 Cells via CIRBP Inhibition. Life (Basel) 2022; 12:life12081129. [PMID: 36013308 PMCID: PMC9410454 DOI: 10.3390/life12081129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy is a major therapeutic strategy for lung cancer, and radiation resistance (radioresistance) is an important cause of residual and recurring cancer after treatment. However, the mechanism of radioresistance remains unclear. Mitochondrial autophagy (mitophagy), an important selective autophagy, plays an important role in maintaining cell homeostasis and affects the response to therapy. Recent studies have shown that dihydroartemisinin (DHA), a derivative of artemisinin, can increase the sensitivity to treatment in multiple types of cancer, including lung cancer. The purpose of this study was to elucidate the function and molecular mechanisms of DHA-regulating mitophagy and DHA-reducing radioresistance in lung cancer A549 cells. We first constructed the radioresistant lung cancer A549 cells model (A549R) through fractional radiation, then elucidated the function and mechanism of DHA-regulating mitophagy to reduce the radioresistance of lung cancer by genomic, proteomic, and bioinformatic methods. The results showed that fractional radiation can significantly induce radioresistance and mitophagy in A549 cells, DHA can reduce mitophagy and radioresistance, and the inhibition of mitophagy can reduce radioresistance. Protein chip assay and bioinformatics analysis showed the following: Cold-Inducible RNA Binding Protein (CIRBP) might be a potential target of DHA-regulating mitophagy; CIRBP is highly expressed in A549R cells; the knockdown of CIRBP increases the effect of DHA, reduces mitophagy and radioresistance, and inhibits the mitophagy-related PINK1/Parkin pathway. In conclusion, we believe that DHA reduces radiation-induced mitophagy and radioresistance of lung cancer A549 cells via CIRBP inhibition.
Collapse
|
131
|
Comparison of setup errors of immobilization devices for thoracic radiotherapy. Med Dosim 2022; 47:325-328. [PMID: 35842364 DOI: 10.1016/j.meddos.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/11/2022] [Indexed: 11/20/2022]
Abstract
Performance of thoracic radiotherapy may be assisted by the use of thoracoabdominal flat immobilization devices (TAFIDs) and integrated cervicothoracic immobilization devices (ICTIDs). This study was performed to compare setup errors of TAFIDs and ICTIDs. Forty-four patients with lung cancer were retrospectively reviewed; 22 patients were immobilized with a TAFID and 22 with an ICTID. In total, 343 cone-beam computed tomography images of these patients were collected for radiotherapy setup. The 3-dimensional setup errors and the displacement of the acromioclavicular joint against the supraclavicular region were calculated. An independent-samples t-test and rank-sum test were used for statistical analyses. The translational setup errors of the TAFID group vs ICTID group in the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) directions were 0.14 ± 0.17 vs 0.14 ± 0.16 cm (p = 0.364), 0.23 ± 0.26 vs 0.15 ± 0.15 cm (p = 0.000), and 0.16 ± 0.15 vs 0.12 ± 0.14 cm (p = 0.049), respectively. The relative displacement of the acromioclavicular joint against the supraclavicular joint in the LR, SI, and AP directions were 0.10 ± 0.12 vs 0.09 ± 0.10 cm (p = 0.176), 0.13 ± 0.13 vs 0.11 ± 0.12 cm (p = 0.083), and 0.17 ± 0.16 vs 0.12 ± 0.11 cm (p = 0.001), respectively. The overall displacement of the supraclavicular region was 0.28 ± 0.19 vs 0.23 ± 0.15 cm (p < 0.001). The recommended planning target volume margins in the LR, SI, and AP directions were 0.46 vs 0.74 cm, 0.51 vs 0.47 cm, and 0.49 vs 0.41 cm, respectively. For patients with lung cancer, using an ICTID can reduce setup errors in the SI direction and displacements of the acromioclavicular joint and supraclavicular region compared with a TAFID. Therefore, an ICTID is preferred for patients with lung cancer with supraclavicular target volume.
Collapse
|
132
|
Huang M, Ding J, Wu X, Peng X, Wu G, Peng C, Zhang H, Mao C, Huang B. EZH2 affects malignant progression and DNA damage repair of lung adenocarcinoma cells by regulating RAI2 expression. Mutat Res 2022; 825:111792. [PMID: 35939884 DOI: 10.1016/j.mrfmmm.2022.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is featured in high morbidity and mortality. Aberrant activation of the histone methyltransferase EZH2 has close association with cancer progression. This research aimed to deeply dive into the role and possible molecular mechanisms of EZH2 and its downstream genes in malignant progression and DNA damage repair of LUAD cells. METHODS Expression of EZH2 in LUAD cells was analyzed by qRT-PCR, and the effects of EZH2 on proliferation, and apoptosis of LUAD cells were examined by CCK-8, colony formation and flow cytometry assays. The downstream targets of EZH2 were predicted by bioinformatics analysis. Then, the targeting relationship between EZH2 and RAI2 was examined by CHIP and luciferase reporter assays. Rescue assay were used to further validate the effect of EZH2/RAI2 on the malignant progression of LUAD cells. The expression levels of EZH2, RAI2 and p53 were examined by Western blot. RESULTS Upregulation of EZH2 was identified in LUAD tissues and cells. RAI2 was a downstream target gene of EZH2, and the two were negatively correlated. Silencing EZH2 suppressed proliferation of LUAD cells, promoted expression of p53, cell cycle arrest and apoptosis. While silencing RAI2 could reverse the above-mentioned effects caused by EZH2 silencing. CONCLUSION These results demonstrated that EZH2 promoted malignant progression and DNA damage repair of LUAD cells by targeting and negatively regulating RAI2.
Collapse
Affiliation(s)
- Mingjiang Huang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jianyang Ding
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xuhui Wu
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xuyang Peng
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Gongzhi Wu
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Congxiong Peng
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Huaizhong Zhang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Chaofan Mao
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Bin Huang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China.
| |
Collapse
|
133
|
Falahatpour Z, Geramifar P, Mahdavi SR, Abdollahi H, Salimi Y, Nikoofar A, Ay MR. Potential advantages of FDG-PET radiomic feature map for target volume delineation in lung cancer radiotherapy. J Appl Clin Med Phys 2022; 23:e13696. [PMID: 35699200 PMCID: PMC9512354 DOI: 10.1002/acm2.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To investigate the potential benefits of FDG PET radiomic feature maps (RFMs) for target delineation in non-small cell lung cancer (NSCLC) radiotherapy. METHODS Thirty-two NSCLC patients undergoing FDG PET/CT imaging were included. For each patient, nine grey-level co-occurrence matrix (GLCM) RFMs were generated. gross target volume (GTV) and clinical target volume (CTV) were contoured on CT (GTVCT , CTVCT ), PET (GTVPET40 , CTVPET40 ), and RFMs (GTVRFM , CTVRFM ,). Intratumoral heterogeneity areas were segmented as GTVPET50-Boost and radiomic boost target volume (RTVBoost ) on PET and RFMs, respectively. GTVCT in homogenous tumors and GTVPET40 in heterogeneous tumors were considered as GTVgold standard (GTVGS ). One-way analysis of variance was conducted to determine the threshold that finds the best conformity for GTVRFM with GTVGS . Dice similarity coefficient (DSC) and mean absolute percent error (MAPE) were calculated. Linear regression analysis was employed to report the correlations between the gold standard and RFM-derived target volumes. RESULTS Entropy, contrast, and Haralick correlation (H-correlation) were selected for tumor segmentation. The threshold values of 80%, 50%, and 10% have the best conformity of GTVRFM-entropy , GTVRFM-contrast , and GTVRFM-H-correlation with GTVGS , respectively. The linear regression results showed a positive correlation between GTVGS and GTVRFM-entropy (r = 0.98, p < 0.001), between GTVGS and GTVRFM-contrast (r = 0.93, p < 0.001), and between GTVGS and GTVRFM-H-correlation (r = 0.91, p < 0.001). The average threshold values of 45% and 15% were resulted in the best segmentation matching between CTVRFM-entropy and CTVRFM-contrast with CTVGS , respectively. Moreover, we used RFM to determine RTVBoost in the heterogeneous tumors. Comparison of RTVBoost with GTVPET50-Boost MAPE showed the volume error differences of 31.7%, 36%, and 34.7% in RTVBoost-entropy , RTVBoost-contrast , and RTVBoost-H-correlation , respectively. CONCLUSIONS FDG PET-based radiomics features in NSCLC demonstrated a promising potential for decision support in radiotherapy, helping radiation oncologists delineate tumors and generate accurate segmentation for heterogeneous region of tumors.
Collapse
Affiliation(s)
- Zahra Falahatpour
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Rabie Mahdavi
- Department of Medical Physics, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Radiology Technology, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Yazdan Salimi
- Department of Biomedical Engineering and Medical Physics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Nikoofar
- Department of Radiation Oncology, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ay
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
134
|
Wang L, Zhou SQ, Zhou Y, Lu JX. A Two-eRNA-Based Signature Can Impact the Immune Status and Predict the Prognosis and Drug Sensitivity of Lung Adenocarcinoma. J Immunol Res 2022; 2022:8069858. [PMID: 35600050 PMCID: PMC9115606 DOI: 10.1155/2022/8069858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Enhancer RNAs (eRNAs) are intergenic long noncoding RNAs (lncRNAs) participating in the development of malignant cancers via targeting cancer-associated genes and immune checkpoints. Immune infiltration of the tumor microenvironment was positively associated with overall survival (OS) in lung adenocarcinoma (LUAD). In this study, we aimed to explore the clinical significance of PCBP1-AS1 in LUAD and developed a novel prognostic signature based on two eRNAs. Our team discovered that the expression of PCBP1-AS1 was distinctly downregulated in LUAD specimens compared with nontumor specimens. Lower PCBP1-AS1 expression was related to advanced clinical stages and poor prognosis. KEGG analysis unveiled that the coexpression genes of PCBP1-AS1 were involved in the regulation of several tumor-related pathways. In addition, remarkable associations were observed between the expression of PCBP1-AS1 and the levels of several immune cells. Then, we used PCBP1-AS1 and TBX5-AS1 to develop a prognostic model. Survival assays unveiled that patients with higher risk scores exhibited a shorter OS in contrast to patients with lower risk scores. In addition, multivariable Cox regressive analysis indicated that the risk score was an independent prediction factor in LUAD sufferers. The anticancer drug sensitivity analysis indicated that risk score had a positive relationship with several anticancer drugs. Taken together, our findings indicated PCBP1-AS1 as a function modulator in LUAD development. In addition, we constructed a robust immune-related eRNA signature which might be a clinical prognosis factor for LUAD patients.
Collapse
Affiliation(s)
- Li Wang
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Shao-quan Zhou
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Yu Zhou
- Department of Respiratory Critical Care Medicine, Chongqing Fuling People's Hospital, Chongqing, China
| | - Jia-xi Lu
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
135
|
Febbraro M, Gheware A, Kennedy T, Jain D, de Moraes FY, Juergens R. Barriers to Access: Global Variability in Implementing Treatment Advances in Lung Cancer. Am Soc Clin Oncol Educ Book 2022; 42:1-7. [PMID: 35427189 DOI: 10.1200/edbk_351021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Globally, lung cancer is the second most-diagnosed cancer and is the leading cause of cancer death. Advances in science and technology have contributed to improvements in primary cancer prevention, cancer diagnosis, and cancer therapy, leading to an increase in survival and improvement in quality of life. Many of these advances have been seen in high-income countries. Accessibility, availability, and affordability are key domains in barriers to access of care between countries and within countries. The impact of these domains, as they relate to molecular testing, radiation therapy, and systemic therapy, are discussed.
Collapse
Affiliation(s)
- Michela Febbraro
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada.,Department of Medical Oncology, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Atish Gheware
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Thomas Kennedy
- Department of Oncology, Queen's University, Kingston, Ontario, Canada
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Rosalyn Juergens
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada.,Department of Medical Oncology, Juravinski Cancer Center, Hamilton, Ontario, Canada
| |
Collapse
|
136
|
Wang P, Zhang L, Zhang Z, Wang S, Yao C. Influence of Parameters on Photodynamic Therapy of Au@TiO 2-HMME Core-Shell Nanostructures. NANOMATERIALS 2022; 12:nano12081358. [PMID: 35458066 PMCID: PMC9032932 DOI: 10.3390/nano12081358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy (PDT) is a promising tumor therapy and has been proven to be an effective, safe and minimally invasive technique. Hematoporphyrin monomethyl ether (HMME) mediated PDT has been used in clinical treatment of port wine stain (PWS) due to its single component, high yield of singlet oxygen and short light-sensitive period. However, as an amphiphilic photosensitizer, HMME is easy to aggregate due to the presence of a hydrophobic group, which undesirably reduced its generation of singlet oxygen and bioavailability. In this study, we synthesized the stable conjugate of Au@TiO2 core-shell nanostructure with HMME, and the influence of different factors on PTD efficiency were studied. The results showed that the nanostructure had higher PTD efficiency for KB cells than that of HMME. The irradiation wavelength, gold nanoparticle shape and the shell thickness are all important factors for KB cell PDT.
Collapse
|
137
|
Puangragsa U, Setakornnukul J, Dankulchai P, Phasukkit P. 3D Kinect Camera Scheme with Time-Series Deep-Learning Algorithms for Classification and Prediction of Lung Tumor Motility. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22082918. [PMID: 35458903 PMCID: PMC9024525 DOI: 10.3390/s22082918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 05/27/2023]
Abstract
This paper proposes a time-series deep-learning 3D Kinect camera scheme to classify the respiratory phases with a lung tumor and predict the lung tumor displacement. Specifically, the proposed scheme is driven by two time-series deep-learning algorithmic models: the respiratory-phase classification model and the regression-based prediction model. To assess the performance of the proposed scheme, the classification and prediction models were tested with four categories of datasets: patient-based datasets with regular and irregular breathing patterns; and pseudopatient-based datasets with regular and irregular breathing patterns. In this study, 'pseudopatients' refer to a dynamic thorax phantom with a lung tumor programmed with varying breathing patterns and breaths per minute. The total accuracy of the respiratory-phase classification model was 100%, 100%, 100%, and 92.44% for the four dataset categories, with a corresponding mean squared error (MSE), mean absolute error (MAE), and coefficient of determination (R2) of 1.2-1.6%, 0.65-0.8%, and 0.97-0.98, respectively. The results demonstrate that the time-series deep-learning classification and regression-based prediction models can classify the respiratory phases and predict the lung tumor displacement with high accuracy. Essentially, the novelty of this research lies in the use of a low-cost 3D Kinect camera with time-series deep-learning algorithms in the medical field to efficiently classify the respiratory phase and predict the lung tumor displacement.
Collapse
Affiliation(s)
- Utumporn Puangragsa
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (U.P.); (J.S.); (P.D.)
| | - Jiraporn Setakornnukul
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (U.P.); (J.S.); (P.D.)
| | - Pittaya Dankulchai
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (U.P.); (J.S.); (P.D.)
| | - Pattarapong Phasukkit
- School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
138
|
Cacaccio JC, Durrani FA, Missert JR, Pandey RK. Photodynamic Therapy in Combination with Doxorubicin Is Superior to Monotherapy for the Treatment of Lung Cancer. Biomedicines 2022; 10:857. [PMID: 35453607 PMCID: PMC9024488 DOI: 10.3390/biomedicines10040857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
We have previously shown that a radioactive (123I)-analog of methyl 3-(1'-(iodobexyloxy) ethyl-3-devinylpyropheophorbide-a (PET-ONCO), derived from chlorophyll-a can be used for positron emission tomography (PET) imaging of a variety of tumors, including those where 18F-FDG shows limitations. In this study, the photodynamic therapy (PDT) efficacy of the corresponding non-radioactive photosensitizer (PS) was investigated in a variety of tumor types (NSCLC, SCC, adenocarcinoma) derived from lung cancer patients in mice tumor models. The in vitro and in vivo efficacy was also investigated in combination with doxorubicin, and a significantly enhanced long-term tumor response was observed. The toxicity and toxicokinetic profile of the iodinated PS was also evaluated in male and female Sprague-Dawley rats and Beagle dog at variable doses (single intravenous injections) to assess reversibility or latency of any effects over a 28-day dose free period. The no-observed-adverse-effect (NOAEL) of the PS was considered to be 6.5 mg/kg for male and female rats, and for dogs, 3.45 mg/kg, the highest dose levels evaluated, respectively. The corresponding plasma Cmax and AYClast for male and female rats were 214,000 and 229,000 ng/mL and 3,680,000 and 3,810,000 h * ng/mL, respectively. For male and female dogs, the corresponding plasma Cmax and AYClast were 76,000 and 92,400 ng/mL and 976,000 and 1,200,000 h * ng/mL, respectively.
Collapse
Affiliation(s)
- Joseph C. Cacaccio
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.C.C.); (F.A.D.)
| | - Farukh A. Durrani
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.C.C.); (F.A.D.)
| | | | - Ravindra K. Pandey
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.C.C.); (F.A.D.)
| |
Collapse
|
139
|
Yu XT, Sui SY, He YX, Yu CH, Peng Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. BIOMATERIALS ADVANCES 2022; 135:212725. [PMID: 35929205 DOI: 10.1016/j.bioadv.2022.212725] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
The increasing cancer morbidity and mortality requires the development of high-efficiency and low-toxicity anticancer approaches. In recent years, photodynamic therapy (PDT) has attracted much attention in cancer therapy due to its non-invasive features and low side effects. Photosensitizer (PS) is one of the key factors of PDT, and its successful delivery largely determines the outcome of PDT. Although a few PS molecules have been approved for clinical use, PDT is still limited by the low stability and poor tumor targeting capacity of PSs. Various nanomaterial systems have shown great potentials in improving PDT, such as metal nanoparticles, graphene-based nanomaterials, liposomes, ROS-sensitive nanocarriers and supramolecular nanomaterials. The small molecular PSs can be loaded in functional nanomaterials to enhance the PS stability and tumor targeted delivery, and some functionalized nanomaterials themselves can be directly used as PSs. Herein, we aim to provide a comprehensive understanding of PDT, and summarize the recent progress of nanomaterials-based PSs and delivery systems in anticancer PDT. In addition, the concerns of nanomaterials-based PDT including low tumor targeting capacity, limited light penetration, hypoxia and nonspecific protein corona formation are discussed. The possible solutions to these concerns are also discussed.
Collapse
Affiliation(s)
- Xiao-Tong Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shang-Yan Sui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu-Xuan He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen-Hao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
140
|
Huang CC, Chuang IC, Su YL, Luo HL, Chang YC, Chen JY, Hsiao CC, Huang EY. Prognostic Significance of Galectin-1 but Not Galectin-3 in Patients With Lung Adenocarcinoma After Radiation Therapy. Front Oncol 2022; 12:834749. [PMID: 35280768 PMCID: PMC8904358 DOI: 10.3389/fonc.2022.834749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction To investigate the role of tumor galectin-1 and galectin-3 in patients with lung adenocarcinoma after definitive radiation therapy. Methods A total of 41 patients with localized lung adenocarcinoma undergoing thoracic radiation therapy without concurrent chemotherapy were enrolled. Their paraffin-embedded lung tissues were sent for immunohistochemical staining for galectin-1 and galectin-3. The clinical treatment outcomes, including overall (OS), locoregional progression-free (LRPFS), and distant metastasis-free (DMFS) survivals, were evaluated. Univariable and multivariable Cox regression analyses were applied. Results Overexpression of tumor galectin-1 and galectin-3 were found in 26.8% and 19.5% of patients, respectively. Overexpression of tumor galectin-1 was the most significant prognosticator to predict worse LRPFS in both univariable (p = 0.007) and multivariable analyses (p = 0.022). Besides, patients with overexpression of tumor galectin-1 had a trend of worse OS (p = 0.066) than those with low expression in multivariable analysis, and worse DMFS (p = 0.035) in univariable analysis. The overexpression of tumor galectin-3 had no significant effect on survival outcomes. Conclusions The overexpression of tumor galectin-1, but not galectin-3, is associated with poor LRPFS of patients with lung adenocarcinoma after thoracic radiation therapy. Future research on the mechanism of galectin-1 affecting radiation response in lung adenocarcinoma may be worth exploring.
Collapse
Affiliation(s)
- Chun-Chieh Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - I-Chieh Chuang
- Department of Anatomical Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Li Su
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hao-Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ya-Chun Chang
- Department of Internal Medicine, Kaohsiung Municipal Min-Sheng Hospital, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jo-Ying Chen
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chang-Chun Hsiao
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Eng-Yen Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
141
|
Li L, Gang X, Wang J, Gong X. Role of melatonin in respiratory diseases (Review). Exp Ther Med 2022; 23:271. [PMID: 35251337 PMCID: PMC8892605 DOI: 10.3892/etm.2022.11197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/27/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Lijie Li
- Department of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Xiaochao Gang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Jiajia Wang
- Department of Pediatrics, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Xiaoyan Gong
- Department of Respiratory Medicine, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
142
|
Chen H, Huang C, Ge H, Chen Q, Chen J, Li Y, Chen H, Luo S, Zhao L, Xu X. A novel LASSO-derived prognostic model predicting survival for non-small cell lung cancer patients with M1a diseases. Cancer Med 2022; 11:1561-1572. [PMID: 35128839 PMCID: PMC8921928 DOI: 10.1002/cam4.4560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 11/12/2022] Open
Abstract
Introduction The current American Joint Committee on Cancer (AJCC) M1a staging of non‐small cell lung cancer (NSCLC) encompasses a wide disease spectrum, showing diverse prognosis. Methods Patients who diagnosed in an earlier period formed the training cohort, and those who diagnosed thereafter formed the validation cohort. Kaplan–Meier analysis was performed for the training cohort by dividing the M1a stage into three subgroups: (I) malignant pleural effusion (MPE) or malignant pericardial effusion (MPCE); (II) separate tumor nodules in contralateral lung (STCL); and (III) pleural tumor nodules on the ipsilateral lung (PTIL). Gender, age, histologic, N stage, grade, surgery for primary site, lymphadenectomy, M1a groups, and chemotherapy were selected as independent prognostic factors using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. And a nomogram was constructed using Cox hazard regression analysis. Accuracy and clinical practicability were separately tested by Harrell's concordance index, the receiver operating characteristic (ROC) curve, calibration plots, residual plot, the integrated discrimination improvement (IDI), net reclassification improvement (NRI), and decision curve analysis (DCA). Results The concordance index (0.661 for the training cohort and 0.688 for the validation cohort) and the area under the ROC curve (training cohort: 0.709 for 1‐year and 0.727 for 2‐year OS prediction; validation cohort: 0.737 for 1‐year and 0.734 for 2‐year OS prediction) indicated satisfactory discriminative ability of the nomogram. Calibration curve and DCA presented great prognostic accuracy, and clinical applicability. Its prognostic accuracy preceded the AJCC staging with evaluated NRI (1‐year: 0.327; 2‐year: 0.302) and IDI (1‐year: 0.138; 2‐year: 0.130). Conclusion Our study established a nomogram for the prediction of 1‐ and 2‐year OS in patients with NSCLC diagnosed with stage M1a, facilitating healthcare workers to accurately evaluate the individual survival of M1a NSCLC patients. The accuracy and clinical applicability of this nomogram were validated.
Collapse
Affiliation(s)
- Hongchao Chen
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Chen Huang
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Huiqing Ge
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Qianshun Chen
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Jing Chen
- Department of Pharmacy, Fujian Children's hospital, Fuzhou, Fujian, China
| | - Yuqiang Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haiyong Chen
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Shiyin Luo
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Lilan Zhao
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Xunyu Xu
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
143
|
Mueller M, Booth J, Briggs A, Jayamanne D, Panettieri V, Senthi S, Shieh CC, Keall P. MArkerless image Guidance using Intrafraction Kilovoltage x-ray imaging (MAGIK): study protocol for a phase I interventional study for lung cancer radiotherapy. BMJ Open 2022; 12:e057135. [PMID: 35058267 PMCID: PMC8783817 DOI: 10.1136/bmjopen-2021-057135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION In radiotherapy, tumour tracking leads the radiation beam to accurately target the tumour while it moves in a complex and unpredictable way due to respiration. Several tumour tracking techniques require the implantation of fiducial markers around the tumour, a procedure that involves unnecessary risks and costs. Markerless tumour tracking (MTT) negates the need for implanted markers, potentially enabling accurate and optimal radiotherapy in a non-invasive way. METHODS AND ANALYSIS We will perform a phase I interventional trial called MArkerless image Guidance using Intrafraction Kilovoltage x-ray imaging (MAGIK) to investigate the technical feasibility of the MTT technology developed at the University of Sydney (sponsor). 30 participants will undergo the current standard of care lung stereotactic ablative radiation therapy, with the exception that kilovoltage X-ray images will be acquired continuously during treatment delivery to enable MTT. If MTT indicates that the mean lung tumour position has shifted >3 mm, a warning message will be displayed to indicate the need for a treatment intervention. The radiation therapist will then pause the treatment, shift the treatment couch to account for the shift in tumour position and resume the treatment. Participants will be implanted with fiducial markers, which act as the ground truth for evaluating the accuracy of MTT. MTT is considered feasible if the tracking accuracy is <3 mm in each dimension for >80% of the treatment time. ETHICS AND DISSEMINATION The MAGIK trial has received ethical approval from The Alfred Human Research Ethics Committee and has been registered with ClinicalTrials.gov with the Identifier: NCT04086082. Estimated time of first recruitment is early 2022. The study recruitment and data analysis phases will be performed concurrently. Treatment for all 30 participants is expected to be completed within 2 years and participant follow-up within a total duration of 7 years. Findings will be disseminated through peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER NCT04086082; Pre-result.
Collapse
Affiliation(s)
- Marco Mueller
- ACRF Image X Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Jeremy Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Adam Briggs
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Dasantha Jayamanne
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | | | - Sashendra Senthi
- Radiation Oncology, Alfred Health, Melbourne, Victoria, Australia
| | - Chun-Chien Shieh
- ACRF Image X Institute, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Neuroimaging Analysis Centre, Sydney, New South Wales, Australia
| | - Paul Keall
- ACRF Image X Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
144
|
Yang T, Xiong Y, Zeng Y, Wang Y, Zeng J, Liu J, Xu S, Li LS. Current status of immunotherapy for non-small cell lung cancer. Front Pharmacol 2022; 13:989461. [PMID: 36313314 PMCID: PMC9606217 DOI: 10.3389/fphar.2022.989461] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/30/2022] [Indexed: 02/05/2023] Open
Abstract
Nowadays, lung cancer is still the deadliest oncological disease in the world. Among them, non-small cell lung cancer (NSCLC) accounts for 80%∼85% of all lung cancers, and its 5-year survival rate is less than 15%, making the situation critical. In the past decades, despite some clinical advances in conventional treatments, the overall survival rate of NSCLC is still not optimistic due to its unique physiological conditions and the frequent occurrence of tumor escape. In recent years, immunotherapy has become a new hot spot in lung cancer research, including antibody therapy and cell therapy, which have been developed and utilized one after another, especially immune checkpoint inhibitor (ICI). These approaches have effectively improved the overall survival rate and objective response rate of NSCLC patients by enhancing the immune capacity of the body and targeting tumor cells more effectively, which is more specific and less toxic compared with conventional chemotherapy, and providing more strategies for NSCLC treatment. In this paper, we reviewed the relevant targets, clinical progress and adverse reaction in monoclonal antibodies, antibody-drug conjugates, ICI, bispecific antibodies, T-cell receptor engineered T cell therapy (TCR-T), Chimeric antigen receptor T-cell immunotherapy (CAR-T), and also report on their combination therapy from the immune-related background to provide better NSCLC treatment and prospective.
Collapse
|
145
|
Miyasaka Y, Sato H, Okano N, Kubo N, Kawamura H, Ohno T. A Promising Treatment Strategy for Lung Cancer: A Combination of Radiotherapy and Immunotherapy. Cancers (Basel) 2021; 14:203. [PMID: 35008367 PMCID: PMC8750493 DOI: 10.3390/cancers14010203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide despite advances in treatment. In the past few decades, radiotherapy has achieved outstanding technical advances and is being widely used as a definitive, prophylactic, or palliative treatment of patients with lung cancer. The anti-tumor effects of radiotherapy are considered to result in DNA damage in cancer cells. Moreover, recent evidence has demonstrated another advantage of radiotherapy: the induction of anti-tumor immune responses, which play an essential role in cancer control. In contrast, radiotherapy induces an immunosuppressive response. These conflicting reactions after radiotherapy suggest that maximizing immune response to radiotherapy by combining immunotherapy has potential to achieve more effective anti-tumor response than using each alone. Immune checkpoint molecules, such as cytotoxic T-lymphocyte-associated protein 4, programmed cell death-1/programmed death-ligand 1, and their inhibitors, have attracted significant attention for overcoming the immunosuppressive conditions in patients with cancer. Therefore, the combination of immune checkpoint inhibitors and radiotherapy is promising. Emerging preclinical and clinical studies have demonstrated the rationale for these combination strategies. In this review, we outlined evidence suggesting that combination of radiotherapy, including particle therapy using protons and carbon ions, with immunotherapy in lung cancer treatment could be a promising treatment strategy.
Collapse
Affiliation(s)
- Yuhei Miyasaka
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.M.); (N.O.); (N.K.); (H.K.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.M.); (N.O.); (N.K.); (H.K.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Naoko Okano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.M.); (N.O.); (N.K.); (H.K.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Nobuteru Kubo
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.M.); (N.O.); (N.K.); (H.K.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.M.); (N.O.); (N.K.); (H.K.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.M.); (N.O.); (N.K.); (H.K.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| |
Collapse
|
146
|
Bourigault P, Skwarski M, Macpherson RE, Higgins GS, McGowan DR. Investigation of atovaquone-induced spatial changes in tumour hypoxia assessed by hypoxia PET/CT in non-small cell lung cancer patients. EJNMMI Res 2021; 11:130. [PMID: 34964932 PMCID: PMC8716680 DOI: 10.1186/s13550-021-00871-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Tumour hypoxia promotes an aggressive tumour phenotype and enhances resistance to anticancer treatments. Following the recent observation that the mitochondrial inhibitor atovaquone increases tumour oxygenation in NSCLC, we sought to assess whether atovaquone affects tumour subregions differently depending on their level of hypoxia. METHODS Patients with resectable NSCLC participated in the ATOM trial (NCT02628080). Cohort 1 (n = 15) received atovaquone treatment, whilst cohort 2 (n = 15) did not. Hypoxia-related metrics, including change in mean tumour-to-blood ratio, tumour hypoxic volume, and fraction of hypoxic voxels, were assessed using hypoxia PET imaging. Tumours were divided into four subregions or distance categories: edge, outer, inner, and centre, using MATLAB. RESULTS Atovaquone-induced reduction in tumour hypoxia mostly occurred in the inner and outer tumour subregions, and to a lesser extent in the centre subregion. Atovaquone did not seem to act in the edge subregion, which was the only tumour subregion that was non-hypoxic at baseline. Notably, the most intensely hypoxic tumour voxels, and therefore the most radiobiologically resistant areas, were subject to the most pronounced decrease in hypoxia in the different subregions. CONCLUSIONS This study provides insights into the action of atovaquone in tumour subregions that help to better understand its role as a novel tumour radiosensitiser. TRIAL REGISTRATION ClinicalTrials.gov, NCT0262808. Registered 11th December 2015, https://clinicaltrials.gov/ct2/show/NCT02628080.
Collapse
Affiliation(s)
| | - Michael Skwarski
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ruth E Macpherson
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Geoff S Higgins
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Daniel R McGowan
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- Department of Medical Physics and Clinical Engineering, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
147
|
Zhang K, Wu J, Zhao X, Qin J, Xue Y, Zheng W, Wang L, Wang H, Shen H, Niu T, Luo Y, Tang R, Wang B. Prussian Blue/Calcium Peroxide Nanocomposites-Mediated Tumor Cell Iron Mineralization for Treatment of Experimental Lung Adenocarcinoma. ACS NANO 2021; 15:19838-19852. [PMID: 34851083 DOI: 10.1021/acsnano.1c07308] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Current lung cancer diagnosis methods encounter delayed visual confirmation of tumor foci and low-resolution metrics in imaging findings, which delays the early treatment of tumors. Here, we developed a potent lung cancer imaging and treatment strategy centered around a nanotransformational concept of tumor iron mineralization in situ, which employs Prussian blue/calcium peroxide nanocomposites as a precursor. The resultant iron mineralization in tumor cells greatly facilitates the early and differential diagnosis of lung carcinoma from benign nodules via medical imaging, meanwhile introducing oxidative stress to activate the cellular apoptosis and ferroptosis pathways, resulting in inhibition of the malignant behavior of tumor cells. Tumor-microenvironment-triggered iron mineralization enables integration of the detection and prevention of tumor metastasis at its early stages with no assistance of toxic drugs, which offers a potential solution for the precise management of lung cancer with ideal outcomes.
Collapse
Affiliation(s)
- Kaixin Zhang
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Jicheng Wu
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Xiaoxiong Zhao
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | | | - Yi Xue
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | | | | | - Haoran Wang
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | | | - Tianye Niu
- Nuclear & Radiological Engineering and Medical Physics Programs, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yan Luo
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Ben Wang
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
148
|
Zhao X, Jin X, Zhang Q, Liu R, Luo H, Yang Z, Geng Y, Feng S, Li C, Wang L, Wang X, Li Q. Silencing of the lncRNA H19 enhances sensitivity to X-ray and carbon-ions through the miR-130a-3p /WNK3 signaling axis in NSCLC cells. Cancer Cell Int 2021; 21:644. [PMID: 34863180 PMCID: PMC8642868 DOI: 10.1186/s12935-021-02268-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/16/2021] [Indexed: 01/08/2023] Open
Abstract
Background The lncRNA H19 is believed to act as an oncogene in various types of tumors and is considered to be a therapeutic target and diagnostic marker. However, the role of the lncRNA H19 in regulating the radiosensitivity of non-small cell lung cancer (NSCLC) cells is unknown. Methods The expression profiles of lncRNAs in NSCLC were explored via transcriptome sequencing. CCK-8, EdU incorporation and clonogenic survival assays were conducted to evaluate the proliferation and radiosensitivity of NSCLC cells. Flow cytometry and Western blotting were conducted to measure the level of apoptosis. The binding relationship between the lncRNA H19 and miR-130a-3p was determined by a dual-luciferase reporter assay. A binding relationship was also identified between miR-130a-3p and With-No-Lysine Kinase 3 (WNK3). Results Expression patterns of lncRNAs revealed that the lncRNA H19 was upregulated in radioresistant NSCLC (A549-R11) cells compared with A549 cells. Knockdown of the lncRNA H19 enhanced the sensitivity of NSCLC cell lines to X-ray and carbon ion irradiation. Mechanistically, the lncRNA H19 serves as a sponge of miR-130a-3p, which downregulates WNK3 expression. The lncRNA H19–miR-130a-3p–WNK3 axis modulates radiosensitivity by regulating apoptosis in NSCLC cell lines. Conclusion Knockdown of the lncRNA H19 promotes the sensitivity of NSCLC cells to X-ray and carbon ion irradiation. Hence, the lncRNA H19 might function as a potential therapeutic target that enhances the antitumor effects of radiotherapy in NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02268-1.
Collapse
Affiliation(s)
- Xueshan Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.,Affiliated Hospital of Qinghai University, Xining, 810000, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 110000, China.,Lanzhou Heavy Ion Hospital, Lanzhou, 730000, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 110000, China.,Lanzhou Heavy Ion Hospital, Lanzhou, 730000, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 110000, China.,Lanzhou Heavy Ion Hospital, Lanzhou, 730000, China
| | - Zhen Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yichao Geng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Shuangwu Feng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Chengcheng Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Lina Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China. .,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. .,University of Chinese Academy of Sciences, Beijing, 110000, China. .,Lanzhou Heavy Ion Hospital, Lanzhou, 730000, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
149
|
Neganova M, Liu J, Aleksandrova Y, Klochkov S, Fan R. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment. Cancers (Basel) 2021; 13:6062. [PMID: 34885171 PMCID: PMC8657135 DOI: 10.3390/cancers13236062] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 01/17/2023] Open
Abstract
Chronic inflammation and oxidative stress are the interconnected pathological processes, which lead to cancer initiation and progression. The growing level of oxidative and inflammatory damage was shown to increase cancer severity and contribute to tumor spread. The overproduction of reactive oxygen species (ROS), which is associated with the reduced capacity of the endogenous cell defense mechanisms and/or metabolic imbalance, is the main contributor to oxidative stress. An abnormal level of ROS was defined as a predisposing factor for the cell transformation that could trigger pro-oncogenic signaling pathways, induce changes in gene expression, and facilitate accumulation of mutations, DNA damage, and genomic instability. Additionally, the activation of transcription factors caused by a prolonged oxidative stress, including NF-κB, p53, HIF1α, etc., leads to the expression of several genes responsible for inflammation. The resulting hyperactivation of inflammatory mediators, including TNFα, TGF-β, interleukins, and prostaglandins can contribute to the development of neoplasia. Pro-inflammatory cytokines were shown to trigger adaptive reactions and the acquisition of resistance by tumor cells to apoptosis, while promoting proliferation, invasion, and angiogenesis. Moreover, the chronic inflammatory response leads to the excessive production of free radicals, which further aggravate the initiated reactions. This review summarizes the recent data and progress in the discovery of mechanisms that associate oxidative stress and chronic inflammation with cancer onset and metastasis. In addition, the review provides insights for the development of therapeutic approaches and the discovery of natural substances that will be able to simultaneously inhibit several key oncological and inflammation-related targets.
Collapse
Affiliation(s)
- Margarita Neganova
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Sergey Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
150
|
The Immunotherapy for Colorectal Cancer, Lung Cancer and Pancreatic Cancer. Int J Mol Sci 2021; 22:ijms222312836. [PMID: 34884642 PMCID: PMC8657810 DOI: 10.3390/ijms222312836] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is a novel anti-cancer method which employs a different mechanism to conventional treatment. It has become a significant strategy because it provides a better or an alternative option for cancer patients. Recently, immunotherapy has been increasingly approved for the treatment of cancer; however, it has various limitations; for instance, it is only suitable for specific patients, the response rate is still low in most cases, etc. Colorectal cancer, lung cancer and pancreatic cancer are known as three major death-causing cancers in most countries. In this review, we discuss immunotherapeutic treatment for these three cancers, and consider the option, prospects and limitations of immunotherapy. The development of immunotherapy should focus on the discovery of biomarkers to screen suitable patients, new targets on tumors, neoadjuvant immunotherapy and the combination of immunotherapy with conventional therapeutic methods. We can expect that immunotherapy potentially will develop as one of the best therapies for patients with advanced cancer or poor responses to traditional methods.
Collapse
|