101
|
Gravier G, Steinberg JG, Lejeune PJ, Delliaux S, Guieu R, Jammes Y. Exercise-induced oxidative stress influences the motor control during maximal incremental cycling exercise in healthy humans. Respir Physiol Neurobiol 2013; 186:265-72. [DOI: 10.1016/j.resp.2013.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
|
102
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 400] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
103
|
|
104
|
Welc SS, Clanton TL. The regulation of interleukin-6 implicates skeletal muscle as an integrative stress sensor and endocrine organ. Exp Physiol 2012; 98:359-71. [PMID: 22941979 DOI: 10.1113/expphysiol.2012.068189] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Skeletal muscle has been identified as an endocrine organ owing to its capacity to produce and secrete a variety of cytokines (myokines) and other proteins. To date, myokines have primarily been studied in response to exercise or metabolic challenges; however, numerous observations suggest that skeletal muscle may also release myokines in response to certain categories of internal or external stress exposure. Internal stress signals include oxidative or nitrosative stress, damaged or unfolded proteins, hyperthermia or energy imbalance. External stress signals, which act as indicators of organismal stress or injury in other cells, employ mediators such as catecholamines, endotoxin, alarmins, ATP and pro-inflammatory cytokines, such as tumour necrosis factor-α and interleukin-1β. External stress signals generally induce cellular responses through membrane receptor systems. In this review, we focus on the regulation of interleukin-6 (IL-6) as a prototypical stress response myokine and highlight evidence that IL-6 gene regulation in muscle is inherently organized to respond to a wide variety of internal and external stressors. Given that IL-6 can initiate protective, anti-inflammatory or restorative processes throughout the organism during life-threatening conditions, we present the argument that skeletal muscle has a physiological function as a sensor and responder to stress. Furthermore, we hypothesize that it may comprise a fundamental component of the organism's acute stress response.
Collapse
Affiliation(s)
- Steven S Welc
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
105
|
Alves EDS, Ackel-D'Elia C, Luz GP, Cunha TCA, Carneiro G, Tufik S, Bittencourt LRA, de Mello MT. Does physical exercise reduce excessive daytime sleepiness by improving inflammatory profiles in obstructive sleep apnea patients? Sleep Breath 2012; 17:505-10. [PMID: 22760814 DOI: 10.1007/s11325-012-0729-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Obstructive sleep apnea syndrome (OSAS) is associated with a variety of long-term consequences such as high rates of morbidity and mortality, due to excessive diurnal somnolence as well as cardiovascular and metabolic diseases. Obesity, recurrent episodes of upper airway obstruction, progressive hypoxemia, and sleep fragmentation during sleep cause neural, cardiovascular, and metabolic changes. These changes include activation of peripheral sympathetic nervous system and the hypothalamic-pituitary-adrenal axis, insulin sensitivity, and inflammatory cytokines alterations, which predispose an individual to vascular damage. DISCUSSION Previous studies proposed that OSAS modulated the expression and secretion of inflammatory cytokines from fat and other tissues. Independent of obesity, patients with OSAS exhibited elevated levels of C-reactive protein, tumor necrosis factor-α and interleukin-6, which are associated with sleepiness, fatigue, and the development of a variety of metabolic and cardiovascular diseases. OSAS and obesity are strongly associated with each other and share many common pathways that induce chronic inflammation. Previous studies suggested that the protective effect of exercise may be partially attributed to the anti-inflammatory effect of regular exercise, and this effect was observed in obese patients. Although some studies assessed the effects of physical exercise on objective and subjective sleep parameters, the quality of life, and mood in patients with OSAS, no study has evaluated the effects of this treatment on inflammatory profiles. In this review, we cited some studies that directed our opinion to believe that since OSAS causes increased inflammation and has excessive daytime sleepiness as a symptom and being that physical exercise improves inflammatory profiles and possibly OSAS symptoms, it must be that physical exercise improves excessive daytime sleepiness due to its improvement in inflammatory profiles.
Collapse
Affiliation(s)
- Eduardo da Silva Alves
- Disciplina de Medicina e Biologia do Sono, Departamento de Psicobiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo, CEP: 04020-050, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Terra R, Silva SAGD, Pinto VS, Dutra PML. Efeito do exercício no sistema imune: resposta, adaptação e sinalização celular. REV BRAS MED ESPORTE 2012. [DOI: 10.1590/s1517-86922012000300015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
INTRODUÇÃO: Durante o último século, o homem tornou-se menos ativo fisicamente, adotando hábitos cada vez mais sedentários. Isto promoveu aumento na incidência de doenças crônicas tais como doenças cardiovasculares, diabetes do tipo 2 e síndrome metabólica. A prática de atividade física pode influenciar o estado de higidez alterando estados metabólicos e também o sistema imunológico. OBJETIVO: Revisar na literatura estudos que abordem os efeitos promovidos pelo exercício físico no desenvolvimento da resposta imunológica e suas possíveis vias de transdução de sinais. MÉTODOS: Foram consultadas as bases de dados SciELO e PubMed. RESULTADOS: A literatura disponível mostra que durante a prática de exercício, várias subpopulações de leucócitos são alteradas de acordo com a intensidade e duração da atividade desempenhada. Exercícios de intensidade moderada estimulam uma resposta pró-inflamatória, enquanto aqueles de alta intensidade tendem a promover respostas anti-inflamatórias visando diminuir os danos na musculatura esquelética. Tais alterações são vistas em células apresentadoras de antígeno (como macrófagos e células dendríticas), neutrófilos, células natural killers (NK) e em moléculas de superfície como os receptores do tipo Toll (TLR) e do complexo principal de histocompatibilidade de classe II (MHC II), além das modificações promovidas em todo o repertório de citocinas. CONCLUSÃO: O estado atual do conhecimento permite considerar que as alterações no sistema imune são dependentes dos parâmetros inerentes ao exercício e que para que todas estas alterações ocorram, algumas cascatas de sinalização celular são acionadas, dando origem a um complexo processo de fosforilação/desfosforilação que culmina em ativação de fatores de transcrição, tradução de RNAm, síntese proteica e proliferação celular.
Collapse
|
107
|
Changes of myogenic reactive oxygen species and interleukin-6 in contracting skeletal muscle cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:145418. [PMID: 22666517 PMCID: PMC3361309 DOI: 10.1155/2012/145418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 12/14/2022]
Abstract
The aim of this study was to measure changes in myotube reactive oxygen species (ROS) and the production of interleukin (IL)-6 in electrically stimulated mouse C2C12 skeletal muscle cells. After five days of differentiation, myotubes were stimulated using an electrical stimulator set at 45 V at a frequency of 5 Hz, with a pulse width of 20 ms. Acute stimulations were performed for 45, 60, 75, 90, or 120 min in each dish. ROSs were detected in the extracted cells directly using a fluorescent probe. IL-6 mRNA expression in C2C12 myotubes and IL-6 concentration in C2C12 myotube supernatants were determined using real-time PCR and ELISA, respectively. Compared with control cells, ROS generation was significantly increased at 45 min after the onset of stimulation (P < 0.01) and continued to increase, reaching a maximum at 120 min. IL-6 mRNA expression and IL-6 concentration in C2C12 cells were significantly increased after 75 min (P < 0.01) and 120 min (P < 0.05) of electrical stimulation (ES) compared with the control cells. Our data show that a specific ES intensity may modulate ROS accumulation and affect IL-6 gene expression in contracting skeletal muscle cells.
Collapse
|
108
|
Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 2012; 2012:CD007176. [PMID: 22419320 PMCID: PMC8407395 DOI: 10.1002/14651858.cd007176.pub2] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Our systematic review has demonstrated that antioxidant supplements may increase mortality. We have now updated this review. OBJECTIVES To assess the beneficial and harmful effects of antioxidant supplements for prevention of mortality in adults. SEARCH METHODS We searched The Cochrane Library, MEDLINE, EMBASE, LILACS, the Science Citation Index Expanded, and Conference Proceedings Citation Index-Science to February 2011. We scanned bibliographies of relevant publications and asked pharmaceutical companies for additional trials. SELECTION CRITERIA We included all primary and secondary prevention randomised clinical trials on antioxidant supplements (beta-carotene, vitamin A, vitamin C, vitamin E, and selenium) versus placebo or no intervention. DATA COLLECTION AND ANALYSIS Three authors extracted data. Random-effects and fixed-effect model meta-analyses were conducted. Risk of bias was considered in order to minimise the risk of systematic errors. Trial sequential analyses were conducted to minimise the risk of random errors. Random-effects model meta-regression analyses were performed to assess sources of intertrial heterogeneity. MAIN RESULTS Seventy-eight randomised trials with 296,707 participants were included. Fifty-six trials including 244,056 participants had low risk of bias. Twenty-six trials included 215,900 healthy participants. Fifty-two trials included 80,807 participants with various diseases in a stable phase. The mean age was 63 years (range 18 to 103 years). The mean proportion of women was 46%. Of the 78 trials, 46 used the parallel-group design, 30 the factorial design, and 2 the cross-over design. All antioxidants were administered orally, either alone or in combination with vitamins, minerals, or other interventions. The duration of supplementation varied from 28 days to 12 years (mean duration 3 years; median duration 2 years). Overall, the antioxidant supplements had no significant effect on mortality in a random-effects model meta-analysis (21,484 dead/183,749 (11.7%) versus 11,479 dead/112,958 (10.2%); 78 trials, relative risk (RR) 1.02, 95% confidence interval (CI) 0.98 to 1.05) but significantly increased mortality in a fixed-effect model (RR 1.03, 95% CI 1.01 to 1.05). Heterogeneity was low with an I(2)- of 12%. In meta-regression analysis, the risk of bias and type of antioxidant supplement were the only significant predictors of intertrial heterogeneity. Meta-regression analysis did not find a significant difference in the estimated intervention effect in the primary prevention and the secondary prevention trials. In the 56 trials with a low risk of bias, the antioxidant supplements significantly increased mortality (18,833 dead/146,320 (12.9%) versus 10,320 dead/97,736 (10.6%); RR 1.04, 95% CI 1.01 to 1.07). This effect was confirmed by trial sequential analysis. Excluding factorial trials with potential confounding showed that 38 trials with low risk of bias demonstrated a significant increase in mortality (2822 dead/26,903 (10.5%) versus 2473 dead/26,052 (9.5%); RR 1.10, 95% CI 1.05 to 1.15). In trials with low risk of bias, beta-carotene (13,202 dead/96,003 (13.8%) versus 8556 dead/77,003 (11.1%); 26 trials, RR 1.05, 95% CI 1.01 to 1.09) and vitamin E (11,689 dead/97,523 (12.0%) versus 7561 dead/73,721 (10.3%); 46 trials, RR 1.03, 95% CI 1.00 to 1.05) significantly increased mortality, whereas vitamin A (3444 dead/24,596 (14.0%) versus 2249 dead/16,548 (13.6%); 12 trials, RR 1.07, 95% CI 0.97 to 1.18), vitamin C (3637 dead/36,659 (9.9%) versus 2717 dead/29,283 (9.3%); 29 trials, RR 1.02, 95% CI 0.98 to 1.07), and selenium (2670 dead/39,779 (6.7%) versus 1468 dead/22,961 (6.4%); 17 trials, RR 0.97, 95% CI 0.91 to 1.03) did not significantly affect mortality. In univariate meta-regression analysis, the dose of vitamin A was significantly associated with increased mortality (RR 1.0006, 95% CI 1.0002 to 1.001, P = 0.002). AUTHORS' CONCLUSIONS We found no evidence to support antioxidant supplements for primary or secondary prevention. Beta-carotene and vitamin E seem to increase mortality, and so may higher doses of vitamin A. Antioxidant supplements need to be considered as medicinal products and should undergo sufficient evaluation before marketing.
Collapse
Affiliation(s)
- Goran Bjelakovic
- Department of InternalMedicine,Medical Faculty, University ofNis,Nis, Serbia.
| | | | | | | | | |
Collapse
|
109
|
Peternelj TT, Coombes JS. Antioxidant supplementation during exercise training: beneficial or detrimental? Sports Med 2012; 41:1043-69. [PMID: 22060178 DOI: 10.2165/11594400-000000000-00000] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High levels of reactive oxygen species (ROS) produced in skeletal muscle during exercise have been associated with muscle damage and impaired muscle function. Supporting endogenous defence systems with additional oral doses of antioxidants has received much attention as a noninvasive strategy to prevent or reduce oxidative stress, decrease muscle damage and improve exercise performance. Over 150 articles have been published on this topic, with almost all of these being small-scale, low-quality studies. The consistent finding is that antioxidant supplementation attenuates exercise-induced oxidative stress. However, any physiological implications of this have yet to be consistently demonstrated, with most studies reporting no effects on exercise-induced muscle damage and performance. Moreover, a growing body of evidence indicates detrimental effects of antioxidant supplementation on the health and performance benefits of exercise training. Indeed, although ROS are associated with harmful biological events, they are also essential to the development and optimal function of every cell. The aim of this review is to present and discuss 23 studies that have shown that antioxidant supplementation interferes with exercise training-induced adaptations. The main findings of these studies are that, in certain situations, loading the cell with high doses of antioxidants leads to a blunting of the positive effects of exercise training and interferes with important ROS-mediated physiological processes, such as vasodilation and insulin signalling. More research is needed to produce evidence-based guidelines regarding the use of antioxidant supplementation during exercise training. We recommend that an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain the optimal antioxidant status in exercising individuals.
Collapse
Affiliation(s)
- Tina-Tinkara Peternelj
- School of Human Movement Studies, The University of Queensland, Brisbane, QLD, Australia.
| | | |
Collapse
|
110
|
Petersen AC, McKenna MJ, Medved I, Murphy KT, Brown MJ, Della Gatta P, Cameron-Smith D. Infusion with the antioxidant N-acetylcysteine attenuates early adaptive responses to exercise in human skeletal muscle. Acta Physiol (Oxf) 2012; 204:382-92. [PMID: 21827635 DOI: 10.1111/j.1748-1716.2011.02344.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Production of reactive oxygen species (ROS) in skeletal muscle is markedly increased during exercise and may be essential for exercise adaptation. We, therefore, investigated the effects of infusion with the antioxidant N-acetylcysteine (NAC) on exercise-induced activation of signalling pathways and genes involved in exercise adaptation in human skeletal muscle. METHODS Subjects completed two exercise tests, 7 days apart, with saline (control, CON) or NAC infusion before and during exercise. Exercise tests comprised of cycling at 71% VO(2peak) for 45 min, and then 92% VO(2peak) to fatigue, with vastus lateralis biopsies at pre-infusion, after 45-min cycling and at fatigue. RESULTS Analysis was conducted on the mitogen-activated protein kinase signalling pathways, demonstrating that NAC infusion blocked the exercise-induced increase in JNK phosphorylation, but not ERK1/2, or p38 MAPK. Nuclear factor-κB p65 phosphorylation was unaffected by exercise; however, it was reduced in NAC at fatigue by 14% (P < 0.05) compared with pre-infusion. Analysis of exercise and/or ROS-sensitive genes demonstrated that exercise-induced mRNA expression is ROS dependent of MnSOD, but not PGC-1α, interleukin-6, monocyte chemotactic protein-1, or heat-shock protein 70. CONCLUSION These results suggest that inhibition of ROS attenuates some skeletal muscle cell signalling pathways and gene expression involved in adaptations to exercise.
Collapse
Affiliation(s)
- A C Petersen
- School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Vic., Australia.
| | | | | | | | | | | | | |
Collapse
|
111
|
Yfanti C, Fischer CP, Nielsen S, Akerström T, Nielsen AR, Veskoukis AS, Kouretas D, Lykkesfeldt J, Pilegaard H, Pedersen BK. Role of vitamin C and E supplementation on IL-6 in response to training. J Appl Physiol (1985) 2012; 112:990-1000. [PMID: 22207723 DOI: 10.1152/japplphysiol.01027.2010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vitamin C and E supplementation has been shown to attenuate the acute exercise-induced increase in plasma interleukin-6 (IL-6) concentration. Here, we studied the effect of antioxidant vitamins on the regulation of IL-6 expression in muscle and the circulation in response to acute exercise before and after high-intensity endurance exercise training. Twenty-one young healthy men were allocated into either a vitamin (VT; vitamin C and E, n = 11) or a placebo (PL, n = 10) group. A 1-h acute bicycling exercise trial at 65% of maximal power output was performed before and after 12 wk of progressive endurance exercise training. In response to training, the acute exercise-induced IL-6 response was attenuated in PL (P < 0.02), but not in VT (P = 0.82). However, no clear difference between groups was observed (group × training: P = 0.13). Endurance exercise training also attenuated the acute exercise-induced increase in muscle-IL-6 mRNA in both groups. Oxidative stress, assessed by plasma protein carbonyls concentration, was overall higher in the VT compared with the PL group (group effect: P < 0.005). This was accompanied by a general increase in skeletal muscle mRNA expression of antioxidative enzymes, including catalase, copper-zinc superoxide dismutase, and glutathione peroxidase 1 mRNA expression in the VT group. However, skeletal muscle protein content of catalase, copper-zinc superoxide dismutase, or glutathione peroxidase 1 was not affected by training or supplementation. In conclusion, our results indicate that, although vitamin C and E supplementation may attenuate exercise-induced increases in plasma IL-6 there is no clear additive effect when combined with endurance training.
Collapse
Affiliation(s)
- Christina Yfanti
- The Centre of Inflammation and Metabolism, Department of Infectious Diseases, and Copenhagen Muscle Research Centre, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Manabe Y, Miyatake S, Takagi M. Myokines: Do they really exist? JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
113
|
Zhang X, Xie M, Yan Y, Wu Y, Xu J. Reactive Oxygen Species and p38 Mitogen-activated Protein Kinase Mediate Exercise-induced Skeletal Muscle-derived Interleukin-6 Expression. J Exerc Sci Fit 2011. [DOI: 10.1016/s1728-869x(12)60008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
114
|
Gomes EC, Allgrove JE, Florida-James G, Stone V. Effect of vitamin supplementation on lung injury and running performance in a hot, humid, and ozone-polluted environment. Scand J Med Sci Sports 2011; 21:e452-60. [PMID: 22092484 DOI: 10.1111/j.1600-0838.2011.01366.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2011] [Indexed: 11/29/2022]
Abstract
In this study, the effect of vitamin C and E supplementation on lung injury and performance of runners were analyzed. Using a randomized, double-blinded, crossover design, nine runners participated in two experimental trials: a 2-week Vitamin trial (vitamin C = 500 mg/day + vitamin E = 100 IU/day) and a 2-week Placebo trial. At the end of each supplementation period the runners performed an 8-km time-trial run in a hot (31°C), humid (70% rh), and ozone-polluted (0.10 ppm O(3)) environmental chamber. Nasal lavage and blood samples were collected pre-, post-, and 6-h post-exercise to assess antioxidant status and CC16 as lung injury marker. Higher plasma (pre- and post-exercise) and nasal lavage (post-exercise) antioxidant concentration were found for the Vitamin trial. Nevertheless, this did not result in performance differences (Vitamin trial: 31:05 min; Placebo trial: 31:54 min; P = 0.075) even though significant positive correlations were found between antioxidant concentration and improvement in time to complete the run. CC16 was higher post-exercise in the Placebo trial (P < 0.01) in both plasma and nasal lavage. These findings suggest that antioxidant supplementation might help to decrease the lung injury response of runners when exercising in adverse conditions, but has little effect on performance.
Collapse
Affiliation(s)
- E C Gomes
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Brazil.
| | | | | | | |
Collapse
|
115
|
Vitamins E and C Modulate the Association Between Reciprocally Regulated Cytokines After an Anterior Cruciate Ligament Injury and Surgery. Am J Phys Med Rehabil 2011; 90:638-47. [DOI: 10.1097/phm.0b013e318214e886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
116
|
|
117
|
Montalvo C, Díaz N, Galdames L, Andrés M, Larraín R. Short communication: Effect of vitamins E and C on cortisol production by bovine adrenocortical cells in vitro. J Dairy Sci 2011; 94:3495-7. [DOI: 10.3168/jds.2010-3760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 03/14/2011] [Indexed: 11/19/2022]
|
118
|
Chung HK, Kim OY, Lee H, Do HJ, Kim YS, Oh J, Kang SM, Shin MJ. Relationship between dietary folate intake and plasma monocyte chemoattractant protein-1 and interleukin-8 in heart failure patients. J Clin Biochem Nutr 2011; 49:62-6. [PMID: 21765609 PMCID: PMC3128299 DOI: 10.3164/jcbn.10-129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/27/2010] [Indexed: 12/02/2022] Open
Abstract
This study aimed to examine the association of dietary vitamin intakes with plasma pro-inflammatory cytokine levels in Korean heart failure patients. Stable outpatients with heart failure were recruited and finally 91 patients were included. Dietary intakes were estimated by a developed semi-quantitative food frequency questionnaire. The simultaneous measurement of 17 cytokines was performed along with analysis of plasma C-reactive protein. Plasma C-reactive protein levels significantly correlated with dietary intakes of vitamin C (r = −0.30, p<0.005), β-carotene (r = −0.23, p<0.05), and folate (r = −0.31, p<0.005). However, these associations were no longer significant after adjusting for traditional risk factors for heart failure. On the other hand, plasma levels of monocyte chemoattractant protein-1 significantly correlated with dietary folate intake (r = −0.31, p<0.001), and plasma interleukin-8 levels significantly correlated with dietary intakes of vitamin C (r = −0.38, p<0.001), β-carotene (r = –0.42, p<0.001), and folate (r = −0.38, p<0.001) after the adjustment. Dietary folate intake was found as a primary influencing factor on plasma levels of monocyte chemoattractant protein-1 (p<0.005, R2 = 0.20) and interleukin-8 (p<0.001, R2 = 0.32) through a stepwise multiple linear regression analysis. Dietary folate intake was significantly associated with plasma levels of monocyte chemoattractant protein-1 and interleukin-8 which indicates dietary folate may have a potentially beneficial role in the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Hye Kyung Chung
- Institute of Health Science and Department of Food and Nutrition, College of Health Science, Korea University, Seoul 136-703, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Yfanti C, Nielsen AR, Akerström T, Nielsen S, Rose AJ, Richter EA, Lykkesfeldt J, Fischer CP, Pedersen BK. Effect of antioxidant supplementation on insulin sensitivity in response to endurance exercise training. Am J Physiol Endocrinol Metab 2011; 300:E761-70. [PMID: 21325105 DOI: 10.1152/ajpendo.00207.2010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
While production of reactive oxygen and nitrogen species (RONS) is associated with some of the beneficial adaptations to regular physical exercise, it is not established whether RONS play a role in the improved insulin-stimulated glucose uptake in skeletal muscle obtained by endurance training. To assess the effect of antioxidant supplementation during endurance training on insulin-stimulated glucose uptake, 21 young healthy (age 29 ± 1 y, BMI 25 ± 3 kg/m(2)) men were randomly assigned to either an antioxidant [AO; 500 mg vitamin C and 400 IU vitamin E (α-tocopherol) daily] or a placebo (PL) group that both underwent a supervised intense endurance-training program 5 times/wk for 12 wk. A 3-h euglycemic-hyperinsulinemic clamp, a maximal oxygen consumption (Vo(2max)) and maximal power output (P(max)) test, and body composition measurements (fat mass, fat-free mass) were performed before and after the training. Muscle biopsies were obtained for determination of the concentration and activity of proteins regulating glucose metabolism. Although plasma levels of vitamin C (P < 0.05) and α-tocopherol (P < 0.05) increased markedly in the AO group, insulin-stimulated glucose uptake increased similarly in both the AO (17.2%, P < 0.05) and the PL (18.9%, P < 0.05) group in response to training. Vo(2max) and P(max) also increased similarly in both groups (time effect, P < 0.0001 for both) as well as protein content of GLUT4, hexokinase II, and total Akt (time effect, P ≤ 0.05 for all). Our results indicate that administration of antioxidants during strenuous endurance training has no effect on the training-induced increase in insulin sensitivity in healthy individuals.
Collapse
Affiliation(s)
- Christina Yfanti
- Rigshospitalet, Centre of Inflammation and Metabolism, 7641, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Davison G, Callister R, Williamson G, Cooper KA, Gleeson M. The effect of acute pre-exercise dark chocolate consumption on plasma antioxidant status, oxidative stress and immunoendocrine responses to prolonged exercise. Eur J Nutr 2011; 51:69-79. [PMID: 21465244 DOI: 10.1007/s00394-011-0193-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/22/2011] [Indexed: 11/26/2022]
Abstract
PURPOSE Acute antioxidant supplementation may modulate oxidative stress and some immune perturbations that typically occur following prolonged exercise. The aims of the present study were to examine the effects of acutely consuming dark chocolate (high polyphenol content) on plasma antioxidant capacity, markers of oxidative stress and immunoendocrine responses to prolonged exercise. METHODS Fourteen healthy men cycled for 2.5 h at ~60% maximal oxygen uptake 2 h after consuming 100 g dark chocolate (DC), an isomacronutrient control bar (CC) or neither (BL) in a randomised-counterbalanced design. RESULTS DC enhanced pre-exercise antioxidant status (P = 0.003) and reduced by trend (P = 0.088) 1 h post-exercise plasma free [F₂-isoprostane] compared with CC (also, [F₂-isoprostane] increased post-exercise in CC and BL but not DC trials). Plasma insulin concentration was significantly higher pre-exercise (P = 0.012) and 1 h post-exercise (P = 0.026) in the DC compared with the CC trial. There was a better maintenance of plasma glucose concentration on the DC trial (2-way ANOVA trial × time interaction P = 0.001), which decreased post-exercise in all trials but was significantly higher 1 h post-exercise (P = 0.039) in the DC trial. There were no between trial differences in the temporal responses (trial × time interactions all P > 0.05) of hypothalamic-pituitary-adrenal axis stress hormones, plasma interleukin-6, the magnitude of leukocytosis and neutrophilia and changes in neutrophil function. CONCLUSION Acute DC consumption may affect insulin, glucose, antioxidant status and oxidative stress responses, but has minimal effects on immunoendocrine responses, to prolonged exercise.
Collapse
Affiliation(s)
- Glen Davison
- Department of Sport and Exercise Science, Aberystwyth University, Ceredigion, Aberystwyth SY23 3FD, UK.
| | | | | | | | | |
Collapse
|
121
|
Barker T, Traber MG. Does Vitamin E and C Supplementation Improve the Recovery From Anterior Cruciate Ligament Surgery? J Evid Based Complementary Altern Med 2011. [DOI: 10.1177/1533210110392954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Muscular (quadriceps) weakness is a predominant impairment that follows anterior cruciate ligament injury and surgery. This continued weakness impairs activities of daily living and could predispose patients to adverse conditions later in life, such as knee osteoarthritis. Vitamins E and C have potent antioxidant and anti-inflammatory activity. Herein, the authors summarize the state-of-the science and suggest directions for future research endeavors regarding the therapeutic influence of vitamins E and C, or other antioxidants, on the recovery from anterior cruciate ligament injury and surgery.
Collapse
Affiliation(s)
- Tyler Barker
- The Orthopedic Specialty Hospital, Intermountain Healthcare, Murray, UT, USA,
| | | |
Collapse
|
122
|
Lee S, Park Y, Zuidema MY, Hannink M, Zhang C. Effects of interventions on oxidative stress and inflammation of cardiovascular diseases. World J Cardiol 2011; 3:18-24. [PMID: 21286214 PMCID: PMC3030733 DOI: 10.4330/wjc.v3.i1.18] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 12/02/2010] [Accepted: 12/09/2010] [Indexed: 02/06/2023] Open
Abstract
Excessive oxidative stress and low-grade chronic inflammation are major pathophysiological factors contributing to the development of cardiovascular diseases (CVD) such as hypertension, diabetes and atherosclerosis. Accumulating evidence suggests that a compromised anti-oxidant system can lead to excessive oxidative stress in cardiovascular related organs, resulting in cell damage and death. In addition, increased circulating levels of pro-inflammatory cytokines, such as tumor necrosis factor α, interleukin-6 and C-reactive protein, are closely related to morbidity and mortality of cardiovascular complications. Emerging evidence suggests that interventions including nutrition, pharmacology and exercise may activate expression of cellular anti-oxidant systems via the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 signaling pathway and play a role in preventing inflammatory processes in CVD. The focus of the present review is to summarize recent evidence showing the role of these anti-oxidant and anti-inflammatory interventions in cardiovascular disease. We believe that these findings may prompt new effective pathogenesis-oriented interventions, based on the exercise-induced protection from disease in the cardiovascular system, aimed at targeting oxidant stress and inflammation.
Collapse
Affiliation(s)
- Sewon Lee
- Sewon Lee, Yoonjung Park, Mozow Yusof Zuidema, Cuihua Zhang, Department of Internal Medicine, Medical Pharmacology and Physiology and Nutritional Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, United States
| | | | | | | | | |
Collapse
|
123
|
Toft AD, Falahati A, Steensberg A. Source and kinetics of interleukin-6 in humans during exercise demonstrated by a minimally invasive model. Eur J Appl Physiol 2010; 111:1351-9. [PMID: 21153418 DOI: 10.1007/s00421-010-1755-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2010] [Indexed: 02/06/2023]
Abstract
The objective of this study was to use a novel and non-invasive model to explore whether: (1) exercise-induced increases in systemic levels of interleukin-6 (IL-6) and other cytokines can be ascribed to local production in working muscle; and (2) how acute release of retained blood from an exercised limb impacts on metabolites in the systemic circulation. On two experimental days, at least 3 weeks apart, six healthy moderately trained male subjects performed one-legged knee-extensor exercise for 2 h at 60% of their maximal workload. On one occasion venous outflow from the exercised leg was inhibited for 18 min by inflating a cuff around the thigh as proximally as possible immediately following exercise. On the control occasion venous outflow was not inhibited. Venous blood samples were collected from an arm vein at 2-min intervals after exercise. During inhibition of venous outflow from the exercised leg systemic plasma levels of IL-6 decreased within minutes to near pre-exercise levels, whereas plasma glucose levels increased to higher levels than without the cuff. After release of the cuff, systemic levels of IL-6 increased rapidly to match levels on the control occasion. On release of the cuff, plasma levels of free fatty acids (FFAs) declined more than without the cuff. In conclusion, the observed increase in systemic IL-6 plasma concentrations during exercise can be attributed to release from the working limb. Other potential sources of IL-6 outside the working limb do not contribute significantly to the increase in plasma IL-6 levels during exercise.
Collapse
Affiliation(s)
- Anders Dyhr Toft
- Department of Infectious Diseases and CMRC, Faculty of Health Sciences, The Centre of Inflammation and Metabolism, Rigshospitalet, dept. 7641, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
124
|
Wruck CJ, Streetz K, Pavic G, Götz ME, Tohidnezhad M, Brandenburg LO, Varoga D, Eickelberg O, Herdegen T, Trautwein C, Cha K, Kan YW, Pufe T. Nrf2 induces interleukin-6 (IL-6) expression via an antioxidant response element within the IL-6 promoter. J Biol Chem 2010; 286:4493-9. [PMID: 21127061 DOI: 10.1074/jbc.m110.162008] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IL-6 gene expression is controlled by a promoter region containing multiple regulatory elements such as NF-κB, NF-IL6, CRE, GRE, and TRE. In this study, we demonstrated that TRE, found within the IL-6 promoter, is embedded in a functional antioxidant response element (ARE) matching an entire ARE consensus sequence. Further, point mutations of the ARE consensus sequence in the IL-6 promoter construct selectively eliminate ARE but not TRE activity. Nrf2 is a redox-sensitive transcription factor which provides cytoprotection against electrophilic and oxidative stress and is the most potent activator of ARE-dependent transcription. Using Nrf2 knock-out mice we demonstrate that Nrf2 is a potent activator of IL-6 gene transcription in vivo. Moreover, we show evidence that Nrf2 is the transcription factor that activates IL6 expression in a cholestatic hepatitis mouse model. Our findings suggest a possible role of IL-6 in oxidative stress defense and also give indication about an important function for Nrf2 in the regulation of hematopoietic and inflammatory processes.
Collapse
Affiliation(s)
- Christoph Jan Wruck
- Department of Anatomy and Cell Biology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Plasma IL-6 concentration during ultra-endurance exercise. Eur J Appl Physiol 2010; 111:1081-8. [DOI: 10.1007/s00421-010-1737-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
|
126
|
Bailey DM, Williams C, Betts JA, Thompson D, Hurst TL. Oxidative stress, inflammation and recovery of muscle function after damaging exercise: effect of 6-week mixed antioxidant supplementation. Eur J Appl Physiol 2010; 111:925-36. [PMID: 21069377 DOI: 10.1007/s00421-010-1718-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2010] [Indexed: 12/23/2022]
Abstract
There is no consensus regarding the effects of mixed antioxidant vitamin C and/or vitamin E supplementation on oxidative stress responses to exercise and restoration of muscle function. Thirty-eight men were randomly assigned to receive either placebo group (n = 18) or mixed antioxidant (primarily vitamin C & E) supplements (n = 20) in a double-blind manner. After 6 weeks, participants performed 90 min of intermittent shuttle-running. Peak isometric torque of the knee flexors/extensors and range of motion at this joint were determined before and after exercise, with recovery of these variables tracked for up to 168 h post-exercise. Antioxidant supplementation elevated pre-exercise plasma vitamin C (93 ± 8 μmol l(-1)) and vitamin E (11 ± 3 μmol l(-1)) concentrations relative to baseline (P < 0.001) and the placebo group (P ≤ 0.02). Exercise reduced peak isometric torque (i.e. 9-19% relative to baseline; P ≤ 0.001), which persisted for the first 48 h of recovery with no difference between treatment groups. In contrast, changes in the urine concentration of F(2)-isoprostanes responded differently to each treatment (P = 0.04), with a tendency for higher concentrations after 48 h of recovery in the supplemented group (6.2 ± 6.1 vs. 3.7 ± 3.4 ng ml(-1)). Vitamin C & E supplementation also affected serum cortisol concentrations, with an attenuated increase from baseline to the peak values reached after 1 h of recovery compared with the placebo group (P = 0.02) and serum interleukin-6 concentrations were higher after 1 h of recovery in the antioxidant group (11.3 ± 3.4 pg ml(-1)) than the placebo group (6.2 ± 3.8 pg ml(-1); P = 0.05). Combined vitamin C & E supplementation neither reduced markers of oxidative stress or inflammation nor did it facilitate recovery of muscle function after exercise-induced muscle damage.
Collapse
Affiliation(s)
- David M Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | | | | | | | | |
Collapse
|
127
|
Effect of lemon verbena supplementation on muscular damage markers, proinflammatory cytokines release and neutrophils’ oxidative stress in chronic exercise. Eur J Appl Physiol 2010; 111:695-705. [DOI: 10.1007/s00421-010-1684-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2010] [Indexed: 11/27/2022]
|
128
|
Yfanti C, Akerström T, Nielsen S, Nielsen AR, Mounier R, Mortensen OH, Lykkesfeldt J, Rose AJ, Fischer CP, Pedersen BK. Antioxidant supplementation does not alter endurance training adaptation. Med Sci Sports Exerc 2010; 42:1388-95. [PMID: 20019626 DOI: 10.1249/mss.0b013e3181cd76be] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND There is a considerable commercial market, especially within the sports community, claiming the need for antioxidant supplementation. One argument for antioxidant supplementation in sports is that physical exercise is associated with increased reactive oxygen and nitrogen species (RONS) production, which may cause cell damage. However, RONS production may also activate redox-sensitive signaling pathways and transcription factors, which subsequently, may promote training adaptation. PURPOSE Our aim was to investigate the effects of combined vitamin C and E supplementation to healthy individuals on different measures of exercise performance after endurance training. METHODS Using a double-blinded placebo-controlled design, moderately trained young men received either oral supplementation with vitamins C and E (n = 11) or placebo (n = 10) before and during 12 wk of supervised, strenuous bicycle exercise training of a frequency of 5 d x wk(-1). Muscle biopsies were obtained before and after training. RESULTS After the training period, maximal oxygen consumption, maximal power output, and workload at lactate threshold increased markedly (P < 0.01) in both groups. Also, glycogen concentration, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase activity in the muscle were significantly higher in response to training (P < 0.01) in both groups. However, there were no differences between the two groups concerning any of the physiological and metabolic variables measured. CONCLUSIONS Our results suggest that administration of vitamins C and E to individuals with no previous vitamin deficiencies has no effect on physical adaptations to strenuous endurance training.
Collapse
Affiliation(s)
- Christina Yfanti
- Center of Inflammation and Metabolism at Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Robson-Ansley PJ, Gleeson M, Ansley L. Fatigue management in the preparation of Olympic athletes. J Sports Sci 2010; 27:1409-20. [PMID: 19221925 DOI: 10.1080/02640410802702186] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fatigue is often a consequence of physical training and the effective management of fatigue by the coach and athlete is essential in optimizing adaptation and performance. In this paper, we explore a range of practical and contemporary methods of fatigue management for Olympic athletes. We assesses the scientific merit of methods for monitoring fatigue, including self-assessment of training load, self-scored questionnaires, and the usefulness of saliva and blood diagnostic markers for indicating fatigued and under-recovered athletes, effective nutrition and hydration strategies for optimizing recovery and short-term recovery methods. We conclude that well-accepted methods such as sufficient nutrition, hydration, and rest appear to be the most effective strategies for optimizing recovery in Olympic athletes.
Collapse
Affiliation(s)
- Paula J Robson-Ansley
- School of Psychology and Sport Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | | | | |
Collapse
|
130
|
Abstract
During the last few decades, scientific evidence has confirmed a wide range of health benefits related to regular physical activity. How physical activity affects the immune function and infection risk is, however, still under debate. Commonly, intensive exercise suppresses the activity and levels of several immune cells, while other immune functions may be stimulated by moderate physical activity. With this knowledge, the understanding of the relationship between different levels of physical activity on the immune function has been raised as a potential tool to protect health not only in athletes but also in the general population; the mechanisms that translate a physically active lifestyle into good health continue to be investigated. Reviewing the literature, although several outcomes (i.e. the mechanisms by which different levels and duration of physical activity programmes affect numerous cell types and responses) remain unclear, given that the additional benefits encompass healthy habits including exercise, the use of physical activity programmes may result in improved health of elderly populations. Moderate physical activity or moderate-regulated training may enhance the immune function mainly in less fit subjects or sedentary population and the pre-event fitness status also seems to be an important individual factor regarding this relationship. Although adequate nutrition and regular physical activity habits may synergistically improve health, clinical trials in athletes using nutritional supplements to counteract the immune suppression have been inconclusive so far.Further research is necessary to find out to what extent physical activity training can exert an effect on the immune function.
Collapse
|
131
|
Olmedillas H, Sanchis-Moysi J, Fuentes T, Guadalupe-Grau A, Ponce-González JG, Morales-Alamo D, Santana A, Dorado C, Calbet JAL, Guerra B. Muscle hypertrophy and increased expression of leptin receptors in the musculus triceps brachii of the dominant arm in professional tennis players. Eur J Appl Physiol 2010; 108:749-58. [PMID: 20187280 DOI: 10.1007/s00421-009-1281-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In rodents, endurance training increases leptin sensitivity in skeletal muscle; however, little is known about the effects of exercise on the leptin signalling system in human skeletal muscle. Thus, to determine whether chronic muscle loading increases leptin receptor (OB-R170) protein expression, body composition dual-energy X-ray absorptiometry was assessed in nine professional male tennis players (24 +/- 4 years old) and muscle biopsies were obtained from the dominant (DTB) and non-dominant (NDTB) arm triceps brachii (TB), and also from the right vastus lateralis (VL). In each biopsy, the protein content of OB-R170, perilipin A, suppressor of cytokine signalling 3 (SOCS3), protein tyrosine phosphatase 1B (PTP1B) and signal transducer and activator of transcription 3 (STAT3) phosphorylation were determined by western blot. The DTB had 15% greater lean mass (P < 0.05) and 62% greater OB-R170 protein expression (P < 0.05) than the NDTB. SOCS3 and PTP1B protein expression was similar in both arms, while STAT3 phosphorylation was reduced in the NDTB. OB-R170 protein content was also higher in DTB than in VL (P < 0.05). In summary, this study shows that the functional isoform of the leptin receptor is up-regulated in the hypertrophied TB. The latter combined with the fact that both SOCS3 and PTP1B protein expression were unaltered is compatible with increased leptin sensitivity in this muscle. Our findings are also consistent with a role of leptin signalling in muscle hypertrophy in healthy humans.
Collapse
Affiliation(s)
- Hugo Olmedillas
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Canary Island, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Goto S, Radák Z. Hormetic effects of reactive oxygen species by exercise: a view from animal studies for successful aging in human. Dose Response 2009; 8:68-72. [PMID: 20221292 PMCID: PMC2836155 DOI: 10.2203/dose-response.09-044.goto] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Numerous anti-aging measures have been proposed to cope with age-associated decline of physiological functions and/or onset of diseases, mostly based on free radical (or oxidative stress) theory of aging, though no robust scientific data have been reported to extend human healthspan. This is due to dual (harmful as well as essential) roles of reactive oxygen species (ROS) to a body. Regular moderate exercise provides benefits upregulating defense against oxidative stress in good balance between the opposing dual roles. Sources of ROS in exercise appear to be not only mitochondria as often claimed but also enzymatic reactions catalyzed by NADPH oxidase and other oxidases. It may, therefore, be possible to mimic this aspect of exercise to promote the defense for healthspan extension by other means such as modest alcohol consumption that could upregulate activity of enzymes against oxidative stress.
Collapse
Affiliation(s)
- Sataro Goto
- Juntendo University Graduate School, Institute of Health and Sports Science & Medicine, Hiragagakuendai 1-1, Inbagun, Chiba, Japan.
| | | |
Collapse
|
133
|
McGinley C, Shafat A, Donnelly AE. Does Antioxidant Vitamin Supplementation Protect against Muscle Damage? Sports Med 2009; 39:1011-32. [DOI: 10.2165/11317890-000000000-00000] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
134
|
Howatson G, McHugh MP, Hill JA, Brouner J, Jewell AP, Van Someren KA, Shave RE, Howatson SA. Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports 2009; 20:843-52. [DOI: 10.1111/j.1600-0838.2009.01005.x] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
135
|
Pedersen BK. Edward F. Adolph Distinguished Lecture: Muscle as an endocrine organ: IL-6 and other myokines. J Appl Physiol (1985) 2009; 107:1006-14. [DOI: 10.1152/japplphysiol.00734.2009] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle is an endocrine organ that produces and releases myokines in response to contraction. Some myokines are likely to work in a hormone-like fashion, exerting specific endocrine effects on other organs such as the liver, the brain, and the fat. Other myokines will work locally via paracrine mechanisms, exerting, e.g., angiogenetic effects, whereas yet other myokines work via autocrine mechanisms and influence signaling pathways involved in fat oxidation and glucose uptake. The finding that muscles produce and release myokines creates a paradigm shift and opens new scientific, technological, and scholarly horizons. This finding represents a breakthrough within integrative physiology and contributes to our understanding of why regular exercise protects against a wide range of chronic diseases. Thus the myokine field provides a conceptual basis for the molecular mechanisms underlying, e.g., muscle-fat, muscle-liver, muscle-pancreas, and muscle-brain cross talk.
Collapse
Affiliation(s)
- Bente K. Pedersen
- The Centre of Inflammation and Metabolism at the Department of Infectious Diseases, and Copenhagen Muscle Research Centre, Rigshospitalet, the Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
136
|
TEIXEIRA VITORH, VALENTE HUGOF, CASAL SUSANAI, MARQUES AFRANKLIM, MOREIRA PEDROA. Antioxidants Do Not Prevent Postexercise Peroxidation and May Delay Muscle Recovery. Med Sci Sports Exerc 2009; 41:1752-60. [DOI: 10.1249/mss.0b013e31819fe8e3] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
137
|
Rosa EF, Ribeiro RF, Pereira FMT, Freymüller E, Aboulafia J, Nouailhetas VLA. Vitamin C and E supplementation prevents mitochondrial damage of ileum myocytes caused by intense and exhaustive exercise training. J Appl Physiol (1985) 2009; 107:1532-8. [PMID: 19696358 DOI: 10.1152/japplphysiol.91166.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intense and exhaustive exercise (IEE) is associated with oxidative stress in skeletal muscle, and we recently reported that intestine is sensitive to IEE. In the present study, we investigated the possible relationship between the effects of IEE on morphology and oxidative markers in the ileum and isolated mitochondria. C57BL/6 mice were ascribed either to a control group comprising two subgroups, one sedentary and another exercised for 10 days (E10), or to a corresponding supplemented control group again comprising two subgroups, one sedentary and another exercised for 10 days (E10-V). The IEE program consisted of a single daily treadmill running session at 85% of V(max), until animal exhaustion. Vitamins C (10 mg/kg) and E (10 mg/kg) were concurrently intraperitoneally administered 2 h before the exercise sessions. IEE was shown to cause 1) impairment of ileum internal membrane mitochondria verified by ultramicrography analysis; 2) increase in ileum carbonyl content (117%) and reduction in antioxidant capacity (36%); 3) increase in mitochondria carbonyl content (38%), increase in the percentage of ruptured mitochondria (25.3%), increase in superoxide dismutase activity (186%), and reduction in citrate synthase activity (40.4%) compared with control animals. Observations in the vitamin-supplemented exercised animals (E10-V) were 1) healthy appearance of myocyte mitochondria; 2) decrease in ileum carbonyl content (66%) and increase in antioxidant capacity (53%); 3) decrease in mitochondria carbonyl content (43%), decrease in the percentage of ruptured mitochondria (30%), slight increase in superoxide dismutase activity (7%), and significant increase in citrate synthase activity (121%) compared with E10 animals. Therefore, the present results strongly corroborate the hypothesis that IEE leads to marked disturbances in intestinal mitochondria, mainly in redox status, and affects whole intestinal redox status.
Collapse
Affiliation(s)
- Eloi F Rosa
- Dept. of Biophysics, Universidade Federal de São Paulo-Campus São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
138
|
Robinson M, Gray SR, Watson MS, Kennedy G, Hill A, Belch JJF, Nimmo MA. Plasma IL-6, its soluble receptors and F2-isoprostanes at rest and during exercise in chronic fatigue syndrome. Scand J Med Sci Sports 2009; 20:282-90. [PMID: 19422646 DOI: 10.1111/j.1600-0838.2009.00895.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of the current study was to investigate the levels of interleukin-6 (IL-6), its soluble receptors (sIL-6R and sgp130) and F(2)-isoprostanes, at rest and during exercise, in patients with chronic fatigue syndrome (CFS). Six male CFS patients and six healthy controls performed an incremental exercise test to exhaustion and a submaximal exercise bout to exhaustion. Blood samples taken in the submaximal test at rest, immediately post-exercise and 24 h post-exercise were analyzed for IL-6, sIL-6R, sgp130 and F(2)-isoprostanes. A further 33 CFS and 33 healthy control participants gave a resting blood sample for IL-6 and sIL-6R measurement. During the incremental exercise test only power output at the lactate threshold was lower (P<0.05) in the CFS group. F(2)-isoprostanes were higher (P<0.05) in CFS patients at rest and this difference persisted immediately and 24 h post-exercise. The exercise study found no differences in IL-6, sIL-6R or sgp130 at any time point between groups. In the larger resting group, there were no differences in IL-6 and sIL-6R between CFS and control groups. This investigation has demonstrated that patients with CFS do not have altered plasma levels of IL-6, sIL-6R or sgp130 either at rest or following exercise. F(2)-isoprostanes, however, were consistently higher in CFS patients.
Collapse
Affiliation(s)
- M Robinson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
139
|
Scheele C, Nielsen S, Pedersen BK. ROS and myokines promote muscle adaptation to exercise. Trends Endocrinol Metab 2009; 20:95-9. [PMID: 19269849 DOI: 10.1016/j.tem.2008.12.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 12/15/2008] [Accepted: 12/16/2008] [Indexed: 01/25/2023]
Abstract
Physical exercise induces a network of alterations in the transcriptome and proteome of the skeletal muscle, resulting in modifications of the muscle physiology. Intriguingly, exercise also transiently induces the production of both reactive oxygen species (ROS) and some inflammatory cytokines in skeletal muscle. In fact, it seems that exercise-induced ROS are able to stimulate cytokine production from skeletal muscle. Despite the initial view that ROS were potentially cell damaging, it now seems possible that these substances have important roles in the regulation of cell signaling. Muscle-derived cytokines, so-called 'myokines', are distinguished from inflammation and instead possess important anti-inflammatory and metabolic properties. In this opinion piece, we suggest that both ROS and myokines are important players in muscle adaptation to exercise.
Collapse
Affiliation(s)
- Camilla Scheele
- The Centre of Inflammation and Metabolism at Department of Infectious Diseases and Copenhagen Muscle Research Centre, Rigshospitalet, The Faculty of Health Sciences, University of Copenhagen, Denmark
| | | | | |
Collapse
|
140
|
Vincent HK, Bourguignon CM, Weltman AL, Vincent KR, Barrett E, Innes KE, Taylor AG. Effects of antioxidant supplementation on insulin sensitivity, endothelial adhesion molecules, and oxidative stress in normal-weight and overweight young adults. Metabolism 2009; 58:254-62. [PMID: 19154960 PMCID: PMC3325609 DOI: 10.1016/j.metabol.2008.09.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
Abstract
The objective of the study was to determine whether short-term antioxidant (AOX) supplementation affects insulin sensitivity, endothelial adhesion molecule levels, and oxidative stress in overweight young adults. A randomized, double-blind, controlled study tested the effects of AOXs on measures of insulin sensitivity (homeostasis model assessment [HOMA]) and quantitative insulin sensitivity check index), endothelial adhesion molecules (soluble intercellular adhesion molecule-1, vascular adhesion molecule, and endothelial-leukocyte adhesion molecule-1), adiponectin, and oxidative stress (lipid hydroperoxides) in overweight and normal-weight individuals (N = 48, 18-30 years). Participants received either AOX (vitamin E, 800 IU; vitamin C, 500 mg; beta-carotene, 10 mg) or placebo for 8 weeks. The HOMA values were initially higher in the overweight subjects and were lowered with AOX by week 8 (15% reduction, P = .02). Adiponectin increased in both AOX groups. Soluble intercellular adhesion molecule-1 and endothelial-leukocyte adhesion molecule-1 decreased in overweight AOX-treated groups by 6% and 13%, respectively (P < .05). Plasma lipid hydroperoxides were reduced by 0.31 and 0.70 nmol/mL in the normal-weight and overweight AOX-treated groups, respectively, by week 8 (P < .05). Antioxidant supplementation moderately lowers HOMA and endothelial adhesion molecule levels in overweight young adults. A potential mechanism to explain this finding is the reduction in oxidative stress by AOX. Long-term studies are needed to determine whether AOXs are effective in suppressing diabetes or vascular activation over time.
Collapse
Affiliation(s)
- Heather K Vincent
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, PO Box 112727, FL 32608, USA.
| | | | | | | | | | | | | |
Collapse
|
141
|
LAMPRECHT MANFRED, OETTL KARL, SCHWABERGER GUENTHER, HOFMANN PETER, GREILBERGER JOACHIMF. Protein Modification Responds to Exercise Intensity and Antioxidant Supplementation. Med Sci Sports Exerc 2009; 41:155-63. [DOI: 10.1249/mss.0b013e31818338b7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
142
|
Puglisi MJ, Mutungi G, Brun PJ, McGrane MM, Labonte C, Volek JS, Fernandez ML. Raisins and walking alter appetite hormones and plasma lipids by modifications in lipoprotein metabolism and up-regulation of the low-density lipoprotein receptor. Metabolism 2009; 58:120-8. [PMID: 19059539 DOI: 10.1016/j.metabol.2008.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 08/13/2008] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine the effects of consuming raisins, increasing steps walked, or a combination of these interventions on lipoprotein metabolism and appetite hormones by assessing plasma apolipoprotein concentrations, cholesterol ester transfer protein activity, low-density lipoprotein (LDL) receptor messenger RNA (mRNA) abundance, and plasma ghrelin and leptin concentrations. Thirty-four subjects (17 men and 17 postmenopausal women) were matched for weight and sex and randomly assigned to consume 1 cup raisins per day (RAISIN), increase the amount of steps walked per day (WALK), or a combination of both interventions (RAISIN + WALK). The subjects completed a 2-week run-in period, followed by a 6-week intervention. Ribonucleic acid was extracted from mononuclear cells, and LDL receptor mRNA abundance was quantified by use of reverse transcriptase polymerase chain reaction. Plasma apolipoproteins were measured by Luminex (Austin, TX) technology. Apoproteins A-1, B, C-II, and E and cholesterol ester transfer protein activity were not altered for any of the groups. In contrast, apolipoprotein C-III was significantly decreased by 12.3% only in the WALK group (P < .05). Low-density lipoprotein receptor mRNA abundance was increased for all groups after the intervention (P < .001). There was a significant group effect for plasma leptin (P = .026). Plasma concentrations increased for RAISIN and RAISIN + WALK. Similarly, plasma ghrelin concentrations were elevated postintervention for both groups consuming raisins (P < .05). These data suggest that walking and raisin consumption decrease plasma LDL cholesterol by up-regulating the LDL receptor and that raisin consumption may reduce hunger and affect dietary intake by altering hormones influencing satiety.
Collapse
Affiliation(s)
- Michael J Puglisi
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | | | |
Collapse
|
143
|
Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 2008; 88:1379-406. [PMID: 18923185 DOI: 10.1152/physrev.90100.2007] [Citation(s) in RCA: 1425] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle has recently been identified as an endocrine organ. It has, therefore, been suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert paracrine, autocrine, or endocrine effects should be classified as "myokines." Recent research demonstrates that skeletal muscles can produce and express cytokines belonging to distinctly different families. However, the first identified and most studied myokine is the gp130 receptor cytokine interleukin-6 (IL-6). IL-6 was discovered as a myokine because of the observation that it increases up to 100-fold in the circulation during physical exercise. Identification of IL-6 production by skeletal muscle during physical activity generated renewed interest in the metabolic role of IL-6 because it created a paradox. On one hand, IL-6 is markedly produced and released in the postexercise period when insulin action is enhanced but, on the other hand, IL-6 has been associated with obesity and reduced insulin action. This review focuses on the myokine IL-6, its regulation by exercise, its signaling pathways in skeletal muscle, and its role in metabolism in both health and disease.
Collapse
Affiliation(s)
- Bente K Pedersen
- The Centre of Inflammation and Metabolism at Department of Infectious Diseases, Rigshospitalet, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
144
|
Basu S. F2-isoprostanes in human health and diseases: from molecular mechanisms to clinical implications. Antioxid Redox Signal 2008; 10:1405-34. [PMID: 18522490 DOI: 10.1089/ars.2007.1956] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oxidative stress is implicated as one of the major underlying mechanisms behind many acute and chronic diseases, and involved in normal aging. However, the measurement of free radicals or their end products is complicated. Thus, proof of association of free radicals in pathologic conditions has been absent. Isoprostanes are prostaglandin-like bioactive compounds that are biosynthesized in vivo independent of cyclooxygenases, principally through free-radical catalyzation of arachidonic acid. Isoprostanes are now considered to be reliable biomarkers of oxidative stress, as evidenced by an autonomous study organized recently by the National Institutes of Health (NIH) in the United States. A number of these compounds have potent biologic activities such as vasoconstrictive and certain inflammatory properties. Isoprostanes are involved in many human diseases. Additionally, elevated levels of F(2)-isoprostanes have been seen in normal human pregnancy and after intake of some fatty acids, but their physiologic assignments have not yet been distinctive. This evidence indicates that measurement of bioactive F(2)-isoprostanes in body fluids offers a unique noninvasive analytic utensil to study the role of free radicals in physiology, oxidative stress-related diseases, experimental acute or chronic inflammatory conditions, and also in the assessment of various antioxidants, radical scavengers, and drugs.
Collapse
Affiliation(s)
- Samar Basu
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
145
|
Huey KA, Fiscus G, Richwine AF, Johnson RW, Meador BM. In vivo vitamin E administration attenuates interleukin-6 and interleukin-1beta responses to an acute inflammatory insult in mouse skeletal and cardiac muscle. Exp Physiol 2008; 93:1263-72. [PMID: 18586856 DOI: 10.1113/expphysiol.2008.043190] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Antioxidants are associated with reduced pro-inflammatory cytokine expression in immune cells and isolated tissues; however, no studies have examined whether short-term vitamin E administration is associated with reduced lipopolysaccharide (LPS)-induced cytokine expression in mouse skeletal and cardiac muscle, in vivo. These experiments tested the hypothesis that vitamin E administration attenuates nuclear factor kappaB (NF-kappaB), IL-6, IL-1beta and tumour necrosis factor alpha (TNFalpha) responses in skeletal and cardiac muscle to an inflammatory challenge induced by systemic LPS. We compared IL-6, IL-1beta and TNFalpha mRNA and protein, activated NF-kappaB and total oxidized proteins in skeletal and cardiac muscle 4 or 24 h after saline or LPS injection in mice receiving vitamin E or placebo for 3 days prior to the insult. Skeletal and cardiac IL-6 mRNA and protein were significantly elevated by LPS in both groups, but responses were significantly lower in vitamin E- compared with placebo-treated mice. In skeletal and cardiac muscle, LPS increased IL-1beta mRNA and protein in placebo- but not vitamin E-treated mice. Lipopolysaccharide-induced levels of cardiac IL-1beta mRNA and protein and skeletal IL-1beta mRNA were lower with vitamin E than placebo. Lipopolysaccharide-induced NF-kappaB activation and increases in total oxidized proteins were attenuated with vitamin E compared with placebo in both tissues. Vitamin E decreased LPS-induced increases in plasma IL-1beta but not IL-6 compared with placebo. The major results provide the first in vivo evidence that short-term vitamin E administration reduces IL-6 and IL-1beta responses to LPS in skeletal and cardiac muscle and prevents LPS-induced increases in NF-kappaB activation and total oxidized proteins.
Collapse
Affiliation(s)
- K A Huey
- Department of Kinesiology, University of Illinois at Urbana-Champaign, 120 Freer Hall, 906 South Goodwin Avenue, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
146
|
Lamprecht M, Greilberger JF, Schwaberger G, Hofmann P, Oettl K. Single bouts of exercise affect albumin redox state and carbonyl groups on plasma protein of trained men in a workload-dependent manner. J Appl Physiol (1985) 2008; 104:1611-7. [PMID: 18420715 DOI: 10.1152/japplphysiol.01325.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to investigate the effect of single bouts of exercise at three different intensities on the redox state of human serum albumin (HSA) and on carbonyl groups on protein (CP) concentrations in plasma. Trained men [n = 44, maximal oxygen consumption (Vo(2max)): 55 +/- 5 ml.kg(-1).min(-1), nonsmokers, 34 +/- 5 years of age] from a homogenous population, volunteers from a police special forces unit, were randomly assigned to perform on a cycle ergometer either at 70% (n = 14), 75% (n = 14), or 80% (n = 16) of Vo(2max) for 40 min. Blood was collected before exercise, immediately after the exercise test (IE), and 30 min after each test (30M) and 30 h after each test (30H). The reduced fraction of HSA, human mercaptalbumin (HMA), decreased at all three exercise intensities IE and 30M, returning to preexercise values by 30H (P < 0.05). HMA was primarily oxidized to its reversible fraction human nonmercaptalbumin 1 (HNA1). CP concentrations increased at 75% of Vo(2max) IE and 30M with a tendency (P < 0.1) and at 80% Vo(2max) IE and 30M significantly, returning to preexercise concentrations by 30H (P < 0.01). These results indicate that the HSA redox system in plasma is activated after a single bout of cycle ergometer exercise at 70% Vo(2max) and 40 min duration. The extent of the HSA modification increased with exercise intensity. Oxidative protein damage, as indicated by CP, was only significantly increased at 80% Vo(2max) intensity in this homogenous cohort of trained men.
Collapse
Affiliation(s)
- Manfred Lamprecht
- Inst. of Physiological Chemistry, Harrachgasse 21/II, Medical Univ. of Graz, 8010 Graz, Austria.
| | | | | | | | | |
Collapse
|
147
|
Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 2008:CD007176. [PMID: 18425980 DOI: 10.1002/14651858.cd007176] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Animal and physiological research as well as observational studies suggest that antioxidant supplements may improve survival. OBJECTIVES To assess the effect of antioxidant supplements on mortality in primary or secondary prevention randomised clinical trials. SEARCH STRATEGY We searched The Cochrane Library (Issue 3, 2005), MEDLINE (1966 to October 2005), EMBASE (1985 to October 2005), and the Science Citation Index Expanded (1945 to October 2005). We scanned bibliographies of relevant publications and wrote to pharmaceutical companies for additional trials. SELECTION CRITERIA We included all primary and secondary prevention randomised clinical trials on antioxidant supplements (beta-carotene, vitamin A, vitamin C, vitamin E, and selenium) versus placebo or no intervention. Included participants were either healthy (primary prevention trials) or had any disease (secondary prevention trials). DATA COLLECTION AND ANALYSIS Three authors extracted data. Trials with adequate randomisation, blinding, and follow-up were classified as having a low risk of bias. Random-effects and fixed-effect meta-analyses were performed. Random-effects meta-regression analyses were performed to assess sources of intertrial heterogeneity. MAIN RESULTS Sixty-seven randomised trials with 232,550 participants were included. Forty-seven trials including 180,938 participants had low risk of bias. Twenty-one trials included 164,439 healthy participants. Forty-six trials included 68111 participants with various diseases (gastrointestinal, cardiovascular, neurological, ocular, dermatological, rheumatoid, renal, endocrinological, or unspecified). Overall, the antioxidant supplements had no significant effect on mortality in a random-effects meta-analysis (relative risk [RR] 1.02, 95% confidence interval [CI] 0.99 to 1.06), but significantly increased mortality in a fixed-effect model (RR 1.04, 95% CI 1.02 to 1.06). In meta-regression analysis, the risk of bias and type of antioxidant supplement were the only significant predictors of intertrial heterogeneity. In the trials with a low risk of bias, the antioxidant supplements significantly increased mortality (RR 1.05, 95% CI 1.02 to 1.08). When the different antioxidants were assessed separately, analyses including trials with a low risk of bias and excluding selenium trials found significantly increased mortality by vitamin A (RR 1.16, 95% CI 1.10 to 1.24), beta-carotene (RR 1.07, 95% CI 1.02 to 1.11), and vitamin E (RR 1.04, 95% CI 1.01 to 1.07), but no significant detrimental effect of vitamin C (RR 1.06, 95% CI 0.94 to 1.20). Low-bias risk trials on selenium found no significant effect on mortality (RR 0.91, 95% CI 0.76 to 1.09). AUTHORS' CONCLUSIONS We found no evidence to support antioxidant supplements for primary or secondary prevention. Vitamin A, beta-carotene, and vitamin E may increase mortality. Future randomised trials could evaluate the potential effects of vitamin C and selenium for primary and secondary prevention. Such trials should be closely monitored for potential harmful effects. Antioxidant supplements need to be considered medicinal products and should undergo sufficient evaluation before marketing.
Collapse
Affiliation(s)
- G Bjelakovic
- Copenhagen University Hospital, Rigshospitalet, Department 3344,Copenhagen Trial Unit, Centre for Clinical Intervention Research, Blegdamsvej 9, Copenhagen, Denmark, DK-2100.
| | | | | | | | | |
Collapse
|
148
|
Goldfarb AH. What is a true placebo? Med Sci Sports Exerc 2008; 40:775; author reply 776. [PMID: 18347475 DOI: 10.1249/mss.0b013e318164bceb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
149
|
Fischer CP, Berntsen A, Perstrup LB, Eskildsen P, Pedersen BK. Plasma levels of interleukin-6 and C-reactive protein are associated with physical inactivity independent of obesity. Scand J Med Sci Sports 2008; 17:580-7. [PMID: 17076827 DOI: 10.1111/j.1600-0838.2006.00602.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is recognized that the path from physical inactivity and obesity to lifestyle-related diseases involves low-grade inflammation, indicated by elevated plasma levels of inflammatory markers. Interestingly, contracting skeletal muscle is a major source of circulating interleukin-6 (IL-6) in response to acute exercise, but with a markedly lower response in trained subjects. As C-reactive protein (CRP) is induced by IL-6, we hypothesized that basal levels of IL-6 and CRP reflect the degree of regular physical activity when compared with other markers of inflammation associated with lifestyle-related morbidity. Fasting plasma/serum levels of IL-6, IL-18, CRP, tumur necrosis factor-alpha (TNF-alpha), soluble TNF receptor II (sTNF-RII), and adiponectin were measured in healthy non-diabetic men and women (n=84). The amount of leisure-time physical activity (LTPA) was assessed by interview. Obesity was associated with elevated insulin, C-peptide, triglycerides, low-density lipoprotein, IL-6, CRP, and adiponectin (all P<0.05). Importantly, physical inactivity was associated with elevated C-peptide (P=0.036), IL-6 (P=0.014), and CRP (P=0.007) independent of obesity, age, gender, and smoking. Furthermore, the LTPA score was inversely associated with IL-6 (P=0.017) and CRP (P=0.005), but with neither of the other markers. The results indicate that low levels of IL-6 and CRP - not IL-18, TNF-alpha, sTNF-RII, or adiponectin - reflect regular physical activity.
Collapse
Affiliation(s)
- C P Fischer
- Centre of Inflammation and Metabolism, Department of Infectious Diseases, Copenhagen Muscle Research Centre, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
150
|
da Silva Krause M, de Bittencourt PIH. Type 1 diabetes: can exercise impair the autoimmune event? TheL-arginine/glutamine coupling hypothesis. Cell Biochem Funct 2008; 26:406-33. [DOI: 10.1002/cbf.1470] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|