101
|
Oddoux S, Brocard J, Schweitzer A, Szentesi P, Giannesini B, Brocard J, Fauré J, Pernet-Gallay K, Bendahan D, Lunardi J, Csernoch L, Marty I. Triadin deletion induces impaired skeletal muscle function. J Biol Chem 2009; 284:34918-29. [PMID: 19843516 PMCID: PMC2787354 DOI: 10.1074/jbc.m109.022442] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 10/14/2009] [Indexed: 01/27/2023] Open
Abstract
Triadin is a multiple proteins family, some isoforms being involved in muscle excitation-contraction coupling, and some having still unknown functions. To obtain clues on triadin functions, we engineered a triadin knock-out mouse line and characterized the physiological effect of triadin ablation on skeletal muscle function. These mice presented a reduced muscle strength, which seemed not to alter their survival and has been characterized in the present work. We first checked in these mice the expression level of the different proteins involved in calcium homeostasis and observed in fast muscles an increase in expression of dihydropyridine receptor, with a large reduction in calsequestrin expression. Electron microscopy analysis of KO muscles morphology demonstrated the presence of triads in abnormal orientation and a reduction in the sarcoplasmic reticulum terminal cisternae volume. Using calcium imaging on cultured myotubes, we observed a reduction in the total amount of calcium stored in the sarcoplasmic reticulum. Physiological studies have been performed to evaluate the influence of triadin deletion on skeletal muscle function. Muscle strength has been measured both on the whole animal model, using hang test or electrical stimulation combined with NMR analysis and strength measurement, or on isolated muscle using electrical stimulation. All the results obtained demonstrate an important reduction in muscle strength, indicating that triadin plays an essential role in skeletal muscle function and in skeletal muscle structure. These results indicate that triadin alteration leads to the development of a myopathy, which could be studied using this new animal model.
Collapse
Affiliation(s)
- Sarah Oddoux
- From INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble F-38000, France
- the Université Joseph Fourier, Grenoble F-38000, France
| | - Julie Brocard
- From INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble F-38000, France
- the Université Joseph Fourier, Grenoble F-38000, France
| | - Annie Schweitzer
- INSERM U836, Grenoble Institut des Neurosciences, Equipe Physiopathologie du Cytosquelette, Grenoble F-38000, France
| | - Peter Szentesi
- the Department of Physiology, Medical School and Health Science Center, University of Debrecen, H-4012 Debrecen, Hungary
| | - Benoit Giannesini
- the Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 6612, Faculté de Médecine de la Timone, Marseille 13000, France, and
| | - Jacques Brocard
- INSERM U836, Grenoble Institut des Neurosciences, Equipe Physiopathologie du Cytosquelette, Grenoble F-38000, France
| | - Julien Fauré
- From INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble F-38000, France
- the Université Joseph Fourier, Grenoble F-38000, France
- Centre Hospitalier Regional Universitaire de Grenoble, Hopital Michallon, Biochimie et Génétique Moléculaire, Grenoble F-38000, France
| | - Karine Pernet-Gallay
- INSERM U836, Grenoble Institut des Neurosciences, Equipe Physiopathologie du Cytosquelette, Grenoble F-38000, France
| | - David Bendahan
- the Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 6612, Faculté de Médecine de la Timone, Marseille 13000, France, and
| | - Joël Lunardi
- From INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble F-38000, France
- the Université Joseph Fourier, Grenoble F-38000, France
- Centre Hospitalier Regional Universitaire de Grenoble, Hopital Michallon, Biochimie et Génétique Moléculaire, Grenoble F-38000, France
| | - Laszlo Csernoch
- the Department of Physiology, Medical School and Health Science Center, University of Debrecen, H-4012 Debrecen, Hungary
| | - Isabelle Marty
- From INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble F-38000, France
- the Université Joseph Fourier, Grenoble F-38000, France
| |
Collapse
|
102
|
Qin J, Valle G, Nani A, Chen H, Ramos-Franco J, Nori A, Volpe P, Fill M. Ryanodine receptor luminal Ca2+ regulation: swapping calsequestrin and channel isoforms. Biophys J 2009; 97:1961-70. [PMID: 19804727 DOI: 10.1016/j.bpj.2009.07.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 07/10/2009] [Accepted: 07/21/2009] [Indexed: 11/20/2022] Open
Abstract
Sarcoplasmic reticulum (SR) Ca(2+) release in striated muscle is mediated by a multiprotein complex that includes the ryanodine receptor (RyR) Ca(2+) channel and the intra-SR Ca(2+) buffering protein calsequestrin (CSQ). Besides its buffering role, CSQ is thought to regulate RyR channel function. Here, CSQ-dependent luminal Ca(2+) regulation of skeletal (RyR1) and cardiac (RyR2) channels is explored. Skeletal (CSQ1) or cardiac (CSQ2) calsequestrin were systematically added to the luminal side of single RyR1 or RyR2 channels. The luminal Ca(2+) dependence of open probability (Po) over the physiologically relevant range (0.05-1 mM Ca(2+)) was defined for each of the four RyR/CSQ isoform pairings. We found that the luminal Ca(2+) sensitivity of single RyR2 channels was substantial when either CSQ isoform was present. In contrast, no significant luminal Ca(2+) sensitivity of single RyR1 channels was detected in the presence of either CSQ isoform. We conclude that CSQ-dependent luminal Ca(2+) regulation of single RyR2 channels lacks CSQ isoform specificity, and that CSQ-dependent luminal Ca(2+) regulation in skeletal muscle likely plays a relatively minor (if any) role in regulating the RyR1 channel activity, indicating that the chief role of CSQ1 in this tissue is as an intra-SR Ca(2+) buffer.
Collapse
Affiliation(s)
- Jia Qin
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Meissner G, Wang Y, Xu L, Eu JP. Silencing genes of sarcoplasmic reticulum proteins clarifies their roles in excitation-contraction coupling. J Physiol 2009; 587:3089-90. [PMID: 19567747 DOI: 10.1113/jphysiol.2009.171835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Gerhard Meissner
- Department of Biochemistry, University of North Carolina, Chapel Hill, 27599-7260, USA.
| | | | | | | |
Collapse
|
104
|
Mapping a barbiturate withdrawal locus to a 0.44 Mb interval and analysis of a novel null mutant identify a role for Kcnj9 (GIRK3) in withdrawal from pentobarbital, zolpidem, and ethanol. J Neurosci 2009; 29:11662-73. [PMID: 19759313 DOI: 10.1523/jneurosci.1413-09.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we map a quantitative trait locus (QTL) with a large effect on predisposition to barbiturate (pentobarbital) withdrawal to a 0.44 Mb interval of mouse chromosome 1 syntenic with human 1q23.2. We report a detailed analysis of the genes within this interval and show that it contains 15 known and predicted genes, 12 of which demonstrate validated genotype-dependent transcript expression and/or nonsynonymous coding sequence variation that may underlie the influence of the QTL on withdrawal. These candidates are involved in diverse cellular functions including intracellular trafficking, potassium conductance and spatial buffering, and multimolecular complex dynamics, and indicate both established and novel aspects of neurobiological response to sedative-hypnotics. This work represents a substantial advancement toward identification of the gene(s) that underlie the phenotypic effects of the QTL. We identify Kcnj9 as a particularly promising candidate and report the development of a Kcnj9-null mutant model that exhibits significantly less severe withdrawal from pentobarbital as well as other sedative-hypnotics (zolpidem and ethanol) versus wild-type littermates. Reduced expression of Kcnj9, which encodes GIRK3 (Kir3.3), is associated with less severe sedative-hypnotic withdrawal. A multitude of QTLs for a variety of complex traits, including diverse responses to sedative-hypnotics, have been detected on distal chromosome 1 in mice, and as many as four QTLs on human chromosome 1q have been implicated in human studies of alcohol dependence. Thus, our results will be primary to additional efforts to identify genes involved in a wide variety of behavioral responses to sedative-hypnotics and may directly facilitate progress in human genetics.
Collapse
|
105
|
Blaauw B, Canato M, Agatea L, Toniolo L, Mammucari C, Masiero E, Abraham R, Sandri M, Schiaffino S, Reggiani C. Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB J 2009; 23:3896-905. [DOI: 10.1096/fj.09-131870] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
| | - Marta Canato
- Department of Human Anatomy and Physiology CNR Institute of Neurosciences University of Padova Padova Italy
| | - Lisa Agatea
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
- Department of Biomedical Sciences CNR Institute of Neurosciences University of Padova Padova Italy
| | - Luana Toniolo
- Department of Human Anatomy and Physiology CNR Institute of Neurosciences University of Padova Padova Italy
| | - Cristina Mammucari
- Department of Biomedical Sciences CNR Institute of Neurosciences University of Padova Padova Italy
| | - Eva Masiero
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
- Department of Biomedical Sciences CNR Institute of Neurosciences University of Padova Padova Italy
| | - Reimar Abraham
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
- Department of Biomedical Sciences CNR Institute of Neurosciences University of Padova Padova Italy
- Dulbecco Telethon Institute Rome Italy
| | - Stefano Schiaffino
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
- Department of Biomedical Sciences CNR Institute of Neurosciences University of Padova Padova Italy
| | - Carlo Reggiani
- Department of Human Anatomy and Physiology CNR Institute of Neurosciences University of Padova Padova Italy
- Department of Biomedical Sciences CNR Institute of Neurosciences University of Padova Padova Italy
| |
Collapse
|
106
|
Protasi F, Paolini C, Dainese M. Calsequestrin-1: a new candidate gene for malignant hyperthermia and exertional/environmental heat stroke. J Physiol 2009; 587:3095-100. [PMID: 19417098 PMCID: PMC2727019 DOI: 10.1113/jphysiol.2009.171967] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Accepted: 05/05/2009] [Indexed: 12/24/2022] Open
Abstract
Malignant hyperthermia (MH) and exertional/environmental heat stroke (EHS) in humans present as similar life threatening crises triggered by volatile anaesthetics and strenuous exercise and/or high temperature, respectively. Many families (70-80%) diagnosed with MH susceptibility (MHS), and a few with EHS, are linked to mutations in the gene for the ryanodine receptor type-1 (RyR1), Ca(2+) release channel of the sarcoplasmic reticulum (SR) of skeletal muscle and a key protein in excitation-contraction (EC) coupling. However, mutations in the RyR1 gene are not found in all MH families, suggesting that alternative genes remain to be identified. In our laboratory we have recently characterized a novel knockout model lacking skeletal muscle calsequestrin (CASQ1), a SR Ca(2+)-binding protein that modulates RyR1 function, and investigated whether these mice present a MH/EHS-like phenotype. Ablation of CASQ1 results in remodelling of the EC coupling apparatus and functional changes, which in male mice causes a striking increase in the rate of spontaneous mortality and susceptibility to trigger MH-like lethal episodes in response to halothane and heat stress. The demonstration that ablation of CASQ1 results in MH- and EHS-like lethal episodes validates CASQ1 as a viable candidate gene for linkage analysis in MH and EHS families where mutations in RyR1 are excluded.
Collapse
Affiliation(s)
- Feliciano Protasi
- Centro Scienze dell'Invecchiamento, Department of Basic and Applied Medical Sciences, Interuniversity Institute of Myology, University G. d'Annunzio, Chieti, Italy.
| | | | | |
Collapse
|
107
|
Royer L, Ríos E. Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle. J Physiol 2009; 587:3101-11. [PMID: 19403601 PMCID: PMC2727020 DOI: 10.1113/jphysiol.2009.171934] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 04/22/2009] [Indexed: 12/22/2022] Open
Abstract
Since its discovery in 1971, calsequestrin has been recognized as the main Ca(2+) binding protein inside the sarcoplasmic reticulum (SR), the organelle that stores and upon demand mobilizes Ca(2+) for contractile activation of muscle. This article reviews the potential roles of calsequestrin in excitation-contraction coupling of skeletal muscle. It first considers the quantitative demands for a structure that binds Ca(2+) inside the SR in view of the amounts of the ion that must be mobilized to elicit muscle contraction. It briefly discusses existing evidence, largely gathered in cardiac muscle, of two roles for calsequestrin: as Ca(2+) reservoir and as modulator of the activity of Ca(2+) release channels, and then considers the results of an incipient body of work that manipulates the cellular endowment of calsequestrin. The observations include evidence that both the Ca(2+) buffering capacity of calsequestrin in solution and that of the SR in intact cells decay as the free Ca(2+) concentration is lowered. Together with puzzling observations of increase of Ca(2+) inside the SR, in cells or vesicular fractions, upon activation of Ca(2+) release, this is interpreted as evidence that the Ca(2+) buffering in the SR is non-linear, and is optimized for support of Ca(2+) release at the physiological levels of SR Ca(2+) concentration. Such non-linearity of buffering is qualitatively explained by a speculation that puts together ideas first proposed by others. The speculation pictures calsequestrin polymers as 'wires' that both bind Ca(2+) and efficiently deliver it near the release channels. In spite of the kinetic changes, the functional studies reveal that cells devoid of calsequestrin are still capable of releasing large amounts of Ca(2+) into the myoplasm, consistent with the long term viability and apparent good health of mice engineered for calsequestrin ablation. The experiments therefore suggest that other molecules are capable of providing sites for reversible binding of large amounts of Ca(2+) inside the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Leandro Royer
- Department of Molecular Biophysics and Physiology, Rush University School of Medicine, Chicago, IL 60612, USA
| | | |
Collapse
|
108
|
Ferraiuolo L, De Bono JP, Heath PR, Holden H, Kasher P, Channon KM, Kirby J, Shaw PJ. Transcriptional response of the neuromuscular system to exercise training and potential implications for ALS. J Neurochem 2009; 109:1714-24. [PMID: 19344372 DOI: 10.1111/j.1471-4159.2009.06080.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The transcriptional adaptive response of motoneurons and muscles to voluntary exercise has been investigated by using laser capture microdissection and microarray analysis. Our results show that motoneurons respond to physical activity by activating a complex transcriptional plan, with changes involved in neurotrophic factor signalling, electrophysiological changes and synaptic reorganization. Gastrocnemius muscle shows increases in transcripts responsible for neovascularization and new myogenesis. Both tissues show transcriptional changes involved in the growth and reinforcement of the neuromuscular junction. This study indicates that the neuromuscular system undergoes significant structural and functional alterations, aiming to optimize the transmission of both chemical and electrical stimuli, thus prompting axonal outgrowth and mechanisms similar to long-term potentiation in hippocampal neurons. Understanding the response of these cells during exercise has potentially important implications for human neuromuscular disease, including amyotrophic lateral sclerosis, by highlighting candidate genes pivotal for the balance between the physiology and the pathology of the neuromuscular system in terms of the stress response to physical exercise.
Collapse
Affiliation(s)
- Laura Ferraiuolo
- Academic Neurology Unit, Department of Neuroscience, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Beard NA, Wei L, Dulhunty AF. Ca(2+) signaling in striated muscle: the elusive roles of triadin, junctin, and calsequestrin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:27-36. [PMID: 19434403 DOI: 10.1007/s00249-009-0449-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 03/22/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
Abstract
This review focuses on molecular interactions between calsequestrin, triadin, junctin and the ryanodine receptor in the lumen of the sarcoplasmic reticulum. These interactions modulate changes in Ca(2+) release in response to changes in the Ca(2+) load within the sarcoplasmic reticulum store in striated muscle and are of fundamental importance to Ca(2+) homeostasis, since massive adaptive changes occur when expression of the proteins is manipulated, while mutations in calsequestrin lead to functional changes which can be fatal. We find that calsequestrin plays a different role in the heart and skeletal muscle, enhancing Ca(2+) release in the heart, but depressing Ca(2+) release in skeletal muscle. We also find that triadin and junctin exert independent influences on the ryanodine receptor in skeletal muscle where triadin alone modifies excitation-contraction coupling, while junctin alone supports functional interactions between calsequestrin and the ryanodine receptor.
Collapse
Affiliation(s)
- Nicole A Beard
- Muscle Research Group, John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra, ACT, 2601, Australia
| | | | | |
Collapse
|
110
|
Goodman CA, Horvath D, Stathis C, Mori T, Croft K, Murphy RM, Hayes A. Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation. J Appl Physiol (1985) 2009; 107:144-54. [PMID: 19423840 DOI: 10.1152/japplphysiol.00040.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies report that depletion and repletion of muscle taurine (Tau) to endogenous levels affects skeletal muscle contractility in vitro. In this study, muscle Tau content was raised above endogenous levels by supplementing male Sprague-Dawley rats with 2.5% (wt/vol) Tau in drinking water for 2 wk, after which extensor digitorum longus (EDL) muscles were examined for in vitro contractile properties, fatigue resistance, and recovery from fatigue after two different high-frequency stimulation bouts. Tau supplementation increased muscle Tau content by approximately 40% and isometric twitch force by 19%, shifted the force-frequency relationship upward and to the left, increased specific force by 4.2%, and increased muscle calsequestrin protein content by 49%. Force at the end of a 10-s (100 Hz) continuous tetanic stimulation was 6% greater than controls, while force at the end of the 3-min intermittent high-frequency stimulation bout was significantly higher than controls, with a 12% greater area under the force curve. For 1 h after the 10-s continuous stimulation, tetanic force in Tau-supplemented muscles remained relatively stable while control muscle force gradually deteriorated. After the 3-min intermittent bout, tetanic force continued to slowly recover over the next 1 h, while control muscle force again began to decline. Tau supplementation attenuated F(2)-isoprostane production (a sensitive indicator of reactive oxygen species-induced lipid peroxidation) during the 3-min intermittent stimulation bout. Finally, Tau transporter protein expression was not altered by the Tau supplementation. Our results demonstrate that raising Tau content above endogenous levels increases twitch and subtetanic and specific force in rat fast-twitch skeletal muscle. Also, we demonstrate that raising Tau protects muscle function during high-frequency in vitro stimulation and the ensuing recovery period and helps reduce oxidative stress during prolonged stimulation.
Collapse
Affiliation(s)
- Craig A Goodman
- School of Human Movement, Recreation and Performance, Victoria University, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
111
|
Junctin and triadin each activate skeletal ryanodine receptors but junctin alone mediates functional interactions with calsequestrin. Int J Biochem Cell Biol 2009; 41:2214-24. [PMID: 19398037 DOI: 10.1016/j.biocel.2009.04.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 04/12/2009] [Accepted: 04/20/2009] [Indexed: 11/23/2022]
Abstract
Normal Ca(2+) signalling in skeletal muscle depends on the membrane associated proteins triadin and junctin and their ability to mediate functional interactions between the Ca(2+) binding protein calsequestrin and the type 1 ryanodine receptor in the lumen of the sarcoplasmic reticulum. This important mechanism conserves intracellular Ca(2+) stores, but is poorly understood. Triadin and junctin share similar structures and are lumped together in models of interactions between skeletal muscle calsequestrin and ryanodine receptors, however their individual roles have not been examined at a molecular level. We show here that purified skeletal ryanodine receptors are similarly activated by purified triadin or purified junctin added to their luminal side, although a lack of competition indicated that the proteins act at independent sites. Surprisingly, triadin and junctin differed markedly in their ability to transmit information between skeletal calsequestrin and ryanodine receptors. Purified calsequestrin inhibited junctin/triadin-associated, or junctin-associated, ryanodine receptors and the calsequestrin re-associated channel complexes were further inhibited when luminal Ca(2+) fell from 1mM to <or=100 microM, as seen with native channels (containing endogenous calsequestrin/triadin/junctin). In contrast, skeletal calsequestrin had no effect on the triadin/ryanodine receptor complex and the channel activity of this complex increased when luminal Ca(2+) fell, as seen with purified channels prior to triadin/calsequestrin re-association. Therefore in this cell free system, junctin alone mediates signals between luminal Ca(2+), skeletal calsequestrin and skeletal ryanodine receptors and may curtail resting Ca(2+) leak from the sarcoplasmic reticulum. We suggest that triadin serves a different function which may dominate during excitation-contraction coupling.
Collapse
|
112
|
Wei L, Hanna AD, Beard NA, Dulhunty AF. Unique isoform-specific properties of calsequestrin in the heart and skeletal muscle. Cell Calcium 2009; 45:474-84. [PMID: 19376574 DOI: 10.1016/j.ceca.2009.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 02/02/2009] [Accepted: 03/15/2009] [Indexed: 10/20/2022]
Abstract
Calcium signaling in myocytes is dependent on the cardiac ryanodine receptor (RyR2) calcium release channel and the calcium buffering protein in the sarcoplasmic reticulum, cardiac calsequestrin (CSQ2). The overall properties of CSQ2 and its regulation of RyR2 have not been explored in detail or directly compared with skeletal CSQ1 and its regulation of the skeletal RyR1, with physiological ionic strength and Ca(2+) concentrations. We find that there are major differences between the two isoforms under these physiological conditions. Ca(2+) binding to CSQ2 is 50% lower than to CSQ1. Only approximately 30% of CSQ2 is bound to cardiac junctional face membrane (JFM), compared with approximately 70% of CSQ1 and the ratio of CSQ2 to RyR2 is only 50% of the CSQ1/RyR1 ratio. Chemical crosslinking shows that CSQ2 is mostly monomer/dimer, while CSQ1 is mostly polymerized. In single channel lipid bilayer experiments, CSQ2 monomers and/or dimers increase the open probability of both RyR1 and RyR2 channels, while CSQ1 polymers decrease the activity of RyR1. We speculate that CSQ2 facilitates high rates of Ca(2+) release through RyR2 during systole, while CSQ1 curtails RyR1 opening in response to a single action potential to maintain Ca(2+) and allow repeated Ca(2+) release and graded activation with increased stimulation frequency.
Collapse
Affiliation(s)
- Lan Wei
- John Curtin School of Medical Research, Australian Capital Territory, Australia
| | | | | | | |
Collapse
|
113
|
Dainese M, Quarta M, Lyfenko AD, Paolini C, Canato M, Reggiani C, Dirksen RT, Protasi F. Anesthetic- and heat-induced sudden death in calsequestrin-1-knockout mice. FASEB J 2009; 23:1710-20. [PMID: 19237502 DOI: 10.1096/fj.08-121335] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Calsequestrin-1 (CASQ1) is a moderate-affinity, high-capacity Ca(2+)-binding protein in the sarcoplasmic reticulum (SR) terminal cisternae of skeletal muscle. CASQ1 functions as both a Ca(2+)-binding protein and a luminal regulator of ryanodine receptor (RYR1)-mediated Ca(2+) release. Mice lacking skeletal CASQ1 are viable but exhibit reduced levels of releasable Ca(2+) and altered contractile properties. Here we report that CASQ1-null mice exhibit increased spontaneous mortality and susceptibility to heat- and anesthetic-induced sudden death. Exposure of CASQ1-null mice to either 2% halothane or heat stress triggers lethal episodes characterized by whole-body contractures, elevated core temperature, and severe rhabdomyolysis, which are prevented by prior dantrolene administration. The characteristics of these events are remarkably similar to analogous episodes observed in humans with malignant hyperthermia (MH) and animal models of MH and environmental heat stroke (EHS). In vitro studies indicate that CASQ1-null muscle exhibits increased contractile sensitivity to temperature and caffeine, temperature-dependent increases in resting Ca(2+), and an increase in the magnitude of depolarization-induced Ca(2+) release. These results demonstrate that CASQ1 deficiency alters proper control of RYR1 function and suggest CASQ1 as a potential candidate gene for linkage analysis in families with MH/EHS where mutations in the RYR1 gene are excluded.
Collapse
Affiliation(s)
- Marco Dainese
- Ce.S.I.-Department of Basic and Applied Medical Sciences, Interuniversity Institute of Myology, University G. d'Annunzio, I-66013 Chieti, Italy
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Murphy RM, Larkins NT, Mollica JP, Beard NA, Lamb GD. Calsequestrin content and SERCA determine normal and maximal Ca2+ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibres of rat. J Physiol 2008; 587:443-60. [PMID: 19029185 DOI: 10.1113/jphysiol.2008.163162] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Whilst calsequestrin (CSQ) is widely recognized as the primary Ca2+ buffer in the sarcoplasmic reticulum (SR) in skeletal muscle fibres, its total buffering capacity and importance have come into question. This study quantified the absolute amount of CSQ isoform 1 (CSQ1, the primary isoform) present in rat extensor digitorum longus (EDL) and soleus fibres, and related this to their endogenous and maximal SR Ca2+ content. Using Western blotting, the entire constituents of minute samples of muscle homogenates or segments of individual muscle fibres were compared with known amounts of purified CSQ1. The fidelity of the analysis was proven by examining the relative signal intensity when mixing muscle samples and purified CSQ1. The CSQ1 contents of EDL fibres, almost exclusively type II fibres, and soleus type I fibres [SOL (I)] were, respectively, 36 +/- 2 and 10 +/- 1 micromol (l fibre volume)(-1), quantitatively accounting for the maximal SR Ca2+ content of each. Soleus type II [SOL (II)] fibres (approximately 20% of soleus fibres) had an intermediate amount of CSQ1. Every SOL (I) fibre examined also contained some CSQ isoform 2 (CSQ2), which was absent in every EDL and other type II fibre except for trace amounts in one case. Every EDL and other type II fibre had a high density of SERCA1, the fast-twitch muscle sarco(endo)plasmic reticulum Ca2+-ATPase isoform, whereas there was virtually no SERCA1 in any SOL (I) fibre. Maximal SR Ca2+ content measured in skinned fibres increased with CSQ1 content, and the ratio of endogenous to maximal Ca2+ content was inversely correlated with CSQ1 content. The relative SR Ca2+ content that could be maintained in resting cytoplasmic conditions was found to be much lower in EDL fibres than in SOL (I) fibres (approximately 20 versus >60%). Leakage of Ca2+ from the SR in EDL fibres could be substantially reduced with a SR Ca2+ pump blocker and increased by adding creatine to buffer cytoplasmic [ADP] at a higher level, both results indicating that at least part of the Ca2+ leakage occurred through SERCA. It is concluded that CSQ1 plays an important role in EDL muscle fibres by providing a large total pool of releasable Ca2+ in the SR whilst maintaining free [Ca2+] in the SR at sufficiently low levels that Ca2+ leakage through the high density of SERCA1 pumps does not metabolically compromise muscle function.
Collapse
Affiliation(s)
- Robyn M Murphy
- Department of Zoology, La Trobe University, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
115
|
Aydin J, Andersson DC, Hänninen SL, Wredenberg A, Tavi P, Park CB, Larsson NG, Bruton JD, Westerblad H. Increased mitochondrial Ca2+ and decreased sarcoplasmic reticulum Ca2+ in mitochondrial myopathy. Hum Mol Genet 2008; 18:278-88. [PMID: 18945718 DOI: 10.1093/hmg/ddn355] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic mutations that affect mitochondrial function often cause skeletal muscle dysfunction. Here, we used mice with skeletal-muscle-specific disruption of the nuclear gene for mitochondrial transcription factor A (Tfam) to study whether changes in cellular Ca(2+) handling is part of the mechanism of muscle dysfunction in mitochondrial myopathy. Force measurements were combined with measurements of cytosolic Ca(2+), mitochondrial Ca(2+) and membrane potential and reactive oxygen species in intact, adult muscle fibres. The results show reduced sarcoplasmic reticulum (SR) Ca(2+) storage capacity in Tfam KO muscles due to a decreased expression of calsequestrin-1. This resulted in decreased SR Ca(2+) release during contraction and hence lower force production in Tfam KO than in control muscles. Additionally, there were no signs of oxidative stress in Tfam KO cells, whereas they displayed increased mitochondrial [Ca(2+)] during repeated contractions. Mitochondrial [Ca(2+)] remained elevated long after the end of stimulation in muscle cells from terminally ill Tfam KO mice, and the increase was smaller in the presence of the cyclophilin D-binding inhibitor cyclosporin A. The mitochondrial membrane potential in Tfam KO cells did not decrease during repeated contractions. In conclusion, we suggest that the observed changes in Ca(2+) handling are adaptive responses with long-term detrimental effects. Reduced SR Ca(2+) release likely decreases ATP expenditure, but it also induces muscle weakness. Increased [Ca(2+)](mit) will stimulate mitochondrial metabolism acutely but may also trigger cell damage.
Collapse
Affiliation(s)
- Jan Aydin
- Present address: Max Planck Institute for Biology of Ageing, Gleueler Str. 50a, Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Royer L, Pouvreau S, Ríos E. Evolution and modulation of intracellular calcium release during long-lasting, depleting depolarization in mouse muscle. J Physiol 2008; 586:4609-29. [PMID: 18687715 PMCID: PMC2614033 DOI: 10.1113/jphysiol.2008.157990] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 08/06/2008] [Indexed: 01/21/2023] Open
Abstract
Intracellular calcium signals regulate multiple cellular functions. They depend on release of Ca(2+) from cellular stores into the cytosol, a process that in many types of cells appears to be tightly controlled by changes in [Ca(2+)] within the store. In contrast with cardiac muscle, where depletion of Ca(2+) in the sarcoplasmic reticulum is a crucial determinant of termination of Ca(2+) release, in skeletal muscle there is no agreement regarding the sign, or even the existence of an effect of SR Ca(2+) level on Ca(2+) release. To address this issue we measured Ca(2+) transients in mouse flexor digitorum brevis (FDB) skeletal muscle fibres under voltage clamp, using confocal microscopy and the Ca(2+) monitor rhod-2. The evolution of Ca(2+) release flux was quantified during long-lasting depolarizations that reduced severely the Ca(2+) content of the SR. As in all previous determinations in mammals and non-mammals, release flux consisted of an early peak, relaxing to a lower level from which it continued to decay more slowly. Decay of flux in this second stage, which has been attributed largely to depletion of SR Ca(2+), was studied in detail. A simple depletion mechanism without change in release permeability predicts an exponential decay with time. In contrast, flux decreased non-exponentially, to a finite, measurable level that could be maintained for the longest pulses applied (1.8 s). An algorithm on the flux record allowed us to define a quantitative index, the normalized flux rate of change (NFRC), which was shown to be proportional to the ratio of release permeability P and inversely proportional to Ca(2+) buffering power B of the SR, thus quantifying the 'evacuability' or ability of the SR to empty its content. When P and B were constant, flux then decayed exponentially, and NFRC was equal to the exponential rate constant. Instead, in most cases NFRC increased during the pulse, from a minimum reached immediately after the early peak in flux, to a time between 200 and 250 ms, when the index was no longer defined. NFRC increased by 111% on average (in 27 images from 18 cells), reaching 300% in some cases. The increase may reflect an increase in P, a decrease in B, or both. On experimental and theoretical grounds, both changes are to be expected upon SR depletion. A variable evacuability helps maintain a constant Ca(2+) output under conditions of diminishing store Ca(2+) load.
Collapse
Affiliation(s)
- Leandro Royer
- Department of Molecular Biophysics & Physiology, Section of Cellular Signalling, Rush University School of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
117
|
Abstract
Muscle wasting in sepsis reflects activation of multiple proteolytic mechanisms, including lyosomal and ubiquitin-proteasome-dependent protein breakdown. Recent studies suggest that activation of the calpain system also plays an important role in sepsis-induced muscle wasting. Perhaps the most important consequence of calpain activation in skeletal muscle during sepsis is disruption of the sarcomere, allowing for the release of myofilaments (including actin and myosin) that are subsequently ubiquitinated and degraded by the 26S proteasome. Other important consequences of calpain activation that may contribute to muscle wasting during sepsis include degradation of certain transcription factors and nuclear cofactors, activation of the 26S proteasome, and inhibition of Akt activity, allowing for downstream activation of Foxo transcription factors and GSK-3beta. The role of calpain activation in sepsis-induced muscle wasting suggests that the calpain system may be a therapeutic target in the prevention and treatment of muscle wasting during sepsis. Furthermore, because calpain activation may also be involved in muscle wasting caused by other conditions, including different muscular dystrophies and cancer, calpain inhibitors may be beneficial not only in the treatment of sepsis-induced muscle wasting but in other conditions causing muscle atrophy as well.
Collapse
Affiliation(s)
- Ira J Smith
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
118
|
Raj SR, Knollmann BC. The beat goes on—Driven by a cardiac calcium clock? Heart Rhythm 2008; 5:701-3. [DOI: 10.1016/j.hrthm.2008.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Indexed: 11/26/2022]
|
119
|
Durham WJ, Aracena-Parks P, Long C, Rossi AE, Goonasekera SA, Boncompagni S, Galvan DL, Gilman CP, Baker MR, Shirokova N, Protasi F, Dirksen R, Hamilton SL. RyR1 S-nitrosylation underlies environmental heat stroke and sudden death in Y522S RyR1 knockin mice. Cell 2008; 133:53-65. [PMID: 18394989 DOI: 10.1016/j.cell.2008.02.042] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 10/30/2007] [Accepted: 02/29/2008] [Indexed: 11/30/2022]
Abstract
Mice with a malignant hyperthermia mutation (Y522S) in the ryanodine receptor (RyR1) display muscle contractures, rhabdomyolysis, and death in response to elevated environmental temperatures. We demonstrate that this mutation in RyR1 causes Ca(2+) leak, which drives increased generation of reactive nitrogen species (RNS). Subsequent S-nitrosylation of the mutant RyR1 increases its temperature sensitivity for activation, producing muscle contractures upon exposure to elevated temperatures. The Y522S mutation in humans is associated with central core disease. Many mitochondria in the muscle of heterozygous Y522S mice are swollen and misshapen. The mutant muscle displays decreased force production and increased mitochondrial lipid peroxidation with aging. Chronic treatment with N-acetylcysteine protects against mitochondrial oxidative damage and the decline in force generation. We propose a feed-forward cyclic mechanism that increases the temperature sensitivity of RyR1 activation and underlies heat stroke and sudden death. The cycle eventually produces a myopathy with damaged mitochondria.
Collapse
Affiliation(s)
- William J Durham
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Qin J, Valle G, Nani A, Nori A, Rizzi N, Priori SG, Volpe P, Fill M. Luminal Ca2+ regulation of single cardiac ryanodine receptors: insights provided by calsequestrin and its mutants. ACTA ACUST UNITED AC 2008; 131:325-34. [PMID: 18347081 PMCID: PMC2279168 DOI: 10.1085/jgp.200709907] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The luminal Ca2+ regulation of cardiac ryanodine receptor (RyR2) was explored at the single channel level. The luminal Ca2+ and Mg2+ sensitivity of single CSQ2-stripped and CSQ2-associated RyR2 channels was defined. Action of wild-type CSQ2 and of two mutant CSQ2s (R33Q and L167H) was also compared. Two luminal Ca2+ regulatory mechanism(s) were identified. One is a RyR2-resident mechanism that is CSQ2 independent and does not distinguish between luminal Ca2+ and Mg2+. This mechanism modulates the maximal efficacy of cytosolic Ca2+ activation. The second luminal Ca2+ regulatory mechanism is CSQ2 dependent and distinguishes between luminal Ca2+ and Mg2+. It does not depend on CSQ2 oligomerization or CSQ2 monomer Ca2+ binding affinity. The key Ca2+-sensitive step in this mechanism may be the Ca2+-dependent CSQ2 interaction with triadin. The CSQ2-dependent mechanism alters the cytosolic Ca2+ sensitivity of the channel. The R33Q CSQ2 mutant can participate in luminal RyR2 Ca2+ regulation but less effectively than wild-type (WT) CSQ2. CSQ2-L167H does not participate in luminal RyR2 Ca2+ regulation. The disparate actions of these two catecholaminergic polymorphic ventricular tachycardia (CPVT)–linked mutants implies that either alteration or elimination of CSQ2-dependent luminal RyR2 regulation can generate the CPVT phenotype. We propose that the RyR2-resident, CSQ2-independent luminal Ca2+ mechanism may assure that all channels respond robustly to large (>5 μM) local cytosolic Ca2+ stimuli, whereas the CSQ2-dependent mechanism may help close RyR2 channels after luminal Ca2+ falls below ∼0.5 mM.
Collapse
Affiliation(s)
- Jia Qin
- Department of Molecular Physiology and Biophysics, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Rossi D, Barone V, Giacomello E, Cusimano V, Sorrentino V. The sarcoplasmic reticulum: an organized patchwork of specialized domains. Traffic 2008; 9:1044-9. [PMID: 18266914 DOI: 10.1111/j.1600-0854.2008.00717.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The sarcoplasmic reticulum (SR) of skeletal muscle cells is a convoluted structure composed of a variety of tubules and cisternae, which share a continuous lumen delimited by a single continuous membrane, branching to form a network that surrounds each myofibril. In this network, some specific domains basically represented by the longitudinal SR and the junctional SR can be distinguished. These domains are mainly dedicated to Ca(2+) homeostasis in relation to regulation of muscle contraction, with the longitudinal SR representing the sites of Ca(2+) uptake and storage and the junctional SR representing the sites of Ca(2+) release. To perform its functions, the SR takes contact with other cellular elements, the sarcolemma, the contractile apparatus and the mitochondria, giving rise to a number of interactions, most of which are still to be defined at the molecular level. This review will describe some of the most recent advancements in understanding the organization of this complex network and its specific domains. Furthermore, we shall address initial evidence on how SR proteins are retained at distinct SR domains.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Neuroscience and Interuniversitary Institute of Myology, University of Siena, 53100 Siena, Italy
| | | | | | | | | |
Collapse
|
122
|
Shen X, Franzini-Armstrong C, Lopez JR, Jones LR, Kobayashi YM, Wang Y, Kerrick WGL, Caswell AH, Potter JD, Miller T, Allen PD, Perez CF. Triadins modulate intracellular Ca(2+) homeostasis but are not essential for excitation-contraction coupling in skeletal muscle. J Biol Chem 2007; 282:37864-74. [PMID: 17981799 DOI: 10.1074/jbc.m705702200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To unmask the role of triadin in skeletal muscle we engineered pan-triadin-null mice by removing the first exon of the triadin gene. This resulted in a total lack of triadin expression in both skeletal and cardiac muscle. Triadin knockout was not embryonic or birth-lethal, and null mice presented no obvious functional phenotype. Western blot analysis of sarcoplasmic reticulum (SR) proteins in skeletal muscle showed that the absence of triadin expression was associated with down-regulation of Junctophilin-1, junctin, and calsequestrin but resulted in no obvious contractile dysfunction. Ca(2+) imaging studies in null lumbricalis muscles and myotubes showed that the lack of triadin did not prevent skeletal excitation-contraction coupling but reduced the amplitude of their Ca(2+) transients. Additionally, null myotubes and adult fibers had significantly increased myoplasmic resting free Ca(2+).[(3)H]Ryanodine binding studies of skeletal muscle SR vesicles detected no differences in Ca(2+) activation or Ca(2+) and Mg(2+) inhibition between wild-type and triadin-null animals. Subtle ultrastructural changes, evidenced by the appearance of longitudinally oriented triads and the presence of calsequestrin in the sacs of the longitudinal SR, were present in fast but not slow twitch-null muscles. Overall, our data support an indirect role for triadin in regulating myoplasmic Ca(2+) homeostasis and organizing the molecular complex of the triad but not in regulating skeletal-type excitation-contraction coupling.
Collapse
Affiliation(s)
- Xiaohua Shen
- Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Goonasekera SA, Beard NA, Groom L, Kimura T, Lyfenko AD, Rosenfeld A, Marty I, Dulhunty AF, Dirksen RT. Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling. ACTA ACUST UNITED AC 2007; 130:365-78. [PMID: 17846166 PMCID: PMC2151650 DOI: 10.1085/jgp.200709790] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ca2+ release from intracellular stores is controlled by complex interactions between multiple proteins. Triadin is a transmembrane glycoprotein of the junctional sarcoplasmic reticulum of striated muscle that interacts with both calsequestrin and the type 1 ryanodine receptor (RyR1) to communicate changes in luminal Ca2+ to the release machinery. However, the potential impact of the triadin association with RyR1 in skeletal muscle excitation–contraction coupling remains elusive. Here we show that triadin binding to RyR1 is critically important for rapid Ca2+ release during excitation–contraction coupling. To assess the functional impact of the triadin-RyR1 interaction, we expressed RyR1 mutants in which one or more of three negatively charged residues (D4878, D4907, and E4908) in the terminal RyR1 intraluminal loop were mutated to alanines in RyR1-null (dyspedic) myotubes. Coimmunoprecipitation revealed that triadin, but not junctin, binding to RyR1 was abolished in the triple (D4878A/D4907A/E4908A) mutant and one of the double (D4907A/E4908A) mutants, partially reduced in the D4878A/D4907A double mutant, but not affected by either individual (D4878A, D4907A, E4908A) mutations or the D4878A/E4908A double mutation. Functional studies revealed that the rate of voltage- and ligand-gated SR Ca2+ release were reduced in proportion to the degree of interruption in triadin binding. Ryanodine binding, single channel recording, and calcium release experiments conducted on WT and triple mutant channels in the absence of triadin demonstrated that the luminal loop mutations do not directly alter RyR1 function. These findings demonstrate that junctin and triadin bind to different sites on RyR1 and that triadin plays an important role in ensuring rapid Ca2+ release during excitation–contraction coupling in skeletal muscle.
Collapse
Affiliation(s)
- Sanjeewa A Goonasekera
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|