101
|
Abstract
During embryonic development, the skin, the largest organ of the human body, and nervous system are both derived from the neuroectoderm. Consequently, several key factors and mechanisms that influence and control central or peripheral nervous system activities are also present and hence involved in various regulatory mechanisms of the skin. Apparently, this is the case for the ion and non-ion selective channels as well. Therefore, in this review, we shall focus on delineating the regulatory roles of the channels in skin physiology and pathophysiology. First, we introduce key cutaneous functions and major characteristics of the channels in question. Then, we systematically detail the involvement of a multitude of channels in such skin processes (e.g. skin barrier formation, maintenance, and repair, immune mechanisms, exocrine secretion) which are mostly defined by cutaneous non-neuronal cell populations. Finally, we close by summarizing data suggesting that selected channels are also involved in skin diseases such as e.g. atopic dermatitis, psoriasis, non-melanoma cancers and malignant melanoma, genetic and autoimmune diseases, etc., as well as in skin ageing.
Collapse
Affiliation(s)
- Attila Oláh
- DE-MTA Lendület Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Medical and Health Science Center, Research Center for Molecular Medicine, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| | | | | |
Collapse
|
102
|
Usuda H, Endo T, Shimouchi A, Saito A, Tominaga M, Yamashita H, Nagai H, Inagaki N, Tanaka H. Transient Receptor Potential Vanilloid 1 — a Polymodal Nociceptive Receptor — Plays a Crucial Role in Formaldehyde-Induced Skin Inflammation in Mice. J Pharmacol Sci 2012; 118:266-74. [DOI: 10.1254/jphs.11193fp] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
103
|
Panahi Y, Sarayani A, Beiraghdar F, Amiri M, Davoudi SM, Sahebkar A. Management of sulfur mustard-induced chronic pruritus: a review of clinical trials. Cutan Ocul Toxicol 2011; 31:220-5. [DOI: 10.3109/15569527.2011.631655] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
104
|
Huang J, Ding L, Shi D, Hu JH, Zhu QG, Gao S, Qiu L. Transient receptor potential vanilloid-1 participates in the inhibitory effect of ginsenoside Rg1 on capsaicin-induced interleukin-8 and prostaglandin E2 production in HaCaT cells. ACTA ACUST UNITED AC 2011; 64:252-8. [PMID: 22221101 DOI: 10.1111/j.2042-7158.2011.01392.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Ginsenoside Rg1 (GRg1), one of the major active constituents of Panax notoginseng, has shown anti-inflammatory and antinocioceptic activity, but its role in keratinocytes needs further study. We have examined the inhibitory effect of GRg1 on transient receptor potential vanilloid-1 (TRPV1) activation in keratinocyte HaCaT cells and explored its involved mechanism. METHODS HEK 293T cells over-expressing exogenous TRPV1 were constructed and named HEK 293T-TRPV1 cells. The effects of GRg1 on production of interleukin-8 (IL-8) and prostaglandin E(2) (PGE(2) ), calcium influx, the expression of cyclooxygenase-2 (COX-2) and nuclear factor-κB (NF-κB) transcriptional activity in HEK 293T-TRPV1 and HaCaT cells were examined by ELISA, Fluo 3-AM fluorescence probe, Western blot and Dual-Luciferase Reporter Assay, respectively. KEY FINDINGS The results showed that GRg1 blocked intracellular calcium by both capsaicin and proton activation in a TRPV1-dependent manner. Furthermore, GRg1 inhibited the expression of COX-2 and NF-κB transcriptional activity induced by capsaicin in keratinocytes. The inhibitory effect of GRg1 was similar to capsazepine, an antagonist of TRPV1. More importantly, GRg1 dose-dependently inhibited capsaicin-induced PGE(2) and IL-8 secretion in HaCaT cells and HEK 293T-TRPV1 cells. CONCLUSIONS These data showed that GRg1 could inhibit TRPV1 mediated responses in HaCaT cells, indicating that GRg1 acted as a TRPV1 antagonist.
Collapse
Affiliation(s)
- Jin Huang
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
105
|
Kishimoto E, Naito Y, Handa O, Okada H, Mizushima K, Hirai Y, Nakabe N, Uchiyama K, Ishikawa T, Takagi T, Yagi N, Kokura S, Yoshida N, Yoshikawa T. Oxidative stress-induced posttranslational modification of TRPV1 expressed in esophageal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2011; 301:G230-8. [PMID: 21636531 DOI: 10.1152/ajpgi.00436.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human esophageal epithelium is continuously exposed to physical stimuli or to gastric acid that sometimes causes inflammation of the mucosa. Transient receptor potential vanilloid 1 (TRPV1) is a nociceptive, Ca(2+)-selective ion channel activated by capsaicin, heat, and protons. It has been reported that activation of TRPV1 expressed in esophageal mucosa is involved in gastroesophageal reflux disease (GERD) or in nonerosive GERD symptoms. In this study, we examined the expression and function of TRPV1 in the human esophageal epithelial cell line Het1A, focusing in particular on the role of oxidative stress. Interleukin-8 (IL-8) secreted by Het1A cells upon stimulation by capsaicin or acid with/without 4-hydroxy-2-nonenal (HNE) was measured by ELISA. Following capsaicin stimulation, the intracellular production of reactive oxygen species (ROS) was determined using a redox-sensitive fluorogenic probe, and ROS- and HNE-modified proteins were determined by Western blotting using biotinylated cysteine and anti-HNE antibody, respectively. HNE modification of TRPV1 proteins was further investigated by immunoprecipitation after treatment with synthetic HNE. Capsaicin and acid induced IL-8 production in Het1A cells, and this production was diminished by antagonists of TRPV1. Capsaicin also significantly increased the production of intracellular ROS and ROS- or HNE-modified proteins in Het1A cells. Moreover, IL-8 production in capsaicin-stimulated Het1A cells was enhanced by synthetic HNE treatment. Immunoprecipitation studies revealed that TRPV1 was modified by HNE in synthetic HNE-stimulated Het1A cells. We concluded that TRPV1 functions in chemokine production in esophageal epithelial cells, and this function may be regulated by ROS via posttranslational modification of TRPV1.
Collapse
Affiliation(s)
- Etsuko Kishimoto
- Department of Inflammation and Immunology, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Borbíró I, Lisztes E, Tóth BI, Czifra G, Oláh A, Szöllősi AG, Szentandrássy N, Nánási PP, Péter Z, Paus R, Kovács L, Bíró T. Activation of Transient Receptor Potential Vanilloid-3 Inhibits Human Hair Growth. J Invest Dermatol 2011; 131:1605-14. [DOI: 10.1038/jid.2011.122] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
107
|
Roles of transient receptor potential proteins (TRPs) in epidermal keratinocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:847-60. [PMID: 21290330 DOI: 10.1007/978-94-007-0265-3_44] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Epidermal keratinocytes are the epithelial cells of mammalian skin. At the basal layer of the epidermis, these cells proliferate strongly, and as they move towards the skin surface, differentiation proceeds. At the uppermost layer of the epidermis, keratinocytes undergo apoptosis and die, forming a thin, water-impermeable layer called the stratum corneum. Peripheral blood vessels do not reach the epidermis, but peripheral nerve fibers do penetrate into it. Until recently, it was considered that the main role of epidermal keratinocytes was to construct and maintain the water-impermeable barrier function. However, since the functional existence of TRPV1, which is activated by heat and low pH, in epidermal keratinocytes was identified, our understanding of the role of keratinocytes has changed enormously. It has been found that many TRP channels are expressed in epidermal keratinocytes, and play important roles in differentiation, proliferation and barrier homeostasis. Moreover, because TRP channels expressed in keratinocytes have the ability to sense a variety of environmental factors, such as temperature, mechanical stress, osmotic stress and chemical stimuli, epidermal keratinocytes might form a key part of the sensory system of the skin. The present review deals with the potential roles of TRP channels expressed in epidermal keratinocytes and focuses on the concept of the epidermis as an active interface between the body and the environment.
Collapse
|
108
|
Lee YM, Kang SM, Lee SR, Kong KH, Lee JY, Kim EJ, Chung JH. Inhibitory effects of TRPV1 blocker on UV-induced responses in the hairless mice. Arch Dermatol Res 2011; 303:727-36. [PMID: 21656169 DOI: 10.1007/s00403-011-1153-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/17/2011] [Indexed: 11/21/2022]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) channel can be activated by vanilloids, exposure to ultraviolet (UV) irradiation, heat, or protons, and conditions that occur during tissue injury. In the present study, we investigated whether or not TRPV1-specific blocker, 5'-iodoresiniferatoxin (I-RTX), can reduce UV-induced matrix metalloproteinases (MMPs), pro-inflammatory cytokines, cyclooxygenase (COX)-2, and p53 expression in the skin of hairless mice. Our results showed that I-RTX inhibited UV-induced skin thickening, as measured by a caliper, or in hematoxylin and eosin (H&E)-stained sections. UV-induced mRNA and protein expression of MMP-13, MMP-9, MMP-3, and MMP-2 was significantly reduced by I-RTX. We also observed the inhibitory effects of I-RTX on UV-induced mRNA expression of the pro-inflammatory cytokines, interleukin (IL)-1β, IL-2, IL-4, and tumor necrosis factor-α. UV-induced COX-2 and p53 protein expression was also significantly decreased by I-RTX. From the above results, we suggest that TRPV1-specific blocker, I-RTX, could prevent UV-induced skin responses, and provide new insight into development of effective therapeutic methods for photoaging.
Collapse
Affiliation(s)
- Young Mee Lee
- Department of Dermatology, Seoul National University Hospital,Yeongeon-Dong, Chongno-Gu, Korea
| | | | | | | | | | | | | |
Collapse
|
109
|
Devesa I, Planells-Cases R, Fernández-Ballester G, González-Ros JM, Ferrer-Montiel A, Fernández-Carvajal A. Role of the transient receptor potential vanilloid 1 in inflammation and sepsis. J Inflamm Res 2011; 4:67-81. [PMID: 22096371 PMCID: PMC3218746 DOI: 10.2147/jir.s12978] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is a thermoreceptor that responds to noxious temperatures, as well as to chemical agonists, such as vanilloids and protons. In addition, its channel activity is notably potentiated by proinflammatory mediators released upon tissue damage. The TRPV1 contribution to sensory neuron sensitization by proalgesic agents has signaled this receptor as a prime target for analgesic and anti-inflammatory drug intervention. However, TRPV1 antagonists have notably failed in clinical and preclinical studies because of their unwanted side effects. Recent reports have unveiled previously unrecognized anti-inflammatory and protective functions of TRPV1 in several diseases. For instance, this channel has been suggested to play an anti-inflammatory role in sepsis. Therefore, the use of potent TRPV1 antagonists as a general strategy to treat inflammation must be cautiously considered, given the deleterious effects that may arise from inhibiting the population of channels that have a protective function. The use of TRPV1 antagonists may be limited to treating those pathologies where enhanced receptor activity contributes to the inflamed state. Alternatively, therapeutic paradigms, such as reduction of inflammatory-mediated increase of receptor expression in the cell surface, may be a better strategy to prevent abrogation of the TRPV1 subpopulation involved in anti-inflammatory and protective processes.
Collapse
Affiliation(s)
- Isabel Devesa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante
| | | | | | | | | | | |
Collapse
|
110
|
Tóth BI, Dobrosi N, Dajnoki A, Czifra G, Oláh A, Szöllosi AG, Juhász I, Sugawara K, Paus R, Bíró T. Endocannabinoids modulate human epidermal keratinocyte proliferation and survival via the sequential engagement of cannabinoid receptor-1 and transient receptor potential vanilloid-1. J Invest Dermatol 2011; 131:1095-104. [PMID: 21248768 DOI: 10.1038/jid.2010.421] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have recently shown that lipid mediators of the emerging endocannabinoid system (ECS) are key players of growth control of the human pilosebaceous unit. In this study, we asked whether the prototypic endocannabinoid anandamide (N-arachidonoylethanolamine, AEA) has a role in growth and survival of epidermal keratinocytes (KCs). Using human cultured KCs and skin organ-culture models, and by employing combined pharmacological and molecular approaches, we provide early evidence that AEA markedly suppresses KC proliferation and induces cell death, both in vitro and in situ. Moreover, we present that these cellular actions are mediated by a most probably constitutively active signaling mechanism that involves the activation of the metabotropic cannabinoid receptor CB(1) and a sequential engagement of the "ionotropic cannabinoid receptor" transient receptor potential vanilloid-1 (TRPV1). Finally, we demonstrate that the cellular effects of AEA are most probably due to a Ca(2+) influx via the non-selective, highly Ca(2+)-permeable ion channel TRPV1, and the concomitant elevation of intracellular Ca(2+) concentration. The data reported here may encourage one to explore whether the targeted manipulation of the above signaling pathway of the cutaneous ECS could become a useful adjunct treatment strategy for hyperproliferative human dermatoses such as psoriasis or KC-derived skin tumors.
Collapse
Affiliation(s)
- Balázs I Tóth
- Department of Physiology, Medical and Health Science Center, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Charrua A, Avelino A, Cruz F. Modulation of urinary bladder innervation: TRPV1 and botulinum toxin A. Handb Exp Pharmacol 2011:345-374. [PMID: 21290235 DOI: 10.1007/978-3-642-16499-6_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The persisting interest around neurotoxins such as vanilloids and botulinum toxin (BoNT) derives from their marked effect on detrusor overactivity refractory to conventional antimuscarinic treatments. In addition, both are administered by intravesical route. This offers three potential advantages. First, intravesical therapy is an easy way to provide high concentrations of pharmacological agents in the bladder tissue without causing unsuitable levels in other organs. Second, drugs effective on the bladder, but inappropriate for systemic administration, can be safely used as it is the case of vanilloids and BoNT. Third, the effects of one single treatment might be extremely longlasting, contributing to render these therapies highly attractive to patients despite the fact that the reasons to the prolonged effect are still incompletely understood. Attractive as it may be, intravesical pharmacological therapy should still be considered as a second-line treatment in patients refractory to conventional oral antimuscarinic therapy or who do not tolerate its systemic side effects. However, the increasing off-label use of these neurotoxins justifies a reappraisal of their pharmacological properties.
Collapse
Affiliation(s)
- Ana Charrua
- Institute of Histology and Embryology, Porto, Portugal
| | | | | |
Collapse
|
112
|
TRPV1: A Therapy Target That Attracts the Pharmaceutical Interests. TRANSIENT RECEPTOR POTENTIAL CHANNELS 2011; 704:637-65. [DOI: 10.1007/978-94-007-0265-3_34] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
113
|
Irving GA, Backonja MM, Dunteman E, Blonsky ER, Vanhove GF, Lu SP, Tobias J. A multicenter, randomized, double-blind, controlled study of NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia. PAIN MEDICINE 2010; 12:99-109. [PMID: 21087403 DOI: 10.1111/j.1526-4637.2010.01004.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES To confirm the efficacy, tolerability, and safety of NGX-4010, an 8% capsaicin dermal patch (capsaicin 640 µg/cm(2) ), in patients with postherpetic neuralgia (PHN). PHN is a chronic pain disorder that can be difficult to treat and for which current treatment options are often limited by poor tolerability. DESIGN A total of 418 patients were randomized to receive a single 60-minute application of NGX-4010 or a 0.04% capsaicin control patch (3.2 µg/cm(2) ) in a multicenter, double-blind, confirmatory, phase 3 study. PATIENTS Patients were 18-90 years old with a diagnosis of PHN, pain for at least 6 months, and an average baseline Numeric Pain Rating Scale (NPRS) score of 3-9. OUTCOME MEASURES The primary efficacy end point was the percentage change in NPRS score from baseline to weeks 2-8. RESULTS NGX-4010 recipients had a significantly greater mean reduction from baseline in pain during weeks 2-8 compared with the control group (32.0% vs 24.4%; P=0.011). A ≥ 30% reduction in mean NPRS scores was achieved in 46% of NGX-4010 recipients compared with 34% of controls (P=0.02). Pain was significantly lower in NGX-4010 recipients than controls by week 2, and greater pain reduction was maintained throughout the remaining 12-week study period. Most treatment-emergent adverse events were application site specific (notably erythema and pain), transient, and generally mild to moderate in severity. CONCLUSIONS In patients with PHN, a single 60-minute application of NGX-4010 produced significant reduction in pain that was maintained over a 12-week period.
Collapse
|
114
|
Ma Q. Labeled lines meet and talk: population coding of somatic sensations. J Clin Invest 2010; 120:3773-8. [PMID: 21041959 DOI: 10.1172/jci43426] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The somatic sensory system responds to stimuli of distinct modalities, including touch, pain, itch, and temperature sensitivity. In the past century, great progress has been made in understanding the coding of these sensory modalities. From this work, two major features have emerged. First, there are specific neuronal circuits or labeled lines transmitting specific sensory information from the skin to the brain. Second, the generation of specific sensations often involves crosstalk among distinct labeled lines. These features suggest that population coding is the mechanism underlying somatic sensation.
Collapse
Affiliation(s)
- Qiufu Ma
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
115
|
Harnett KM, Rieder F, Behar J, Biancani P. Viewpoints on Acid-induced inflammatory mediators in esophageal mucosa. J Neurogastroenterol Motil 2010; 16:374-88. [PMID: 21103419 PMCID: PMC2978390 DOI: 10.5056/jnm.2010.16.4.374] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 08/18/2010] [Accepted: 08/21/2010] [Indexed: 12/13/2022] Open
Abstract
We have focused on understanding the onset of gastroesophageal reflux disease by examining the mucosal response to the presence of acid in the esophageal lumen. Upon exposure to HCl, inflammation of the esophagus begins with activation of the transient receptor potential channel vanilloid subfamily member-1 (TRPV1) in the mucosa, and production of IL-8, substance P (SP), calcitonin gene related peptide (CGRP) and platelet activating factor (PAF). Production of SP and CGRP, but not PAF, is abolished by the neural blocker tetrodotoxin suggesting that SP and CGRP are neurally released and that PAF arises from non neural pathways. Epithelial cells contain TRPV1 receptor mRNA and protein and respond to HCl and to the TRPV1 agonist capsaicin with production of PAF. PAF, SP and IL-8 act as chemokines, inducing migration of peripheral blood leukocytes. PAF and SP activate peripheral blood leukocytes inducing the production of H2O2. In circular muscle, PAF causes production of IL-6, and IL-6 causes production of additional H2O2, through activation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Among these, NADPH oxidase 5 cDNA is significantly up-regulated by exposure to PAF; H2O2 content of esophageal and lower esophageal sphincter circular muscle is elevated in human esophagitis, causing dysfunction of esophageal circular muscle contraction and reduction in esophageal sphincter tone. Thus esophageal keratinocytes, that constitute the first barrier to the refluxate, may also serve as the initiating cell type in esophageal inflammation, secreting inflammatory mediators and pro-inflammatory cytokines and affecting leukocyte recruitment and activity.
Collapse
Affiliation(s)
- Karen M Harnett
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, RI, USA
| | | | | | | |
Collapse
|
116
|
Huang J, Qiu L, Ding L, Wang S, Wang J, Zhu Q, Song F, Hu J. Ginsenoside Rb1 and paeoniflorin inhibit transient receptor potential vanilloid-1-activated IL-8 and PGE2 production in a human keratinocyte cell line HaCaT. Int Immunopharmacol 2010; 10:1279-83. [DOI: 10.1016/j.intimp.2010.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 07/08/2010] [Accepted: 07/14/2010] [Indexed: 11/25/2022]
|
117
|
Hwang MK, Bode AM, Byun S, Song NR, Lee HJ, Lee KW, Dong Z. Cocarcinogenic Effect of Capsaicin Involves Activation of EGFR Signaling but Not TRPV1. Cancer Res 2010; 70:6859-69. [DOI: 10.1158/0008-5472.can-09-4393] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
118
|
Kueper T, Krohn M, Haustedt LO, Hatt H, Schmaus G, Vielhaber G. Inhibition of TRPV1 for the treatment of sensitive skin. Exp Dermatol 2010; 19:980-6. [DOI: 10.1111/j.1600-0625.2010.01122.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
119
|
Abstract
Pruritus (itch) is a major characteristic and one of the most debilitating symptoms in allergic and atopic diseases and the diagnostic hallmark of atopic dermatitis. Pruritus is regularly defined as an unpleasant sensation provoking the desire to scratch. Although we achieved rather good knowledge about certain inducers of itch such as neuropeptides, amines, mu-opioids, cytokines and proteases, for example, less is known about the pathophysiological specifities among the different diseases, and the therapeutic consequences which may derive thereoff. This review dissects the role of mediators, receptors and itch inhibitors on peripheral nerve endings, dorsal root ganglia, the spinal cord and the CNS leading to the amplification or - vice versa - suppression of pruritus. As the treatment of pruritus in allergic and atopic skin disease is still not satisfactory, knowing these pathways and mechanisms may lead to novel therapeutic approaches against this frequently encountered skin symptom.
Collapse
Affiliation(s)
- J Buddenkotte
- Deparment of Dermatology, Boltzmann Institute for Cell- and Immunobiology of Skin, University Hospital Münster, Münster, Germany
| | | |
Collapse
|
120
|
Premkumar LS, Sikand P. TRPV1: a target for next generation analgesics. Curr Neuropharmacol 2010; 6:151-63. [PMID: 19305794 PMCID: PMC2647151 DOI: 10.2174/157015908784533888] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/17/2007] [Accepted: 11/11/2007] [Indexed: 12/11/2022] Open
Abstract
Transient Receptor Potential Vanilloid 1 (TRPV1) is a Ca2+ permeant non-selective cation channel expressed in a subpopulation of primary afferent neurons. TRPV1 is activated by physical and chemical stimuli. It is critical for the detection of nociceptive and thermal inflammatory pain as revealed by the deletion of the TRPV1 gene. TRPV1 is distributed in the peripheral and central terminals of the sensory neurons and plays a role in initiating action potentials at the nerve terminals and modulating neurotransmitter release at the first sensory synapse, respectively. Distribution of TRPV1 in the nerve terminals innervating blood vessels and in parts of the CNS that are not subjected to temperature range that is required to activate TRPV1 suggests a role beyond a noxious thermal sensor. Presently, TRPV1 is being considered as a target for analgesics through evaluation of different antagonists. Here, we will discuss the distribution and the functions of TRPV1, potential use of its agonists and antagonists as analgesics and highlight the functions that are not related to nociceptive transmission that might lead to adverse effects.
Collapse
Affiliation(s)
- Louis S Premkumar
- Department of Pharmacology, Southern Illinois University School of Medicine Springfield, IL 62702, USA.
| | | |
Collapse
|
121
|
Huang J, Zhang X, McNaughton PA. Inflammatory pain: the cellular basis of heat hyperalgesia. Curr Neuropharmacol 2010; 4:197-206. [PMID: 18615146 DOI: 10.2174/157015906778019554] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 06/30/2006] [Accepted: 06/30/2006] [Indexed: 12/20/2022] Open
Abstract
Injury or inflammation release a range of inflammatory mediators that increase the sensitivity of sensory neurons to noxious thermal or mechanical stimuli. The heat- and capsaicin-gated channel TRPV1, which is an important detector of multiple noxious stimuli, plays a critical role in the development of thermal hyperalgesia induced by a wide range of inflammatory mediators. We review here recent findings on the molecular mechanisms of sensitisation of TRPV1 by inflammatory mediators, including bradykinin, ATP, NGF and prostaglandins. We describe the signalling pathways believed to be involved in the potentiation of TRPV1, and our current understanding of how inflammatory mediators couple to these pathways.
Collapse
Affiliation(s)
- Jiehong Huang
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, United Kingdom
| | | | | |
Collapse
|
122
|
Story GM. The emerging role of TRP channels in mechanisms of temperature and pain sensation. Curr Neuropharmacol 2010; 4:183-96. [PMID: 18615141 DOI: 10.2174/157015906778019482] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 05/17/2006] [Indexed: 01/13/2023] Open
Abstract
Pain is universal and vital to survival. It is an essential component of our sense of touch; together, touch and pain have evolved to enable our awareness of the intricacies of our environment and to warn us of danger and possible injury. There is a clear link between temperature sensation and pain-painful temperature sensations occur acutely and are a hallmark of inflammatory and chronic pain disorders of the nervous system. Mounting evidence suggests a subset of Transient Receptor Potential (TRP) ion channels activated by temperature (thermoTRPs) are important molecular players in acute, inflammatory and chronic pain states. Varying degrees of heat activate four of these channels (TRPV1-4), while cooling temperatures ranging from pleasant to painful activate two distantly related thermoTRP channels (TRPM8 and TRPA1). ThermoTRP channels are also chemosensitive, being activated and or modulated by plant-derived small molecules and endogenous inflammatory mediators. All thermoTRPs are expressed in tissues essential to cutaneous thermal and pain sensation. This review examines the contribution of thermoTRP channels to our understanding of temperature and pain transduction at the molecular level.
Collapse
Affiliation(s)
- Gina M Story
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8054, St. Louis, MO 63110, USA.
| |
Collapse
|
123
|
Schumacher MA. Transient receptor potential channels in pain and inflammation: therapeutic opportunities. Pain Pract 2010; 10:185-200. [PMID: 20230457 DOI: 10.1111/j.1533-2500.2010.00358.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In ancient times, physicians had a limited number of therapies to provide pain relief. Not surprisingly, plant extracts applied topically often served as the primary analgesic plan. With the discovery of the capsaicin receptor (transient receptor potential cation channel, subfamily V, member 1 [TRPV1]), the search for "new" analgesics has returned to compounds used by physicians thousands of years ago. One such compound, capsaicin, couples the paradoxical action of nociceptor activation (burning pain) with subsequent analgesia following repeat or high-dose application. Investigating this "paradoxical" action of capsaicin has revealed several overlapping and complementary mechanisms to achieve analgesia including receptor desensitization, nociceptor dysfunction, neuropeptide depletion, and nerve terminal destruction. Moreover, the realization that TRPV1 is both sensitized and activated by endogenous products of inflammation, including bradykinin, H+, adenosine triphosphate, fatty acid derivatives, nerve growth factor, and trypsins, has renewed interest in TRPV1 as an important site of analgesia. Building on this foundation, a new series of preclinical and clinical studies targeting TRPV1 has been reported. These include trials using brief exposure to high-dose topical capsaicin in conjunction with prior application of a local anesthetic. Clinical use of resiniferatoxin, another ancient but potent TRPV1 agonist, is also being explored as a therapy for refractory pain. The development of orally administered high-affinity TRPV1 antagonists holds promise for pioneering a new generation of analgesics capable of blocking painful sensations at the site of inflammation and tissue injury. With the isolation of other members of the TRP channel family such as TRP cation channel, subfamily A, member 1, additional opportunities are emerging in the development of safe and effective analgesics.
Collapse
Affiliation(s)
- Mark A Schumacher
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California 94143-0427, USA.
| |
Collapse
|
124
|
Jara-Oseguera A, Simon SA, Rosenbaum T. TRPV1: on the road to pain relief. Curr Mol Pharmacol 2010; 1:255-69. [PMID: 20021438 DOI: 10.2174/1874467210801030255] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Historically, drug research targeted to pain treatment has focused on trying to prevent the propagation of action potentials in the periphery from reaching the brain rather than pinpointing the molecular basis underlying the initial detection of the nociceptive stimulus: the receptor itself. This has now changed, given that many receptors of nociceptive stimuli have been identified and/or cloned. Transient Receptor Potential (TRP) channels have been implicated in several physiological processes such as mechanical, chemical and thermal stimuli detection. Ten years after the cloning of TRPV1, compelling data has been gathered on the role of this channel in inflammatory and neuropathic states. TRPV1 activation in nociceptive neurons, where it is normally expressed, triggers the release of neuropeptides and transmitters resulting in the generation of action potentials that will be sent to higher CNS areas where they will often be perceived as pain. Its activation also will evoke the peripheral release of pro-inflammatory compounds that may sensitize other neurons to physical, thermal or chemical stimuli. For these reasons as well as because its continuous activation causes analgesia, TRPV1 has become a viable drug target for clinical use in the management of pain. This review will provide a general picture of the physiological and pathophysiological roles of the TRPV1 channel and of its structural, pharmacological and biophysical properties. Finally, it will provide the reader with an overall view of the status of the discovery of potential therapeutic agents for the management of chronic and neuropathic pain.
Collapse
Affiliation(s)
- Andrés Jara-Oseguera
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | | | | |
Collapse
|
125
|
Hamza M, Wang XM, Adam A, Brahim JS, Rowan JS, Carmona GN, Dionne RA. Kinin B1 receptors contributes to acute pain following minor surgery in humans. Mol Pain 2010; 6:12. [PMID: 20152050 PMCID: PMC2834653 DOI: 10.1186/1744-8069-6-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 02/13/2010] [Indexed: 01/16/2023] Open
Abstract
Background Kinins play an important role in regulation of pain and hyperalgesia after tissue injury and inflammation by activating two types of G-protein-coupled receptors, the kinin B1 and B2 receptors. It is generally accepted that the B2 receptor is constitutively expressed, whereas the B1 receptor is induced in response to inflammation. However, little is known about the regulatory effects of kinin receptors on the onset of acute inflammation and inflammatory pain in humans. The present study investigated the changes in gene expression of kinin receptors and the levels of their endogenous ligands at an early time point following tissue injury and their relation to clinical pain, as well as the effect of COX-inhibition on their expression levels. Results Tissue injury resulted in a significant up-regulation in the gene expression of B1 and B2 receptors at 3 hours post-surgery, the onset of acute inflammatory pain. Interestingly, the up-regulation in the gene expression of B1 and B2 receptors was positively correlated to pain intensity only after ketorolac treatment, signifying an interaction between prostaglandins and kinins in the inflammatory pain process. Further, the gene expression of both B1 and B2 receptors were correlated. Following tissue injury, B1 ligands des-Arg9-BK and des-Arg10-KD were significantly lower at the third hour compared to the first 2 hours in both the placebo and the ketorolac treatment groups but did not differ significantly between groups. Tissue injury also resulted in the down-regulation of TRPV1 gene expression at 3 hours post-surgery with no significant effect by ketorolac treatment. Interestingly, the change in gene expression of TRPV1 was correlated to the change in gene expression of B1 receptor but not B2 receptor. Conclusions These results provide evidence at the transcriptional level in a clinical model of tissue injury that up-regulation of kinin receptors are involved in the development of the early phase of inflammation and inflammatory pain. The up-regulation of B1 receptors may contribute to acute inflammatory pain through TRPV1 activation.
Collapse
Affiliation(s)
- May Hamza
- NINR/NIH, 10 Center drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
126
|
Costa B, Bettoni I, Petrosino S, Comelli F, Giagnoni G, Di Marzo V. The dual fatty acid amide hydrolase/TRPV1 blocker, N-arachidonoyl-serotonin, relieves carrageenan-induced inflammation and hyperalgesia in mice. Pharmacol Res 2010; 61:537-46. [PMID: 20138997 DOI: 10.1016/j.phrs.2010.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/18/2010] [Accepted: 02/01/2010] [Indexed: 01/08/2023]
Abstract
Given that the pharmacological or genetic inactivation of fatty acid amide hydrolase (FAAH) counteracts pain and inflammation, and on the basis of the established involvement of transient receptor potential vanilloid type-1 (TRPV1) channels in inflammatory pain, we tested the capability of a dual FAAH/TRPV1 blocker, N-arachidonoyl-serotonin (AA-5-HT), to relieve oedema and pain in a model of acute inflammation, and compared its efficacy with that of a single FAAH inhibitor (URB597) or TRPV1 antagonist (capsazepine). Acute inflammation was induced by intraplantar injection of lambda-carrageenan into mice and the anti-inflammatory and anti-nociceptive actions of AA-5-HT were assessed at different doses, time points and treatment schedule. In addition, endocannabinoid levels were measured in paw skin and spinal cord. Systemic administration of AA-5-HT elicited dose-dependent anti-oedemigen and anti-nociceptive effects, whereas it was devoid of efficacy when given locally. When tested in a therapeutic regimen, the compound retained comparable anti-inflammatory effects. TRPV1 receptor mediated the anti-inflammatory property of AA-5-HT, whereas both CB(1) and TRPV1 receptors were involved in its anti-hyperalgesic activity. These effects were accompanied by an increase of the levels of the endocannabinoid anandamide (AEA) in both inflamed paw and spinal cord. AA-5-HT was more potent than capsazepine as anti-oedemigen and anti-hyperalgesic drug, whereas it shows an anti-oedemigen property similar to URB597, which was, however, devoid of the anti-nociceptive effect. AA-5-HT did not induce unwanted effects on locomotion and body temperature. In conclusion AA-5-HT has both anti-inflammatory and anti-hyperalgesic properties and its employment offers advantages, in terms of efficacy and lack of adverse effects, deriving from its dual activity.
Collapse
Affiliation(s)
- Barbara Costa
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
127
|
Stösser S, Agarwal N, Tappe-Theodor A, Yanagisawa M, Kuner R. Dissecting the functional significance of endothelin A receptors in peripheral nociceptors in vivo via conditional gene deletion. Pain 2010; 148:206-214. [DOI: 10.1016/j.pain.2009.09.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/28/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
|
128
|
Non-enzymatic NO production in human skin: Effect of UVA on cutaneous NO stores. Nitric Oxide 2010; 22:120-35. [DOI: 10.1016/j.niox.2009.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 12/27/2022]
|
129
|
Lu Y, Nie J, Liu X, Zheng Y, Guo SW. Trichostatin A, a histone deacetylase inhibitor, reduces lesion growth and hyperalgesia in experimentally induced endometriosis in mice. Hum Reprod 2010; 25:1014-25. [DOI: 10.1093/humrep/dep472] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
130
|
Luebbert M, Radtke D, Wodarski R, Damann N, Hatt H, Wetzel CH. Direct activation of transient receptor potential V1 by nickel ions. Pflugers Arch 2010; 459:737-50. [PMID: 20101408 DOI: 10.1007/s00424-009-0782-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 12/22/2009] [Accepted: 12/25/2009] [Indexed: 11/29/2022]
Abstract
TRPV1 is a member of the transient receptor potential (TRP) family of cation channels. It is expressed in sensory neurons of the dorsal root and trigeminal ganglia as well as in a wide range of non-neuronal tissues. The channel proteins serve as polymodal receptors for various potentially harmful stimuli to prevent tissue damage by mediating unpleasant or painful sensations. Using Ca imaging and voltage-clamp recordings, we found that low millimolar doses of Ni2+ (NiSO4) are able to induce non-specific cation currents in a capsaicin-sensitive population of cultured mouse trigeminal ganglion neurons. In addition, we show that NiSO4 elicits intracellular Ca2+ transients and membrane currents in HEK293 and CHO cells heterologously expressing rat TRPV1. The use of voltage ramps from -100 to +100 mV revealed a strong outward rectification of these currents. Application of NiSO4 to the cytoplasmic face of inside-out membrane patches did not induce any currents. However, delivering NiSO4 to the extracellular face during outside-out recordings, we observed a significant increase in open probability paralleled by a decrease in channel conductance. When combined with other TRPV1 agonists, NiSO4 produces a bimodal effect on TRPV1 activity, depending on the strength and concentration of the second stimulus. Outwardly directed currents induced by low doses of capsaicin and nearly neutral pH values ( approximately pH = 7.0-6.5) were augmented by low doses of NiSO4. In contrast, responses to stronger stimuli were reduced by NiSO4. Moreover, we were able to identify amino acids involved in the effect of NiSO4 on TRPV1.
Collapse
Affiliation(s)
- Matthias Luebbert
- Lehrstuhl für Zellphysiologie, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
131
|
Strichartz G. Beyond neurons: the complex sources of pain transduction. Pain 2009; 148:180-181. [PMID: 19917519 DOI: 10.1016/j.pain.2009.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 10/22/2009] [Indexed: 11/25/2022]
Affiliation(s)
- Gary Strichartz
- Brigham & Women's Hospital, Anesthesiology, Perioperative & Pain Medicine, 75 Francis Street, Boston, MA 02115-6110, USA. Tel.: +1 617 732 7802; fax: +1 617 730 2801
| |
Collapse
|
132
|
Alawi K, Keeble J. The paradoxical role of the transient receptor potential vanilloid 1 receptor in inflammation. Pharmacol Ther 2009; 125:181-95. [PMID: 19896501 DOI: 10.1016/j.pharmthera.2009.10.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 10/09/2009] [Indexed: 12/19/2022]
Abstract
The transient potential receptor vanilloid 1 (TRPV1) receptor is a non-selective cation channel that is chemically activated by capsaicin, the pungent component of hot peppers. In addition, endogenous compounds, in particular the endogenous cannabinoid receptor activator, anandamide, have been demonstrated to activate TRPV1 in vivo. TRPV1 receptors are also activated by temperatures within the noxious range (>43 degrees C) and low pH (<pH 6.0). TRPV1 receptors are predominantly expressed in primary afferent fibres which are peptidergic sensory neurones, such as the thinly myelinated A-delta and unmyelinated C-fibres. TRPV1 receptors have also been demonstrated to be present in non-neuronal cells. Historically, TRPV1 has been considered as a pro-inflammatory receptor due to its key role in several conditions, including neuropathic pain, joint inflammation and inflammatory bowel disease, amongst others. However, the purpose of this review is to underline the emerging new evidence which demonstrate paradoxical, protective functions for this unique receptor in vivo. For example, in experimentally induced sepsis, TRPV1 null mice demonstrated elevated levels of pathological markers in comparison to wild-type mice. In addition to the pro-inflammatory and protective roles of TRPV1 in pathophysiological states, TRPV1 has also been shown to have important functions under normal physiological conditions, for example in urinary bladder function, thermoregulation and neurogenesis. The emerging functions of TRPV1 highlight the necessity for further research in light of increasing reports of potential TRPV1 antagonists undergoing pre-clinical experimentations.
Collapse
Affiliation(s)
- Khadija Alawi
- Pharmaceutical Science Research Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE19NH, United Kingdom
| | | |
Collapse
|
133
|
Bíró T, Kovács L. An "ice-cold" TR(i)P to skin biology: the role of TRPA1 in human epidermal keratinocytes. J Invest Dermatol 2009; 129:2096-9. [PMID: 19809424 DOI: 10.1038/jid.2009.179] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent studies have suggested the expression of numerous heat-sensitive transient receptor potential (TRP) ion channels in non-neuronal cell populations of the skin. In this issue, Atoyan et al. provide evidence that the noxious cold-activated TRPA1 is widely expressed in various human cutaneous cells and that it may be directly involved in the regulation of keratinocyte proliferation and differentiation and in cutaneous inflammatory responses.
Collapse
Affiliation(s)
- Tamás Bíró
- Department of Physiology, University of Debrecen, Research Center for Molecular Medicine, Debrecen, Hungary.
| | | |
Collapse
|
134
|
Terán A, Fábrega E, Pons-Romero F. [Pruritus associated with cholestasis]. GASTROENTEROLOGIA Y HEPATOLOGIA 2009; 33:313-22. [PMID: 19836105 DOI: 10.1016/j.gastrohep.2009.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Accepted: 07/20/2009] [Indexed: 01/17/2023]
Abstract
Pruritus is commonly associated with cholestatic disorders and shows wide interindividual variability. The presence of skin lesions due to scratching and the application of a visual analogue scale are useful for clinical evaluation. Although the pathophysiology of this entity is not well understood, advances have recently been made in understanding of the pruritoceptive neural pathway, which shares certain similarities with the nociceptive pathway, although there are other distinguishing characteristics such as the action of a specific neurotransmitter, GPR, on the first synapsis at the posterior horn of the spinal cord. Amongst the modulator systems of the pruritoceptive pathway is the action of the endogenous opioids. An increase of these opioids in cholestatic situations is the most widely accepted hypothesis for pruritus in these patients. Some treatments have proven efficacy in randomized clinical trials in patients with cholestatic disorders, such as anion exchange resins, rifampicin, opioid antagonists and ursodeoxycholic acid; the latter is especially useful in intrahepatic cholestasis of pregnancy.
Collapse
Affiliation(s)
- Alvaro Terán
- Servicio de Aparato Digestivo, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, España.
| | | | | |
Collapse
|
135
|
|
136
|
Choi TY, Park SY, Jo JY, Kang G, Park JB, Kim JG, Hong SG, Kim CD, Lee JH, Yoon TJ. Endogenous expression of TRPV1 channel in cultured human melanocytes. J Dermatol Sci 2009; 56:128-30. [PMID: 19656659 DOI: 10.1016/j.jdermsci.2009.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 06/29/2009] [Accepted: 07/05/2009] [Indexed: 10/20/2022]
|
137
|
Abstract
Systems biology is being increasingly used to probe the underlying pathophysiology of asthma, although serious challenges remain to decipher the physiologic significance of the information revealed in these studies relating to gene expression and regulatory gene networks often used to understand gene-gene interactions. One phenotypic change characteristic of asthma is increased airway irritability, or bronchial hyperresponsiveness (BHR) which is still poorly understood. While the precise mechanism(s) remain(s) to be identified, a number of hypotheses have been posited to account for this phenomenon, including airways inflammation, alteration in airway smooth muscle function, and airway remodeling. However, the role of sensory nerves in this phenomenon has received scant attention yet offers a potentially new target for the development of novel drugs.
Collapse
Affiliation(s)
- Domenico Spina
- The Sackler Institute of Pulmonary Pharmacology, Pharmaceutical Science Division, 5th Floor Hodgkin Building, Kings College London, London SE1 1UL, United Kingdom.
| | | |
Collapse
|
138
|
Saunders CI, Fassett RG, Geraghty DP. Up-regulation of TRPV1 in mononuclear cells of end-stage kidney disease patients increases susceptibility to N-arachidonoyl-dopamine (NADA)-induced cell death. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1019-26. [PMID: 19619644 DOI: 10.1016/j.bbadis.2009.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/19/2009] [Accepted: 07/13/2009] [Indexed: 01/06/2023]
Abstract
Transient receptor potential vanilloid (TRPV) 1 channels function as sensors for a variety of noxious and inflammatory signals, including capsaicin, heat and protons, and are up-regulated under inflammatory conditions. As end-stage kidney disease (ESKD) is associated with chronic inflammation, impaired immunity and depressed lymphocyte numbers, we sought to determine whether altered TRPV1 (and related TRPV2) expression in immune cells might be a contributing factor. TRPV1 and TRPV2 mRNA expression in peripheral blood mononuclear cells (PBMC) was similar in controls and ESKD patients by quantitative real-time RT-PCR. However, using immunocytochemistry, TRPV1-immunoreactivity was significantly higher and TRPV2-immunoreactivity was significantly lower in PBMC from ESKD patients compared to controls. The plant-derived TRPV1 agonists, capsaicin and resiniferatoxin (RTX) and the putative endovanilloid/endocannabinoids, N-arachidonoyl-dopamine (NADA) and N-oleoyl-dopamine (OLDA), induced concentration-dependent death of PBMC from healthy donors with a rank order of potency of RTX>NADA>OLDA>>capsaicin. TRPV1 (5'-iodoresiniferatoxin) and cannabinoid (CB2; AM630) receptor antagonists blocked the cytotoxic effect of NADA. In subsequent experiments, PBMC from ESKD patients exhibited significantly increased susceptibility to NADA-induced death compared to PBMC from controls. The apparent up-regulation of TRPV1 may be a response to the inflammatory milieu in which PBMC exist in ESKD and may be responsible for the increased susceptibility of these cells to NADA-induced death, providing a possible explanation as to why ESKD patients have reduced lymphocyte counts and impaired immune function. Thus, TRPV1 (and possibly CB2) antagonists may have potential for the treatment of immune dysfunction in ESKD.
Collapse
Affiliation(s)
- Cassandra I Saunders
- School of Human Life Sciences, University of Tasmania, Locked Bag 1320, Launceston, Tasmania, 7250, Australia
| | | | | |
Collapse
|
139
|
Mitchell JE, Campbell AP, New NE, Sadofsky LR, Kastelik JA, Mulrennan SA, Compton SJ, Morice AH. EXPRESSION AND CHARACTERIZATION OF THE INTRACELLULAR VANILLOID RECEPTOR (TRPV1) IN BRONCHI FROM PATIENTS WITH CHRONIC COUGH. Exp Lung Res 2009; 31:295-306. [PMID: 15962710 DOI: 10.1080/01902140590918803] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
TRPV1 is a modulator of noxious stimuli known to be important in the cough reflex. We have compared the expression of TRPV1 in normal human airways and those from patients with chronic cough and found that there is up regulation in airways smooth muscle in disease. This increased expression appears to be intracellular and we have therefore examined the role of intracellular rat and human TRPV1 activity was found using intracellular calcium signalling with human intracellular TRPV1 being located in a thapsigargin insensitive compartment. Increase in TRPV1 activity may have a role in the airway hypersensitivity seen in chronic cough.
Collapse
Affiliation(s)
- Jennifer E Mitchell
- Department of Cellular Pathology, Hull Royal Infirmary, Hull, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Cheng L, de la Monte S, Ma J, Hong J, Tong M, Cao W, Behar J, Biancani P, Harnett KM. HCl-activated neural and epithelial vanilloid receptors (TRPV1) in cat esophageal mucosa. Am J Physiol Gastrointest Liver Physiol 2009; 297:G135-43. [PMID: 19389802 PMCID: PMC2711757 DOI: 10.1152/ajpgi.90386.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To test whether transient receptor potential channel vanilloid subfamily member-1 (TRPV1) mediates acid-induced inflammation in the esophagus, a tubular segment of esophageal mucosa was tied at both ends, forming a sac. The sac was filled with 0.01 N HCl (or Krebs buffer for control) and kept in oxygenated Krebs buffer at 37 degrees C. The medium around the sac (supernatant) was collected after 3 h. Supernatant of the HCl-filled sac abolished contraction of esophageal circular muscle strips in response to electric field stimulation. Contraction was similarly abolished by supernatant of mucosal sac filled with the TRPV1 agonist capsaicin (10(-6) M). These effects were reversed by the selective TRPV1 antagonist 5'-iodoresiniferatoxin (IRTX) and by the platelet-activating factor (PAF) receptor antagonist CV9388. Substance P and CGRP levels in mucosa and in supernatant increased in response to HCl, and these increases were abolished by IRTX and by tetrodotoxin (TTX) but not affected by CV9388, indicating that substance P and CGRP are neurally released and PAF independent. In contrast, the increase in PAF was blocked by IRTX but not by TTX. Presence of TRPV1 receptor was confirmed by RT-PCR and by Western blot analysis in whole mucosa and in esophageal epithelial cells enzymatically isolated and sorted by flow cytometry or immunoprecipitated with cytokeratin antibodies. In epithelial cells PAF increased in response to HCl, and the increase was abolished by IRTX. We conclude that HCl-induced activation of TRPV1 receptors in esophageal mucosa causes release of substance P and CGRP from neurons and release of PAF from epithelial cells.
Collapse
Affiliation(s)
- Ling Cheng
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; and School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Suzanne de la Monte
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; and School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jie Ma
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; and School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jie Hong
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; and School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; and School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Weibiao Cao
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; and School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jose Behar
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; and School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Piero Biancani
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; and School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Karen M. Harnett
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; and School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
141
|
Shrestha S, Gracias NG, Mujenda F, Khodorova A, Vasko MR, Strichartz GR. Local antinociception induced by endothelin-1 in the hairy skin of the rat's back. THE JOURNAL OF PAIN 2009; 10:702-14. [PMID: 19559389 PMCID: PMC2720057 DOI: 10.1016/j.jpain.2008.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/09/2008] [Accepted: 12/17/2008] [Indexed: 10/20/2022]
Abstract
UNLABELLED Subcutaneous injection of endothelin-1 (ET-1) into the glabrous skin of the rat's hind paw is known to produce impulses in nociceptors and acute nocifensive behavioral responses, such as hind paw flinching, and to sensitize the skin to mechanical and thermal stimulation. In this report, we show that in contrast to the responses in glabrous skin, ET-1 injected subcutaneously into rat hairy skin causes transient antinociception. Concentrations of 1 to 50 microM ET-1 (in 0.05 mL) depress the local nocifensive response to noxious tactile probing at the injection site with von Frey filaments for 30 to 180 minutes; distant injections have no effect at this site, showing that the response is local. Selective inhibition of ET(A) but not of ET(B) receptors inhibits this antinociception, as does coinjection with nimodipine (40 muM), a blocker of L-type Ca(2+) channels. Local subcutaneous injection of epinephrine (45 microM) also causes antinociception through alpha-1 adrenoreceptors, but such receptors are not involved in the ET-1-induced effect. Both epinephrine and ET-1, at antinociceptive concentrations, reduce blood flow in the skin; the effect from ET-1 is largely prevented by subcutaneous nimodipine. These data suggest that ET-1-induced antinociception in the hairy skin of the rat involves cutaneous vasoconstriction, presumably through neural ischemia, resulting in conduction block. PERSPECTIVE The pain-inducing effects of ET-1 have been well documented in glabrous skin of the rat, a frequently used test site. The opposite behavioral effect, antinociception, occurs from ET-1 in hairy skin and is correlated with a reduction in blood flow. Vasoactive effects are important in assessing mechanisms of peripherally acting agents.
Collapse
Affiliation(s)
- Saurav Shrestha
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
142
|
Argoff CE, Albrecht P, Irving G, Rice F. Multimodal Analgesia for Chronic Pain: Rationale and Future Directions. PAIN MEDICINE 2009; 10 Suppl 2:S53-66. [DOI: 10.1111/j.1526-4637.2009.00669.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
143
|
Transient receptor potential vanilloid-1 signaling inhibits differentiation and activation of human dendritic cells. FEBS Lett 2009; 583:1619-24. [PMID: 19397909 DOI: 10.1016/j.febslet.2009.04.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/31/2009] [Accepted: 04/20/2009] [Indexed: 11/23/2022]
Abstract
The goal of the current study was to investigate the expression of transient receptor potential vanilloid-1 (TRPV1) on human in vitro differentiated monocyte-derived dendritic cells (DCs) and to dissect the corresponding role of TRPV1-signaling in DC-specific functions. TRPV1 expression was identified both at the protein and gene levels in human DCs. Moreover, the prototypic TRPV1 agonist capsaicin specifically (i.e. via TRPV1) and dose-dependently inhibited cytokine-induced DC differentiation, phagocytosis of bacteria, activation of DCs, and pro-inflammatory cytokine secretion. These data introduce TRPV1-coupled signaling as a novel player in human monocyte-derived DC biology with anti-inflammatory actions.
Collapse
|
144
|
The protective effect of genistein postconditioning on hypoxia/reoxygenation-induced injury in human gastric epithelial cells. Acta Pharmacol Sin 2009; 30:576-81. [PMID: 19349965 DOI: 10.1038/aps.2009.29] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM The aim of this study was to investigate the protective effect of genistein postconditioning on hypoxia/reoxygenation-induced injury in human gastric epithelial cells and to begin a tentative discussion on the mechanism behind this protection. METHODS A model of hypoxia/reoxygenation-induced injury was established in the human gastric epithelial cell line (GES-1). All cells in our present study were randomly divided into five groups: a normal control group (N), a hypoxia/reoxygenation group (H/R), a genistein postconditioning group (GP), a capsazepine+genistein postconditioning group (C+GP) and a DMSO vehicle postconditioning group (DM). The methods used included MTT assays to test cell viability, flow cytometric analyses to quantify the percentage of cell apoptosis, Western blot analyses to measure the protein expression of calcitonin gene-related peptide (CGRP), Bcl-2, and Bax, and immunocytochemistry assays to detect the expression of CGRP in each group. RESULTS The MTT assays indicated that the cell viabilities of the groups were 100.0%+/-0%, 51.4%+/-4.1%, 66.7%+/-2.0%, 56.1%+/-2.8%, and 50.7%+/-2.4%, respectively. Compared with the H/R group, the viability of the GP group was significantly increased (P<0.01). Flow cytometric analysis showed that the cell apoptosis percentage of each group was 2.28%+/-0.44%, 12.17%+/-2.15%, 5.40%+/-1.22%, 10.43%+/-1.37%, and 11.02%+/-2.19%, respectively. Western blot analysis demonstrated that CGRP, Bcl-2, and Bax were expressed in normal human gastric epithelial cells. Compared with the H/R group, the GP group exhibited increased expression of CGRP and Bcl-2 and decreased expression of Bax. Immunocytochemistry assays indicated that the number of CGRP-positive cells in the GP group was significantly increased. CONCLUSION Genistein postconditioning has a protective effect on hypoxia/reoxygenation-induced injury in human gastric epithelial cells. The mechanism by which genistein exerts this protection may be via activation of cellular vanilloid receptor subtype 1, resulting in the generation of an endogenous protection substance, CGRP.
Collapse
|
145
|
Lee YM, Kim YK, Kim KH, Park SJ, Kim SJ, Chung JH. A novel role for the TRPV1 channel in UV-induced matrix metalloproteinase (MMP)-1 expression in HaCaT cells. J Cell Physiol 2009; 219:766-75. [PMID: 19206161 DOI: 10.1002/jcp.21729] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) is a molecular sensor for detecting adverse stimuli, such as capsaicin, heat, and acid. TRPV1 has been localized in keratinocytes and is suggested to be a mediator of heat-induced matrix metalloproteinase-1 (MMP-1). With regard to the multimodal activation of TRPV1, we hypothesize that TRPV1 might also mediate UV-induced MMP-1 in keratinocytes. In HaCaT, a human keratinocyte cell line, we initially confirmed capsaicin-induced membrane current and Ca(2+) influx. UV irradiation induced slow and persistent calcium influx and increased membrane current, which was inhibited by TRPV1 inhibitors (capsazepine and ruthenium red). The UV-induced MMP-1 expression in HaCaT was also decreased by TRPV1 inhibitors and was facilitated by capsaicin. Knock-down of TRPV1 using siRNA transfection also decreased MMP-1 expression, as well as UV-induced Ca(2+) influx in HaCaT. UV failed to induce MMP-1 expression in HaCaT cells cultured in Ca(2+)-free media. Both the UV-induced increase in [Ca(2+)](i) and MMP-1 were suppressed by Gö6976 (a calcium-dependent PKC inhibitor), but not by rottlerin (a calcium-independent PKC inhibitor). In addition to a plausible role of TRPV1 in UV-induced MMP-1 expression, we showed that UV increased TRPV1 expression in both HaCaT cells and human skin in vivo. From these results, we suggest that UV-induced MMP-1 expression might be mediated in part by PKC-dependent activation of TRPV1 and subsequent Ca(2+)-influx in human keratinocytes. J. Cell. Physiol. 219: 766-775, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Young Mee Lee
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Institute of Dermatological Science, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
146
|
Peles S, Medda BK, Zhang Z, Banerjee B, Lehmann A, Shaker R, Sengupta JN. Differential effects of transient receptor vanilloid one (TRPV1) antagonists in acid-induced excitation of esophageal vagal afferent fibers of rats. Neuroscience 2009; 161:515-25. [PMID: 19324074 DOI: 10.1016/j.neuroscience.2009.03.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/17/2009] [Accepted: 03/17/2009] [Indexed: 12/17/2022]
Abstract
Gastro-esophageal acid reflux can stimulate esophageal vagal sensory afferents by activating proton-sensitive ion channel transient receptor vanilloid one (TRPV1). The objective of this study was to investigate the response characteristics of vagal afferent fibers of rats to acid (0.1 N HCl) and capsaicin (CAP) following esophagitis and differential effects of two classes of TRPV1 antagonists on responses of vagal afferent fibers. The chronic reflux was induced by ligating the fundus of the stomach and partial constriction of pylorus. Extracellular single fiber recordings were made from the cervical vagal afferent fibers from naive control and fundus-ligated (FL) esophagitis rats. Innervations of fibers were identified to esophageal distension (ED) and subsequently tested to CAP and acid before and after injection of TRPV1 antagonist JYL1421 or AMG9810 (10 micromol/kg i.v.). Seventy-five vagal afferent fibers from 70 rats were identified to ED. Intra-esophageal CAP (0.1 ml of 1 mg/ml) excited 39.5% (17/43, 5/22 from naive and 12/21 from FL rats) fibers. In contrast, i.v. injection of CAP (0.03-0.3 micromol/kg) dose-dependently excited 72% (42/58) fibers. Responses to CAP were significantly greater for fibers from FL rats (n=32) than naive rats (n=25). TRPV1 antagonists JYL1421 and AMG9810 (10 micromol/kg) significantly blocked response to CAP. Intra-esophageal acid infusion stimulated 5/17 (29.4%) fibers from naive rats and 12/28 (42%) from FL rats. Effect of acid was significantly blocked by AMG9810, but not by JYL1421. Results indicate that following esophagitis the number of fibers responsive to CAP and acid is greater than noninflamed esophagus, which may contribute to esophageal hypersensitivity. Acid-induced excitation of vagal sensory afferents can be differentially attenuated by different classes of TRPV1 antagonists. Therefore, TRPV1 antagonists play a key role in attenuation of hypersensitivity following reflux-induced esophagitis. The use of TRPV1 antagonists could be an alternative to the traditional symptoms-based treatment of chronic acid reflux and esophageal hypersensitivity.
Collapse
Affiliation(s)
- S Peles
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
Marincsák R, Tóth BI, Czifra G, Márton I, Rédl P, Tar I, Tóth L, Kovács L, Bíró T. Increased expression of TRPV1 in squamous cell carcinoma of the human tongue. Oral Dis 2009; 15:328-35. [PMID: 19320840 DOI: 10.1111/j.1601-0825.2009.01526.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Recent reports have unambiguously identified the presence and the growth-modulatory role of transient receptor potential vanilloid-1 (TRPV1), a central integrator of pain sensation, on numerous non-neuronal cell types and, of great importance, in certain malignancies. In this study, we have investigated the molecular expression of TRPV1 in the human tongue and its high-incidence malignant (squamous cell carcinoma, SCC) and premalignant (leukoplakia) conditions. METHODS Immunohistochemistry, Western blotting and quantitative 'real-time' Q-PCR were performed to define the expression of TRPV1. RESULTS A weak and sparse TRPV1-specific immunoreactivity was identified in the basal layers of the healthy human tongue epithelium. By contrast, we observed a dramatically elevated TRPV1-immunoreactivity in all layers of the epithelium both in precancerous and malignant samples. Furthermore, statistical analysis revealed that the marked overexpression of TRPV1 found in all grades of SCC showed no correlation with the degree of malignancy of the tumours. Finally, the molecular expression of TRPV1 was also identified in an SCC-derived cell line and was shown to be increased in parallel with the accelerated growth of the cells. CONCLUSION Collectively, our findings identify TRPV1 as a novel, promising target molecule in the supportive treatment and diagnosis of human tongue SCC.
Collapse
Affiliation(s)
- R Marincsák
- Department of Physiology, University of Debrecen, Medical and Health Science Centre, Research Centre for Molecular Medicine, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Khodorova A, Montmayeur JP, Strichartz G. Endothelin receptors and pain. THE JOURNAL OF PAIN 2009; 10:4-28. [PMID: 19111868 DOI: 10.1016/j.jpain.2008.09.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 09/08/2008] [Accepted: 09/30/2008] [Indexed: 12/11/2022]
Abstract
UNLABELLED The endogenous endothelin (ET) peptides participate in a remarkable variety of pain-relatedprocesses. Pain that is elevated by inflammation, by skin incision, by cancer, during a Sickle Cell Disease crisis and by treatments that mimic neuropathic and inflammatory pain and are all reduced by local administration of antagonists of endothelin receptors. Many effects of endogenously released endothelin are simulated by acute, local subcutaneous administration of endothelin, which at very high concentrations causes pain and at lower concentrations sensitizes the nocifensive reactions to mechanical, thermal and chemical stimuli. PERSPECTIVE In this paper we review the biochemistry, second messenger pathways and hetero-receptor coupling that are activated by ET receptors, the cellular physiological responses to ET receptor activation, and the contribution to pain of such mechanisms occurring in the periphery and the CNS. Our goal is to frame the subject of endothelin and pain for a broad readership, and to present the generally accepted as well as the disputed concepts, including important unanswered questions.
Collapse
Affiliation(s)
- Alla Khodorova
- Department of Anesthesiology, Perioperative and Pain Medicine, Pain Research Center, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115-6110, USA
| | | | | |
Collapse
|
149
|
Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J Neurosci 2009; 28:13727-37. [PMID: 19091963 DOI: 10.1523/jneurosci.5741-07.2008] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability to sense changes in the environment is essential for survival because it permits responses such as withdrawal from noxious stimuli and regulation of body temperature. Keratinocytes, which occupy much of the skin epidermis, are situated at the interface between the external environment and the body's internal milieu, and have long been appreciated for their barrier function against external insults. The recent discovery of temperature-sensitive transient receptor potential vanilloid (TRPV) ion channels in keratinocytes has raised the possibility that these cells also actively participate in acute temperature and pain sensation. To address this notion, we generated and characterized transgenic mice that overexpress TRPV3 in epidermal keratinocytes under the control of the keratin 14 promoter. Compared with wild-type controls, keratinocytes overexpressing TRPV3 exhibited larger currents as well as augmented prostaglandin E(2) (PGE(2)) release in response to two TRPV3 agonists, 2-aminoethoxydiphenyl borate (2APB) and heat. Thermal selection behavior and heat-evoked withdrawal behavior of naive mice overexpressing TRPV3 were not consistently altered. Upon selective pharmacological inhibition of TRPV1 with JNJ-17203212 [corrected], however, the keratinocyte-specific TRPV3 transgenic mice showed increased escape responses to noxious heat relative to their wild-type littermates. Coadministration of the cyclooxygenase inhibitor, ibuprofen, with the TRPV1 antagonist decreased inflammatory thermal hyperalgesia in transgenic but not wild-type animals. Our results reveal a previously undescribed mechanism for keratinocyte participation in thermal pain transduction through keratinocyte TRPV3 ion channels and the intercellular messenger PGE(2).
Collapse
|
150
|
Short interfering RNA against transient receptor potential vanilloid 1 attenuates cisplatin-induced hearing loss in the rat. J Neurosci 2009; 28:13056-65. [PMID: 19052196 DOI: 10.1523/jneurosci.1307-08.2008] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cisplatin, a chemotherapeutic agent of choice for the treatment of solid tumors, produces hearing loss in approximately half a million new cancer patients annually in the United States. The hearing loss is due, in part, to increased generation of reactive oxygen species (ROS) in the cochlea, leading to lipid peroxidation and damage or death of outer hair cells in the organ of Corti. The cochlea expresses the transient receptor potential vanilloid 1 (TRPV1), which are normally expressed on small diameter neurons in the peripheral nervous system and mediate thermal sensitivity, but whose role in the cochlea is unclear. In this study, we show that TRPV1 is coregulated along with the NADPH oxidase isoform, NOX3, by cisplatin. Induction of these proteins by cisplatin is dependent on ROS generation, since it is reversed by systemic lipoic acid administration. In organ of Corti hair cell cultures (UB/OC-1 cells), cisplatin activates and induces TRPV1 and NOX3, leading to apoptosis of these cells. Inhibition of TRPV1 by capsazepine or ruthenium red reduced the apoptosis, implicating TRPV1 in this process. Treatment of UB/OC-1 cultures with short interfering RNA (siRNA) against either TRPV1 or NOX3 reduced cisplatin-induced apoptosis, while round window application of TRPV1 siRNA to rats reduced TRPV1 expression, decreased damage to outer hair cells and reduced cisplatin-induced hearing loss. These data provide a link between NOX3 and TRPV1 in cisplatin-induced hearing loss and suggest that targeting these proteins for knockdown by siRNA could serve as a novel approach in treating cisplatin ototoxicity.
Collapse
|