101
|
Abstract
Converging data from multiple lines of research provide growing understanding of the pharmacological basis of the efficacy and tolerability of antipsychotic agents. This review highlights some of the drawbacks of the current practice of classifying antipsychotic agents into first- and second-generation agents, and argues that much of what is known about an antipsychotic agent in terms of its efficacy and tolerability can be predicted from its binding affinity at different receptors. This makes a case for a new system of classification that reflects the receptor binding affinity profiles of individual antipsychotic agents. In its quest to make a compelling case, the review provides detailed explanations for the pharmacological basis of antipsychotic efficacy, antipsychotic-induced weight gain and diabetes mellitus, cognitive effects and other adverse effects.
Collapse
Affiliation(s)
- Ripu D Jindal
- Department of Psychiatry, University of Ottawa School of Medicine, Ottawa, Ontario, Canada.
| | | |
Collapse
|
102
|
Abstract
Voltage-clamp techniques are typically used to study the plasma membrane proteins, such as ion channels and transporters that control bioelectrical signals. Many of these proteins have been cloned and can now be studied as potential targets for drug development. The two approaches most commonly used for heterologous expression of cloned ion channels and transporters involve either transfection of the genes into small cells grown in tissue culture or the injection of the genetic material into larger cells. The standard large cells used for the expression of cloned cDNA or synthetic RNA are the egg progenitor cells (oocytes) of the African frog, Xenopus laevis. Until recently, cellular electrophysiology was performed manually by a single operator, one cell at a time. However, methods of high throughput electrophysiology have been developed which are automated and permit data acquisition and analysis from multiple cells in parallel. These methods are breaking a bottleneck in drug discovery, useful in some cases for primary screening as well as for thorough characterization of new drugs. Increasing throughput of high-quality functional data greatly augments the efficiency of academic research and pharmaceutical drug development. Some examples of studies that benefit most from high throughput electrophysiology include pharmaceutical screening of targeted compound libraries, secondary screening of identified compounds for subtype selectivity, screening mutants of ligand-gated channels for changes in receptor function, scanning mutagenesis of protein segments, and mutant-cycle analysis. We describe here the main features and potential applications of OpusXpress, an efficient commercially available system for automated recording from Xenopus oocytes. We show some types of data that have been gathered by this system and review realized and potential applications.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, USA.
| | | |
Collapse
|
103
|
Horenstein NA, Leonik FM, Papke RL. Multiple pharmacophores for the selective activation of nicotinic alpha7-type acetylcholine receptors. Mol Pharmacol 2008; 74:1496-511. [PMID: 18768388 PMCID: PMC2999882 DOI: 10.1124/mol.108.048892] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activation of heteromeric and homomeric nicotinic acetylcholine receptors was studied in Xenopus laevis oocytes to identify key structures of putative agonist molecules associated with the selective activation of homomeric alpha7 receptors. We observed that selectivity between alpha7 and alpha4beta2 was more readily obtained than selectivity between alpha7 and alpha3beta4. Based on structural comparisons of previously characterized selective and nonselective agonists, we hypothesize at least three chemical motifs exist that, when present in molecules containing an appropriate cationic center, could be associated with the selective activation of alpha7 receptors. We identify the three distinct structural motifs based on prototypical drugs as the choline motif, the tropane motif, and the benzylidene motif. The choline motif involves the location of an oxygen-containing polar group such as a hydroxyl or carbonyl separated by two carbons from the charged nitrogen. The tropane motif provides alpha7-selectivity based on the addition of multiple small hydrophobic groups positioned away from the cationic center in specific orientations. We show that this motif can convert the nonselective agonists quinuclidine and ethyltrimethyl-ammonium to the alpha7-selective analogs methyl-quinuclidine and diethyldimethyl-ammonium, respectively. We have shown previously that the benzylidene group of 3-2,4, dimethoxy-benzylidene anabaseine (GTS-21) converts anabaseine into an alpha7-selective agonist. The benzylidene motif was also applied to quinuclidine to generate another distinct family of alpha7-selective agonists. Our results provide insight for the further development of nicotinic therapeutics and will be useful to direct future experiments with protein structure-based modeling and site-directed mutagenesis.
Collapse
Affiliation(s)
- Nicole A Horenstein
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610-0267, USA
| | | | | |
Collapse
|
104
|
Bertrand D, Bertrand S, Cassar S, Gubbins E, Li J, Gopalakrishnan M. Positive allosteric modulation of the alpha7 nicotinic acetylcholine receptor: ligand interactions with distinct binding sites and evidence for a prominent role of the M2-M3 segment. Mol Pharmacol 2008; 74:1407-16. [PMID: 18678621 DOI: 10.1124/mol.107.042820] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The alpha7 nicotinic acetylcholine receptor (nAChR), a homopentameric, rapidly activating and desensitizing ligand-gated ion channel with relatively high degree of calcium permeability, is expressed in the mammalian central nervous system, including regions associated with cognitive processing. Selective agonists targeting the alpha7 nAChR have shown efficacy in animal models of cognitive dysfunction. Use of positive allosteric modulators selective for the alpha7 receptor is another strategy that is envisaged in the design of active compounds aiming at improving attention and cognitive dysfunction. The recent discovery of novel positive allosteric modulators such as 1-(5-chloro-2-hydroxyphenyl)-3-(2-chloro-5-trifluoromethylphenyl)urea (NS-1738) and 1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)urea (PNU-120596) that are selective for the alpha7 nAChRs but display significant phenotypic differences in their profile of allosteric modulation, suggests that these molecules may act at different sites on the receptor. Taking advantage of the possibility to obtain functional receptors by the fusion of proteins domains from the alpha7 and the 5-HT(3) receptor, we examined the structural determinants required for positive allosteric modulation. This strategy revealed that the extracellular N-terminal domain of alpha7 plays a critical role in allosteric modulation by NS-1738. In addition, alpha7-5HT(3) chimeras harboring the M2-M3 segment showed that spontaneous activity in response to NS-1738, which confirmed the critical contribution of this small extracellular segment in the receptor gating. In contrast to NS-1738, positive allosteric modulation by PNU-120596 could not be restored in the alpha7-5HT(3) chimeras but was selectively observed in the reverse 5HT(3)-alpha7 chimera. All together, these data illustrate the existence of distinct allosteric binding sites with specificity of different profiles of allosteric modulators and open new possibilities to investigate the alpha7 receptor function.
Collapse
Affiliation(s)
- Daniel Bertrand
- Dept of Neuroscience, Centre Meédical Universitaire, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | | | |
Collapse
|
105
|
van der Staay FJ, Rutten K, Bärfacker L, DeVry J, Erb C, Heckroth H, Karthaus D, Tersteegen A, van Kampen M, Blokland A, Prickaerts J, Reymann KG, Schröder UH, Hendrix M. The novel selective PDE9 inhibitor BAY 73-6691 improves learning and memory in rodents. Neuropharmacology 2008; 55:908-18. [DOI: 10.1016/j.neuropharm.2008.07.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 07/01/2008] [Accepted: 07/04/2008] [Indexed: 02/05/2023]
|
106
|
Levin ED, Petro A, Rezvani AH, Pollard N, Christopher NC, Strauss M, Avery J, Nicholson J, Rose JE. Nicotinic alpha7- or beta2-containing receptor knockout: effects on radial-arm maze learning and long-term nicotine consumption in mice. Behav Brain Res 2008; 196:207-13. [PMID: 18831991 DOI: 10.1016/j.bbr.2008.08.048] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 08/28/2008] [Accepted: 08/31/2008] [Indexed: 11/17/2022]
Abstract
Classically, it has been thought that high-affinity nicotinic receptors-containing beta2 subunits are the most important receptor subtypes for nicotinic involvement in cognitive function and nicotine self-administration, while low affinity alpha7-containing nicotinic receptors have not been thought to be important. In the current study, we found that knockout of either beta2 or alpha7 subunits caused significant deficits in spatial discrimination in mice. The character of the impairment in the two knockouts was different. The beta2 knockout preferentially impaired cognition in males while the alpha7 caused impairment regardless of sex. Both beta2- and alpha7-containing nicotinic receptors also are important for nicotine self-administration, also in different ways. Most animal model studies of nicotine self-administration are relatively short-term whereas the problem of tobacco addiction is considerably longer-term. To better model the impact of nicotinic receptor subtypes on nicotine self-administration over the long-term, we studied the impact of genetic knockout of low affinity alpha7 receptors vs. high-affinity beta2-containing nicotinic receptors. Mice with knockouts of either of these receptors and their wildtype counter parts were given free access to a choice of nicotine-containing and nicotine-free solution in their home cages on a continuous basis over a period of 5 months. During the first few weeks, the beta2-containing nicotinic receptor knockout mice showed a significant decrease in nicotine consumption relative to wildtype mice, whereas the alpha7 knockout mice did not significantly differ from wildtype controls at the beginning of their access to nicotine. Interestingly, in the longer-term after the first few weeks of nicotine access, the beta2 knockout mice returned to wildtype mouse levels of nicotine consumption, whereas the alpha7 knockout mice developed an emergent decrease in nicotine consumption. The alpha7 receptor knockout-induced decrease in nicotine consumption persisted for the 5-month period of the study. Both alpha7- and beta2-containing nicotinic receptors play critical roles in cognitive function and nicotine self-administration. Regarding cognitive function, beta2-containing receptors are important for maintaining normal sex differences in spatial learning and memory, whereas alpha7 receptors are important for cognitive function regardless of sex. Regarding nicotine self-administration high-affinity beta2-containing nicotinic receptors are important for consumption during the initial phase of nicotine access, but it is the alpha7 nicotinic receptors that are important for the longer-term regulation of nicotine consumption.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Feuerbach D, Lingenhoehl K, Olpe HR, Vassout A, Gentsch C, Chaperon F, Nozulak J, Enz A, Bilbe G, McAllister K, Hoyer D. The selective nicotinic acetylcholine receptor alpha7 agonist JN403 is active in animal models of cognition, sensory gating, epilepsy and pain. Neuropharmacology 2008; 56:254-63. [PMID: 18793655 DOI: 10.1016/j.neuropharm.2008.08.025] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 08/01/2008] [Accepted: 08/11/2008] [Indexed: 11/25/2022]
Abstract
Several lines of evidence suggest that the nicotinic acetylcholine receptor alpha7 (nAChR alpha7) is involved in central nervous system disorders like schizophrenia and Alzheimer's disease as well as in inflammatory disorders like sepsis and pancreatitis. The present article describes the in vivo effects of JN403, a compound recently characterized to be a potent and selective partial nAChR alpha7 agonist. JN403 rapidly penetrates into the brain after i.v. and after p.o. administration in mice and rats. In the social recognition test in mice JN403 facilitates learning/memory performance over a broad dose range. JN403 shows anxiolytic-like properties in the social exploration model in rats and the effects are retained after a 6h pre-treatment period and after subchronic administration. The effect on sensory inhibition was investigated in DBA/2 mice, a strain with reduced sensory inhibition under standard experimental conditions. Systemic administration of JN403 restores sensory gating in DBA/2 mice, both in anaesthetized and awake animals. Furthermore, JN403 shows anticonvulsant potential in the audiogenic seizure paradigm in DBA/2 mice. In the two models of permanent pain tested, JN403 produces a significant reversal of mechanical hyperalgesia. The onset was fast and the duration lasted for about 6h. Altogether, the present set of data suggests that nAChR alpha7 agonists, like JN403 may be beneficial for improving learning/memory performance, restoring sensory gating deficits, and alleviating pain, epileptic seizures and conditions of anxiety.
Collapse
Affiliation(s)
- Dominik Feuerbach
- Novartis Institutes for BioMedical Research, WSJ386.725, 4002 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Roncarati R, Seredenina T, Jow B, Jow F, Papini S, Kramer A, Bothmann H, Dunlop J, Terstappen GC. Functional properties of alpha7 nicotinic acetylcholine receptors co-expressed with RIC-3 in a stable recombinant CHO-K1 cell line. Assay Drug Dev Technol 2008; 6:181-93. [PMID: 18471073 DOI: 10.1089/adt.2007.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heterologous functional expression of alpha7 nicotinic acetylcholine receptors (nAChRs) is difficult to achieve in mammalian cell lines, and the reasons have been associated with a lack of expression of the putative chaperone factor RIC-3. Here, we describe the generation and functional and pharmacological characterization of a Chinese hamster ovary (CHO)-K1 cell line co-expressing the human alpha7 nAChR and RIC-3. Stable recombinant cells expressing alpha7 nAChR on the plasma membrane were selected by binding of fluorochrome-conjugated alpha-bungarotoxin and fluorescence-activated cell sorting. The presence of functional alpha7 channels was demonstrated by whole cell patch clamp recordings. Nicotine and acetylcholine induced rapid desensitizing currents with 50% effective concentration values of 14 and 37 microM, respectively, with agonist-evoked currents detected in approximately 75% of the cell population. Surprisingly, when tested in a FLIPR (Molecular Devices, Sunnyvale, CA) Ca(2+) assay, activation of alpha7 nAChRs was measured only when nicotinic agonists were applied either in the presence of the positive allosteric modulator (PAM) PNU-120596 or after pretreatment of cells with the tyrosine kinase inhibitor genistein. No Ca(2+) influx was measured upon addition of agonists alone or together with allosteric potentiators such as 5-hydroxyindole that predominantly increase the apparent peak amplitude without robustly affecting the current desensitization rate, as exemplified by PNU-120596. These results show that functional alpha7 nAChRs can stably be expressed in the non-neuronal CHO-K1 cell line. This recombinant cell system is useful for characterization of alpha7 nAChRs and to study the mechanism of action of chemical modulators, in particular the detection of PAMs capable of slowing receptor desensitization kinetics.
Collapse
|
109
|
The selective α7 nicotinic acetylcholine receptor agonist A-582941 activates immediate early genes in limbic regions of the forebrain: Differential effects in the juvenile and adult rat. Neuroscience 2008; 154:741-53. [DOI: 10.1016/j.neuroscience.2008.03.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/26/2008] [Accepted: 03/30/2008] [Indexed: 11/19/2022]
|
110
|
Millan MJ, Brocco M. Cognitive Impairment in Schizophrenia: a Review of Developmental and Genetic Models, and Pro-cognitive Profile of the Optimised D3 > D2 Antagonist, S33138. Therapie 2008; 63:187-229. [DOI: 10.2515/therapie:2008041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2008] [Indexed: 01/23/2023]
|
111
|
Comparative effects of the alpha7 nicotinic partial agonist, S 24795, and the cholinesterase inhibitor, donepezil, against aging-related deficits in declarative and working memory in mice. Psychopharmacology (Berl) 2008; 197:499-508. [PMID: 18265960 DOI: 10.1007/s00213-007-1063-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 12/20/2007] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The comparative effects of a newly described specific alpha7 nAChR partial agonist, S 24795, and a cholinesterase inhibitor, donepezil, currently used as a symptomatic Alzheimer's disease treatment were studied in two mouse models of aging-related memory deficits. MATERIALS AND METHODS We employed radial arm-maze paradigms assessing short-term working memory (STWM, experiment A) and mnemonic flexibility, a cardinal property of long-term declarative (LTDM, experiment B). Both compounds were administered daily at 0.3 and 1 mg/kg subcutaneously (~3 weeks). RESULTS In the STWM experiment, vehicle-treated aged mice displayed a severe and persistent deficit in the retention of successive arm visits in comparison to younger controls. S 24795 at 1 mg/kg (trends at 0.3 mg/kg) and donepezil at 0.3 mg/kg (but not 1 mg/kg) exerted beneficial effects on this deficit: The performance of aged mice treated with these drugs remarkably increased across the testing days and almost reached young adult performance level. In the critical test trials of memory flexibility (i.e., LTDM), in experiment B, S 24795 at 1 mg/kg (trends at 0.3 mg/kg) and donepezil at the dose of 1 mg/kg (but not 0.3 mg/kg) improved aged mice performance. CONCLUSION This preclinical demonstration that S 24795 restored specific age-related memory deficits with as much efficacy as donepezil adds to recent literature in highlighting the potential interest of an alpha7 nAChR drug as a symptomatic AD therapeutic.
Collapse
|
112
|
Cheng RK, MacDonald CJ, Williams CL, Meck WH. Prenatal choline supplementation alters the timing, emotion, and memory performance (TEMP) of adult male and female rats as indexed by differential reinforcement of low-rate schedule behavior. Learn Mem 2008; 15:153-62. [PMID: 18323570 DOI: 10.1101/lm.729408] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Choline availability in the maternal diet has a lasting effect on brain and behavior of the offspring. To further delineate the impact of early nutritional status, we examined effects of prenatal-choline supplementation on timing, emotion, and memory performance of adult male and female rats. Rats that were given sufficient choline (CON: 1.1 g/kg) or supplemental choline (SUP: 5.0 g/kg) during embryonic days (ED) 12-17 were trained with a differential reinforcement of low-rate (DRL) schedule that was gradually transitioned through 5-, 10-, 18-, 36-, and 72-sec criterion times. We observed that SUP-females emitted more reinforced responses than CON-females, which were more efficient than both groups of males. In addition, SUP-males and SUP-females exhibited a reduction in burst responding (response latencies <2 sec) compared with both groups of CON rats. Furthermore, despite a reduced level of burst responding, the SUP-males made more nonreinforced responses prior to the DRL criterion as a result of maintaining the previous DRL criterion following transition to a new criterion. In summary, long-lasting effects of prenatal-choline supplementation were exhibited by reduced frustrative DRL responding in conjunction with the persistence of temporal memory in SUP-males and enhanced temporal exploration and response efficiency in SUP-females.
Collapse
Affiliation(s)
- Ruey-Kuang Cheng
- Department of Psychology and Neuroscience, Duke University, Genome Sciences Research Building II, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|
113
|
Tietje KR, Anderson DJ, Bitner RS, Blomme EA, Brackemeyer PJ, Briggs CA, Browman KE, Bury D, Curzon P, Drescher KU, Frost JM, Fryer RM, Fox GB, Gronlien JH, Håkerud M, Gubbins EJ, Halm S, Harris R, Helfrich RJ, Kohlhaas KL, Law D, Malysz J, Marsh KC, Martin RL, Meyer MD, Molesky AL, Nikkel AL, Otte S, Pan L, Puttfarcken PS, Radek RJ, Robb HM, Spies E, Thorin-Hagene K, Waring JF, Ween H, Xu H, Gopalakrishnan M, Bunnelle WH. Preclinical Characterization of A-582941: A Novel α7 Neuronal Nicotinic Receptor Agonist with Broad Spectrum Cognition-Enhancing Properties. CNS Neurosci Ther 2008. [DOI: 10.1111/j.1755-5949.2008.00037.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
114
|
Faghih R, Gopalakrishnan M, Briggs CA. Allosteric modulators of the alpha7 nicotinic acetylcholine receptor. J Med Chem 2008; 51:701-12. [PMID: 18198823 DOI: 10.1021/jm070256g] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ramin Faghih
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064, USA.
| | | | | |
Collapse
|
115
|
Lightfoot AP, Kew JNC, Skidmore J. Alpha7 nicotinic acetylcholine receptor agonists and positive allosteric modulators. PROGRESS IN MEDICINAL CHEMISTRY 2008; 46:131-71. [PMID: 18381125 DOI: 10.1016/s0079-6468(07)00003-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Andrew P Lightfoot
- Medicinal Chemistry, Psychiatry CEDD, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW, UK
| | | | | |
Collapse
|
116
|
Tietje KR, Anderson DJ, Bitner RS, Blomme EA, Brackemeyer PJ, Briggs CA, Browman KE, Bury D, Curzon P, Drescher KU, Frost JM, Fryer RM, Fox GB, Gronlien JH, Håkerud M, Gubbins EJ, Halm S, Harris R, Helfrich RJ, Kohlhaas KL, Law D, Malysz J, Marsh KC, Martin RL, Meyer MD, Molesky AL, Nikkel AL, Otte S, Pan L, Puttfarcken PS, Radek RJ, Robb HM, Spies E, Thorin‐Hagene K, Waring JF, Ween H, Xu H, Gopalakrishnan M, Bunnelle WH. Preclinical characterization of A-582941: a novel alpha7 neuronal nicotinic receptor agonist with broad spectrum cognition-enhancing properties. CNS Neurosci Ther 2008; 14:65-82. [PMID: 18482100 PMCID: PMC6494002 DOI: 10.1111/j.1527-3458.2008.00037.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Among the diverse sets of nicotinic acetylcholine receptors (nAChRs), the alpha7 subtype is highly expressed in the hippocampus and cortex and is thought to play important roles in a variety of cognitive processes. In this review, we describe the properties of a novel biaryl diamine alpha7 nAChR agonist, A-582941. A-582941 was found to exhibit high-affinity binding and partial agonism at alpha7 nAChRs, with acceptable pharmacokinetic properties and excellent distribution to the central nervous system (CNS). In vitro and in vivo studies indicated that A-582941 activates signaling pathways known to be involved in cognitive function such as ERK1/2 and CREB phosphorylation. A-582941 enhanced cognitive performance in behavioral models that capture domains of working memory, short-term recognition memory, memory consolidation, and sensory gating deficit. A-582941 exhibited a benign secondary pharmacodynamic and tolerability profile as assessed in a battery of assays of cardiovascular, gastrointestinal, and CNS function. The studies summarized in this review collectively provide preclinical validation that alpha7 nAChR agonism offers a mechanism with potential to improve cognitive deficits associated with various neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Karin R. Tietje
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - David J. Anderson
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - R. Scott Bitner
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Eric A. Blomme
- Department of Cellular and Molecular Toxicology, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Paul J. Brackemeyer
- Manufacturing Science and Technology, Global Pharmaceutical Operations, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Clark A. Briggs
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Kaitlin E. Browman
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Dagmar Bury
- Toxicology & Pathology, Global Pharmaceutical Research and Development, Abbott Laboratories, Ludwigshafen, Germany
| | - Peter Curzon
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Karla U. Drescher
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Ludwigshafen, Germany
| | - Jennifer M. Frost
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Ryan M. Fryer
- Department of Integrative Pharmacology, Global Pharmaceutical Research & Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Gerard B. Fox
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Jens Halvard Gronlien
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Monika Håkerud
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Earl J. Gubbins
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Sabine Halm
- Toxicology & Pathology, Global Pharmaceutical Research and Development, Abbott Laboratories, Ludwigshafen, Germany
| | - Richard Harris
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Rosalind J. Helfrich
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Kathy L. Kohlhaas
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Devalina Law
- Manufacturing Science and Technology, Global Pharmaceutical Operations, Abbott Laboratories, Abbott Park, Illinois, USA
| | - John Malysz
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Kennan C. Marsh
- Pharmacokinetics and Metabolism, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Ilinois, USA
| | - Ruth L. Martin
- Department of Integrative Pharmacology, Global Pharmaceutical Research & Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Michael D. Meyer
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Angela L. Molesky
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Arthur L. Nikkel
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Stephani Otte
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Liping Pan
- Pharmacokinetics and Metabolism, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Ilinois, USA
| | - Pamela S. Puttfarcken
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Richard J. Radek
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Holly M. Robb
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Eva Spies
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Ludwigshafen, Germany
| | - Kirsten Thorin‐Hagene
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Jeffrey F. Waring
- Department of Cellular and Molecular Toxicology, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Hilde Ween
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Hongyu Xu
- Pharmacokinetics and Metabolism, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Ilinois, USA
| | - Murali Gopalakrishnan
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - William H. Bunnelle
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| |
Collapse
|
117
|
Briggs CA, Schrimpf MR, Anderson DJ, Gubbins EJ, Grønlien JH, Håkerud M, Ween H, Thorin-Hagene K, Malysz J, Li J, Bunnelle WH, Gopalakrishnan M, Meyer MD. alpha7 nicotinic acetylcholine receptor agonist properties of tilorone and related tricyclic analogues. Br J Pharmacol 2007; 153:1054-61. [PMID: 18157163 DOI: 10.1038/sj.bjp.0707649] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE The alpha7 nicotinic acetylcholine receptor (nAChR) has attracted considerable interest as a target for cognitive enhancement in schizophrenia and Alzheimer's Disease. However, most recently described alpha7 agonists are derived from the quinuclidine structural class. Alternatively, the present study identifies tilorone as a novel alpha7-selective agonist and characterizes analogues developed from this lead. EXPERIMENTAL APPROACH Activity and selectivity were determined from rat brain alpha7 and alpha4beta2 nAChR binding, recombinant nAChR activation, and native alpha7 nAChR mediated stimulation of ERK1/2 phosphorylation in PC12 cells. KEY RESULTS Tilorone bound alpha7 nAChR (IC(50) 110 nM) with high selectivity relative to alpha4beta2 (IC(50) 70 000 nM), activated human alpha7 nAChR with an EC(50) value of 2.5 microM and maximal response of 67% relative to acetylcholine, and showed little agonist effect at human alpha3beta4 or alpha4beta2 nAChRs. However, the rat alpha7 nAChR maximal response was only 34%. Lead optimization led to 2-(5-methyl-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl)-xanthen-9-one (A-844606) with improved binding (alpha7 IC(50) 11 nM, alpha4beta2 IC(50)>30 000 nM) and activity at both human and rat alpha7 nAChR (EC(50)s 1.4 and 2.2 microM and apparent efficacies 61 and 63%, respectively). These compounds also activated native alpha7 nAChR, stimulating ERK1/2 phosphorylation in PC12 cells. CONCLUSIONS AND IMPLICATIONS Tilorone, known as an interferon inducer, is a selective alpha7 nAChR agonist, suggesting utility of the fluorenone pharmacophore for the development of alpha7 nAChR selective agonists. Whether alpha7 stimulation mediates interferon induction, or whether interferon induction may influence the potential anti-inflammatory properties of alpha7 nAChR agonists remains to be elucidated.
Collapse
Affiliation(s)
- C A Briggs
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Conejero-Goldberg C, Davies P, Ulloa L. Alpha7 nicotinic acetylcholine receptor: a link between inflammation and neurodegeneration. Neurosci Biobehav Rev 2007; 32:693-706. [PMID: 18180036 DOI: 10.1016/j.neubiorev.2007.10.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 10/23/2007] [Accepted: 10/26/2007] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia affecting over 25 million people worldwide. Classical studies focused on the description and characterization of the pathological hallmarks found in AD patients including the neurofibrillary tangles and the amyloid plaques. Current strategies focus on the etiology of these hallmarks and the different mechanisms contributing to neurodegeneration. Among them, recent studies reveal the close interplay between the immunological and the neurodegenerative processes. This article examines the implications of the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) as a critical link between inflammation and neurodegeneration in AD. Alpha7nAChRs are not only expressed in neurons but also in Glia cells where they can modulate the immunological responses contributing to AD. Successful therapeutic strategies against AD should consider the connections between inflammation and neurodegeneration. Among them, alpha7nAChR may represent a pharmacological target to control these two mechanisms during the pathogenesis of neurodegenerative and behavioral disorders.
Collapse
Affiliation(s)
- Concepcion Conejero-Goldberg
- The Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA.
| | | | | |
Collapse
|
119
|
Waring JF, Abel S, Li J, Bitner RS, Nikkel AL, Blomme EA, Anderson DJ, Gopalakrishnan M. Analysis of gene expression profiles in rat hippocampus following treatment with nicotine and an alpha7 nAChR selective agonist. Neurosci Res 2007; 60:266-74. [PMID: 18164502 DOI: 10.1016/j.neures.2007.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 11/07/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
The nicotinic acetylcholine receptors (nAChRs) play critical roles in neuronal transmission and modulation. Among the diverse nAChRs, the alpha7 subtype has been considered as a potential therapeutic target for treating cognitive deficits associated with neuropsychiatric and neurodegenerative diseases. Although a number of mechanisms including neurotransmitter and biochemical effects linking alpha7 nAChR activation and cognitive function are beginning to be described, the underlying molecular processes especially following repeated administration remain unclear. To address this, we have performed gene expression analysis in rats treated with nicotine and a selective alpha7 nAChR agonist, PNU-282987. Our results showed significant overlap in gene expression changes induced by PNU-282987 and nicotine, suggesting convergent pathways triggered by these compounds. Treatment with nicotine also resulted in regulation of a number of genes that were not regulated by PNU-282987, consistent with the interaction of nicotine with other nAChRs beyond the alpha7 subtype. Interestingly, these gene expression changes were observed 24 h post-dose, suggesting that both nicotine and PNU-282987 cause protracted changes in gene expression. Overall, our results identify gene expression changes that may contribute to further defining the roles of nAChR activation in cognitive function.
Collapse
Affiliation(s)
- Jeffrey F Waring
- Global Pharmaceutical Research & Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Romanelli MN, Gualtieri F. The quest for the treatment of cognitive impairment: α7nicotinic and α5GABAAreceptor modulators. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.11.1365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
121
|
Arneric SP, Holladay M, Williams M. Neuronal nicotinic receptors: A perspective on two decades of drug discovery research. Biochem Pharmacol 2007; 74:1092-101. [PMID: 17662959 DOI: 10.1016/j.bcp.2007.06.033] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/19/2007] [Accepted: 06/20/2007] [Indexed: 11/19/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) have been a target for drug discovery efforts, primarily for CNS indications, for the past two decades. While nicotine and related natural products have been used for smoking cessation in various formulations (e.g., gum, spray, patches), it was only in 2006 with the launch of varenicline (Chantix) by Pfizer for smoking cessation that a new chemical entity (NCE) originating from a rational medicinal chemistry effort targeting neuronal AChRs was approved. The current overview outlines the chronology of drug discovery efforts in nAChRs from the cloning of the receptor family in the 1980s, to initial research efforts at SIBIA, R.J. Reynolds and Abbott, to the current industry-wide interest in nAChR agonists as novel therapeutics for pain, schizophrenia and Alzheimer's Disease. Key events in the evolution of the nAChR field were the development of high throughput electrophysiological screening tools that provided the means to enable lead optimization efforts in medicinal chemistry and the discovery by John Daly at the NIH of the frog alkaloid, epibatidine, that provided the framework for the discovery of ABT-594, an alpha4beta2 agonist that is 200 times more potent than morphine as an analgesic. Over the next decade, it is anticipated that additional NCEs including antagonists and allosteric modulators (both positive and negative), interacting with various nAChR subtypes, will be advanced to the clinic in areas of high unmet medical need, e.g., pain, neurodegeneration, to provide novel medications with improved efficacy.
Collapse
|
122
|
Timmermann DB, Grønlien JH, Kohlhaas KL, Nielsen EØ, Dam E, Jørgensen TD, Ahring PK, Peters D, Holst D, Christensen JK, Chrsitensen JK, Malysz J, Briggs CA, Gopalakrishnan M, Olsen GM. An allosteric modulator of the alpha7 nicotinic acetylcholine receptor possessing cognition-enhancing properties in vivo. J Pharmacol Exp Ther 2007; 323:294-307. [PMID: 17625074 DOI: 10.1124/jpet.107.120436] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Augmentation of nicotinic alpha7 receptor function is considered to be a potential therapeutic strategy aimed at ameliorating cognitive and mnemonic dysfunction in relation to debilitating pathological conditions, such as Alzheimer's disease and schizophrenia. In the present report, a novel positive allosteric modulator of the alpha7 nicotinic acetylcholine receptor (nAChR), 1-(5-chloro-2-hydroxy-phenyl)-3-(2-chloro-5-trifluoromethyl-phenyl)-urea (NS1738), is described. NS1738 was unable to displace or affect radioligand binding to the agonist binding site of nicotinic receptors, and it was devoid of effect when applied alone in electrophysiological paradigms. However, when applied in the presence of acetylcholine (ACh), NS1738 produced a marked increase in the current flowing through alpha7 nAChRs, as determined in both oocyte electrophysiology and patch-clamp recordings from mammalian cells. NS1738 acted by increasing the peak amplitude of ACh-evoked currents at all concentrations; thus, it increased the maximal efficacy of ACh. Oocyte experiments indicated an increase in ACh potency as well. NS1738 had only marginal effects on the desensitization kinetics of alpha7 nAChRs, as determined from patch-clamp studies of both transfected cells and cultured hippocampal neurons. NS1738 was modestly brain-penetrant, and it was demonstrated to counteract a (-)-scopolamine-induced deficit in acquisition of a water-maze learning task in rats. Moreover, NS1738 improved performance in the rat social recognition test to the same extent as (-)-nicotine, demonstrating that NS1738 is capable of producing cognitive enhancement in vivo. These data support the notion that alpha7 nAChR allosteric modulation may constitute a novel pharmacological principle for the treatment of cognitive dysfunction.
Collapse
|