101
|
Polvani S, Pepe S, Milani S, Galli A. COUP-TFII in Health and Disease. Cells 2019; 9:E101. [PMID: 31906104 PMCID: PMC7016888 DOI: 10.3390/cells9010101] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
The nuclear receptors (NRs) belong to a vast family of evolutionary conserved proteins acting as ligand-activated transcription factors. Functionally, NRs are essential in embryogenesis and organogenesis and in adulthood they are involved in almost every physiological and pathological process. Our knowledge of NRs action has greatly improved in recent years, demonstrating that both their expression and activity are tightly regulated by a network of signaling pathways, miRNA and reciprocal interactions. The Chicken Ovalbumin Upstream Promoter Transcription Factor II (COUP-TFII, NR2F2) is a NR classified as an orphan due to the lack of a known natural ligand. Although its expression peaks during development, and then decreases considerably, in adult tissues, COUP-TFII is an important regulator of differentiation and it is variably implicated in tissues homeostasis. As such, alterations of its expression or its transcriptional activity have been studied and linked to a spectrum of diseases in organs and tissues of different origins. Indeed, an altered COUP-TFII expression and activity may cause infertility, abnormality in the vascular system and metabolic diseases like diabetes. Moreover, COUP-TFII is actively investigated in cancer research but its role in tumor progression is yet to be fully understood. In this review, we summarize the current understanding of COUP-TFII in healthy and pathological conditions, proposing an updated and critical view of the many functions of this NR.
Collapse
Affiliation(s)
- Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
- Department of Experimental and Clinical Medicine, University of Florence, largo Brambilla 50, 50139 Firenze, Italy
| | - Sara Pepe
- Istituto per la Ricerca, la Prevenzione e la rete Oncologica (ISPRO), viale Pieraccini 6, 50139 Firenze, Italy;
- Department of Medical Biotechnologies, University of Siena, via M. Bracci 16, 53100 Siena, Italy
| | - Stefano Milani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
| |
Collapse
|
102
|
Ramírez-Moreno A, Quintanar Escorza MA, García Garza R, Hady K, Meléndez Valenzuela A, Marszalek JE, Sharara-Núñez I, Delgadillo-Guzmán D. All-trans retinoic acid improves pancreatic cell proliferation on induced type 1 diabetic rats. Fundam Clin Pharmacol 2019; 34:345-351. [PMID: 31762099 DOI: 10.1111/fcp.12523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/26/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022]
Abstract
All-trans retinoic acid (ATRA) has been extensively studied as an integrating component of endocrine functions in the pancreas. The aim of this study was to evaluate the effects of ATRA on physiopathological biomarkers in an experimental model of rat with type 1 diabetes induced by alloxan (T1D). Twenty Wistar rats were divided equally into five groups, each receiving a different treatment: a control group (CG), a diabetic group without T1D treatment, a diabetic group treated with ATRA, a diabetic group supplemented with vitamin E (VIT E), and a group that was given olive oil (V). The administration of ATRA for 17 days produced a significant reduction in weight and glucose levels, compared to the T1D and VIT E groups. The evaluation of total antioxidant capacity (TAC) and lipoperoxidation showed no relevant difference among the groups. The results of the histological analysis showed similarities both in the size and in the number of islets of Langerhans in the pancreatic tissue obtained from the ATRA group and the CG. ATRA displayed a significant reduction of glycemic values in diabetic rats. Ultrastructurally, ß-cells, acinar, and ductal cells restored their normal appearance. ATRA can contribute to the recovery of pancreatic damage due to alloxan induction. It seems that the antioxidant effect of ATRA is not responsible for the differences observed.
Collapse
Affiliation(s)
- Agustina Ramírez-Moreno
- Faculty of Biological Sciences, Autonomous University of Coahuila, Carr. Torreón- Matamoros, km 7.5. C.P.27276, Torreón, Coahuila, Mexico
| | - Martha Angélica Quintanar Escorza
- Department of Biochemistry and Health School of Medicine and Nutrition, Juarez University of the State of Durango, Durango Unit, Durango, Mexico
| | - Rubén García Garza
- Departament of Histology, Faculty of Medicine T.U, Autonomous University of Coahuila, Torreón, Coahuila, Mexico
| | - Keita Hady
- Drug Research Laboratoy, Federal University of Amapá, Rodivia Juscelino Kubitscheck, km 2, Jardim Marco Zero, CEP: 68903-419, Macapa, Amapá, Brazil
| | - Adrian Meléndez Valenzuela
- Department of Pharmacology, Faculty of Medicine, Autonomous University of Coahuila, Torreón Unit, Torreón, Coahuila, Mexico
| | - Jolanta E Marszalek
- Faculty of Biological Sciences, Autonomous University of Coahuila, Carr. Torreón- Matamoros, km 7.5. C.P.27276, Torreón, Coahuila, Mexico
| | - Ibrahim Sharara-Núñez
- Department of Pharmacology, Faculty of Medicine, Autonomous University of Coahuila, Torreón Unit, Torreón, Coahuila, Mexico
| | - Dealmy Delgadillo-Guzmán
- Department of Pharmacology, Faculty of Medicine, Autonomous University of Coahuila, Torreón Unit, Torreón, Coahuila, Mexico
| |
Collapse
|
103
|
Liu X, Suyama K, Shiki J, Torikai K, Nose T, Shimohigashi M, Shimohigashi Y. Bisphenol AF: Halogen bonding effect is a major driving force for the dual ERα-agonist and ERβ-antagonist activities. Bioorg Med Chem 2019; 28:115274. [PMID: 31879182 DOI: 10.1016/j.bmc.2019.115274] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 10/25/2022]
Abstract
17β-Estradiol (E2) is a natural steroid ligand for the structurally and physiologically independent estrogen receptors (ERs) ERα and ERβ. We recently observed that CF3-containing bisphenol AF (BPAF) works as an agonist for ERα but as an antagonist for ERβ. Similar results were also observed for the CCl3-containing bisphenol designated as HPTE. Both BPAF and HPTE are comprised of a tri-halogenated methyl group in the central alkyl moiety of their bisphenol structures, which strongly suggests that halogens contribute directly to the agonist/antagonist dual biological functions. We conducted this study to investigate the structure-activity relationships by assessing together newly synthesized CF3- and CBr3-containing bisphenol E analogs (BPE-X). We first tested bisphenols for their receptor binding ability and then for their transcriptional activities. Halogen-containing bisphenols were found to be fully active for ERα, but almost completely inactive for ERβ. When we examined these bisphenols for their inhibitory activities for E2 in ERβ, we observed that they worked as distinct antagonists. The ascending order of agonist/antagonist dual biological functions was BPE-F < BPE-Cl (HPTE) ≤ BPAF < BPE-Br, demonstrating that the electrostatic halogen bonding effect is a major driving force of the bifunctional ERα agonist and ERβ antagonist activities of BPAF.
Collapse
Affiliation(s)
- Xiaohui Liu
- Department of Chemistry, Faculty and Graduate School of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keitaro Suyama
- Department of Chemistry, Faculty and Graduate School of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Junichi Shiki
- Department of Chemistry, Faculty and Graduate School of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kohei Torikai
- Department of Chemistry, Faculty and Graduate School of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeru Nose
- Department of Chemistry, Faculty and Graduate School of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Miki Shimohigashi
- Division of Biology, Department of Earth System of Science, Faculty of Science, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; Risk Science Research Institute, Ikimatsudai 3-7-5, Nishi-ku, Fukuoka 819-0044, Japan
| | - Yasuyuki Shimohigashi
- Department of Chemistry, Faculty and Graduate School of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Risk Science Research Institute, Ikimatsudai 3-7-5, Nishi-ku, Fukuoka 819-0044, Japan.
| |
Collapse
|
104
|
Moon H, Jeon SG, Kim JI, Kim HS, Lee S, Kim D, Park S, Moon M, Chung H. Pharmacological Stimulation of Nurr1 Promotes Cell Cycle Progression in Adult Hippocampal Neural Stem Cells. Int J Mol Sci 2019; 21:E4. [PMID: 31861329 PMCID: PMC6982043 DOI: 10.3390/ijms21010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Nuclear receptor related-1 (Nurr1) protein performs a crucial role in hippocampal neural stem cell (hNSC) development as well as cognitive functions. We previously demonstrated that the pharmacological stimulation of Nurr1 by amodiaquine (AQ) promotes spatial memory by enhancing adult hippocampal neurogenesis. However, the role of Nurr1 in the cell cycle regulation of the adult hippocampus has not been investigated. This study aimed to examine changes in the cell cycle-related molecules involved in adult hippocampal neurogenesis induced by Nurr1 pharmacological stimulation. Fluorescence-activated cell sorting (FACS) analysis showed that AQ improved the progression of cell cycle from G0/G1 to S phase in a dose-dependent manner, and MEK1 or PI3K inhibitors attenuated this progression. In addition, AQ treatment increased the expression of cell proliferation markers MCM5 and PCNA, and transcription factor E2F1. Furthermore, pharmacological stimulation of Nurr1 by AQ increased the expression levels of positive cell cycle regulators such as cyclin A and cyclin-dependent kinases (CDK) 2. In contrast, levels of CDK inhibitors p27KIP1 and p57KIP2 were reduced upon treatment with AQ. Similar to the in vitro results, RT-qPCR analysis of AQ-administered mice brains revealed an increase in the levels of markers of cell cycle progression, PCNA, MCM5, and Cdc25a. Finally, AQ administration resulted in decreased p27KIP1 and increased CDK2 levels in the dentate gyrus of the mouse hippocampus, as quantified immunohistochemically. Our results demonstrate that the pharmacological stimulation of Nurr1 in adult hNSCs by AQ promotes the cell cycle by modulating cell cycle-related molecules.
Collapse
Affiliation(s)
- Haena Moon
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.G.J.); (H.s.K.)
| | - Jin-il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju 63243, Korea;
| | - Hyeon soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.G.J.); (H.s.K.)
| | - Sangho Lee
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| | - Dongok Kim
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| | - Seungjoon Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.G.J.); (H.s.K.)
| | - Hyunju Chung
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| |
Collapse
|
105
|
Plotnikova MA, Klotchenko SA, Kiselev AA, Gorshkov AN, Shurygina APS, Vasilyev KA, Uciechowska-Kaczmarzyk U, Samsonov SA, Kovalenko AL, Vasin AV. Meglumine acridone acetate, the ionic salt of CMA and N-methylglucamine, induces apoptosis in human PBMCs via the mitochondrial pathway. Sci Rep 2019; 9:18240. [PMID: 31796757 PMCID: PMC6890692 DOI: 10.1038/s41598-019-54208-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/04/2019] [Indexed: 01/16/2023] Open
Abstract
Meglumine acridone acetate (MA) is used in Russia for the treatment of influenza and other acute respiratory viral infections. It was assumed, until recently, that its antiviral effect was associated with its potential ability to induce type I interferon. Advanced studies, however, have shown the failure of 10-carboxymethyl-9-acridanone (CMA) to activate human STING. As such, MA's antiviral properties are still undergoing clarification. To gain insight into MA's mechanisms of action, we carried out RNA-sequencing analysis of global transcriptomes in MA-treated (MA+) human peripheral blood mononuclear cells (PBMCs). In response to treatment, approximately 1,223 genes were found to be differentially expressed, among which 464 and 759 were identified as either up- or down-regulated, respectively. To clarify the cellular and molecular processes taking place in MA+ cells, we performed a functional analysis of those genes. We have shown that evident MA subcellular localizations are: at the nuclear envelope; inside the nucleus; and diffusely in perinuclear cytoplasm. Postulating that MA may be a nuclear receptor agonist, we carried out docking simulations with PPARα and RORα ligand binding domains including prediction and molecular dynamics-based analysis of potential MA binding poses. Finally, we confirmed that MA treatment enhanced nuclear apoptosis in human PBMCs. The research presented here, in our view, indicates that: (i) MA activity is mediated by nuclear receptors; (ii) MA is a possible PPARα and/or RORα agonist; (iii) MA has an immunosuppressive effect; and (iv) MA induces apoptosis through the mitochondrial signaling pathway.
Collapse
Affiliation(s)
| | | | - Artem A Kiselev
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Andrey N Gorshkov
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| | | | - Kirill A Vasilyev
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| | | | | | - Alexey L Kovalenko
- Institute of Toxicology, Federal Medical-Biological Agency of Russia, St. Petersburg, Russia
| | - Andrey V Vasin
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
- Institute of Biomedical Systems and Botechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Saint Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| |
Collapse
|
106
|
Fonseca ESS, Hiromori Y, Kaite Y, Ruivo R, Franco JN, Nakanishi T, Santos MM, Castro LFC. An Orthologue of the Retinoic Acid Receptor (RAR) Is Present in the Ecdysozoa Phylum Priapulida. Genes (Basel) 2019; 10:genes10120985. [PMID: 31795452 PMCID: PMC6947571 DOI: 10.3390/genes10120985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022] Open
Abstract
Signalling molecules and their cognate receptors are central components of the Metazoa endocrine system. Defining their presence or absence in extant animal lineages is critical to accurately devise evolutionary patterns, physiological shifts and the impact of endocrine disrupting chemicals. Here, we address the evolution of retinoic acid (RA) signalling in the Priapulida worm, Priapulus caudatus Lamarck, 1816, an Ecdysozoa. RA signalling has been shown to be central to chordate endocrine homeostasis, participating in multiple developmental and physiological processes. Priapulids, with their slow rate of molecular evolution and phylogenetic position, represent a key taxon to investigate the early phases of Ecdysozoa evolution. By exploring a draft genome assembly, we show, by means of phylogenetics and functional assays, that an orthologue of the nuclear receptor retinoic acid receptor (RAR) subfamily, a central mediator of RA signalling, is present in Ecdysozoa, contrary to previous perception. We further demonstrate that the Priapulida RAR displays low-affinity for retinoids (similar to annelids), and is not responsive to common endocrine disruptors acting via RAR. Our findings provide a timeline for RA signalling evolution in the Bilateria and give support to the hypothesis that the increase in RA affinity towards RAR is a late acquisition in the evolution of the Metazoa.
Collapse
Affiliation(s)
- Elza S. S. Fonseca
- CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; (E.S.S.F.); (R.R.); (J.N.F.)
- FCUP—Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal
| | - Youhei Hiromori
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.H.); (Y.K.)
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Yoshifumi Kaite
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.H.); (Y.K.)
| | - Raquel Ruivo
- CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; (E.S.S.F.); (R.R.); (J.N.F.)
| | - João N. Franco
- CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; (E.S.S.F.); (R.R.); (J.N.F.)
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.H.); (Y.K.)
- Correspondence: (T.N.); (M.M.S.); (L.F.C.C.)
| | - Miguel M. Santos
- CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; (E.S.S.F.); (R.R.); (J.N.F.)
- FCUP—Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal
- Correspondence: (T.N.); (M.M.S.); (L.F.C.C.)
| | - L. Filipe C. Castro
- CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; (E.S.S.F.); (R.R.); (J.N.F.)
- FCUP—Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal
- Correspondence: (T.N.); (M.M.S.); (L.F.C.C.)
| |
Collapse
|
107
|
Morstein J, Trads JB, Hinnah K, Willems S, Barber DM, Trauner M, Merk D, Trauner D. Optical control of the nuclear bile acid receptor FXR with a photohormone. Chem Sci 2019; 11:429-434. [PMID: 32190263 PMCID: PMC7067245 DOI: 10.1039/c9sc02911g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Herein, we report a photoswitchable modulator for a nuclear hormone receptor that exerts its hormonal effects in a light-dependent fashion. The azobenzene AzoGW enables optical control of the farnesoid X receptor (FXR), a key regulator of hepatic bile acid, lipid and glucose metabolism. AzoGW was derived from the synthetic agonist GW4064 through an azologization strategy and is a metabolically stable, highly selective photoswitchable FXR agonist in its dark-adapted form. Upon irradiation, the thermally bistable 'photohormone' becomes significantly less active. Optical control of FXR was demonstrated in a luminescence reporter gene assay and through light-dependent reversible transcription modulation of FXR target genes (CYP7A1, Ostα, Ostβ) in liver cells.
Collapse
Affiliation(s)
- Johannes Morstein
- Department of Chemistry , New York University , New York , New York 10003 , USA .
| | - Julie B Trads
- Department of Chemistry , Center for Integrated Protein Science , Ludwig Maximilians University Munich , 81377 Munich , Germany
| | - Konstantin Hinnah
- Department of Chemistry , New York University , New York , New York 10003 , USA .
| | - Sabine Willems
- Institute of Pharmaceutical Chemistry , Goethe-University Frankfurt , Max-von-Laue-Strasse 9 , 60438 Frankfurt , Germany
| | - David M Barber
- Department of Chemistry , Center for Integrated Protein Science , Ludwig Maximilians University Munich , 81377 Munich , Germany
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology , Division of Gastroenterology and Hepatology , Department of Internal Medicine III , Medical University of Vienna , Waehringer Guertel 18-20 , 1090 Vienna , Austria
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry , Goethe-University Frankfurt , Max-von-Laue-Strasse 9 , 60438 Frankfurt , Germany
| | - Dirk Trauner
- Department of Chemistry , New York University , New York , New York 10003 , USA .
| |
Collapse
|
108
|
Alvite G, Riera X, Cancela S, Paulino M, Esteves A. Bioinformatic analysis of a novel Echinococcus granulosus nuclear receptor with two DNA binding domains. PLoS One 2019; 14:e0224703. [PMID: 31710619 PMCID: PMC6844482 DOI: 10.1371/journal.pone.0224703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors are ligand-activated transcription factors capable of regulating the expression of complex gene networks. The family includes seven subfamilies of proteins with a wide phylogenetic distribution. A novel subfamily with two DNA-binding domains (2DBDs) has been reported in Schistosoma mansoni (Platyhelminth, Trematoda). This work describes the cDNA cloning and bioinformatics analysis of Eg2DBDα, a 2DBD nuclear receptor isoform from the parasite Echinococcus granulosus (Platyhelminth, Cestoda). The Eg2DBDα gene coding domain structure was analysed. Although two additional 2DBD nuclear receptors are reported in the parasite database GeneDB, they are unlikely to be expressed in the larval stage. Phylogenetic relationships between these atypical proteins from different cestodes are also analysed including S. mansoni 2DBD nuclear receptors. The presence of two DNA binding domains confers particular interest to these nuclear receptors, not only concerning their function but to the development of new antihelminthic drugs.
Collapse
Affiliation(s)
- Gabriela Alvite
- Biochemistry Section, Faculty of Sciences, Universidad de la República, Montevideo, Uruguay
| | - Ximena Riera
- Biochemistry Section, Faculty of Sciences, Universidad de la República, Montevideo, Uruguay
| | - Saira Cancela
- Biochemistry Section, Faculty of Sciences, Universidad de la República, Montevideo, Uruguay
| | - Margot Paulino
- Center of Bioinformatics, Departamento de Experimentación y Teoría de la Materia, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Adriana Esteves
- Biochemistry Section, Faculty of Sciences, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
109
|
le Maire A, Teyssier C, Balaguer P, Bourguet W, Germain P. Regulation of RXR-RAR Heterodimers by RXR- and RAR-Specific Ligands and Their Combinations. Cells 2019; 8:cells8111392. [PMID: 31694317 PMCID: PMC6912802 DOI: 10.3390/cells8111392] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 02/01/2023] Open
Abstract
The three subtypes (α, β, and γ) of the retinoic acid receptor (RAR) are ligand-dependent transcription factors that mediate retinoic acid signaling by forming heterodimers with the retinoid X receptor (RXR). Heterodimers are functional units that bind ligands (retinoids), transcriptional co-regulators and DNA, to regulate gene networks controlling cell growth, differentiation, and death. Using biochemical, crystallographic, and cellular approaches, we have set out to explore the spectrum of possibilities to regulate RXR-RAR heterodimer-dependent transcription through various pharmacological classes of RAR- and RXR- specific ligands, alone or in combination. We reveal the molecular details by which these compounds direct specificity and functionality of RXR-RAR heterodimers. Among these ligands, we have reevaluated and improved the molecular and structural definition of compounds CD2665, Ro41-5253, LE135, or LG100754, highlighting novel functional features of these molecules. Our analysis reveals a model of RXR-RAR heterodimer action in which each subunit retains its intrinsic properties in terms of ligand and co-regulator binding. However, their interplay upon the combined action of RAR- and RXR-ligands allows for the fine tuning of heterodimer activity. It also stresses the importance of accurate ligand characterization to use synthetic selective retinoids appropriately and avoid data misinterpretations.
Collapse
Affiliation(s)
- Albane le Maire
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, Univ. Montpellier, ICM, 34090 Montpellier, France; (A.l.M.); (C.T.); (W.B.)
| | - Catherine Teyssier
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, Univ. Montpellier, ICM, 34090 Montpellier, France; (A.l.M.); (C.T.); (W.B.)
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Univ. Montpellier, ICM, 34090 Montpellier, France;
| | - William Bourguet
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, Univ. Montpellier, ICM, 34090 Montpellier, France; (A.l.M.); (C.T.); (W.B.)
| | - Pierre Germain
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, Univ. Montpellier, ICM, 34090 Montpellier, France; (A.l.M.); (C.T.); (W.B.)
- Correspondence: ; Tel.: +33-(0)4-6741-7910
| |
Collapse
|
110
|
Tang ZR, Zhang R, Lian ZX, Deng SL, Yu K. Estrogen-Receptor Expression and Function in Female Reproductive Disease. Cells 2019; 8:E1123. [PMID: 31546660 PMCID: PMC6830311 DOI: 10.3390/cells8101123] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 01/13/2023] Open
Abstract
Estrogen receptors (ER) include ER alpha, ER beta and new membrane receptor G protein-coupled receptor 30 (GPR30). Estrogen receptors are key receptors to maintain ovarian granulosa cell differentiation, follicle and oocyte growth and development, and ovulation function. The abnormal functions of estrogen, its receptors, and estradiol synthesis-related enzymes are closely related to clinical reproductive endocrine diseases, such as polycystic ovary syndrome (PCOS) and endometriosis (EMS). At present, hormone therapy is the main treatment for ovarian-related diseases, and a stable hormone environment is established by regulating ovarian function. In recent years, some estrogen-related drugs have made great progress, such as clomiphene, which is a nonsteroidal antiestrogen drug in clinical application. This article elaborates on the regulatory role of estrogen and its nuclear receptors and membrane receptors in oocyte development, especially female reproductive diseases related to the abnormal expression of estrogen and its receptors. We also highlighted the latest advances of treatment strategy for these diseases and the application of related targeted small molecule drugs in clinical research and treatment, so as to provide reference for the treatment of female reproductive diseases.
Collapse
Affiliation(s)
- Zi-Run Tang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Rui Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
111
|
Balaguer P, Delfosse V, Bourguet W. Mechanisms of endocrine disruption through nuclear receptors and related pathways. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
112
|
Cordeiro TN, Sibille N, Germain P, Barthe P, Boulahtouf A, Allemand F, Bailly R, Vivat V, Ebel C, Barducci A, Bourguet W, le Maire A, Bernadó P. Interplay of Protein Disorder in Retinoic Acid Receptor Heterodimer and Its Corepressor Regulates Gene Expression. Structure 2019; 27:1270-1285.e6. [DOI: 10.1016/j.str.2019.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/30/2019] [Accepted: 05/04/2019] [Indexed: 11/30/2022]
|
113
|
Schierle S, Merk D. Therapeutic modulation of retinoid X receptors – SAR and therapeutic potential of RXR ligands and recent patents. Expert Opin Ther Pat 2019; 29:605-621. [DOI: 10.1080/13543776.2019.1643322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Simone Schierle
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
114
|
Timmermans S, Souffriau J, Libert C. A General Introduction to Glucocorticoid Biology. Front Immunol 2019; 10:1545. [PMID: 31333672 PMCID: PMC6621919 DOI: 10.3389/fimmu.2019.01545] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids (GCs) are steroid hormones widely used for the treatment of inflammation, autoimmune diseases, and cancer. To exert their broad physiological and therapeutic effects, GCs bind to the GC receptor (GR) which belongs to the nuclear receptor superfamily of transcription factors. Despite their success, GCs are hindered by the occurrence of side effects and glucocorticoid resistance (GCR). Increased knowledge on GC and GR biology together with a better understanding of the molecular mechanisms underlying the GC side effects and GCR are necessary for improved GC therapy development. We here provide a general overview on the current insights in GC biology with a focus on GC synthesis, regulation and physiology, role in inflammation inhibition, and on GR function and plasticity. Furthermore, novel and selective therapeutic strategies are proposed based on recently recognized distinct molecular mechanisms of the GR. We will explain the SEDIGRAM concept, which was launched based on our research results.
Collapse
Affiliation(s)
- Steven Timmermans
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Souffriau
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
115
|
Krężel W, Rühl R, de Lera AR. Alternative retinoid X receptor (RXR) ligands. Mol Cell Endocrinol 2019; 491:110436. [PMID: 31026478 DOI: 10.1016/j.mce.2019.04.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022]
Abstract
Retinoid X receptors (RXRs) control a wide variety of functions by virtue of their dimerization with other nuclear hormone receptors (NRs), contributing thereby to activities of different signaling pathways. We review known RXR ligands as transcriptional modulators of specific RXR-dimers and the associated biological processes. We also discuss the physiological relevance of such ligands, which remains frequently a matter of debate and which at present is best met by member(s) of a novel family of retinoids, postulated as Vitamin A5. Through comparison with other natural, but also with synthetic ligands, we discuss high diversity in the modes of ligand binding to RXRs resulting in agonistic or antagonistic profiles and selectivity towards specific subtypes of permissive heterodimers. Despite such diversity, direct ligand binding to the ligand binding pocket resulting in agonistic activity was preferentially preserved in the course of animal evolution pointing to its functional relevance, and potential for existence of other, species-specific endogenous RXR ligands sharing the same mode of function.
Collapse
Affiliation(s)
- Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
116
|
Shamilov R, Aneskievich BJ. Intrinsic Disorder in Nuclear Receptor Amino Termini: From Investigational Challenge to Therapeutic Opportunity. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Rambon Shamilov
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
117
|
Klepsch V, Moschen AR, Tilg H, Baier G, Hermann-Kleiter N. Nuclear Receptors Regulate Intestinal Inflammation in the Context of IBD. Front Immunol 2019; 10:1070. [PMID: 31139192 PMCID: PMC6527601 DOI: 10.3389/fimmu.2019.01070] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
Gastrointestinal (GI) homeostasis is strongly dependent on nuclear receptor (NR) functions. They play a variety of roles ranging from nutrient uptake, sensing of microbial metabolites, regulation of epithelial intestinal cell integrity to shaping of the intestinal immune cell repertoire. Several NRs are associated with GI pathologies; therefore, systematic analysis of NR biology, the underlying molecular mechanisms, and regulation of target genes can be expected to help greatly in uncovering the course of GI diseases. Recently, an increasing number of NRs has been validated as potential drug targets for therapeutic intervention in patients with inflammatory bowel disease (IBD). Besides the classical glucocorticoids, especially PPARγ, VDR, or PXR-selective ligands are currently being tested with promising results in clinical IBD trials. Also, several pre-clinical animal studies are being performed with NRs. This review focuses on the complex biology of NRs and their context-dependent anti- or pro-inflammatory activities in the regulation of gastrointestinal barrier with special attention to NRs already pharmacologically targeted in clinic and pre-clinical IBD treatment regimens.
Collapse
Affiliation(s)
- Victoria Klepsch
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander R. Moschen
- Department of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
118
|
Rigalli JP, Tocchetti GN, Weiss J. Modulation of ABC Transporters by Nuclear Receptors: Physiological, Pathological and Pharmacological Aspects. Curr Med Chem 2019; 26:1079-1112. [DOI: 10.2174/0929867324666170920141707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
ABC transporters are membrane proteins mediating the efflux of endo- and xenobiotics. Transporter expression is not static but instead is subject to a dynamic modulation aiming at responding to changes in the internal environment and thus at maintaining homeostatic conditions. Nuclear receptors are ligand modulated transcription factors that get activated upon changes in the intracellular concentrations of the respective agonists and bind to response elements within the promoter of ABC transporters, thus modulating their expression and, consequently, their activity. This review compiles information about transporter regulation by nuclear receptors classified according to the perpetrator compounds and the biological effects resulting from the regulation. Modulation by hormone receptors is involved in maintaining endocrine homeostasis and may also lead to an altered efflux of other substrates in cases of altered hormonal levels. Xenobiotic receptors play a key role in limiting the accumulation of potentially harmful compounds. In addition, their frequent activation by therapeutic agents makes them common molecular elements mediating drug-drug interactions and cancer multidrug resistance. Finally, lipid and retinoid receptors are usually activated by endogenous molecules, thus sensing metabolic changes and inducing ABC transporters to counteract potential alterations. Furthermore, the axis nuclear receptor-ABC transporter constitutes a promising therapeutic target for the treatment of several disease states like cancer, atherosclerosis and dyslipidemia. In the current work, we summarize the information available on the pharmacological potential of nuclear receptor modulators and discuss their applicability in the clinical practice.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Guillermo Nicolás Tocchetti
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
119
|
Qian H, He P, Lv F, Wu W. Genome-wide analysis of LXXLL-mediated DAX1/SHP–nuclear receptor interaction network and rational design of stapled LXXLL-based peptides to target the specific network profile. Int J Biol Macromol 2019; 129:13-22. [DOI: 10.1016/j.ijbiomac.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/02/2019] [Accepted: 02/02/2019] [Indexed: 01/22/2023]
|
120
|
Bojcsuk D, Bálint BL. Classification of different types of estrogen receptor alpha binding sites in MCF-7 cells. J Biotechnol 2019; 299:13-20. [PMID: 31039369 DOI: 10.1016/j.jbiotec.2019.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/15/2023]
Abstract
Estrogen Receptor alpha (ERα) is a ligand-activated transcription factor and it has a prominent role in both physiological and pathological processes of the reproductive system. ERα has been investigated extensively in breast cancer and the MCF-7 breast-cancer-derived cell line is a widely used model for the study of its behavior. In this paper we provide a systematic catalog of the possible scenarios of binding to more than 80,000 ERα transcription factor binding sites based on the mechanism of ERα binding to DNA (upon both vehicle and estradiol (E2) treatment). A key feature of the estrogen-driven genetic programs is the presence or absence of the specific response element referred to as the estrogen response element (ERE). While ERα-driven super-enhancers are key components of estrogen-dependent genetic programs, three additional classes of enhancers could be identified: one with the presence of ERE where the ERα bound to the DNA prior of E2-treatment, one where the E2 was required for ERα binding even in the presence of ERE, and one where the ERα binding is established through the response elements of the collaborating factors. Our results suggest that different scenarios of ERα binding result in different genetic programs.
Collapse
Affiliation(s)
- Dóra Bojcsuk
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Bálint László Bálint
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
121
|
Hudson G, Flannigan KL, Venu VKP, Alston L, Sandall CF, MacDonald JA, Muruve DA, Chang TKH, Mani S, Hirota SA. Pregnane X Receptor Activation Triggers Rapid ATP Release in Primed Macrophages That Mediates NLRP3 Inflammasome Activation. J Pharmacol Exp Ther 2019; 370:44-53. [PMID: 31004077 PMCID: PMC6542184 DOI: 10.1124/jpet.118.255679] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
The pregnane X receptor (PXR) is a ligand-activated nuclear receptor that acts as a xenobiotic sensor, responding to compounds of foreign origin, including pharmaceutical compounds, environmental contaminants, and natural products, to induce transcriptional events that regulate drug detoxification and efflux pathways. As such, the PXR is thought to play a key role in protecting the host from xenobiotic exposure. More recently, the PXR has been reported to regulate the expression of innate immune receptors in the intestine and modulate inflammasome activation in the vasculature. In the current study, we report that activation of the PXR in primed macrophages triggers caspase-1 activation and interleukin-1β release. Mechanistically, we show that this response is nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3-dependent and is driven by the rapid efflux of ATP and P2X purinoceptor 7 activation following PXR stimulation, an event that involves pannexin-1 gating, and is sensitive to inhibition of Src-family kinases. Our findings identify a mechanism whereby the PXR drives innate immune signaling, providing a potential link between xenobiotic exposure and the induction of innate inflammatory responses.
Collapse
Affiliation(s)
- Grace Hudson
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Kyle L Flannigan
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Vivek Krishna Pulakazhi Venu
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Laurie Alston
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Christina F Sandall
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Justin A MacDonald
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Daniel A Muruve
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Thomas K H Chang
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Sridhar Mani
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Simon A Hirota
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| |
Collapse
|
122
|
Li H, Zhang W, Niu C, Lin C, Wu X, Jian Y, Li Y, Ye L, Dai Y, Ouyang Y, Chen J, Qiu J, Song L, Zhang Y. Nuclear orphan receptor NR2F6 confers cisplatin resistance in epithelial ovarian cancer cells by activating the Notch3 signaling pathway. Int J Cancer 2019; 145:1921-1934. [PMID: 30895619 PMCID: PMC6767785 DOI: 10.1002/ijc.32293] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/02/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022]
Abstract
The primary challenge facing treatment of epithelial ovarian cancer (EOC) is the high frequency of chemoresistance, which severely impairs the quality of life and survival of patients with EOC. Our study aims to investigate the mechanisms by which upregulation of NR2F6 induces chemoresistance in EOC. The biological roles of NR2F6 in EOC chemoresistance were explored in vitro by Sphere, MTT and AnnexinV/PI assay, and in vivo using an ovarian cancer orthotopic transplantation model. Bioinformatics analysis, luciferase assay, CHIP and IP assays were performed to identify the mechanisms by which NR2F6 promotes chemoresistance in EOC. The expression of NR2F6 was significantly upregulated in chemoresistant EOC tissue, and NR2F6 expression was correlated with poorer overall survival. Moreover, overexpression of NR2F6 promotes the EOC cancer stem cell phenotype; conversely, knockdown of NR2F6 represses the EOC cancer stem cell phenotype and sensitizes EOC to cisplatin in vitro and in vivo. Our results further demonstrate that NR2F6 sustains activated Notch3 signaling, resulting in chemoresistance in EOC cells. Notably, NR2F6 acts as an informative biomarker to identify the population of EOC patients who are likely to experience a favorable objective response to gamma‐secretase inhibitors (GSI), which inhibit Notch signaling. Therefore, concurrent inhibition of NR2F6 and treatment with GSI and cisplatin‐based chemotherapy may be a novel therapeutic approach for NR2F6‐overexpressing EOC. In summary, we have, for the first time, identified an important role for NR2F6 in EOC cisplatin resistance. Our study suggests that GSI may serve as a potential targeted treatment for patients with NR2F6‐overexpressing EOC. What's new? Chemoresistance is a major challenge in women afflicted with epithelial ovarian cancer (EOC), but molecular mechanisms of EOC chemoresistance remain unclear. Here the authors connect nuclear receptor subfamily 2 group F member 6 (NR2F6) with this process. They find NR2F6 upregulated in tissues from chemoresistant EOC patients. High NR2F6 expression promoted a cancer stem cell phenotype and suppressed cisplatin‐induced apoptosis by transcriptionally upregulating Notch3 signaling, thereby promoting EOC chemoresistance.
Collapse
Affiliation(s)
- Han Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weijing Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chunhao Niu
- Department of Obsterics and Gynecology, The Third Affiliated Hospital, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, Guangdong, China
| | - Chuyong Lin
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xianqiu Wu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yunting Jian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Liping Ye
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuhu Dai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Ouyang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jueming Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiaqi Qiu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Libing Song
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yanna Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
123
|
Grimaldi M, Boulahtouf A, Toporova L, Balaguer P. Functional profiling of bisphenols for nuclear receptors. Toxicology 2019; 420:39-45. [PMID: 30951782 DOI: 10.1016/j.tox.2019.04.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 11/19/2022]
Abstract
Bisphenol-A (BPA) is one of the most abundant chemicals produced worldwide. Exposure to BPA has been associated with various physiological dysregulations, involving reproduction, development, metabolism, as well as genesis and progression of hormone-dependent cancers. It has been well published that BPA along with its analogs bind and activate estrogen receptors (ER) α and β, estrogen related receptor (ERR) γ and pregnan X receptor (PXR). BPA has been also characterized as an inhibitor of the androgen (AR) and progesterone (PR) receptor. Thus, the need for safer alternatives to BPA among bisphenols is rising. In this regard, we used reporter cell lines to analyze the effects of 24 bisphenols on the selected nuclear receptors (NRs), known and potential targets of BPA. We showed that bisphenols differently modulated the activities of NRs. ERs, ERRγ and PXR were generally activated by bisphenols, whereas many compounds of this family acted as AR, PR, GR and MR antagonists. On the other hand, some bisphenols such as BPA, BPC and BPE modulated the activity of several NRs, but others lacked the activity of other NRs. Altogether, these data provide the guidelines for development of safer BPA substitutes with reduced hormonal activity.
Collapse
Affiliation(s)
- Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ. Montpellier, 34090, Montpellier, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ. Montpellier, 34090, Montpellier, France
| | - Lucia Toporova
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ. Montpellier, 34090, Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ. Montpellier, 34090, Montpellier, France.
| |
Collapse
|
124
|
Usategui‐Martín R, Pérez‐Alonso M, Socorro‐Briongos L, Ruiz‐Mambrilla M, Luis D, Linares L, Calero‐Paniagua I, Dueñas‐Laita A, Pérez‐Castrillón JL. Estrogen receptor genes polymorphisms determine serum lipid profile in healthy postmenopausal women treated with calcium, vitamin D, and genistein. J Cell Biochem 2019; 120:13115-13120. [DOI: 10.1002/jcb.28584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Ricardo Usategui‐Martín
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), University of Valladolid Valladolid Spain
| | | | - Laisa Socorro‐Briongos
- Department of Internal Medicine, Río Hortega University Hospital, Departament of Medicine University of Valladolid Valladolid Spain
| | - Marta Ruiz‐Mambrilla
- Department of Medicine University of Valladolid Valladolid Spain
- Rehabilitation and Language Medical Centre Valladolid Spain
| | - Daniel Luis
- Department of Endocrinology Valladolid University Hospital. University of Valladolid Valladolid Spain
| | - Lidia Linares
- Department of Endocrinology Valladolid University Hospital. University of Valladolid Valladolid Spain
| | | | - Antonio Dueñas‐Laita
- Service of Clinical Toxicology, Río Hortega University Hospital, Departament of Medicine University of Valladolid Valladolid Spain
| | - José L. Pérez‐Castrillón
- Department of Internal Medicine, Río Hortega University Hospital, Departament of Medicine University of Valladolid Valladolid Spain
| |
Collapse
|
125
|
Molinaro A, Caesar R, L'homme L, Koh A, Ståhlman M, Staels B, Bäckhed F. Liver-specific RORα deletion does not affect the metabolic susceptibility to western style diet feeding. Mol Metab 2019; 23:82-87. [PMID: 30904385 PMCID: PMC6479759 DOI: 10.1016/j.molmet.2019.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
Objectives The nuclear receptor superfamily is a potential target for the development of new treatments for obesity and metabolic diseases. Increasing evidence has pointed towards the retinoic acid-related orphan receptor-alpha (RORα) as an important nuclear receptor involved in several biological processes. RORα full body knockout mice display improved metabolic phenotypes on both chow and high fat (60% fat, 20% carbohydrate) diets, but also have severe behavioral abnormalities. Here we investigated the effect of hepatic RORα by generating mice with liver-specific RORα deletion to elucidate the role of this nuclear receptor on host metabolism. Methods 8 week-old mice with liver-specific RORα deletion and littermate controls were fed either chow or western-style diets (40% fat, 40% carbohydrate) for 12 weeks. Metabolic phenotyping was performed at the end of the dietary intervention. Results Here, we show that hepatic RORα deletion does not affect the metabolic susceptibility to either chow or western-style diet in terms of glucose metabolism and adiposity. Conclusions Our data indicate that liver deletion of RORα does not have a pivotal role in the regulation of hepatic glucose and lipid metabolism on chow or western-style diet. Hepatic deletion of RORα does not affect host metabolism on chow diet. Hepatic deletion of RORα does not affect host metabolism on western-style diet. Similar phenotypes between male and female mice.
Collapse
Affiliation(s)
- Antonio Molinaro
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Robert Caesar
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Laurent L'homme
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - Ara Koh
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Marcus Ståhlman
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research and Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
126
|
Miao L, Yang Y, Liu Y, Lai L, Wang L, Zhan Y, Yin R, Yu M, Li C, Yang X, Ge C. Glycerol kinase interacts with nuclear receptor NR4A1 and regulates glucose metabolism in the liver. FASEB J 2019; 33:6736-6747. [PMID: 30821173 DOI: 10.1096/fj.201800945rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glycerol kinase (Gyk), consisting of 4 isoforms, plays a critical role in metabolism by converting glycerol to glycerol 3-phosphate in an ATP-dependent reaction. Only Gyk isoform b is present in whole cells, but its function in the nucleus remains elusive. Previous studies have shown that nuclear orphan receptor subfamily 4 group A member (NR4A)-1 is an important regulator of hepatic glucose homeostasis and lipid metabolism in adipose tissue. We aimed to elucidate the functional interaction between nuclear Gyk and NR4A1 during hepatic gluconeogenesis in the unfed state and diabetes. We identified nuclear Gyk as a novel corepressor of NR4A1 in the liver; moreover, this recruitment was dependent on the C-terminal ligand-binding domain instead of the N-terminal activation function 1 domain, which interacts with other NR4A1 coregulators. NR4A1 transcriptional activity was inhibited by Gyk via protein-protein interaction but not enzymatic activity. Moreover, Gyk overexpression suppressed NR4A1 ability to regulate the expression of target genes involved in hepatic gluconeogenesis in vitro and in vivo as well as blood glucose regulation, which was observed in both unfed and diabetic mice. These results highlight the moonlighting function of nuclear Gyk, which was found to act as a coregulator of NR4A1, participating in the regulation of hepatic glucose homeostasis in the unfed state and diabetes.-Miao, L., Yang, Y., Liu, Y., Lai, L., Wang, L., Zhan, Y., Yin, R., Yu, M., Li, C., Yang, X., Ge, C. Glycerol kinase interacts with nuclear receptor NR4A1 and regulates glucose metabolism in the liver.
Collapse
Affiliation(s)
- Lili Miao
- Beijing Institute of Radiation Medicine, Beijing, China.,Graduate School, Anhui Medical University, Hefei, China
| | - Yongsheng Yang
- Institute of AcuMoxibustion, China Academy of Chinese Medical Sciences, Beijing, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China; and
| | - Yue Liu
- Beijing Institute of Radiation Medicine, Beijing, China.,Department of Pharmaceutical Engineering, Tianjin University, Tianjin, China
| | - Lili Lai
- Beijing Institute of Radiation Medicine, Beijing, China.,Graduate School, Anhui Medical University, Hefei, China
| | - Lei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China; and.,Department of Pharmaceutical Engineering, Tianjin University, Tianjin, China
| | - Yiqun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China; and
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China; and
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China; and
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China; and
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China; and
| | - Changhui Ge
- Beijing Institute of Radiation Medicine, Beijing, China.,Graduate School, Anhui Medical University, Hefei, China
| |
Collapse
|
127
|
André A, Ruivo R, Fonseca E, Froufe E, Castro LFC, Santos MM. The retinoic acid receptor (RAR) in molluscs: Function, evolution and endocrine disruption insights. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:80-89. [PMID: 30639747 DOI: 10.1016/j.aquatox.2019.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Retinoid acid receptor (RAR)-dependent signalling pathways are essential for the regulation and maintenance of essential biological functions and are recognized targets of disruptive anthropogenic compounds. Recent studies put forward the inability of mollusc RARs to bind and respond to the canonical vertebrate ligand, retinoic acid: a feature that seems to have been lost during evolution. Yet, these studies were carried out in a limited number of molluscs. Therefore, using an in vitro transactivation assay, the present work aimed to characterize phylogenetically relevant mollusc RARs, as monomers or as functional units with RXR, not only in the presence of vertebrate bone fine ligands but also known endocrine disruptors, described to modulate retinoid-dependent pathways. In general, none of the tested mollusc RARs were able to activate reporter gene transcription when exposed to retinoic acid isomers, suggesting that the ability to respond to retinoic acid was lost across molluscs. Similarly, the analysed mollusc RAR were unresponsive towards organochloride pesticides. In contrast, transcriptional repressions were observed with the RAR/RXR unit upon exposure to retinoids or RXR-specific ligands. Loss-of-function and gain-of-function mutations further corroborate the obtained results and suggest that the repressive behaviour, observed with mollusc and human RAR/RXR heterodimers, is possibly mediated by ligand biding to RXR.
Collapse
Affiliation(s)
- Ana André
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal; ICBAS - Institute of biomedical Sciences Abel Salazar, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Raquel Ruivo
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Elza Fonseca
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Elsa Froufe
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - L Filipe C Castro
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Miguel M Santos
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
128
|
Xu D, Huang S, Wang H, Xie W. Regulation of brain drug metabolizing enzymes and transporters by nuclear receptors. Drug Metab Rev 2019; 50:407-414. [PMID: 30501435 DOI: 10.1080/03602532.2018.1554673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nuclear receptors (NRs) belong to a family of ligand-dependent transcription factors. The target genes of NRs include many drug metabolizing enzymes and transporters. The central nervous system (CNS) bears the expression of NRs, drug metabolizing enzymes and transporters. NRs that express in the brain can be divided into three groups according to their characteristics of ligand binding: steroid hormone receptors, non-steroid hormone receptors, and orphan receptors. The NR-mediated regulation of drug metabolizing enzymes and transporters plays important roles in the metabolism and disposition of drugs in the CNS and the penetration of endogenous and exogenous substances through the blood-brain barrier (BBB). NR-mediated regulation of drug metabolizing enzymes and transporters can cause the toxicological effects of xenobiotics in the CNS and also lead to drug resistance in the centrum. The regulatory pathways of drug metabolizing enzymes and transporters can provide new strategies for selective regulation of the BBB permeability and drug metabolism in the brain. This review focuses on the importance of NR-mediated regulation of drug metabolizing enzymes and transporters in the CNS and the implications of this regulation in the therapeutic effect of CNS drugs and CNS side effects of drugs and other xenotoxicants.
Collapse
Affiliation(s)
- Dan Xu
- a Department of Pharmacology School of Basic Medical Sciences , Wuhan University , Wuhan , China.,b Center for Pharmacogenetics and Department of Pharmaceutical Sciences , University of Pittsburgh , Pittsburgh , PA , USA.,c Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan , China
| | - Songqiang Huang
- a Department of Pharmacology School of Basic Medical Sciences , Wuhan University , Wuhan , China
| | - Hui Wang
- a Department of Pharmacology School of Basic Medical Sciences , Wuhan University , Wuhan , China.,c Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan , China
| | - Wen Xie
- b Center for Pharmacogenetics and Department of Pharmaceutical Sciences , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
129
|
Kerdivel G, Blugeon C, Fund C, Rigolet M, Sachs LM, Buisine N. Opposite T 3 Response of ACTG1-FOS Subnetwork Differentiate Tailfin Fate in Xenopus Tadpole and Post-hatching Axolotl. Front Endocrinol (Lausanne) 2019; 10:194. [PMID: 31001200 PMCID: PMC6454024 DOI: 10.3389/fendo.2019.00194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/07/2019] [Indexed: 01/13/2023] Open
Abstract
Amphibian post-embryonic development and Thyroid Hormones (TH) signaling are deeply and intimately connected. In anuran amphibians, TH induce the spectacular and complex process known as metamorphosis. In paedomorphic salamanders, at similar development time, raising levels of TH fail to induce proper metamorphosis, as many "larval" tissues (e.g., gills, tailfin) are maintained. Why does the same evolutionary conserved signaling pathway leads to alternative phenotypes? We used a combination of developmental endocrinology, functional genomics and network biology to compare the transcriptional response of tailfin to TH, in the post-hatching paedormorphic Axolotl salamander and Xenopus tadpoles. We also provide a technological framework that efficiently reduces large lists of regulated genes down to a few genes of interest, which is well-suited to dissect endocrine regulations. We first show that Axolotl tailfin undergoes a strong and robust TH-dependent transcriptional response at post embryonic transition, despite the lack of visible anatomical changes. We next show that Fos and Actg1, which structure a single and dense subnetwork of cellular sensors and regulators, display opposite regulation between the two species. We finally show that TH treatments and natural variations of TH levels follow similar transcriptional dynamics. We suggest that, at the molecular level, tailfin fate correlates with the alternative transcriptional states of an fos-actg1 sub-network, which also includes transcription factors and regulators of cell fate. We propose that this subnetwork is one of the molecular switches governing the initiation of distinct TH responses, with transcriptional programs conducting alternative tailfin fate (maintenance vs. resorption) 2 weeks post-hatching.
Collapse
Affiliation(s)
- Gwenneg Kerdivel
- Unité Mixte de Recherche 7221, Centre National de la Recherche Scientifique, Alliance Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Corinne Blugeon
- Genomic Facility, CNRS, INSERM, Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, PSL Université Paris, Paris, France
| | - Cédric Fund
- Genomic Facility, CNRS, INSERM, Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, PSL Université Paris, Paris, France
| | - Muriel Rigolet
- Unité Mixte de Recherche 7221, Centre National de la Recherche Scientifique, Alliance Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Laurent M. Sachs
- Unité Mixte de Recherche 7221, Centre National de la Recherche Scientifique, Alliance Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
- *Correspondence: Laurent M. Sachs
| | - Nicolas Buisine
- Unité Mixte de Recherche 7221, Centre National de la Recherche Scientifique, Alliance Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
130
|
Annalora AJ, Jozic M, Marcus CB, Iversen PL. Alternative splicing of the vitamin D receptor modulates target gene expression and promotes ligand-independent functions. Toxicol Appl Pharmacol 2018; 364:55-67. [PMID: 30552932 DOI: 10.1016/j.taap.2018.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
Alternative splicing modulates gene function by creating splice variants with alternate functions or non-coding RNA activity. Naturally occurring variants of nuclear receptor (NR) genes with dominant negative or gain-of-function phenotypes have been documented, but their cellular roles, regulation, and responsiveness to environmental stress or disease remain unevaluated. Informed by observations that class I androgen and estrogen receptor variants display ligand-independent signaling in human cancer tissues, we questioned whether the function of class II NRs, like the vitamin D receptor (VDR), would also respond to alternative splicing regulation. Artificial VDR constructs lacking exon 3 (Dex3-VDR), encoding part of the DNA binding domain (DBD), and exon 8 (Dex8-VDR), encoding part of the ligand binding domain (LBD), were transiently transfected into DU-145 cells and stably-integrated into Caco-2 cells to study their effect on gene expression and cell viability. Changes in VDR promoter signaling were monitored by the expression of target genes (e.g. CYP24A1, CYP3A4 and CYP3A5). Ligand-independent VDR signaling was observed in variants lacking exon 8, and a significant loss of gene suppressor function was documented for variants lacking exon 3. The gain-of-function behavior of the Dex8-VDR variant was recapitulated in vitro using antisense oligonucleotides (ASO) that induce the skipping of exon 8 in wild-type VDR. ASO targeting the splice acceptor site of exon 8 significantly stimulated ligand-independent VDR reporter activity and the induction of CYP24A1 above controls. These results demonstrate how alternative splicing can re-program NR gene function, highlighting novel mechanisms of toxicity and new opportunities for the use of splice-switching oligonucleotides (SSO) in precision medicine.
Collapse
Affiliation(s)
- Andrew J Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331; USA.
| | - Marija Jozic
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331; USA
| | - Craig B Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331; USA
| | - Patrick L Iversen
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331; USA; LS Pharma, 884 Park St., Lebanon, OR 97355; USA
| |
Collapse
|
131
|
Centenera MM, Selth LA, Ebrahimie E, Butler LM, Tilley WD. New Opportunities for Targeting the Androgen Receptor in Prostate Cancer. Cold Spring Harb Perspect Med 2018; 8:a030478. [PMID: 29530945 PMCID: PMC6280715 DOI: 10.1101/cshperspect.a030478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent genomic analyses of metastatic prostate cancer have provided important insight into adaptive changes in androgen receptor (AR) signaling that underpin resistance to androgen deprivation therapies. Novel strategies are required to circumvent these AR-mediated resistance mechanisms and thereby improve prostate cancer survival. In this review, we present a summary of AR structure and function and discuss mechanisms of AR-mediated therapy resistance that represent important areas of focus for the development of new therapies.
Collapse
Affiliation(s)
- Margaret M Centenera
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia
| | - Luke A Selth
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Esmaeil Ebrahimie
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia
| | - Wayne D Tilley
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
132
|
Doumas M, Rouillon S, Venisse N, Nadeau C, Pierre Eugene P, Farce A, Chavatte P, Dupuis A, Migeot V, Carato P. Chlorinated and brominated bisphenol A derivatives: Synthesis, characterization and determination in water samples. CHEMOSPHERE 2018; 213:434-442. [PMID: 30243209 DOI: 10.1016/j.chemosphere.2018.09.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol A (BPA) has been used in the plastics industry for several decades. During the treatment of drinking water with chlorine reagent, the formation of chlorinated derivatives of BPA (ClxBPA) but also bromoBPA and bromochloroBPA is to be expected. Some of these compounds are considered to have an estrogenic effect and could induce major risks for human health by targeting different organs and systems in the body. In this paper, we describe the synthesis of chloro- and bromobisphenol A (ClxBPA, BrxBPA, BrxClxBPA)and their analytical characterization. These derivatives could be used as analytical standards in LC-MS/MS or evaluated in in vitro biological tests for their potential as endocrine disruptors. In this study, we evaluated the presence of BPA, ClxBPA in a pilot study from water samples. Range values found for BPA, ClxBPA were respectively 2.8-4169.3 ng/L and 0.8-11.3 ng/L.
Collapse
Affiliation(s)
- Manon Doumas
- Université de Poitiers, F-86000, Poitiers, France; IC2MP, CNRS, 7285, UFR Médecine Pharmacie, Poitiers, France; CIC INSERM, 1402, UFR Médecine Pharmacie, Poitiers, France.
| | - Steeve Rouillon
- Université de Poitiers, F-86000, Poitiers, France; CIC INSERM, 1402, UFR Médecine Pharmacie, Poitiers, France.
| | - Nicolas Venisse
- CIC INSERM, 1402, UFR Médecine Pharmacie, Poitiers, France; Service de Toxicologie et Pharmacocinétique, CHU, Poitiers, France.
| | - Cedric Nadeau
- Service de Gynécologie Obstétrique, CHU, Poitiers, France.
| | - Pascale Pierre Eugene
- Université de Poitiers, F-86000, Poitiers, France; CIC INSERM, 1402, UFR Médecine Pharmacie, Poitiers, France.
| | - Amaury Farce
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, Lille, France.
| | - Philippe Chavatte
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, Lille, France.
| | - Antoine Dupuis
- Université de Poitiers, F-86000, Poitiers, France; CIC INSERM, 1402, UFR Médecine Pharmacie, Poitiers, France; Service de Pharmacie, CHU, Poitiers, France.
| | - Virginie Migeot
- Université de Poitiers, F-86000, Poitiers, France; CIC INSERM, 1402, UFR Médecine Pharmacie, Poitiers, France; Pole Biospharm Service de Santé Publique, CHU, Poitiers, France.
| | - Pascal Carato
- Université de Poitiers, F-86000, Poitiers, France; CIC INSERM, 1402, UFR Médecine Pharmacie, Poitiers, France.
| |
Collapse
|
133
|
Dueva E, Singh K, Kalyta A, LeBlanc E, Rennie PS, Cherkasov A. Computer-Aided Discovery of Small Molecule Inhibitors of Transcriptional Activity of TLX (NR2E1) Nuclear Receptor. Molecules 2018; 23:molecules23112967. [PMID: 30441799 PMCID: PMC6278398 DOI: 10.3390/molecules23112967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022] Open
Abstract
Orphan nuclear receptor TLX (NR2E1) plays a critical role in the regulation of neural stem cells (NSC) as well as in the development of NSC-derived brain tumors. In the last years, new data have emerged implicating TLX in prostate and breast cancer. Therefore, inhibitors of TLX transcriptional activity may have a significant impact on the treatment of several critical malignancies. However, the TLX protein possesses a non-canonical ligand-binding domain (LBD), which lacks a ligand-binding pocket (conventionally targeted in case of nuclear receptors) that complicates the development of small molecule inhibitors of TLX. Herein, we utilized a rational structure-based design approach to identify small molecules targeting the Atro-box binding site of human TLX LBD. As a result of virtual screening of ~7 million molecular structures, 97 compounds were identified and evaluated in the TLX-responsive luciferase reporter assay. Among those, three chemicals demonstrated 40–50% inhibition of luciferase-detected transcriptional activity of the TLX orphan nuclear receptor at a dose of 35 µM. The identified compounds represent the first class of small molecule inhibitors of TLX transcriptional activity identified via methods of computer-aided drug discovery.
Collapse
Affiliation(s)
- Evgenia Dueva
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | - Kriti Singh
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | - Anastasia Kalyta
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | - Eric LeBlanc
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | - Paul S Rennie
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
134
|
Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: A structural perspective. Protein Sci 2018; 27:1876-1892. [PMID: 30109749 PMCID: PMC6201731 DOI: 10.1002/pro.3496] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/28/2022]
Abstract
Nuclear receptors (NRs) are a family of transcription factors that regulate numerous physiological processes such as metabolism, reproduction, inflammation, as well as the circadian rhythm. NRs sense changes in lipid metabolite levels to drive differential gene expression, producing distinct physiologic effects. This is an allosteric process whereby binding a cognate ligand and specific DNA sequences drives the recruitment of diverse transcriptional co-regulators at chromatin and ultimately transactivation or transrepression of target genes. Dysregulation of NR signaling leads to various malignances, metabolic disorders, and inflammatory disease. Given their important role in physiology and ability to respond to small lipophilic ligands, NRs have emerged as valuable therapeutic targets. Here, we summarize and discuss the recent progress on understanding the complex mechanism of action of NRs, primarily from a structural perspective. Finally, we suggest future studies to improve our understanding of NR signaling and better design drugs by integrating multiple structural and biophysical approaches.
Collapse
Affiliation(s)
- Emily R. Weikum
- Department of BiochemistryEmory School of MedicineAtlanta30322Georgia
| | - Xu Liu
- Department of BiochemistryEmory School of MedicineAtlanta30322Georgia
| | - Eric A. Ortlund
- Department of BiochemistryEmory School of MedicineAtlanta30322Georgia
| |
Collapse
|
135
|
Mackeh R, Marr AK, Fadda A, Kino T. C2H2-Type Zinc Finger Proteins: Evolutionarily Old and New Partners of the Nuclear Hormone Receptors. NUCLEAR RECEPTOR SIGNALING 2018; 15:1550762918801071. [PMID: 30718982 PMCID: PMC6348741 DOI: 10.1177/1550762918801071] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/02/2017] [Indexed: 12/21/2022]
Abstract
Nuclear hormone receptors (NRs) are evolutionarily conserved ligand-dependent
transcription factors. They are essential for human life, mediating the actions
of lipophilic molecules, such as steroid hormones and metabolites of fatty acid,
cholesterol, and external toxic compounds. The C2H2-type zinc finger proteins
(ZNFs) form the largest family of the transcription factors in humans and are
characterized by multiple, tandemly arranged zinc fingers. Many of the C2H2-type
ZNFs are conserved throughout evolution, suggesting their involvement in
preserved biological activities, such as general transcriptional regulation and
development/differentiation of organs/tissues observed in the early embryonic
phase. However, some C2H2-type ZNFs, such as those with the Krüppel-associated
box (KRAB) domain, appeared relatively late in evolution and have significantly
increased family members in mammals including humans, possibly modulating their
complicated transcriptional network and/or supporting the morphological
development/functions specific to them. Such evolutional characteristics of the
C2H2-type ZNFs indicate that these molecules influence the NR functions
conserved through evolution, whereas some also adjust them to meet with specific
needs of higher organisms. We review the interaction between NRs and C2H2-type
ZNFs by focusing on some of the latter molecules.
Collapse
|
136
|
Prantner V, Cinnamon Y, Küblbeck J, Molnár F, Honkakoski P. Functional Characterization of a Novel Variant of the Constitutive Androstane Receptor (CAR, NR1I3). NUCLEAR RECEPTOR RESEARCH 2018. [DOI: 10.32527/2018/101386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Viktoria Prantner
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, FI-70211 Kuopio, Finland. Present address: Neosmart Health Ltd., Aleksanterinkatu 13, FI-00100 Helsinki,
Finland
| | - Yuval Cinnamon
- The Monique and Jacques Roboh Department of Genetic Research, Hadassah - Hebrew University Medical Center, Jerusalem 91120, Israel. Present address: Department of Poultry and Aquaculture Sciences, Institute of Animal Science, Agricultural Research Organization, The Volcani Center, P.O.Box 6, Bet Dagan 50250, Israel
| | - Jenni Küblbeck
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, FI-70211 Kuopio, Finland
| | - Ferdinand Molnár
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, FI-70211 Kuopio, Finland. Present address: Department of Biology, School of Sciences and Technology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Paavo Honkakoski
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
137
|
Wu L, Chen L. Characteristics of Nur77 and its ligands as potential anticancer compounds (Review). Mol Med Rep 2018; 18:4793-4801. [PMID: 30272297 PMCID: PMC6236262 DOI: 10.3892/mmr.2018.9515] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/05/2018] [Indexed: 01/01/2023] Open
Abstract
Nuclear receptor subfamily 4 group A member 1 (NR4A1; also termed Nur77/TR3/NGFIB), a member of the nuclear receptor superfamily, is expressed as an early response gene to regulate the expression of multiple target genes. Nur77 has the typical structure of a nuclear receptor, including an N‑terminal domain, a DNA binding domain, and a ligand‑binding domain. The expression and localization of Nur77 are closely associated with its roles in cell proliferation and apoptosis. Nur77 was first identified as an orphan receptor, the endogenous ligand of which has not yet been identified; however, an increasing number of compounds targeting Nur77 have been reported to have beneficial effects in the treatment of cancer and other diseases. This review provides a brief overview of the identification, structure, expression and localization, transcriptional role and non‑genomic function of Nur77, and summarizes the ligands that have been shown to interact with Nur77, including cytosporone B, cisplatin, TMPA, PDNPA, CCE9, THPN, Z‑ligustilide, celastrol and bisindole methane compounds, which may potentially be used to treat cancer in humans.
Collapse
Affiliation(s)
- Lingjuan Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| | - Liqun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
138
|
Tecalco-Cruz AC, Ramírez-Jarquín JO. Polyubiquitination inhibition of estrogen receptor alpha and its implications in breast cancer. World J Clin Oncol 2018; 9:60-70. [PMID: 30148069 PMCID: PMC6107474 DOI: 10.5306/wjco.v9.i4.60] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Estrogen receptor alpha (ERα) is detected in more than 70% of the cases of breast cancer. Nuclear activity of ERα, a transcriptional regulator, is linked to the development of mammary tumors, whereas the extranuclear activity of ERα is related to endocrine therapy resistance. ERα polyubiquitination is induced by the estradiol hormone, and also by selective estrogen receptor degraders, resulting in ERα degradation via the ubiquitin proteasome system. Moreover, polyubiquitination is related to the ERα transcription cycle, and some E3-ubiquitin ligases also function as coactivators for ERα. Several studies have demonstrated that ERα polyubiquitination is inhibited by multiple mechanisms that include posttranslational modifications, interactions with coregulators, and formation of specific protein complexes with ERα. These events are responsible for an increase in ERα protein levels and deregulation of its signaling in breast cancers. Thus, ERα polyubiquitination inhibition may be a key factor in the progression of breast cancer and resistance to endocrine therapy.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama (PICM), Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México 04510, México
| | - Josué O Ramírez-Jarquín
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México 04510, México
| |
Collapse
|
139
|
Watanabe M, Kakuta H. Retinoid X Receptor Antagonists. Int J Mol Sci 2018; 19:ijms19082354. [PMID: 30103423 PMCID: PMC6121510 DOI: 10.3390/ijms19082354] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Retinoid X receptor (RXR) antagonists are not only useful as chemical tools for biological research, but are also candidate drugs for the treatment of various diseases, including diabetes and allergies, although no RXR antagonist has yet been approved for clinical use. In this review, we present a brief overview of RXR structure, function, and target genes, and describe currently available RXR antagonists, their structural classification, and their evaluation, focusing on the latest research.
Collapse
Affiliation(s)
- Masaki Watanabe
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
140
|
Chen L, Wu L, Zhu L, Zhao Y. Overview of the structure-based non-genomic effects of the nuclear receptor RXRα. Cell Mol Biol Lett 2018; 23:36. [PMID: 30093910 PMCID: PMC6080560 DOI: 10.1186/s11658-018-0103-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor RXRα (retinoid X receptor-α) is a transcription factor that regulates the expression of multiple genes. Its non-genomic function is largely related to its structure, polymeric forms and modification. Previous research revealed that some non-genomic activity of RXRα occurs via formation of heterodimers with Nur77. RXRα-Nur77 heterodimers translocate from the nucleus to the mitochondria in response to certain apoptotic stimuli and this activity correlates with cell apoptosis. More recent studies revealed a significant role for truncated RXRα (tRXRα), which interacts with the p85α subunit of the PI3K/AKT signaling pathway, leading to enhanced activation of AKT and promoting cell growth in vitro and in animals. We recently reported on a series of NSAID sulindac analogs that can bind to tRXRα through a unique binding mechanism. We also identified one analog, K-80003, which can inhibit cancer cell growth by inducing tRXRα to form a tetramer, thus disrupting p85α-tRXRα interaction. This review analyzes the non-genomic effects of RXRα in normal and tumor cells, and discusses the functional differences based on RXRα protein structure (structure source: the RCSB Protein Data Bank).
Collapse
Affiliation(s)
- Liqun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| | - Lingjuan Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| | - Linyan Zhu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| | - Yiyi Zhao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| |
Collapse
|
141
|
Yan L, Zhang Q, Huang F, Nie WW, Hu CQ, Ying HZ, Dong XW, Zhao MR. Ternary classification models for predicting hormonal activities of chemicals via nuclear receptors. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
142
|
Mazaira GI, Zgajnar NR, Lotufo CM, Daneri-Becerra C, Sivils JC, Soto OB, Cox MB, Galigniana MD. The Nuclear Receptor Field: A Historical Overview and Future Challenges. NUCLEAR RECEPTOR RESEARCH 2018; 5:101320. [PMID: 30148160 PMCID: PMC6108593 DOI: 10.11131/2018/101320] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this article we summarize the birth of the field of nuclear receptors, the discovery of untransformed and transformed isoforms of ligand-binding macromolecules, the discovery of the three-domain structure of the receptors, and the properties of the Hsp90-based heterocomplex responsible for the overall structure of the oligomeric receptor and many aspects of the biological effects. The discovery and properties of the subfamily of receptors called orphan receptors is also outlined. Novel molecular aspects of the mechanism of action of nuclear receptors and challenges to resolve in the near future are discussed.
Collapse
Affiliation(s)
- Gisela I. Mazaira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (1428), Argentina
| | - Nadia R. Zgajnar
- Instituto de Biología y Medicina Experimental- CONICET. Buenos Aires (1428), Argentina
| | - Cecilia M. Lotufo
- Instituto de Biología y Medicina Experimental- CONICET. Buenos Aires (1428), Argentina
| | | | - Jeffrey C. Sivils
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Olga B. Soto
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Marc B. Cox
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Mario D. Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (1428), Argentina
- Instituto de Biología y Medicina Experimental- CONICET. Buenos Aires (1428), Argentina
| |
Collapse
|
143
|
Independent losses of a xenobiotic receptor across teleost evolution. Sci Rep 2018; 8:10404. [PMID: 29991818 PMCID: PMC6039460 DOI: 10.1038/s41598-018-28498-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/22/2018] [Indexed: 01/25/2023] Open
Abstract
Sensitivity to environmental stressors largely depend on the genetic complement of the organism. Recent sequencing and assembly of teleost fish genomes enable us to trace the evolution of defense genes in the largest and most diverse group of vertebrates. Through genomic searches and in-depth analysis of gene loci in 76 teleost genomes, we show here that the xenosensor pregnane X receptor (Pxr, Nr1i2) is absent in more than half of these species. Notably, out of the 27 genome assemblies that belong to the Gadiformes order, the pxr gene was only retained in the Merluccidae family (hakes) and Pelagic cod (Melanonus zugmayeri). As an important receptor for a wide range of drugs and environmental pollutants, vertebrate PXR regulate the transcription of a number of genes involved in the biotransformation of xenobiotics, including cytochrome P450 enzymes (CYP). In the absence of Pxr, we suggest that the aryl hydrocarbon receptor (Ahr) have evolved an extended regulatory role by governing the expression of certain Pxr target genes, such as cyp3a, in Atlantic cod (Gadus morhua). However, as several independent losses of pxr have occurred during teleost evolution, other lineages and species may have adapted alternative compensating mechanisms for controlling crucial cellular defense mechanisms.
Collapse
|
144
|
Tebbens JD, Azar M, Friedmann E, Lanzendörfer M, Pávek P. Mathematical Models in the Description of Pregnane X Receptor (PXR)-Regulated Cytochrome P450 Enzyme Induction. Int J Mol Sci 2018; 19:ijms19061785. [PMID: 29914136 PMCID: PMC6032247 DOI: 10.3390/ijms19061785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
The pregnane X receptor (PXR) is a drug/xenobiotic-activated transcription factor of crucial importance for major cytochrome P450 xenobiotic-metabolizing enzymes (CYP) expression and regulation in the liver and the intestine. One of the major target genes regulated by PXR is the cytochrome P450 enzyme (CYP3A4), which is the most important human drug-metabolizing enzyme. In addition, PXR is supposed to be involved both in basal and/or inducible expression of many other CYPs, such as CYP2B6, CYP2C8, 2C9 and 2C19, CYP3A5, CYP3A7, and CYP2A6. Interestingly, the dynamics of PXR-mediated target genes regulation has not been systematically studied and we have only a few mechanistic mathematical and biologically based models describing gene expression dynamics after PXR activation in cellular models. Furthermore, few indirect mathematical PKPD models for prediction of CYP3A metabolic activity in vivo have been built based on compartmental models with respect to drug–drug interactions or hormonal crosstalk. Importantly, several negative feedback loops have been described in PXR regulation. Although current mathematical models propose these adaptive mechanisms, a comprehensive mathematical model based on sufficient experimental data is still missing. In the current review, we summarize and compare these models and address some issues that should be considered for the improvement of PXR-mediated gene regulation modelling as well as for our better understanding of the quantitative and spatial dynamics of CYPs expression.
Collapse
Affiliation(s)
- Jurjen Duintjer Tebbens
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Malek Azar
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Elfriede Friedmann
- Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Mathematikon, University Heidelberg, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany.
| | - Martin Lanzendörfer
- Institute of Hydrogeology, Engineering Geology and Applied Geophysics, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic.
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
145
|
Pseudoexfoliative glaucoma and molecular genetic characteristics of vitamin D metabolism. OPHTHALMOLOGY JOURNAL 2018. [DOI: 10.17816/ov11219-28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Purpose. To study the possible association of 25-hydroxyvitamin D level, and vitamin D receptor (VDR) gene polymorphisms (BsmI, ApaI, TaqI, FokI) with pseudoexfoliative glaucoma (PEG) clinical manifestations.
Methods. We examined 160 subjects (72 males (45%), and 88 females (55%)) aged from 55 to 75 years, residents of St. Petersburg and Leningrad region. 122 patients with PEG were enrolled in the main study group, the control group comprised 38 subjects without PEG, primary open angle glaucoma (POUG) and pseudoexfoliation syndrome (PES). 25(OH)D serum levels were assessed by chemiluminescent immunoassay (CLIA) method. Detection of VDR gene allele polymorphisms (ApaI, BsmI, FokI, and TaqI) was carried out using polymerase chain reaction – restriction fragment length polymorphism (PCR-RFLP) technique.
Results. Patients with PEG had lower 25(OH)D serum levels compared to patients in the control group (39.3 ± 1.2 and 52.7 ± 2.1 nMol/l, respectively, p < 0.01). The prevalence of vitamin D deficiency was found to be higher among PEG patients than among healthy subjects (86.4% and 59.5%, respectively, p < 0.01). The prevalence of b allele (p < 0.001) and bb genotype (p < 0.001) (BsmI polymorphism), as well as of f allele and ff genotype (p < 0.05) (FokI polymorphism) in PEG patients were higher compared to healthy subjects. We found that the Fallele carriers (FokI polymorphism) had greater corneal thickness than the ff genotype carriers (547.3 ± 4.1 μm and 502.1 ± 25.8 μm, respectively, p < 0.01). It was revealed, that bb genotype, Bb genotype (BsmI polymorphism), and ff genotype (FokI polymorphism) were associated with the increased risk of PEG (OR = 8.2, CI 95%: 3.4-19.9; OR = 3.9, CI 95%: 1.7-9.0; OR = 2.3, CI 95%: 1.2-4.5, respectively).
Conclusions. Results of this study for the first time ever showed the association between BsmI and FokI VDR gene polymorphisms and pseudoexfoliative glaucoma.
Collapse
|
146
|
Del Río JP, Alliende MI, Molina N, Serrano FG, Molina S, Vigil P. Steroid Hormones and Their Action in Women's Brains: The Importance of Hormonal Balance. Front Public Health 2018; 6:141. [PMID: 29876339 PMCID: PMC5974145 DOI: 10.3389/fpubh.2018.00141] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/27/2018] [Indexed: 12/19/2022] Open
Abstract
Sex hormones significantly impact women's lives. Throughout the different stages of life, from menarche to menopause and all stages in between, women experience dramatic fluctuations in the levels of progesterone and estradiol, among other hormones. These fluctuations affect the body as a whole, including the central nervous system (CNS). In the CNS, sex hormones act via steroid receptors. They also have an effect on different neurotransmitters such as GABA, serotonin, dopamine, and glutamate. Additionally, studies show that sex hormones and their metabolites influence brain areas that regulate mood, behavior, and cognitive abilities. This review emphasizes the benefits a proper hormonal balance during the different stages of life has in the CNS. To achieve this goal, it is essential that hormone levels are evaluated considering a woman's age and ovulatory status, so that a correct diagnosis and treatment can be made. Knowledge of steroid hormone activity in the brain will give women and health providers an important tool for improving their health and well-being.
Collapse
Affiliation(s)
| | | | | | | | | | - Pilar Vigil
- Reproductive Health Research InstituteSantiago, Chile
- Vicerrectoría de ComunicacionesPontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
147
|
Eclov RJ, Kim MJ, Smith R, Ahituv N, Kroetz DL. Rare Variants in the ABCG2 Promoter Modulate In Vivo Activity. Drug Metab Dispos 2018; 46:636-642. [PMID: 29467213 PMCID: PMC5896364 DOI: 10.1124/dmd.117.079541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/15/2018] [Indexed: 11/22/2022] Open
Abstract
ABCG2 encodes the breast cancer resistance protein (BCRP), an efflux membrane transporter important in the detoxification of xenobiotics. In the present study, the basal activity of the ABCG2 promoter in liver, kidney, intestine, and breast cell lines was examined using luciferase reporter assays. The promoter activities of reference and variant ABCG2 sequences were compared in human hepatocellular carcinoma cell (HepG2), human embryonic kidney cell (HEK293T), human colorectal carcinoma cell (HCT116), and human breast adenocarcinoma cell (MCF-7) lines. The ABCG2 promoter activity was strongest in the kidney and intestine cell lines. Four variants in the basal ABCG2 promoter (rs76656413, rs66664036, rs139256004, and rs59370292) decreased the promoter activity by 25%-50% in at least three of the four cell lines. The activity of these four variants was also examined in vivo using the hydrodynamic tail vein assay, and two single nucleotide polymorphisms (rs76656413 and rs59370292) significantly decreased in vivo liver promoter activity by 50%-80%. Electrophoretic mobility shift assays confirmed a reduction in nuclear protein binding to the rs59370292 variant probe, whereas the rs76656413 probe had a shift in transcription factor binding specificity. Although both rs59370292 and rs76656413 are rare variants in all populations, they could contribute to patient-level variation in ABCG2 expression in the kidney, liver, and intestine.
Collapse
Affiliation(s)
- Rachel J Eclov
- Department of Bioengineering and Therapeutic Sciences (R.J.E., M.J.K., R.S., N.A., D.L.K.) and Institute for Human Genetics (N.A., M.J.K., R.S., D.L.K.), University of California San Francisco, San Francisco, California
| | - Mee J Kim
- Department of Bioengineering and Therapeutic Sciences (R.J.E., M.J.K., R.S., N.A., D.L.K.) and Institute for Human Genetics (N.A., M.J.K., R.S., D.L.K.), University of California San Francisco, San Francisco, California
| | - Robin Smith
- Department of Bioengineering and Therapeutic Sciences (R.J.E., M.J.K., R.S., N.A., D.L.K.) and Institute for Human Genetics (N.A., M.J.K., R.S., D.L.K.), University of California San Francisco, San Francisco, California
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences (R.J.E., M.J.K., R.S., N.A., D.L.K.) and Institute for Human Genetics (N.A., M.J.K., R.S., D.L.K.), University of California San Francisco, San Francisco, California
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences (R.J.E., M.J.K., R.S., N.A., D.L.K.) and Institute for Human Genetics (N.A., M.J.K., R.S., D.L.K.), University of California San Francisco, San Francisco, California
| |
Collapse
|
148
|
Jaiswal B, Gupta A. Modulation of Nuclear Receptor Function by Chromatin Modifying Factor TIP60. Endocrinology 2018; 159:2199-2215. [PMID: 29420715 DOI: 10.1210/en.2017-03190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
Nuclear receptors (NRs) are transcription factors that bind to specific DNA sequences known as hormone response elements located upstream of their target genes. Transcriptional activity of NRs can be modulated by binding of the compatible ligand and transient interaction with cellular coregulators, functioning either as coactivators or as corepressors. Many coactivator proteins possess intrinsic histone acetyltransferase (HAT) activity that catalyzes the acetylation of specific lysine residues in histone tails and loosens the histone-DNA interaction, thereby facilitating access of transcriptional factors to the regulatory sequences of the DNA. Tat interactive protein 60 (TIP60), a member of the Mof-Ybf2-Sas2-TIP60 family of HAT protein, is a multifunctional coregulator that controls a number of physiological processes including apoptosis, DNA damage repair, and transcriptional regulation. Over the last two decades or so, TIP60 has been extensively studied for its role as NR coregulator, controlling various aspect of steroid receptor functions. The aim of this review is to summarize the findings on the role of TIP60 as a coregulator for different classes of NRs and its overall functional implications. We also discuss the latest studies linking TIP60 to NR-associated metabolic disorders and cancers for its potential use as a therapeutic drug target in future.
Collapse
Affiliation(s)
- Bharti Jaiswal
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Ashish Gupta
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
149
|
|
150
|
The Role of PPAR and Its Cross-Talk with CAR and LXR in Obesity and Atherosclerosis. Int J Mol Sci 2018; 19:ijms19041260. [PMID: 29690611 PMCID: PMC5979375 DOI: 10.3390/ijms19041260] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023] Open
Abstract
The prevalence of obesity and atherosclerosis has substantially increased worldwide over the past several decades. Peroxisome proliferator-activated receptors (PPARs), as fatty acids sensors, have been therapeutic targets in several human lipid metabolic diseases, such as obesity, atherosclerosis, diabetes, hyperlipidaemia, and non-alcoholic fatty liver disease. Constitutive androstane receptor (CAR) and liver X receptors (LXRs) were also reported as potential therapeutic targets for the treatment of obesity and atherosclerosis, respectively. Further clarification of the internal relationships between these three lipid metabolic nuclear receptors is necessary to enable drug discovery. In this review, we mainly summarized the cross-talk of PPARs-CAR in obesity and PPARs-LXRs in atherosclerosis.
Collapse
|