101
|
Ardeljan CP, Ardeljan D, Abu-Asab M, Chan CC. Inflammation and Cell Death in Age-Related Macular Degeneration: An Immunopathological and Ultrastructural Model. J Clin Med 2015; 3:1542-60. [PMID: 25580276 PMCID: PMC4287551 DOI: 10.3390/jcm3041542] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The etiology of Age-related Macular Degeneration (AMD) remains elusive despite the characterization of many factors contributing to the disease in its late-stage phenotypes. AMD features an immune system in flux, as shown by changes in macrophage polarization with age, expression of cytokines and complement, microglial accumulation with age, etc. These point to an allostatic overload, possibly due to a breakdown in self vs. non-self when endogenous compounds and structures acquire the appearance of non-self over time. The result is inflammation and inflammation-mediated cell death. While it is clear that these processes ultimately result in degeneration of retinal pigment epithelium and photoreceptor, the prevalent type of cell death contributing to the various phenotypes is unknown. Both molecular studies as well as ultrastructural pathology suggest pyroptosis, and perhaps necroptosis, are the predominant mechanisms of cell death at play, with only minimal evidence for apoptosis. Herein, we attempt to reconcile those factors identified by experimental AMD models and integrate these data with pathology observed under the electron microscope—particularly observations of mitochondrial dysfunction, DNA leakage, autophagy, and cell death.
Collapse
Affiliation(s)
- Christopher P. Ardeljan
- Histology Core, Laboratory of Immunology, National Eye Institute/National Institutes of Health, Bethesda, Maryland 20892-1857, MD, USA; E-Mails: (C.P.A.); (M.A.-A.)
| | - Daniel Ardeljan
- Human Genetics Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, MD, USA; E-Mail:
| | - Mones Abu-Asab
- Histology Core, Laboratory of Immunology, National Eye Institute/National Institutes of Health, Bethesda, Maryland 20892-1857, MD, USA; E-Mails: (C.P.A.); (M.A.-A.)
| | - Chi-Chao Chan
- Histology Core, Laboratory of Immunology, National Eye Institute/National Institutes of Health, Bethesda, Maryland 20892-1857, MD, USA; E-Mails: (C.P.A.); (M.A.-A.)
- Immunopathology Section, Laboratory of Immunology, National Eye Institute/National Institutes of Health, Bethesda, Maryland 20892-1857, MD, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-301-496-0417
| |
Collapse
|
102
|
Zhang X, Gao Y, Lu L, Zhang Z, Gan S, Xu L, Lei A, Cao Y. JmjC Domain-containing Protein 6 (Jmjd6) Derepresses the Transcriptional Repressor Transcription Factor 7-like 1 (Tcf7l1) and Is Required for Body Axis Patterning during Xenopus Embryogenesis. J Biol Chem 2015; 290:20273-83. [PMID: 26157142 DOI: 10.1074/jbc.m115.646554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Indexed: 12/22/2022] Open
Abstract
Tcf7l1 (also known as Tcf3) is a bimodal transcription factor that plays essential roles in embryogenesis and embryonic and adult stem cells. On one hand, Tcf7l1 works as transcriptional repressor via the recruitment of Groucho-related transcriptional corepressors to repress the transcription of Wnt target genes, and, on the other hand, it activates Wnt target genes when Wnt-activated β-catenin interacts with it. However, how its activity is modulated is not well understood. Here we demonstrate that a JmjC-domain containing protein, Jmjd6, interacts with Tcf7l and derepresses Tcf7l. We show that Jmjd6 binds to a region of Tcf7l1 that is also responsible for Groucho interaction, therefore making it possible that Jmjd6 binding displaces the Groucho transcriptional corepressor from Tcf7l1. Moreover, we show that Jmjd6 antagonizes the repression effect of Tcf7l1 on target gene transcription and is able to enhance β-catenin-induced gene activation and that, vice versa, inhibition of Jmjd6 activity compromises gene activation in both cells and Xenopus early embryos. We also show that jmjd6 is both maternally and zygotically transcribed during Xenopus embryogenesis. Loss of Jmjd6 function causes defects in anterioposterior body axis formation and down-regulation of genes that are involved in anterioposterior axis patterning. The results elucidate a novel mechanism underlying the regulation of Tcf7l1 activity and the regulation of embryonic body axis formation.
Collapse
Affiliation(s)
- Xuena Zhang
- From the Model Animal Research Center of Nanjing University and the Ministry of Education Key Laboratory of Model Animals for Disease Study, Nanjing 210061, China
| | - Yan Gao
- From the Model Animal Research Center of Nanjing University and the Ministry of Education Key Laboratory of Model Animals for Disease Study, Nanjing 210061, China
| | - Lei Lu
- From the Model Animal Research Center of Nanjing University and the Ministry of Education Key Laboratory of Model Animals for Disease Study, Nanjing 210061, China
| | - Zan Zhang
- From the Model Animal Research Center of Nanjing University and the Ministry of Education Key Laboratory of Model Animals for Disease Study, Nanjing 210061, China
| | - Shengchun Gan
- From the Model Animal Research Center of Nanjing University and the Ministry of Education Key Laboratory of Model Animals for Disease Study, Nanjing 210061, China
| | - Liyang Xu
- From the Model Animal Research Center of Nanjing University and the Ministry of Education Key Laboratory of Model Animals for Disease Study, Nanjing 210061, China
| | - Anhua Lei
- From the Model Animal Research Center of Nanjing University and the Ministry of Education Key Laboratory of Model Animals for Disease Study, Nanjing 210061, China
| | - Ying Cao
- From the Model Animal Research Center of Nanjing University and the Ministry of Education Key Laboratory of Model Animals for Disease Study, Nanjing 210061, China
| |
Collapse
|
103
|
Hu YJ, Belaghzal H, Hsiao WY, Qi J, Bradner JE, Guertin DA, Sif S, Imbalzano AN. Transcriptional and post-transcriptional control of adipocyte differentiation by Jumonji domain-containing protein 6. Nucleic Acids Res 2015; 43:7790-804. [PMID: 26117538 PMCID: PMC4652747 DOI: 10.1093/nar/gkv645] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/12/2015] [Indexed: 12/17/2022] Open
Abstract
Jumonji domain-containing protein 6 (JMJD6) is a nuclear protein involved in histone modification, transcription and RNA processing. Although JMJD6 is crucial for tissue development, the link between its molecular functions and its roles in any given differentiation process is unknown. We report that JMJD6 is required for adipogenic gene expression and differentiation in a manner independent of Jumonji C domain catalytic activity. JMJD6 knockdown led to a reduction of C/EBPβ and C/EBPδ protein expression without affecting mRNA levels in the early phase of differentiation. However, ectopic expression of C/EBPβ and C/EBPδ did not rescue differentiation. Further analysis demonstrated that JMJD6 was associated with the Pparγ2 and Cebpα loci and putative enhancers. JMJD6 was previously found associated with bromodomain and extra-terminal domain (BET) proteins, which can be targeted by the bromodomain inhibitor JQ1. JQ1 treatment prevented chromatin binding of JMJD6, Pparγ2 and Cebpα expression, and adipogenic differentiation, yet had no effect on C/EBPβ and C/EBPδ expression or chromatin binding. These results indicate dual roles for JMJD6 in promoting adipogenic gene expression program by post-transcriptional regulation of C/EBPβ and C/EBPδ and direct transcriptional activation of Pparγ2 and Cebpα during adipocyte differentiation.
Collapse
Affiliation(s)
- Yu-Jie Hu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Houda Belaghzal
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Wen-Yu Hsiao
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jun Qi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Saïd Sif
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
104
|
Cong X, Poyton MF, Baxter AJ, Pullanchery S, Cremer PS. Unquenchable Surface Potential Dramatically Enhances Cu(2+) Binding to Phosphatidylserine Lipids. J Am Chem Soc 2015; 137:7785-92. [PMID: 26065920 DOI: 10.1021/jacs.5b03313] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, the apparent equilibrium dissociation constant, K(Dapp), between Cu(2+) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS), a negatively charged phospholipid, was measured as a function of PS concentrations in supported lipid bilayers (SLBs). The results indicated that K(Dapp) for Cu(2+) binding to PS-containing SLBs was enhanced by a factor of 17,000 from 110 nM to 6.4 pM as the PS density in the membrane was increased from 1.0 to 20 mol %. Although Cu(2+) bound bivalently to POPS at higher PS concentrations, this was not the dominant factor in increasing the binding affinity. Rather, the higher concentration of Cu(2+) within the double layer above the membrane was largely responsible for the tightening. Unlike the binding of other divalent metal ions such as Ca(2+) and Mg(2+) to PS, Cu(2+) binding does not alter the net negative charge on the membrane as the Cu(PS)2 complex forms. As such, the Cu(2+) concentration within the double layer region was greatly amplified relative to its concentration in bulk solution as the PS density was increased. This created a far larger enhancement to the apparent binding affinity than is observed by standard multivalent effects. These findings should help provide an understanding on the extent of Cu(2+)-PS binding in cell membranes, which may be relevant to biological processes such as amyloid-β peptide toxicity and lipid oxidation.
Collapse
|
105
|
Böttger A, Islam MS, Chowdhury R, Schofield CJ, Wolf A. The oxygenase Jmjd6--a case study in conflicting assignments. Biochem J 2015; 468:191-202. [PMID: 25997831 DOI: 10.1042/bj20150278] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Jumonji domain-containing protein 6 (Jmjd6) is a member of the superfamily of non-haem iron(II) and 2-oxoglutarate (2OG)-dependent oxygenases; it plays an important developmental role in higher animals. Jmjd6 was initially assigned a role as the phosphatidylserine receptor responsible for engulfment of apoptotic cells but this now seems unlikely. Jmjd6 has been shown to be a nuclear localized protein with a JmjC domain comprising a distorted double-stranded β-helical structure characteristic of the 2OG-dependent oxygenases. Jmjd6 was subsequently assigned a role in catalysing N-methyl-arginine residue demethylation on the N-terminus of the human histones H3 and H4; however, this function is also subject to conflicting reports. Jmjd6 does catalyse 2OG-dependent C-5 hydroxylation of lysine residues in mRNA splicing-regulatory proteins and histones; there is also accumulating evidence that Jmjd6 plays a role in splicing (potentially in an iron- and oxygen-dependent manner) as well as in other processes regulating gene expression, including transcriptional pause release. Moreover, a link with tumour progression has been suggested. In the present review we look at biochemical, structural and cellular work on Jmjd6, highlighting areas of controversy and consensus.
Collapse
Affiliation(s)
- Angelika Böttger
- *Department of Biology II, Ludwig Maximillians University, Munich, Germany
| | - Md Saiful Islam
- †Chemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
| | - Rasheduzzaman Chowdhury
- †Chemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
| | - Christopher J Schofield
- †Chemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
| | - Alexander Wolf
- ‡Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
106
|
The resolution of inflammation: Principles and challenges. Semin Immunol 2015; 27:149-60. [PMID: 25911383 DOI: 10.1016/j.smim.2015.03.014] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022]
Abstract
The concept that chemokines, cytokines and pro-inflammatory mediators act in a co-ordinated fashion to drive the initiation of the inflammatory reaction is well understood. The significance of such networks acting during the resolution of inflammation however is poorly appreciated. In recent years, specific pro-resolving mediators were discovered which activate resolution pathways to return tissues to homeostasis. These mediators are diverse in nature, and include specialized lipid mediators (lipoxins, resolvins, protectins and maresins) proteins (annexin A1, galectins) and peptides, gaseous mediators including hydrogen sulphide, a purine (adenosine), as well as neuromodulator release under the control of the vagus nerve. Functionally, they can act to limit further leukocyte recruitment, induce neutrophil apoptosis and enhance efferocytosis by macrophages. They can also switch macrophages from classical to alternatively activated cells, promote the return of non-apoptotic cells to the lymphatics and help initiate tissue repair mechanisms and healing. Within this review we highlight the essential cellular aspects required for successful tissue resolution, briefly discuss the pro-resolution mediators that drive these processes and consider potential challenges faced by researchers in the quest to discover how inflammation resolves and why chronic inflammation persists.
Collapse
|
107
|
Lau B, Shah TT, Valerio M, Hamid S, Ahmed HU, Arya M. Technological aspects of delivering cryotherapy for prostate cancer. Expert Rev Med Devices 2015; 12:183-90. [DOI: 10.1586/17434440.2015.990377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
108
|
Yang H, Chen YZ, Zhang Y, Wang X, Zhao X, Godfroy JI, Liang Q, Zhang M, Zhang T, Yuan Q, Ann Royal M, Driscoll M, Xia NS, Yin H, Xue D. A lysine-rich motif in the phosphatidylserine receptor PSR-1 mediates recognition and removal of apoptotic cells. Nat Commun 2015; 6:5717. [PMID: 25564762 PMCID: PMC4306451 DOI: 10.1038/ncomms6717] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 10/31/2014] [Indexed: 02/02/2023] Open
Abstract
The conserved phosphatidylserine receptor (PSR) was first identified as a receptor for phosphatidylserine, an 'eat-me' signal exposed by apoptotic cells. However, several studies suggest that PSR may also act as an arginine demethylase, a lysyl hydroxylase, or an RNA-binding protein through its N-terminal JmjC domain. How PSR might execute drastically different biochemical activities, and whether they are physiologically significant, remain unclear. Here we report that a lysine-rich motif in the extracellular domain of PSR-1, the Caenorhabditis elegans PSR, mediates specific phosphatidylserine binding in vitro and clearance of apoptotic cells in vivo. This motif also mediates phosphatidylserine-induced oligomerization of PSR-1, suggesting a mechanism by which PSR-1 activates phagocytosis. Mutations in the phosphatidylserine-binding motif, but not in its Fe(II) binding site critical for the JmjC activity, abolish PSR-1 phagocytic function. Moreover, PSR-1 enriches and clusters around apoptotic cells during apoptosis. These results establish that PSR-1 is a conserved, phosphatidylserine-recognizing phagocyte receptor.
Collapse
Affiliation(s)
- Hengwen Yang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Yu-Zen Chen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Yi Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohui Wang
- Department of Chemistry &Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Xiang Zhao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - James I Godfroy
- Department of Chemistry &Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Qian Liang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Man Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianying Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Quan Yuan
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Mary Ann Royal
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Ning-Shao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Hang Yin
- 1] Department of Chemistry &Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA [2] Center of Basic Molecular Science and Department of Chemistry, Tsinghua University, Beijing 100082, China
| | - Ding Xue
- 1] Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA [2] School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
109
|
Patra M, Mukhopadhyay C, Chakrabarti A. Malachite green interacts with the membrane skeletal protein, spectrin. RSC Adv 2015. [DOI: 10.1039/c5ra15488j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Energy minimized complex of MG with the self association domain of spectrin.
Collapse
Affiliation(s)
- Malay Patra
- Chemistry Department
- University of Calcutta
- Kolkata 700009
- India
| | | | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division
- Saha Institute of Nuclear Physics
- Kolkata 700064
- India
| |
Collapse
|
110
|
Accari SL, Fisher PR. Emerging Roles of JmjC Domain-Containing Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:165-220. [DOI: 10.1016/bs.ircmb.2015.07.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
111
|
Carou MC, Cruzans PR, Maruri A, Stockert JC, Lombardo DM. Apoptosis in ovarian granulosa cells of cattle: morphological features and clearance by homologous phagocytosis. Acta Histochem 2015; 117:92-103. [PMID: 25511683 DOI: 10.1016/j.acthis.2014.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 01/05/2023]
Abstract
Apoptosis is involved in many physiological processes of the ovary, such as recruitment of prenatal germ cells, follicular atresia, ovulation, and luteolysis. Based on the need for the involvement of phagocytic cells to achieve apoptosis clearance and that follicular atresia is triggered by weak apoptotic stimuli, we postulate that granulosa cells engullng apoptotic corpses (ACs) must carry out this macrophagic process. Since apoptosis was early defined in terms of morphological aspects, here we describe apoptosis induced by a GnRH analog (leuprolide acetate, LA) at histological level on bovine granulosa cells (primary culture, CPGB, and an established cell line, BGC-1). We observed two main types of apoptosis. In type A, the whole cell or most of it is compacted into a single large AC that is then engulfed by neighboring cells or simply detached. In type B, small portions of cells, either with or without nuclear material, become ACs that are also phagocytosed. Apoptosis and homologous phagocytosis were confirmed by TUNEL and immunocytochemistry for Bax and active caspase 3. Induction of apoptosis was significant in BGC-1 cells treated for 24 h with 100 nM LA. CPGB cells showed two types of response with different doses of LA. Fetal calf serum was necessary to find apoptosis induced by LA.
Collapse
|
112
|
Glade MJ, Smith K. Phosphatidylserine and the human brain. Nutrition 2014; 31:781-6. [PMID: 25933483 DOI: 10.1016/j.nut.2014.10.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/24/2014] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The aim of this study was to assess the roles and importance of phosphatidylserine (PS), an endogenous phospholipid and dietary nutrient, in human brain biochemistry, physiology, and function. METHODS A scientific literature search was conducted on MEDLINE for relevant articles regarding PS and the human brain published before June 2014. Additional publications were identified from references provided in original papers; 127 articles were selected for inclusion in this review. RESULTS A large body of scientific evidence describes the interactions among PS, cognitive activity, cognitive aging, and retention of cognitive functioning ability. CONCLUSION Phosphatidylserine is required for healthy nerve cell membranes and myelin. Aging of the human brain is associated with biochemical alterations and structural deterioration that impair neurotransmission. Exogenous PS (300-800 mg/d) is absorbed efficiently in humans, crosses the blood-brain barrier, and safely slows, halts, or reverses biochemical alterations and structural deterioration in nerve cells. It supports human cognitive functions, including the formation of short-term memory, the consolidation of long-term memory, the ability to create new memories, the ability to retrieve memories, the ability to learn and recall information, the ability to focus attention and concentrate, the ability to reason and solve problems, language skills, and the ability to communicate. It also supports locomotor functions, especially rapid reactions and reflexes.
Collapse
Affiliation(s)
| | - Kyl Smith
- Progressive Laboratories Inc., Irving, Texas
| |
Collapse
|
113
|
Mulinari S, Häcker U. Rho-guanine nucleotide exchange factors during development: Force is nothing without control. Small GTPases 2014; 1:28-43. [PMID: 21686118 DOI: 10.4161/sgtp.1.1.12672] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 05/31/2010] [Accepted: 06/14/2010] [Indexed: 01/04/2023] Open
Abstract
The development of multicellular organisms is associated with extensive rearrangements of tissues and cell sheets. The driving force for these rearrangements is generated mostly by the actin cytoskeleton. In order to permit the reproducible development of a specific body plan, dynamic reorganization of the actin cytoskeleton must be precisely coordinated in space and time. GTP-exchange factors that activate small GTPases of the Rho family play an important role in this process. Here we review the role of this class of cytoskeletal regulators during important developmental processes such as epithelial morphogenesis, cytokinesis, cell migration, cell polarity, neuronal growth cone extension and phagocytosis in different model systems.
Collapse
Affiliation(s)
- Shai Mulinari
- Department of Experimental Medical Science; Lund Strategic Research Center for Stem Cell Biology and Cell Therapy; Lund University; Lund, Sweden
| | | |
Collapse
|
114
|
Gamrekelashvili J, Greten TF, Korangy F. Immunogenicity of necrotic cell death. Cell Mol Life Sci 2014; 72:273-83. [PMID: 25274062 DOI: 10.1007/s00018-014-1741-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/03/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022]
Abstract
The mode of tumor cell death has significant effects on anti-tumor immunity. Although, previously it was thought that cell death is an inert effect, different investigators have clearly shown that dying tumors can attract, activate and mature professional antigen presenting cells and dendritic cells. In addition, others and we have shown that the type of tumor cell death not only controls the presence or absence of specific tumor antigens, but also can result in immunological responses ranging from immunosuppression to anti-tumor immunity. More importantly, it is possible to enhance anti-tumor immunity both in vitro and in vivo by targeting specific molecular mechanisms such as oligopeptidases and the proteasome. These studies not only extend our knowledge on basic immunological questions and the induction of anti-tumor immunity, but also have implications for all types of cancer treatments, in which rapid tumor cell death is induced. This review is a comprehensive summary of cell death and particularly necrosis and the pivotal role it plays in anti-tumor immunity.
Collapse
|
115
|
Ellson CD, Dunmore R, Hogaboam CM, Sleeman MA, Murray LA. Danger-associated molecular patterns and danger signals in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2014; 51:163-8. [PMID: 24749648 DOI: 10.1165/rcmb.2013-0366tr] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The chronic debilitating lung disease, idiopathic pulmonary fibrosis (IPF), is characterized by a progressive decline in lung function, with a median mortality rate of 2-3 years after diagnosis. IPF is a disease of unknown cause and progression, and multiple pathways have been demonstrated to be activated in the lungs of these patients. A recent genome-wide association study of more than 1,000 patients with IPF identified genes linked to host defense, cell-cell adhesion, and DNA repair being altered due to fibrosis (Fingerlin, et al. Nat Genet 2013;45:613-620). Further emerging data suggest that the respiratory system may not be a truly sterile environment, and it exhibits an altered microbiome during fibrotic disease (Molyneaux and Maher. Eur Respir Rev 2013;22:376-381). These altered host defense mechanisms might explain the increased susceptibility of patients with IPF to microbial- and viral-induced exacerbations. Moreover, chronic epithelial injury and apoptosis are key features in IPF, which might be mediated, in part, by both pathogen-associated (PA) and danger-associated molecular patterns (MPs). Emerging data indicate that both PAMPs and danger-associated MPs contribute to apoptosis, but not necessarily in a manner that allows for the removal of dying cells, without further exacerbating inflammation. In contrast, both types of MPs drive cellular necrosis, leading to an exacerbation of lung injury and/or infection as the debris promotes a proinflammatory response. Thus, this Review focuses on the impact of MPs resulting from infection-driven apoptosis and necrosis during chronic fibrotic lung disease.
Collapse
|
116
|
Shmakova A, Batie M, Druker J, Rocha S. Chromatin and oxygen sensing in the context of JmjC histone demethylases. Biochem J 2014; 462:385-95. [PMID: 25145438 PMCID: PMC4147966 DOI: 10.1042/bj20140754] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 01/22/2023]
Abstract
Responding appropriately to changes in oxygen availability is essential for multicellular organism survival. Molecularly, cells have evolved intricate gene expression programmes to handle this stressful condition. Although it is appreciated that gene expression is co-ordinated by changes in transcription and translation in hypoxia, much less is known about how chromatin changes allow for transcription to take place. The missing link between co-ordinating chromatin structure and the hypoxia-induced transcriptional programme could be in the form of a class of dioxygenases called JmjC (Jumonji C) enzymes, the majority of which are histone demethylases. In the present review, we will focus on the function of JmjC histone demethylases, and how these could act as oxygen sensors for chromatin in hypoxia. The current knowledge concerning the role of JmjC histone demethylases in the process of organism development and human disease will also be reviewed.
Collapse
Key Words
- chromatin
- chromatin remodeller
- histone methylation
- hypoxia
- hypoxia-inducible factor (hif)
- jumonji c (jmjc)
- transcription
- cd, chromodomain
- chd, chromodomain helicase dna binding
- crc, chromatin-remodelling complex
- fih, factor inhibiting hif
- hif, hypoxia-inducible factor
- iswi, imitation-swi protein
- jmjc, jumonji c
- kdm, lysine-specific demethylase
- lsd, lysine-specific demethylase
- nurd, nucleosome-remodelling deacetylase
- phd, plant homeodomain
- phf, phd finger protein
- rest, repressor element 1-silencing transcription factor
- vhl, von hippel–lindau protein
Collapse
Affiliation(s)
- Alena Shmakova
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Michael Batie
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Jimena Druker
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Sonia Rocha
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| |
Collapse
|
117
|
Heim A, Grimm C, Müller U, Häußler S, Mackeen MM, Merl J, Hauck SM, Kessler BM, Schofield CJ, Wolf A, Böttger A. Jumonji domain containing protein 6 (Jmjd6) modulates splicing and specifically interacts with arginine-serine-rich (RS) domains of SR- and SR-like proteins. Nucleic Acids Res 2014; 42:7833-50. [PMID: 24914048 PMCID: PMC4081092 DOI: 10.1093/nar/gku488] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Fe(II) and 2-oxoglutarate dependent oxygenase Jmjd6 has been shown to hydroxylate lysine residues in the essential splice factor U2 auxiliary factor 65 kDa subunit (U2AF65) and to act as a modulator of alternative splicing. We describe further evidence for the role of Jmjd6 in the regulation of pre-mRNA processing including interactions of Jmjd6 with multiple arginine–serine-rich (RS)-domains of SR- and SR-related proteins including U2AF65, Luc7-like protein 3 (Luc7L3), SRSF11 and Acinus S′, but not with the bona fide RS-domain of SRSF1. The identified Jmjd6 target proteins are involved in different mRNA processing steps and play roles in exon dependent alternative splicing and exon definition. Moreover, we show that Jmjd6 modifies splicing of a constitutive splice reporter, binds RNA derived from the reporter plasmid and punctually co-localises with nascent RNA. We propose that Jmjd6 exerts its splice modulatory function by interacting with specific SR-related proteins during splicing in a RNA dependent manner.
Collapse
Affiliation(s)
- Astrid Heim
- Department of Biology II, Ludwig Maximilians University, Munich, Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Christina Grimm
- Department of Biology II, Ludwig Maximilians University, Munich, Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Udo Müller
- Department of Biology II, Ludwig Maximilians University, Munich, Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Simon Häußler
- Department of Biology II, Ludwig Maximilians University, Munich, Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Mukram M Mackeen
- Chemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK Research Unit Protein Science, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Juliane Merl
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Stefanie M Hauck
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Benedikt M Kessler
- School of Chemical Science, Faculty of Science and Technology, and Institute of Systems Biology (INBIOSIS) Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Christopher J Schofield
- Chemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Alexander Wolf
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Angelika Böttger
- Department of Biology II, Ludwig Maximilians University, Munich, Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
118
|
Liu W, Ma Q, Wong K, Li W, Ohgi K, Zhang J, Aggarwal A, Rosenfeld MG. Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release. Cell 2014; 155:1581-1595. [PMID: 24360279 DOI: 10.1016/j.cell.2013.10.056] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 09/03/2013] [Accepted: 10/23/2013] [Indexed: 01/14/2023]
Abstract
Distal enhancers characterized by the H3K4me(1) mark play critical roles in developmental and transcriptional programs. However, potential roles of specific distal regulatory elements in regulating RNA polymerase II (Pol II) promoter-proximal pause release remain poorly investigated. Here, we report that a unique cohort of jumonji C-domain-containing protein 6 (JMJD6) and bromodomain-containing protein 4 (Brd4) cobound distal enhancers, termed anti-pause enhancers (A-PEs), regulate promoter-proximal pause release of a large subset of transcription units via long-range interactions. Brd4-dependent JMJD6 recruitment on A-PEs mediates erasure of H4R3me(2(s)), which is directly read by 7SK snRNA, and decapping/demethylation of 7SK snRNA, ensuring the dismissal of the 7SK snRNA/HEXIM inhibitory complex. The interactions of both JMJD6 and Brd4 with the P-TEFb complex permit its activation and pause release of regulated coding genes. The functions of JMJD6/ Brd4-associated dual histone and RNA demethylase activity on anti-pause enhancers have intriguing implications for these proteins in development, homeostasis, and disease.
Collapse
Affiliation(s)
- Wen Liu
- School of Pharmaceutical Science, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China.,Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Qi Ma
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Graduate Program in Bioinformatics and System Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kaki Wong
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wenbo Li
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kenny Ohgi
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jie Zhang
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Aneel Aggarwal
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
119
|
de Back DZ, Kostova EB, van Kraaij M, van den Berg TK, van Bruggen R. Of macrophages and red blood cells; a complex love story. Front Physiol 2014; 5:9. [PMID: 24523696 PMCID: PMC3906564 DOI: 10.3389/fphys.2014.00009] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/06/2014] [Indexed: 12/13/2022] Open
Abstract
Macrophages tightly control the production and clearance of red blood cells (RBC). During steady state hematopoiesis, approximately 1010 RBC are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.
Collapse
Affiliation(s)
- Djuna Z de Back
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Elena B Kostova
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Marian van Kraaij
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Timo K van den Berg
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Robin van Bruggen
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
120
|
Nanosecond pulsed electric field (nsPEF) treatment for hepatocellular carcinoma: a novel locoregional ablation decreasing lung metastasis. Cancer Lett 2014; 346:285-91. [PMID: 24462824 DOI: 10.1016/j.canlet.2014.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignancy. Nanosecond pulsed electric field (nsPEF) is a new technology destroying tumor cells with a non-thermal high voltage electric field using ultra-short pulses. The study's aim was to evaluate the ablation efficacy of nsPEFs with human HCC cell lines and a highly metastatic potential HCC xenograft model on BALB/c nude mice. The in vivo study showed nsPEFs induced HCC cell death in a dose dependent manner. On the high metastatic hepatocellular carcinoma cell line (HCCLM3) xenograft mice model, tumor growth was inhibited significantly in nsPEF-treated- groups (single dose and multi-fractionated dose). Besides a local effect, the nsPEF treatment reduced pulmonary metastases. The nsPEFs also enhanced HCC cell phagocytosis by human macrophage cell (THP1) in vitro. The nsPEF is efficient in controlling HCC progression and reducing its metastasis. NsPEF treatment may elicit a host immune response against tumor cells. This study suggests nsPEF therapy could be used as a potential locoregional therapy for hepatocellular carcinoma.
Collapse
|
121
|
Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol 2013; 59:583-94. [PMID: 23567086 DOI: 10.1016/j.jhep.2013.03.033] [Citation(s) in RCA: 726] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/20/2013] [Accepted: 03/27/2013] [Indexed: 02/07/2023]
Abstract
Inflammation can be either beneficial or detrimental to the liver, depending on multiple factors. Mild (i.e., limited in intensity and destined to resolve) inflammatory responses have indeed been shown to exert consistent hepatoprotective effects, contributing to tissue repair and promoting the re-establishment of homeostasis. Conversely, excessive (i.e., disproportionate in intensity and permanent) inflammation may induce a massive loss of hepatocytes and hence exacerbate the severity of various hepatic conditions, including ischemia-reperfusion injury, systemic metabolic alterations (e.g., obesity, diabetes, non-alcoholic fatty liver disorders), alcoholic hepatitis, intoxication by xenobiotics and infection, de facto being associated with irreversible liver damage, fibrosis, and carcinogenesis. Both liver-resident cells (e.g., Kupffer cells, hepatic stellate cells, sinusoidal endothelial cells) and cells that are recruited in response to injury (e.g., monocytes, macrophages, dendritic cells, natural killer cells) emit pro-inflammatory signals including - but not limited to - cytokines, chemokines, lipid messengers, and reactive oxygen species that contribute to the apoptotic or necrotic demise of hepatocytes. In turn, dying hepatocytes release damage-associated molecular patterns that-upon binding to evolutionary conserved pattern recognition receptors-activate cells of the innate immune system to further stimulate inflammatory responses, hence establishing a highly hepatotoxic feedforward cycle of inflammation and cell death. In this review, we discuss the cellular and molecular mechanisms that account for the most deleterious effect of hepatic inflammation at the cellular level, that is, the initiation of a massive cell death response among hepatocytes.
Collapse
|
122
|
Jones CV, Ricardo SD. Macrophages and CSF-1: implications for development and beyond. Organogenesis 2013; 9:249-60. [PMID: 23974218 DOI: 10.4161/org.25676] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent focus on the diversity of macrophage phenotype and function signifies that these trophic cells are no longer of exclusive interest to the field of immunology. As key orchestrators of organogenesis, the contribution of macrophages to fetal development is worthy of greater attention. This review summarizes the key functions of macrophages and their primary regulator, colony-stimulating factor (CSF)-1, during development; highlighting trophic mechanisms beyond phagocytosis and outlining their roles in a range of developing organ systems. Advances in the understanding of macrophage polarization and functional heterogeneity are discussed from a developmental perspective. In addition, this review highlights the relevance of CSF-1 as a pleiotropic developmental growth factor and summarizes recent experimental evidence and clinical advancements in the area of CSF-1 and macrophage manipulation in reproduction and organogenic settings. Interrogation of embryonic macrophages also has implications beyond development, with recent attention focused on yolk sac macrophage ontogeny and their role in homeostasis and mediating tissue regeneration. The regulatory networks that govern development involve a complex range of growth factors, signaling pathways and transcriptional regulators arising from epithelial, mesenchymal and stromal origins. A component of the organogenic milieu common to the majority of developing organs is the tissue macrophage. These hemopoietic cells are part of the mononuclear phagocyte system regulated primarily by colony-stimulating factor (CSF)-1 (1, 2). There is a resurgence in the field of CSF-1 and macrophage biology; where greater understanding of the heterogeneity of these cells is revealing contributions to tissue repair and regeneration beyond the phagocytic and inflammatory functions for which they were traditionally ascribed (3-6). The accumulation of macrophages during tissue injury is no longer viewed as simply a surrogate for disease severity, with macrophages now known to be vital in governing tissue regeneration in many settings (7-11). In particular it is the influence of CSF-1 in regulating an alternative macrophage activation state that is increasingly linked to organ repair in a range of disease models (12-17). With many similarities drawn between organogenesis and regeneration, it is pertinent to re-examine the role of CSF-1 and macrophages in organ development.
Collapse
Affiliation(s)
- Christina V Jones
- Department of Anatomy and Developmental Biology; Monash University; Clayton, VIC Australia
| | - Sharon D Ricardo
- Department of Anatomy and Developmental Biology; Monash University; Clayton, VIC Australia
| |
Collapse
|
123
|
Rong GH, Yang GX, Ando Y, Zhang W, He XS, Leung PSC, Coppel RL, Ansari AA, Zhong R, Gershwin ME. Human intrahepatic biliary epithelial cells engulf blebs from their apoptotic peers. Clin Exp Immunol 2013; 172:95-103. [PMID: 23480189 DOI: 10.1111/cei.12046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2012] [Indexed: 12/22/2022] Open
Abstract
The phagocytic clearance of apoptotic cells is critical for tissue homeostasis; a number of non-professional phagocytic cells, including epithelial cells, can both take up and process apoptotic bodies, including the release of anti-inflammatory mediators. These observations are particularly important in the case of human intrahepatic biliary cells (HiBEC), because such cells are themselves a target of destruction in primary biliary cirrhosis, the human autoimmune disease. To address the apoptotic ability of HiBECs, we have focused on their ability to phagocytize apoptotic blebs from autologous HiBECs. In this study we report that HiBEC cells demonstrate phagocytic function from autologous HiBEC peers accompanied by up-regulation of the chemokines CCL2 [monocyte chemotactic protein-1 (MCP-1)] and CXCL8 [interleukin (IL)-8]. In particular, HiBEC cells express the phagocytosis-related receptor phosphatidylserine receptors (PSR), implying that HiBECs function through the 'eat-me' signal phosphatidylserine expressed by apoptotic cells. Indeed, although HiBEC cells acquire antigen-presenting cell (APC) function, they do not change the expression of classic APC function surface markers after engulfment of blebs, both with and without the presence of Toll-like receptor (TLR) stimulation. These results are important not only for understanding of the normal physiological function of HiBECs, but also explain the inflammatory potential and reduced clearance of HiBEC cells following the inflammatory cascade in primary biliary cirrhosis.
Collapse
Affiliation(s)
- G-H Rong
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Jones CV, Williams TM, Walker KA, Dickinson H, Sakkal S, Rumballe BA, Little MH, Jenkin G, Ricardo SD. M2 macrophage polarisation is associated with alveolar formation during postnatal lung development. Respir Res 2013; 14:41. [PMID: 23560845 PMCID: PMC3626876 DOI: 10.1186/1465-9921-14-41] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/28/2013] [Indexed: 12/12/2022] Open
Abstract
Background Macrophages are traditionally associated with inflammation and host defence, however a greater understanding of macrophage heterogeneity is revealing their essential roles in non-immune functions such as development, homeostasis and regeneration. In organs including the brain, kidney, mammary gland and pancreas, macrophages reside in large numbers and provide essential regulatory functions that shape organ development and maturation. However, the role of macrophages in lung development and the potential implications of macrophage modulation in the promotion of lung maturation have not yet been ascertained. Methods Embryonic day (E)12.5 mouse lungs were cultured as explants and macrophages associated with branching morphogenesis were visualised by wholemount immunofluorescence microscopy. Postnatal lung development and the correlation with macrophage number and phenotype were examined using Colony-stimulating factor-1 receptor-enhanced green fluorescent protein (Csf1r-EGFP) reporter mice. Structural histological examination was complemented with whole-body plethysmography assessment of postnatal lung functional maturation over time. Flow cytometry, real-time (q)PCR and immunofluorescence microscopy were performed to characterise macrophage number, phenotype and localisation in the lung during postnatal development. To assess the impact of developmental macrophage modulation, CSF-1 was administered to neonatal mice at postnatal day (P)1, 2 and 3, and lung macrophage number and phenotype were assessed at P5. EGFP transgene expression and in situ hybridisation was performed to assess CSF-1R location in the developing lung. Results Macrophages in embryonic lungs were abundant and densely located within branch points during branching morphogenesis. During postnatal development, structural and functional maturation of the lung was associated with an increase in lung macrophage number. In particular, the period of alveolarisation from P14-21 was associated with increased number of Csf1r-EGFP+ macrophages and upregulated expression of Arginase 1 (Arg1), Mannose receptor 1 (Mrc1) and Chemokine C-C motif ligand 17 (Ccl17), indicative of an M2 or tissue remodelling macrophage phenotype. Administration of CSF-1 to neonatal mice increased trophic macrophages during development and was associated with increased expression of the M2-associated gene Found in inflammatory zone (Fizz)1 and the growth regulator Insulin-like growth factor (Igf)1. The effects of CSF-1 were identified as macrophage-mediated, as the CSF-1R was found to be exclusively expressed on interstitial myeloid cells. Conclusions This study identifies the presence of CSF-1R+ M2-polarised macrophages localising to sites of branching morphogenesis and increasing in number during the alveolarisation stage of normal lung development. Improved understanding of the role of macrophages in lung developmental regulation has clinical relevance for addressing neonatal inflammatory perturbation of development and highlights macrophage modulation as a potential intervention to promote lung development.
Collapse
Affiliation(s)
- Christina V Jones
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Affiliation(s)
- Guido Kroemer
- U848,
- Metabolomics Platform,
- Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
- Université Paris Descartes/V, Sorbonne Paris Cité, 75006 Paris, France
| | - Lorenzo Galluzzi
- Institut Gustave Roussy, 94805 Villejuif, France
- Université Paris Descartes/V, Sorbonne Paris Cité, 75006 Paris, France
| | - Oliver Kepp
- U848,
- Institut Gustave Roussy, 94805 Villejuif, France
- Université Paris Sud/XI, 94805 Villejuif, France
| | - Laurence Zitvogel
- U1015, INSERM, 94805 Villejuif, France;
- Center of Clinical Investigations, Institut Gustave Roussy, 94805 Villejuif, France
- Université Paris Sud/XI, 94805 Villejuif, France
| |
Collapse
|
126
|
Bohdanowicz M, Grinstein S. Role of Phospholipids in Endocytosis, Phagocytosis, and Macropinocytosis. Physiol Rev 2013; 93:69-106. [DOI: 10.1152/physrev.00002.2012] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Endocytosis, phagocytosis, and macropinocytosis are fundamental processes that enable cells to sample their environment, eliminate pathogens and apoptotic bodies, and regulate the expression of surface components. While a great deal of effort has been devoted over many years to understanding the proteins involved in these processes, the important contribution of phospholipids has only recently been appreciated. This review is an attempt to collate and analyze the rapidly emerging evidence documenting the role of phospholipids in clathrin-mediated endocytosis, phagocytosis, and macropinocytosis. A primer on phospholipid biosynthesis, catabolism, subcellular distribution, and transport is presented initially, for reference, together with general considerations of the effects of phospholipids on membrane curvature and charge. This is followed by a detailed analysis of the critical functions of phospholipids in the internalization processes and in the maturation of the resulting vesicles and vacuoles as they progress along the endo-lysosomal pathway.
Collapse
Affiliation(s)
- Michal Bohdanowicz
- Division of Cell Biology, Hospital for Sick Children, and Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, and Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
127
|
Chen JY, Song Y, Zhang LS. Immunotoxicity of atrazine in Balb/c mice. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2013; 48:637-45. [PMID: 23638890 DOI: 10.1080/03601234.2013.777308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The present study was designed to investigate the immunotoxicity of atrazine (ATZ) in male Balb/c mice. ATZ (175, 87.5, and 43.75 mg/kg bw/day) was administered by gavage method for 28 days. The following indexes were determined in various groups of mice: body and organ weight; antibody aggregation of serum hemolysin; proliferative response of splenocytes to ConA; delayed-type hypersensitivity (DTH); natural killer cell activity; clearance of neutral red and nitric oxide (NO) release from peritoneal macrophages; apostosis and necrosis of splenocytes and thymocytes; cytokine production; and serum lysozyme. Results showed that cell-mediated, humoral immunity, and non-specific immune function in the high-dose ATZ group were suppressed; NO release and interferon-γ(IFN-γ)/interleukin-4 (IL-4) were also significantly decreased in the high-dose group. In the medium-dose group, the proliferation response and IFN-γ production was significantly decreased. In the low-dose group, the proliferation response was significantly decreased. Serum lysozyme was decreased in the ATZ-treated groups. The percentage of early apoptosis in thymocytes was increased significantly in high- and medium-dose ATZ groups. In conclusion, ATZ elicited an inhibitory effect on cell-mediated immunity, humoral immunity, and non-specific immune function of mice.
Collapse
Affiliation(s)
- Jin Y Chen
- West China School of Public Health, Sichuan University, P. R. China
| | | | | |
Collapse
|
128
|
Agassandian M, Mallampalli RK. Surfactant phospholipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:612-25. [PMID: 23026158 DOI: 10.1016/j.bbalip.2012.09.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 12/16/2022]
Abstract
Pulmonary surfactant is essential for life and is composed of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Marianna Agassandian
- Department of Medicine, Acute Lung Injury Center of Excellence, the University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
129
|
Straat M, van Bruggen R, de Korte D, Juffermans NP. Red blood cell clearance in inflammation. Transfus Med Hemother 2012; 39:353-61. [PMID: 23801928 DOI: 10.1159/000342229] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/04/2012] [Indexed: 12/21/2022] Open
Abstract
SUMMARY Anemia is a frequently encountered problem in the critically ill patient. The inability to compensate for anemia includes several mechanisms, collectively referred to as anemia of inflammation: reduced production of erythropoietin, impaired bone marrow response to erythropoietin, reduced iron availability, and increased red blood cell (RBC) clearance. This review focuses on mechanisms of RBC clearance during inflammation. We state that phosphatidylserine (PS) expression in inflammation is mainly enhanced due to an increase in ceramide, caused by an increase in sphingomyelinase activity due to either platelet activating factor, tumor necrosis factor-α, or direct production by bacteria. Phagocytosis of RBCs during inflammation is mediated via RBC membrane protein band 3. Reduced deformability of RBCs seems an important feature in inflammation, also mediated by band 3 as well as by nitric oxide, reactive oxygen species, and sialic acid residues. Also, adherence of RBCs to the endothelium is increased during inflammation, most likely due to increased expression of endothelial adhesion molecules as well as PS on the RBC membrane, in combination with decreased capillary blood flow. Thereby, clearance of RBCs during inflammation shows similarities to clearance of senescent RBCs, but also has distinct entities, including increased adhesion to the endothelium.
Collapse
Affiliation(s)
- Marleen Straat
- Department of Intensive Care Medicine, Academic Medical Center, Sanquin Research, Sanquin Blood Bank, Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
130
|
Vance JE, Tasseva G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:543-54. [PMID: 22960354 DOI: 10.1016/j.bbalip.2012.08.016] [Citation(s) in RCA: 385] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 12/16/2022]
Abstract
Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are metabolically related membrane aminophospholipids. In mammalian cells, PS is required for targeting and function of several intracellular signaling proteins. Moreover, PS is asymmetrically distributed in the plasma membrane. Although PS is highly enriched in the cytoplasmic leaflet of plasma membranes, PS exposure on the cell surface initiates blood clotting and removal of apoptotic cells. PS is synthesized in mammalian cells by two distinct PS synthases that exchange serine for choline or ethanolamine in phosphatidylcholine (PC) or PE, respectively. Targeted disruption of each PS synthase individually in mice demonstrated that neither enzyme is required for viability whereas elimination of both synthases was embryonic lethal. Thus, mammalian cells require a threshold amount of PS. PE is synthesized in mammalian cells by four different pathways, the quantitatively most important of which are the CDP-ethanolamine pathway that produces PE in the ER, and PS decarboxylation that occurs in mitochondria. PS is made in ER membranes and is imported into mitochondria for decarboxylation to PE via a domain of the ER [mitochondria-associated membranes (MAM)] that transiently associates with mitochondria. Elimination of PS decarboxylase in mice caused mitochondrial defects and embryonic lethality. Global elimination of the CDP-ethanolamine pathway was also incompatible with mouse survival. Thus, PE made by each of these pathways has independent and necessary functions. In mammals PE is a substrate for methylation to PC in the liver, a substrate for anandamide synthesis, and supplies ethanolamine for glycosylphosphatidylinositol anchors of cell-surface signaling proteins. Thus, PS and PE participate in many previously unanticipated facets of mammalian cell biology. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Jean E Vance
- Group on the Molecular and Cell Biology of Lipids and the Department of Medicine, University of Alberta, Edmonton, Canada AB T6G 2S2.
| | | |
Collapse
|
131
|
Jansen F, Yang X, Hoyer FF, Paul K, Heiermann N, Becher MU, Hussein NA, Kebschull M, Bedorf J, Franklin BS, Latz E, Nickenig G, Werner N. Endothelial Microparticle Uptake in Target Cells Is Annexin I/Phosphatidylserine Receptor Dependent and Prevents Apoptosis. Arterioscler Thromb Vasc Biol 2012; 32:1925-35. [DOI: 10.1161/atvbaha.112.253229] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Endothelial microparticles (EMP) are released from activated or apoptotic cells, but their effect on target cells and the exact way of incorporation are largely unknown. We sought to determine the uptake mechanism and the biological effect of EMP on endothelial and endothelial-regenerating cells.
Methods and Results—
EMP were generated from starved endothelial cells and isolated by ultracentrifugation. Caspase 3 activity assay and terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that EMP protect target endothelial cells against apoptosis in a dose-dependent manner. Proteomic analysis was performed to identify molecules contained in EMP, which might be involved in EMP uptake. Expression of annexin I in EMP was found and confirmed by Western blot, whereas the corresponding receptor phosphatidylserine receptor was present on endothelial target cells. Silencing either annexin I on EMP or phosphatidylserine receptor on target cells using small interfering RNA showed that the uptake of EMP by human coronary artery endothelial cells is annexin I/phosphatidylserine receptor dependent. Annexin I–downregulated EMP abrogated the EMP-mediated protection against apoptosis of endothelial target cells. p38 activation was found to mediate camptothecin-induced apoptosis. Finally, human coronary artery endothelial cells pretreated with EMP inhibited camptothecin-induced p38 activation.
Conclusion—
EMP are incorporated by endothelial cells in an annexin I/phosphatidylserine receptor–dependent manner and protect target cells against apoptosis. Inhibition of p38 activity is involved in EMP-mediated protection against apoptosis.
Collapse
|
132
|
Peña FJ, Ferrusola CO, Tapia JA, Aparicio IM. How Stallion Sperm Age In Vitro? Scenario for Preservation Technologies. J Equine Vet Sci 2012. [DOI: 10.1016/j.jevs.2012.05.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
133
|
Molecular mechanisms of ursodeoxycholic acid toxicity & side effects: ursodeoxycholic acid freezes regeneration & induces hibernation mode. Int J Mol Sci 2012; 13:8882-8914. [PMID: 22942741 PMCID: PMC3430272 DOI: 10.3390/ijms13078882] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/03/2012] [Accepted: 07/06/2012] [Indexed: 12/14/2022] Open
Abstract
Ursodeoxycholic acid (UDCA) is a steroid bile acid approved for primary biliary cirrhosis (PBC). UDCA is reported to have “hepato-protective properties”. Yet, UDCA has “unanticipated” toxicity, pronounced by more than double number of deaths, and eligibility for liver transplantation compared to the control group in 28 mg/kg/day in primary sclerosing cholangitis, necessitating trial halt in North America. UDCA is associated with increase in hepatocellular carcinoma in PBC especially when it fails to achieve biochemical response (10 and 15 years incidence of 9% and 20% respectively). “Unanticipated” UDCA toxicity includes hepatitis, pruritus, cholangitis, ascites, vanishing bile duct syndrome, liver cell failure, death, severe watery diarrhea, pneumonia, dysuria, immune-suppression, mutagenic effects and withdrawal syndrome upon sudden halt. UDCA inhibits DNA repair, co-enzyme A, cyclic AMP, p53, phagocytosis, and inhibits induction of nitric oxide synthatase. It is genotoxic, exerts aneugenic activity, and arrests apoptosis even after cellular phosphatidylserine externalization. UDCA toxicity is related to its interference with drug detoxification, being hydrophilic and anti-apoptotic, has a long half-life, has transcriptional mutational abilities, down-regulates cellular functions, has a very narrow difference between the recommended (13 mg/kg/day) and toxic dose (28 mg/kg/day), and it typically transforms into lithocholic acid that induces DNA strand breakage, it is uniquely co-mutagenic, and promotes cell transformation. UDCA beyond PBC is unjustified.
Collapse
|
134
|
Xu Q, Yang GY, Liu N, Xu P, Chen YL, Zhou Z, Luo ZG, Ding X. P4-ATPase ATP8A2 acts in synergy with CDC50A to enhance neurite outgrowth. FEBS Lett 2012; 586:1803-12. [PMID: 22641037 DOI: 10.1016/j.febslet.2012.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/12/2012] [Accepted: 05/14/2012] [Indexed: 12/28/2022]
Abstract
P(4)-ATPases are lipid flippases that transport phospholipids across cellular membranes, playing vital roles in cell function. In humans, the disruption of the P(4)-ATPase ATP8A2 gene causes a severe neurological phenotype. Here, we found that Atp8a2 mRNA was highly expressed in PC12 cells, hippocampal neurons and the brain. Overexpression of ATP8A2 increased the length of neurite outgrowth in NGF-induced PC12 cells and in primary cultures of rat hippocampal neurons. Inducing the loss of function of CDC50A in hippocampal neurons via RNA interference reduced neurite outgrowth, and the co-overexpression of CDC50A and ATP8A2 in PC12 cells enhanced NGF-induced neurite outgrowth. These results indicate that ATP8A2, acting in synergy with CDC50A, performs an important role in neurite outgrowth in neurons.
Collapse
Affiliation(s)
- Qin Xu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences (SIBS), Graduate School of the Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 2012; 13:297-311. [PMID: 22473470 DOI: 10.1038/nrm3327] [Citation(s) in RCA: 626] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone modifications are thought to regulate chromatin structure, transcription and other nuclear processes. Histone methylation was originally believed to be an irreversible modification that could only be removed by histone eviction or by dilution during DNA replication. However, the isolation of two families of enzymes that can demethylate histones has changed this notion. The biochemical activities of these histone demethylases towards specific Lys residues on histones, and in some cases non-histone substrates, have highlighted their importance in developmental control, cell-fate decisions and disease. Their ability to be regulated through protein-targeting complexes and post-translational modifications is also beginning to shed light on how they provide dynamic control during transcription.
Collapse
Affiliation(s)
- Susanne Marije Kooistra
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | | |
Collapse
|
136
|
Fricker M, Neher JJ, Zhao JW, Théry C, Tolkovsky AM, Brown GC. MFG-E8 mediates primary phagocytosis of viable neurons during neuroinflammation. J Neurosci 2012; 32:2657-66. [PMID: 22357850 PMCID: PMC3312099 DOI: 10.1523/jneurosci.4837-11.2012] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/21/2011] [Accepted: 01/05/2012] [Indexed: 12/20/2022] Open
Abstract
Milk-fat globule EGF factor-8 (MFG-E8, SED1, lactadherin) is known to mediate the phagocytic removal of apoptotic cells by bridging phosphatidylserine (PS)-exposing cells and the vitronectin receptor (VR) on phagocytes. However, we show here that MFG-E8 can mediate phagocytosis of viable neurons during neuroinflammation induced by lipopolysaccharide (LPS), thereby causing neuronal death. In vitro, inflammatory neuronal loss is independent of apoptotic pathways, and is inhibited by blocking the PS/MFG-E8/VR pathway (by adding PS blocking antibodies, annexin V, mutant MFG-E8 unable to bind VR, or VR antagonist). Neuronal loss is absent in Mfge8 knock-out cultures, but restored by adding recombinant MFG-E8, without affecting inflammation. In vivo, LPS-induced neuronal loss is reduced in the striatum of Mfge8 knock-out mice or by coinjection of an MFG-E8 receptor (VR) inhibitor into the rat striatum. Our data show that blocking MFG-E8-dependent phagocytosis preserves live neurons, implying that phagocytosis actively contributes to neuronal death during brain inflammation.
Collapse
Affiliation(s)
- Michael Fricker
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Jonas J. Neher
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Jing-Wei Zhao
- Cambridge Centre for Brain Repair, University of Cambridge, Cambridge CB2 OPY, United Kingdom, and
| | | | - Aviva M. Tolkovsky
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- Cambridge Centre for Brain Repair, University of Cambridge, Cambridge CB2 OPY, United Kingdom, and
| | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| |
Collapse
|
137
|
Gallardo Bolaños JM, Miró Morán Á, Balao da Silva CM, Morillo Rodríguez A, Plaza Dávila M, Aparicio IM, Tapia JA, Ferrusola CO, Peña FJ. Autophagy and apoptosis have a role in the survival or death of stallion spermatozoa during conservation in refrigeration. PLoS One 2012; 7:e30688. [PMID: 22292020 PMCID: PMC3266901 DOI: 10.1371/journal.pone.0030688] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/21/2011] [Indexed: 01/01/2023] Open
Abstract
Apoptosis has been recognized as a cause of sperm death during cryopreservation and a cause of infertility in humans, however there is no data on its role in sperm death during conservation in refrigeration; autophagy has not been described to date in mature sperm. We investigated the role of apoptosis and autophagy during cooled storage of stallion spermatozoa. Samples from seven stallions were split; half of the ejaculate was processed by single layer centrifugation, while the other half was extended unprocessed, and stored at 5°C for five days. During the time of storage, sperm motility (CASA, daily) and membrane integrity (flow cytometry, daily) were evaluated. Apoptosis was evaluated on days 1, 3 and 5 (active caspase 3, increase in membrane permeability, phosphatidylserine translocation and mitochondrial membrane potential) using flow cytometry. Furthermore, LC3B processing was investigated by western blotting at the beginning and at the end of the period of storage. The decrease in sperm quality over the period of storage was to a large extent due to apoptosis; single layer centrifugation selected non-apoptotic spermatozoa, but there were no differences in sperm motility between selected and unselected sperm. A high percentage of spermatozoa showed active caspase 3 upon ejaculation, and during the period of storage there was an increase of apoptotic spermatozoa but no changes in the percentage of live sperm, revealed by the SYBR-14/PI assay, were observed. LC3B was differentially processed in sperm after single layer centrifugation compared with native sperm. In processed sperm more LC3B-II was present than in non-processed samples; furthermore, in non-processed sperm there was an increase in LC3B-II after five days of cooled storage. These results indicate that apoptosis plays a major role in the sperm death during storage in refrigeration and that autophagy plays a role in the survival of spermatozoa representing a new pro-survival mechanism in spermatozoa not previously described.
Collapse
Affiliation(s)
- Juan M. Gallardo Bolaños
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura Cáceres, Cáceres, Spain
| | - Álvaro Miró Morán
- Department of Physiology, Faculty of Veterinary Medicine, University of Extremadura Cáceres, Cáceres, Spain
| | - Carolina M. Balao da Silva
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura Cáceres, Cáceres, Spain
| | - Antolín Morillo Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura Cáceres, Cáceres, Spain
| | - María Plaza Dávila
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura Cáceres, Cáceres, Spain
| | - Inés M. Aparicio
- Department of Physiology, Faculty of Veterinary Medicine, University of Extremadura Cáceres, Cáceres, Spain
| | - José A. Tapia
- Department of Physiology, Faculty of Veterinary Medicine, University of Extremadura Cáceres, Cáceres, Spain
| | - Cristina Ortega Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura Cáceres, Cáceres, Spain
| | - Fernando J. Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura Cáceres, Cáceres, Spain
- * E-mail:
| |
Collapse
|
138
|
Abstract
Methylation of DNA and histones in chromatin has been implicated in numerous biological processes. For many years, methylation has been recognized as static and stable modification, as compared with other covalent modifications of chromatin. Recently, however, several mechanisms have been demonstrated to be involved in demethylation of chromatin, suggesting that chromatin methylation is more dynamically regulated. One chemical reaction that mediates demethylation of both DNA and histones is hydroxylation, catalysed by Fe(II) and α-ketoglutarate (KG)-dependent hydroxylase/dioxygenase. Given that methylation of chromatin is an important epigenetic mark involved in fundamental biological processes such as cell fate determination, understanding how chromatin methylation is dynamically regulated has implications for human diseases and regenerative medicine.
Collapse
Affiliation(s)
- Yu-ichi Tsukada
- Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.
| |
Collapse
|
139
|
Herold S, Mayer K, Lohmeyer J. Acute lung injury: how macrophages orchestrate resolution of inflammation and tissue repair. Front Immunol 2011; 2:65. [PMID: 22566854 PMCID: PMC3342347 DOI: 10.3389/fimmu.2011.00065] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/08/2011] [Indexed: 12/24/2022] Open
Abstract
Lung macrophages are long living cells with broad differentiation potential, which reside in the lung interstitium and alveoli or are organ-recruited upon inflammatory stimuli. A role of resident and recruited macrophages in initiating and maintaining pulmonary inflammation in lung infection or injury has been convincingly demonstrated. More recent reports suggest that lung macrophages are main orchestrators of termination and resolution of inflammation. They are also initiators of parenchymal repair processes that are essential for return to homeostasis with normal gas exchange. In this review we will discuss cellular cross-talk mechanisms and molecular pathways of macrophage plasticity which define their role in inflammation resolution and in initiation of lung barrier repair following lung injury.
Collapse
Affiliation(s)
- Susanne Herold
- Department of Internal Medicine II, University of Giessen Lung Center Giessen, Germany.
| | | | | |
Collapse
|
140
|
Rigby KM, DeLeo FR. Neutrophils in innate host defense against Staphylococcus aureus infections. Semin Immunopathol 2011; 34:237-59. [PMID: 22080185 PMCID: PMC3271231 DOI: 10.1007/s00281-011-0295-3] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 10/14/2011] [Indexed: 12/29/2022]
Abstract
Staphylococcus aureus has been an important human pathogen throughout history and is currently a leading cause of bacterial infections worldwide. S. aureus has the unique ability to cause a continuum of diseases, ranging from minor skin infections to fatal necrotizing pneumonia. Moreover, the emergence of highly virulent, drug-resistant strains such as methicillin-resistant S. aureus in both healthcare and community settings is a major therapeutic concern. Neutrophils are the most prominent cellular component of the innate immune system and provide an essential primary defense against bacterial pathogens such as S. aureus. Neutrophils are rapidly recruited to sites of infection where they bind and ingest invading S. aureus, and this process triggers potent oxidative and non-oxidative antimicrobial killing mechanisms that serve to limit pathogen survival and dissemination. S. aureus has evolved numerous mechanisms to evade host defense strategies employed by neutrophils, including the ability to modulate normal neutrophil turnover, a process critical to the resolution of acute inflammation. Here we provide an overview of the role of neutrophils in host defense against bacterial pathogens and discuss strategies employed by S. aureus to circumvent neutrophil function.
Collapse
Affiliation(s)
- Kevin M Rigby
- Laboratory of Human Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | |
Collapse
|
141
|
Omori T, Honda A, Mihara H, Kurihara T, Esaki N. Identification of novel mammalian phospholipids containing threonine, aspartate, and glutamate as the base moiety. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3296-302. [PMID: 21601537 DOI: 10.1016/j.jchromb.2011.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/13/2011] [Accepted: 04/24/2011] [Indexed: 12/20/2022]
Abstract
In this study, we showed the occurrence of phosphatidyl-L-threonine (PThr), phosphatidyl-L-aspartate (PAsp), and phosphatidyl-L-glutamate (PGlu) in rat brain. Analyses using an HPLC-ESI-MS and an amino acid analyzer showed the presence of L-threonine, L-aspartate, and L-glutamate in the acid-hydrolysates of phospholipids from porcine cerebrum, rat cerebrum, and rat liver. Results of ESI-MS/MS analyses with neutral loss scanning and product ion scanning suggest the presence of PThr-(18:0, 18:1), PThr-(18:0, 22:6), PAsp-(18:0, 18:1), PAsp-(18:0, 22:6), PGlu-(18:0, 18:1), and PGlu-(18:0, 22:6) in rat brain. This is the first study to identify 2 novel phospholipids, PAsp and PGlu, with a carboxylate-phosphate anhydride bond, in living organisms.
Collapse
Affiliation(s)
- Taketo Omori
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
142
|
François M, Copland IB, Yuan S, Romieu-Mourez R, Waller EK, Galipeau J. Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-γ licensing. Cytotherapy 2011; 14:147-52. [PMID: 22029655 PMCID: PMC3279133 DOI: 10.3109/14653249.2011.623691] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human mesenchymal stromal cells (MSC) can suppress T-cell activation in vitro in an indoleamine 2,3-dioxygenase (IDO)-dependent manner. However, their clinical effects on immune ailments have been inconsistent, with a recent phase III study showing no benefit in acute graft-versus-host disease (GvHD). We here tested the hypothesis that the banked, cryopreserved MSC often used in clinical trials display biologic properties distinct from that of MSC in the log phase of growth typically examined in pre-clinical studies. In freshly thawed cryopreserved MSC derived from normal human volunteers, we observed that MSC up-regulate heat-shock proteins, are refractory to interferon (IFN)-γ-induced up-regulation of IDO, and are compromised in suppressing CD3/CD28-driven T cell proliferation. Immune suppressor activity, IFN-γ responsiveness and induction of IDO were fully restored following 24 h of MSC tissue culture post-thaw. These results highlight a possible cause for the inefficacy of MSC-based immunotherapy reported in clinical trials using cryopreserved MSC thawed immediately prior to infusion.
Collapse
Affiliation(s)
- Moïra François
- Department of Experimental Medicine, McGill University, Montréal, Canada
| | | | | | | | | | | |
Collapse
|
143
|
Yamaoka Y, Yu Y, Mizoi J, Fujiki Y, Saito K, Nishijima M, Lee Y, Nishida I. PHOSPHATIDYLSERINE SYNTHASE1 is required for microspore development in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:648-61. [PMID: 21554450 DOI: 10.1111/j.1365-313x.2011.04624.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phosphatidylserine (PS) has many important biological roles, but little is known about its role in plants, partly because of its low abundance. We show here that PS is enriched in Arabidopsis floral tissues and that genetic disruption of PS biosynthesis decreased heterozygote fertility due to inhibition of pollen maturation. At1g15110, designated PSS1, encodes a base-exchange-type PS synthase. Escherichia coli cells expressing PSS1 accumulated PS in the presence of l-serine at 23°C. Promoter-GUS assays showed PSS1 expression in developing anther pollen and tapetum. A few seeds with pss1-1 and pss1-2 knockout alleles escaped embryonic lethality but developed into sterile dwarf mutant plants. These plants contained no PS, verifying that PSS1 is essential for PS biosynthesis. Reciprocal crossing revealed reduced pss1 transmission via male gametophytes, predicting a rate of 61.6%pss1-1 pollen defects in PSS1/pss1-1 plants. Alexander's staining of inseparable qrt1-1 PSS1/pss1-1 quartets revealed a rate of 42% having three or four dead pollen grains, suggesting sporophytic pss1-1 cell death effects. Analysis with the nuclear stain 4',6-diamidino-2-phenylindole (DAPI) showed that all tetrads from PSS1/pss1-1 anthers retain their nuclei, whereas unicellular microspores were sometimes anucleate. Transgenic Arabidopsis expressing a GFP-LactC2 construct that binds PS revealed vesicular staining in tetrads and bicellular microspores and nuclear membrane staining in unicellular microspores. Hence, distribution and/or transport of PS across membranes were dynamically regulated in pollen microspores. However, among unicellular microspores from PSS1/pss1-2 GFP-LactC2 plants, all anucleate microspores showed little GFP-LactC2 fluorescence, suggesting that pss1-2 microspores are more sensitive to sporophytic defects or show partial gametophytic defects.
Collapse
Affiliation(s)
- Yasuyo Yamaoka
- Laboratory of Plant Molecular Physiology, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-Ku, Saitama 338-8570, Japan
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Blackwell TS, Hipps AN, Yamamoto Y, Han W, Barham WJ, Ostrowski MC, Yull FE, Prince LS. NF-κB signaling in fetal lung macrophages disrupts airway morphogenesis. THE JOURNAL OF IMMUNOLOGY 2011; 187:2740-7. [PMID: 21775686 DOI: 10.4049/jimmunol.1101495] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bronchopulmonary dysplasia is a common pulmonary complication of extreme prematurity. Arrested lung development leads to bronchopulmonary dysplasia, but the molecular pathways that cause this arrest are unclear. Lung injury and inflammation increase disease risk, but the cellular site of the inflammatory response and the potential role of localized inflammatory signaling in inhibiting lung morphogenesis are not known. In this study, we show that tissue macrophages present in the fetal mouse lung mediate the inflammatory response to LPS and that macrophage activation inhibits airway morphogenesis. Macrophage depletion or targeted inactivation of the NF-κB signaling pathway protected airway branching in cultured lung explants from the effects of LPS. Macrophages also appear to be the primary cellular site of IL-1β production following LPS exposure. Conversely, targeted NF-κB activation in transgenic macrophages was sufficient to inhibit airway morphogenesis. Macrophage activation in vivo inhibited expression of multiple genes critical for normal lung development, leading to thickened lung interstitium, reduced airway branching, and perinatal death. We propose that fetal lung macrophage activation contributes to bronchopulmonary dysplasia by generating a localized inflammatory response that disrupts developmental signals critical for lung formation.
Collapse
Affiliation(s)
- Timothy S Blackwell
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Kennelly KP, Wallace DM, Holmes TM, Hankey DJ, Grant TS, O'Farrelly C, Keegan DJ. Preparation of pre-confluent retinal cells increases graft viability in vitro and in vivo: a mouse model. PLoS One 2011; 6:e21365. [PMID: 21738643 PMCID: PMC3126823 DOI: 10.1371/journal.pone.0021365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 05/30/2011] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Graft failure remains an obstacle to experimental subretinal cell transplantation. A key step is preparing a viable graft, as high levels of necrosis and apoptosis increase the risk of graft failure. Retinal grafts are commonly harvested from cell cultures. We termed the graft preparation procedure "transplant conditions" (TC). We hypothesized that culture conditions influenced graft viability, and investigated whether viability decreased following TC using a mouse retinal pigment epithelial (RPE) cell line, DH01. METHODS Cell viability was assessed by trypan blue exclusion. Levels of apoptosis and necrosis in vitro were determined by flow cytometry for annexin V and propidium iodide and Western blot analysis for the pro- and cleaved forms of caspases 3 and 7. Graft viability in vivo was established by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and cleaved caspase 3 immunolabeling of subretinal allografts. RESULTS Pre-confluent cultures had significantly less nonviable cells than post-confluent cultures (6.6%±0.8% vs. 13.1%±0.9%, p<0.01). Cell viability in either group was not altered significantly following TC. Caspases 3 and 7 were not altered by levels of confluence or following TC. Pre-confluent cultures had low levels of apoptosis/necrosis (5.6%±1.1%) that did not increase following TC (4.8%±0.5%). However, culturing beyond confluence led to progressively increasing levels of apoptosis and necrosis (up to 16.5%±0.9%). Allografts prepared from post-confluent cultures had significantly more TUNEL-positive cells 3 hours post-operatively than grafts of pre-confluent cells (12.7%±3.1% vs. 4.5%±1.4%, p<0.001). Subretinal grafts of post-confluent cells also had significantly higher rates of cleaved caspase 3 than pre-confluent grafts (20.2%±4.3% vs. 7.8%±1.8%, p<0.001). CONCLUSION Pre-confluent cells should be used to maximize graft cell viability.
Collapse
Affiliation(s)
- Kevin P Kennelly
- Catherine McAuley Clinical Research Centre, University College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
146
|
György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A, Nagy G, Falus A, Buzás EI. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 2011; 68:2667-88. [PMID: 21560073 PMCID: PMC3142546 DOI: 10.1007/s00018-011-0689-3] [Citation(s) in RCA: 1589] [Impact Index Per Article: 113.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/30/2011] [Accepted: 04/12/2011] [Indexed: 02/06/2023]
Abstract
Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy.
Collapse
Affiliation(s)
- Bence György
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Nagyvárad tér, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Song S, Xiong C, Zhou M, Lu W, Huang Q, Ku G, Zhao J, Flores LG, Ni Y, Li C. Small-animal PET of tumor damage induced by photothermal ablation with 64Cu-bis-DOTA-hypericin. J Nucl Med 2011; 52:792-9. [PMID: 21498539 DOI: 10.2967/jnumed.110.086116] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED The purpose of this study was to investigate the potential application of small-molecular-weight (64)Cu-labeled bis-DOTA-hypericin in the noninvasive assessment of response to photothermal ablation therapy. METHODS Bis-DOTA-hypericin was labeled with (64)Cu with high efficiency (>95% without purification). Nine mice bearing subcutaneous human mammary BT474 tumors were used. Five mice were injected intratumorally with semiconductor CuS nanoparticles, followed by near-infrared laser irradiation 24 h later (12 W/cm(2) for 3 min), and 4 mice were not treated (control group). All mice were intravenously injected with (64)Cu-bis-DOTA-hypericin (24 h after laser treatment in treated mice). Small-animal PET images were acquired at 2, 6, and 24 h after radiotracer injection. All mice were killed immediately after the imaging session for biodistribution and histology study. In vitro cell uptake and surface plasmon resonance studies were performed to validate the small-animal PET results. RESULTS (64)Cu-bis-DOTA-hypericin uptake was significantly higher in the treatment group than in the control group. The percentage injected dose per gram of tissue in the treated and control groups was 1.72 ± 0.43 and 0.76 ± 0.19, respectively (P = 0.017), at 24 h after injection. Autoradiography and histology results were consistent with selective uptake of the radiotracer in the necrotic zone of the tumor induced by photothermal ablation therapy. In vitro results showed that treated BT474 cells had a higher uptake of (64)Cu-bis-DOTA-hypericin than nontreated cells. Surface plasmon resonance study showed that bis-DOTA-hypericin had higher binding affinity to phosphatidylserine and phosphatidylethanolamine than to phosphatidylcholine. CONCLUSION (64)Cu-bis-DOTA-hypericin has a potential to image thermal therapy-induced tumor cell damage. The affinity of (64)Cu-bis-DOTA-hypericin for injured tissues may be attributed to the breakdown of the cell membrane and exposure of phosphatidylserine or phosphatidylethanolamine to the radiotracer, which binds selectively to these phospholipids.
Collapse
Affiliation(s)
- Shaoli Song
- Department of Experimental Diagnostic Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Neher JJ, Neniskyte U, Zhao JW, Bal-Price A, Tolkovsky AM, Brown GC. Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. THE JOURNAL OF IMMUNOLOGY 2011; 186:4973-83. [PMID: 21402900 DOI: 10.4049/jimmunol.1003600] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is well-known that dead and dying neurons are quickly removed through phagocytosis by the brain's macrophages, the microglia. Therefore, neuronal loss during brain inflammation has always been assumed to be due to phagocytosis of neurons subsequent to their apoptotic or necrotic death. However, we report in this article that under inflammatory conditions in primary rat cultures of neurons and glia, phagocytosis actively induces neuronal death. Specifically, two inflammatory bacterial ligands, lipoteichoic acid or LPS (agonists of glial TLR2 and TLR4, respectively), stimulated microglial proliferation, phagocytic activity, and engulfment of ∼30% of neurons within 3 d. Phagocytosis of neurons was dependent on the microglial release of soluble mediators (and peroxynitrite in particular), which induced neuronal exposure of the eat-me signal phosphatidylserine (PS). Surprisingly, however, eat-me signaling was reversible, so that blocking any step in a phagocytic pathway consisting of PS exposure, the PS-binding protein milk fat globule epidermal growth factor-8, and its microglial vitronectin receptor was sufficient to rescue up to 90% of neurons without reducing inflammation. Hence, our data indicate a novel form of inflammatory neurodegeneration, where inflammation can cause eat-me signal exposure by otherwise viable neurons, leading to their death through phagocytosis. Thus, blocking phagocytosis may prevent some forms of inflammatory neurodegeneration, and therefore might be beneficial during brain infection, trauma, ischemia, neurodegeneration, and aging.
Collapse
Affiliation(s)
- Jonas J Neher
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom.
| | | | | | | | | | | |
Collapse
|
149
|
Rasmussen S, Imitola J, Ayuso-Sacido A, Wang Y, Starossom SC, Kivisäkk P, Zhu B, Meyer M, Bronson RT, Garcia-Verdugo JM, Khoury SJ. Reversible neural stem cell niche dysfunction in a model of multiple sclerosis. Ann Neurol 2011; 69:878-91. [PMID: 21391234 DOI: 10.1002/ana.22299] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 10/04/2010] [Accepted: 10/11/2010] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The subventricular zone (SVZ) of the brain constitutes a niche for neural stem and progenitor cells that can initiate repair after central nervous system (CNS) injury. In a relapsing-remitting model of experimental autoimmune encephalomyelitis (EAE), the neural stem cells (NSCs) become activated and initiate regeneration during acute disease, but lose this ability during the chronic phases of disease. We hypothesized that chronic microglia activation contributes to the failure of the NSC repair potential in the SVZ. METHODS Using bromodeoxyuridine injections at different time points during EAE, we quantified the number of proliferating and differentiating progenitors, and evaluated the structure of the SVZ by electron microscopy. In vivo minocycline treatment during EAE was used to address the effect of microglia inactivation on SVZ dysfunction. RESULTS In vivo treatment with minocycline, an inhibitor of microglia activation, increases stem cell proliferation in both naive and EAE animals. Minocycline treatment decreases cortical and periventricular pathology in the chronic phase of EAE, improving the proliferation of Sox2 stem cells and NG2 oligodendrocyte precursors cells originating in the SVZ and their differentiation into mature oligodendrocytes. INTERPRETATION These data suggest that failure of repair observed during chronic EAE correlates with microglia activation and that treatments targeting chronic microglial activation have the potential for enhancing repair in the CNS.
Collapse
Affiliation(s)
- Stine Rasmussen
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Lee SH, Ryu B, Je JY, Kim SK. Diethylaminoethyl chitosan induces apoptosis in HeLa cells via activation of caspase-3 and p53 expression. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.12.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|