101
|
Recent advances in neurotechnologies with broad potential for neuroscience research. Nat Neurosci 2020; 23:1522-1536. [PMID: 33199897 DOI: 10.1038/s41593-020-00739-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Interest in deciphering the fundamental mechanisms and processes of the human mind represents a central driving force in modern neuroscience research. Activities in support of this goal rely on advanced methodologies and engineering systems that are capable of interrogating and stimulating neural pathways, from single cells in small networks to interconnections that span the entire brain. Recent research establishes the foundations for a broad range of creative neurotechnologies that enable unique modes of operation in this context. This review focuses on those systems with proven utility in animal model studies and with levels of technical maturity that suggest a potential for broad deployment to the neuroscience community in the relatively near future. We include a brief summary of existing and emerging neuroscience techniques, as background for a primary focus on device technologies that address associated opportunities in electrical, optical and microfluidic neural interfaces, some with multimodal capabilities. Examples of the use of these technologies in recent neuroscience studies illustrate their practical value. The vibrancy of the engineering science associated with these platforms, the interdisciplinary nature of this field of research and its relevance to grand challenges in the treatment of neurological disorders motivate continued growth of this area of study.
Collapse
|
102
|
Sadeh S, Clopath C. Inhibitory stabilization and cortical computation. Nat Rev Neurosci 2020; 22:21-37. [PMID: 33177630 DOI: 10.1038/s41583-020-00390-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Neuronal networks with strong recurrent connectivity provide the brain with a powerful means to perform complex computational tasks. However, high-gain excitatory networks are susceptible to instability, which can lead to runaway activity, as manifested in pathological regimes such as epilepsy. Inhibitory stabilization offers a dynamic, fast and flexible compensatory mechanism to balance otherwise unstable networks, thus enabling the brain to operate in its most efficient regimes. Here we review recent experimental evidence for the presence of such inhibition-stabilized dynamics in the brain and discuss their consequences for cortical computation. We show how the study of inhibition-stabilized networks in the brain has been facilitated by recent advances in the technological toolbox and perturbative techniques, as well as a concomitant development of biologically realistic computational models. By outlining future avenues, we suggest that inhibitory stabilization can offer an exemplary case of how experimental neuroscience can progress in tandem with technology and theory to advance our understanding of the brain.
Collapse
Affiliation(s)
- Sadra Sadeh
- Bioengineering Department, Imperial College London, London, UK
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, UK.
| |
Collapse
|
103
|
Genetic Alzheimer’s Disease Risk Affects the Neural Mechanisms of Pattern Separation in Hippocampal Subfields. Curr Biol 2020; 30:4201-4212.e3. [DOI: 10.1016/j.cub.2020.08.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 01/13/2023]
|
104
|
Gridchyn I, Schoenenberger P, O'Neill J, Csicsvari J. Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior. eLife 2020; 9:e61106. [PMID: 33016875 PMCID: PMC7575322 DOI: 10.7554/elife.61106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/03/2020] [Indexed: 11/21/2022] Open
Abstract
In vitro work revealed that excitatory synaptic inputs to hippocampal inhibitory interneurons could undergo Hebbian, associative, or non-associative plasticity. Both behavioral and learning-dependent reorganization of these connections has also been demonstrated by measuring spike transmission probabilities in pyramidal cell-interneuron spike cross-correlations that indicate monosynaptic connections. Here we investigated the activity-dependent modification of these connections during exploratory behavior in rats by optogenetically inhibiting pyramidal cell and interneuron subpopulations. Light application and associated firing alteration of pyramidal and interneuron populations led to lasting changes in pyramidal-interneuron connection weights as indicated by spike transmission changes. Spike transmission alterations were predicted by the light-mediated changes in the number of pre- and postsynaptic spike pairing events and by firing rate changes of interneurons but not pyramidal cells. This work demonstrates the presence of activity-dependent associative and non-associative reorganization of pyramidal-interneuron connections triggered by the optogenetic modification of the firing rate and spike synchrony of cells.
Collapse
Affiliation(s)
- Igor Gridchyn
- Institute of Science and Technology Austria (IST Austria)KlosterneuburgAustria
| | | | - Joseph O'Neill
- Institute of Science and Technology Austria (IST Austria)KlosterneuburgAustria
| | - Jozsef Csicsvari
- Institute of Science and Technology Austria (IST Austria)KlosterneuburgAustria
| |
Collapse
|
105
|
Kim W, Yoo Y. Toward a Unified Framework for Cognitive Maps. Neural Comput 2020; 32:2455-2485. [PMID: 32946705 DOI: 10.1162/neco_a_01326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In this study, we integrated neural encoding and decoding into a unified framework for spatial information processing in the brain. Specifically, the neural representations of self-location in the hippocampus (HPC) and entorhinal cortex (EC) play crucial roles in spatial navigation. Intriguingly, these neural representations in these neighboring brain areas show stark differences. Whereas the place cells in the HPC fire as a unimodal function of spatial location, the grid cells in the EC show periodic tuning curves with different periods for different subpopulations (called modules). By combining an encoding model for this modular neural representation and a realistic decoding model based on belief propagation, we investigated the manner in which self-location is encoded by neurons in the EC and then decoded by downstream neurons in the HPC. Through the results of numerical simulations, we first show the positive synergy effects of the modular structure in the EC. The modular structure introduces more coupling between heterogeneous modules with different periodicities, which provides increased error-correcting capabilities. This is also demonstrated through a comparison of the beliefs produced for decoding two- and four-module codes. Whereas the former resulted in a complete decoding failure, the latter correctly recovered the self-location even from the same inputs. Further analysis of belief propagation during decoding revealed complex dynamics in information updates due to interactions among multiple modules having diverse scales. Therefore, the proposed unified framework allows one to investigate the overall flow of spatial information, closing the loop of encoding and decoding self-location in the brain.
Collapse
Affiliation(s)
- Woori Kim
- Department of Special Education, Chonnam National University, Buk-gu, Gwangju, 61186, Korea
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Korea
| |
Collapse
|
106
|
Graves KN, Antony JW, Turk-Browne NB. Finding the Pattern: On-Line Extraction of Spatial Structure During Virtual Navigation. Psychol Sci 2020; 31:1183-1190. [PMID: 32853531 DOI: 10.1177/0956797620948828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
While navigating the world, we pick up on patterns of where things tend to appear. According to theories of memory and studies of animal behavior, knowledge of these patterns emerges gradually over days or weeks via consolidation of individual navigation episodes. Here, we discovered that navigation patterns can also be extracted on-line, prior to the opportunity for off-line consolidation, as a result of rapid statistical learning. Thirty human participants navigated a virtual water maze in which platform locations were drawn from a spatial distribution. Within a single session, participants increasingly navigated through the mean of the distribution. This behavior was better simulated by random walks from a model that had only an explicit representation of the current mean, compared with a model that had only memory for the individual platform locations. These results suggest that participants rapidly summarized the underlying spatial distribution and used this statistical knowledge to guide future navigation.
Collapse
|
107
|
Agmon H, Burak Y. A theory of joint attractor dynamics in the hippocampus and the entorhinal cortex accounts for artificial remapping and grid cell field-to-field variability. eLife 2020; 9:56894. [PMID: 32779570 PMCID: PMC7447444 DOI: 10.7554/elife.56894] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/07/2020] [Indexed: 01/04/2023] Open
Abstract
The representation of position in the mammalian brain is distributed across multiple neural populations. Grid cell modules in the medial entorhinal cortex (MEC) express activity patterns that span a low-dimensional manifold which remains stable across different environments. In contrast, the activity patterns of hippocampal place cells span distinct low-dimensional manifolds in different environments. It is unknown how these multiple representations of position are coordinated. Here, we develop a theory of joint attractor dynamics in the hippocampus and the MEC. We show that the system exhibits a coordinated, joint representation of position across multiple environments, consistent with global remapping in place cells and grid cells. In addition, our model accounts for recent experimental observations that lack a mechanistic explanation: variability in the firing rate of single grid cells across firing fields, and artificial remapping of place cells under depolarization, but not under hyperpolarization, of layer II stellate cells of the MEC.
Collapse
Affiliation(s)
- Haggai Agmon
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoram Burak
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
108
|
Altered Hippocampal Place Cell Representation and Theta Rhythmicity following Moderate Prenatal Alcohol Exposure. Curr Biol 2020; 30:3556-3569.e5. [PMID: 32707066 DOI: 10.1016/j.cub.2020.06.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/26/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
Prenatal alcohol exposure (PAE) leads to profound deficits in spatial memory and synaptic and cellular alterations to the hippocampus that last into adulthood. Neurons in the hippocampus called place cells discharge as an animal enters specific places in an environment, establish distinct ensemble codes for familiar and novel places, and are modulated by local theta rhythms. Spatial memory is thought to critically depend on the integrity of hippocampal place cell firing. Therefore, we tested the hypothesis that hippocampal place cell firing is impaired after PAE by performing in vivo recordings from the hippocampi (CA1 and CA3) of moderate PAE and control adult rats. Our results show that hippocampal CA3 neurons from PAE rats have reduced spatial tuning. Second, CA1 and CA3 neurons from PAE rats are less likely to orthogonalize their firing between directions of travel on a linear track and between changes in contextual stimuli in an open arena compared to control neurons. Lastly, reductions in the number of hippocampal place cells exhibiting significant theta rhythmicity and phase precession were observed, which may suggest changes to hippocampal microcircuit function. Together, the reduced spatial tuning and sensitivity to contextual changes provide a neural systems-level mechanism to explain spatial memory impairment after moderate PAE.
Collapse
|
109
|
Zotow E, Bisby JA, Burgess N. Behavioral evidence for pattern separation in human episodic memory. ACTA ACUST UNITED AC 2020; 27:301-309. [PMID: 32669385 PMCID: PMC7365015 DOI: 10.1101/lm.051821.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/03/2020] [Indexed: 01/02/2023]
Abstract
An essential feature of episodic memory is the ability to recall the multiple elements relating to one event from the multitude of elements relating to other, potentially similar events. Hippocampal pattern separation is thought to play a fundamental role in this process, by orthogonalizing the representations of overlapping events during encoding, to reduce interference between them during the process of pattern completion by which one or other is recalled. We introduce a new paradigm to test the hypothesis that similar memories, but not unrelated memories, are actively separated at encoding. Participants memorized events which were either unique or shared a common element with another event (paired “overlapping” events). We used a measure of dependency, originally devised to measure pattern completion, to quantify how much the probability of successfully retrieving associations from one event depends on successful retrieval of associations from the same event, an unrelated event or the overlapping event. In two experiments, we saw that within event retrievals were highly dependent, indicating pattern completion; retrievals from unrelated events were independent; and retrievals from overlapping events were antidependent (i.e., less than independent), indicating pattern separation. This suggests that representations of similar (overlapping) memories are actively separated, resulting in lowered dependency of retrieval performance between them, as would be predicted by the pattern separation account.
Collapse
Affiliation(s)
- Ewa Zotow
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - James A Bisby
- Division of Psychiatry, University College London, London W1T 7BN, United Kingdom
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom.,Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| |
Collapse
|
110
|
Skouras S, Torner J, Andersson P, Koush Y, Falcon C, Minguillon C, Fauria K, Alpiste F, Blenow K, Zetterberg H, Gispert JD, Molinuevo JL. Earliest amyloid and tau deposition modulate the influence of limbic networks during closed-loop hippocampal downregulation. Brain 2020; 143:976-992. [PMID: 32091109 PMCID: PMC7089658 DOI: 10.1093/brain/awaa011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 12/23/2022] Open
Abstract
Research into hippocampal self-regulation abilities may help determine the clinical significance of hippocampal hyperactivity throughout the pathophysiological continuum of Alzheimer's disease. In this study, we aimed to identify the effects of amyloid-β peptide 42 (amyloid-β42) and phosphorylated tau on the patterns of functional connectomics involved in hippocampal downregulation. We identified 48 cognitively unimpaired participants (22 with elevated CSF amyloid-β peptide 42 levels, 15 with elevated CSF phosphorylated tau levels, mean age of 62.705 ± 4.628 years), from the population-based 'Alzheimer's and Families' study, with baseline MRI, CSF biomarkers, APOE genotyping and neuropsychological evaluation. We developed a closed-loop, real-time functional MRI neurofeedback task with virtual reality and tailored it for training downregulation of hippocampal subfield cornu ammonis 1 (CA1). Neurofeedback performance score, cognitive reserve score, hippocampal volume, number of apolipoprotein ε4 alleles and sex were controlled for as confounds in all cross-sectional analyses. First, using voxel-wise multiple regression analysis and controlling for CSF biomarkers, we identified the effect of healthy ageing on eigenvector centrality, a measure of each voxel's overall influence based on iterative whole-brain connectomics, during hippocampal CA1 downregulation. Then, controlling for age, we identified the effects of abnormal CSF amyloid-β42 and phosphorylated tau levels on eigenvector centrality during hippocampal CA1 downregulation. Across subjects, our main findings during hippocampal downregulation were: (i) in the absence of abnormal biomarkers, age correlated with eigenvector centrality negatively in the insula and midcingulate cortex, and positively in the inferior temporal gyrus; (ii) abnormal CSF amyloid-β42 (<1098) correlated negatively with eigenvector centrality in the anterior cingulate cortex and primary motor cortex; and (iii) abnormal CSF phosphorylated tau levels (>19.2) correlated with eigenvector centrality positively in the ventral striatum, anterior cingulate and somatosensory cortex, and negatively in the precuneus and orbitofrontal cortex. During resting state functional MRI, similar eigenvector centrality patterns in the cingulate had previously been associated to CSF biomarkers in mild cognitive impairment and dementia patients. Using the developed closed-loop paradigm, we observed such patterns, which are characteristic of advanced disease stages, during a much earlier presymptomatic phase. In the absence of CSF biomarkers, our non-invasive, interactive, adaptive and gamified neuroimaging procedure may provide important information for clinical prognosis and monitoring of therapeutic efficacy. We have released the developed paradigm and analysis pipeline as open-source software to facilitate replication studies.
Collapse
Affiliation(s)
- Stavros Skouras
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Jordi Torner
- BarcelonaTech, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | | | - Yury Koush
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Francesc Alpiste
- BarcelonaTech, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Kaj Blenow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, University College London, London, UK
| | - Juan D Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - José L Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
111
|
Pedrosa V, Clopath C. The interplay between somatic and dendritic inhibition promotes the emergence and stabilization of place fields. PLoS Comput Biol 2020; 16:e1007955. [PMID: 32649658 PMCID: PMC7386595 DOI: 10.1371/journal.pcbi.1007955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/28/2020] [Accepted: 05/15/2020] [Indexed: 01/10/2023] Open
Abstract
During the exploration of novel environments, place fields are rapidly formed in hippocampal CA1 neurons. Place cell firing rate increases in early stages of exploration of novel environments but returns to baseline levels in familiar environments. Although similar in amplitude and width, place fields in familiar environments are more stable than in novel environments. We propose a computational model of the hippocampal CA1 network, which describes the formation, dynamics and stabilization of place fields. We show that although somatic disinhibition is sufficient to form place fields, dendritic inhibition along with synaptic plasticity is necessary for place field stabilization. Our model suggests that place cell stability can be attributed to strong excitatory synaptic weights and strong dendritic inhibition. We show that the interplay between somatic and dendritic inhibition balances the increased excitatory weights, such that place cells return to their baseline firing rate after exploration. Our model suggests that different types of interneurons are essential to unravel the mechanisms underlying place field plasticity. Finally, we predict that artificially induced dendritic events can shift place fields even after place field stabilization.
Collapse
Affiliation(s)
- Victor Pedrosa
- Department of Bioengineering, Imperial College London, London, United Kingdom
- CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF, Brazil
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
112
|
Hsieh CCJ, Lo YC, Li SJ, Lin TC, Chang CW, Chen TC, Yang SH, Lee YC, Chen YY. Detection of endophenotypes associated with neuropsychiatric deficiencies in a mouse model of tuberous sclerosis complex using diffusion tensor imaging. Brain Pathol 2020; 31:4-19. [PMID: 32530070 PMCID: PMC8018051 DOI: 10.1111/bpa.12870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/09/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare hereditary disease, which results from the mutation of either TSC1 or TSC2, and its clinical features include benign tumors and dysfunctions in numerous organs, including the brain. Many individuals with TSC manifest neuropsychiatric symptoms, such as learning impairments, cognitive deficits and anxiety. Current pharmacological treatment for TSC is the use of mTOR inhibitors. However, they are not effective in treating neuropsychiatric symptoms. We previously used curcumin, a diet-derived mTOR inhibitor, which possesses both anti-inflammatory and antiproliferative properties, to improve learning and memory deficits in Tsc2+/- mice. Diffusion tensor imaging (DTI) provides microstructural information in brain tissue and has been used to study the neuropathological changes in TSC. In this study, we confirmed that the impaired recognition memory and increased anxiety-like behavior in Tsc2+/- mice can be reversed by curcumin treatment. Second, we found altered fractional anisotropy and mean diffusivity in the anterior cingulate cortex and the hippocampus of the Tsc2+/- mice, which may indicate altered circuitry. Finally, the mTOR complex 1 hyperactivity was found in the cortex and hippocampus, coinciding with abnormal cortical myelination and increased glial fibrillary acidic protein expression in the hippocampal CA1 of Tsc2+/- mice, both of which can be rescued with curcumin treatment. Overall, DTI is sensitive to the subtle alterations that cannot be detected by conventional imaging, suggesting that noninvasive DTI may be suitable for longitudinally monitoring the in vivo neuropathology associated with the neuropsychiatric symptoms in TSC, thereby facilitating future clinical trials of pharmacological treatments.
Collapse
Affiliation(s)
- Christine Chin-Jung Hsieh
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, 11574, Taiwan.,Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Yu-Chun Lo
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ting-Chun Lin
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ting-Chieh Chen
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Chao Lee
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - You-Yin Chen
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, 11574, Taiwan.,Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan.,PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
113
|
Sanders H, Wilson MA, Gershman SJ. Hippocampal remapping as hidden state inference. eLife 2020; 9:51140. [PMID: 32515352 PMCID: PMC7282808 DOI: 10.7554/elife.51140] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/09/2020] [Indexed: 11/13/2022] Open
Abstract
Cells in the hippocampus tuned to spatial location (place cells) typically change their tuning when an animal changes context, a phenomenon known as remapping. A fundamental challenge to understanding remapping is the fact that what counts as a ‘‘context change’’ has never been precisely defined. Furthermore, different remapping phenomena have been classified on the basis of how much the tuning changes after different types and degrees of context change, but the relationship between these variables is not clear. We address these ambiguities by formalizing remapping in terms of hidden state inference. According to this view, remapping does not directly reflect objective, observable properties of the environment, but rather subjective beliefs about the hidden state of the environment. We show how the hidden state framework can resolve a number of puzzles about the nature of remapping.
Collapse
Affiliation(s)
- Honi Sanders
- Center for Brains Minds and Machines, Harvard University, Cambridge, United States.,Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Matthew A Wilson
- Center for Brains Minds and Machines, Harvard University, Cambridge, United States.,Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Samuel J Gershman
- Center for Brains Minds and Machines, Harvard University, Cambridge, United States.,Department of Psychology, Harvard University, Cambridge, United States
| |
Collapse
|
114
|
Abstract
Contemporary brain research seeks to understand how cognition is reducible to neural activity. Crucially, much of this effort is guided by a scientific paradigm that views neural activity as essentially driven by external stimuli. In contrast, recent perspectives argue that this paradigm is by itself inadequate and that understanding patterns of activity intrinsic to the brain is needed to explain cognition. Yet, despite this critique, the stimulus-driven paradigm still dominates-possibly because a convincing alternative has not been clear. Here, we review a series of findings suggesting such an alternative. These findings indicate that neural activity in the hippocampus occurs in one of three brain states that have radically different anatomical, physiological, representational, and behavioral correlates, together implying different functional roles in cognition. This three-state framework also indicates that neural representations in the hippocampus follow a surprising pattern of organization at the timescale of ∼1 s or longer. Lastly, beyond the hippocampus, recent breakthroughs indicate three parallel states in the cortex, suggesting shared principles and brain-wide organization of intrinsic neural activity.
Collapse
Affiliation(s)
- Kenneth Kay
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology, University of California San Francisco, San Francisco, California
| | - Loren M Frank
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology, University of California San Francisco, San Francisco, California
| |
Collapse
|
115
|
Haas OV, Henke J, Leibold C, Thurley K. Modality-specific Subpopulations of Place Fields Coexist in the Hippocampus. Cereb Cortex 2020; 29:1109-1120. [PMID: 29912390 DOI: 10.1093/cercor/bhy017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 11/13/2022] Open
Abstract
Hippocampal place cells integrate signals from multiple sensory modalities. However, it is unclear how these different inputs are combined to generate place fields. We investigated how visual spatial cues and an animal's locomotion are integrated by CA3 place cells of Mongolian gerbils. While the animals moved on a virtual linear track, we adapted the gain between the visually projected environment and the treadmill movement. Place cells responded differently to this manipulation. In a subset, place fields were kept in accord with salient visual cues in the virtual environment or reward location, whereas in another subset, place fields were strongly influenced by locomotion. Theta phase precession was present and indistinguishable between the place field types. Theta compression remained intact under gain changes and extended over both types of place field. Hippocampal place cells thus retain strong influence from distinct input streams suggesting a role of the hippocampus CA3 as a multimodal associator on the theta time scale.
Collapse
Affiliation(s)
- Olivia V Haas
- Department Biology II, Ludwig-Maximilians-Universität München, Martinsried, Germany.,Bernstein Center for Computational Neuroscience Munich, Martinsried, Germany.,Graduate School for Systemic Neurosciences Munich, Martinsried, Germany
| | - Josephine Henke
- Department Biology II, Ludwig-Maximilians-Universität München, Martinsried, Germany.,Bernstein Center for Computational Neuroscience Munich, Martinsried, Germany.,Graduate School for Systemic Neurosciences Munich, Martinsried, Germany
| | - Christian Leibold
- Department Biology II, Ludwig-Maximilians-Universität München, Martinsried, Germany.,Bernstein Center for Computational Neuroscience Munich, Martinsried, Germany
| | - Kay Thurley
- Department Biology II, Ludwig-Maximilians-Universität München, Martinsried, Germany.,Bernstein Center for Computational Neuroscience Munich, Martinsried, Germany
| |
Collapse
|
116
|
A novel apparatus for assessing visual cue-based navigation in rodents. J Neurosci Methods 2020; 338:108667. [DOI: 10.1016/j.jneumeth.2020.108667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 11/18/2022]
|
117
|
Leibold C. A model for navigation in unknown environments based on a reservoir of hippocampal sequences. Neural Netw 2020; 124:328-342. [DOI: 10.1016/j.neunet.2020.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
|
118
|
Impairment of Pattern Separation of Ambiguous Scenes by Single Units in the CA3 in the Absence of the Dentate Gyrus. J Neurosci 2020; 40:3576-3590. [PMID: 32234778 DOI: 10.1523/jneurosci.2596-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Theoretical models and experimental evidence have suggested that connections from the dentate gyrus (DG) to CA3 play important roles in representing orthogonal information (i.e., pattern separation) in the hippocampus. However, the effects of eliminating the DG on neural firing patterns in the CA3 have rarely been tested in a goal-directed memory task that requires both the DG and CA3. In this study, selective lesions in the DG were made using colchicine in male Long-Evans rats, and single units from the CA3 were recorded as the rats performed visual scene memory tasks. The original scenes used in training were altered during testing by blurring to varying degrees or by using visual masks, resulting in maximal recruitment of the DG-CA3 circuits. Compared with controls, the performance of rats with DG lesions was particularly impaired when blurred scenes were used in the task. In addition, the firing rate modulation associated with visual scenes in these rats was significantly reduced in the single units recorded from the CA3 when ambiguous scenes were presented, largely because DG-deprived CA3 cells did not show stepwise, categorical rate changes across varying degrees of scene ambiguity compared with controls. These findings suggest that the DG plays key roles not only during the acquisition of scene memories but also during retrieval when modified visual scenes are processed in conjunction with the CA3 by making the CA3 network respond orthogonally to ambiguous scenes.SIGNIFICANCE STATEMENT Despite the behavioral evidence supporting the role of the dentate gyrus in pattern separation in the hippocampus, the underlying neural mechanisms are largely unknown. By recording single units from the CA3 in DG-lesioned rats performing a visual scene memory task, we report that the scene-related modulation of neural firing was significantly reduced in the DG-lesion rats compared with controls, especially when the original scene stimuli were ambiguously altered. Our findings suggest that the dentate gyrus plays an essential role during memory retrieval and performs a critical computation to make categorical rate modulation occur in the CA3 between different scenes, especially when ambiguity is present in the environment.
Collapse
|
119
|
Kv4.1, a Key Ion Channel For Low Frequency Firing of Dentate Granule Cells, Is Crucial for Pattern Separation. J Neurosci 2020; 40:2200-2214. [PMID: 32047055 DOI: 10.1523/jneurosci.1541-19.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/30/2019] [Accepted: 01/23/2020] [Indexed: 11/21/2022] Open
Abstract
The dentate gyrus (DG) in the hippocampus may play key roles in remembering distinct episodes through pattern separation, which may be subserved by the sparse firing properties of granule cells (GCs) in the DG. Low intrinsic excitability is characteristic of mature GCs, but ion channel mechanisms are not fully understood. Here, we investigated ionic channel mechanisms for firing frequency regulation in hippocampal GCs using male and female mice, and identified Kv4.1 as a key player. Immunofluorescence analysis showed that Kv4.1 was preferentially expressed in the DG, and its expression level determined by Western blot analysis was higher at 8-week than 3-week-old mice, suggesting a developmental regulation of Kv4.1 expression. With respect to firing frequency, GCs are categorized into two distinctive groups: low-frequency (LF) and high-frequency (HF) firing GCs. Input resistance (R in) of most LF-GCs is lower than 200 MΩ, suggesting that LF-GCs are fully mature GCs. Kv4.1 channel inhibition by intracellular perfusion of Kv4.1 antibody increased firing rates and gain of the input-output relationship selectively in LF-GCs with no significant effect on resting membrane potential and R in, but had no effect in HF-GCs. Importantly, mature GCs from mice depleted of Kv4.1 transcripts in the DG showed increased firing frequency, and these mice showed an impairment in contextual discrimination task. Our findings suggest that Kv4.1 expression occurring at late stage of GC maturation is essential for low excitability of DG networks and thereby contributes to pattern separation.SIGNIFICANCE STATEMENT The sparse activity of dentate granule cells (GCs), which is essential for pattern separation, is supported by high inhibitory inputs and low intrinsic excitability of GCs. Low excitability of GCs is thought to be attributable to a high K+ conductance at resting membrane potentials, but this study identifies Kv4.1, a depolarization-activated K+ channel, as a key ion channel that regulates firing of GCs without affecting resting membrane potentials. Kv4.1 expression is developmentally regulated and Kv4.1 currents are detected only in mature GCs that show low-frequency firing, but not in less mature high-frequency firing GCs. Furthermore, mice depleted of Kv4.1 transcripts in the dentate gyrus show impaired pattern separation, suggesting that Kv4.1 is crucial for sparse coding and pattern separation.
Collapse
|
120
|
Shuman T, Aharoni D, Cai DJ, Lee CR, Chavlis S, Page-Harley L, Vetere LM, Feng Y, Yang CY, Mollinedo-Gajate I, Chen L, Pennington ZT, Taxidis J, Flores SE, Cheng K, Javaherian M, Kaba CC, Rao N, La-Vu M, Pandi I, Shtrahman M, Bakhurin KI, Masmanidis SC, Khakh BS, Poirazi P, Silva AJ, Golshani P. Breakdown of spatial coding and interneuron synchronization in epileptic mice. Nat Neurosci 2020; 23:229-238. [PMID: 31907437 PMCID: PMC7259114 DOI: 10.1038/s41593-019-0559-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
Temporal lobe epilepsy causes severe cognitive deficits, but the circuit mechanisms remain unknown. Interneuron death and reorganization during epileptogenesis may disrupt the synchrony of hippocampal inhibition. To test this, we simultaneously recorded from the CA1 and dentate gyrus in pilocarpine-treated epileptic mice with silicon probes during head-fixed virtual navigation. We found desynchronized interneuron firing between the CA1 and dentate gyrus in epileptic mice. Since hippocampal interneurons control information processing, we tested whether CA1 spatial coding was altered in this desynchronized circuit, using a novel wire-free miniscope. We found that CA1 place cells in epileptic mice were unstable and completely remapped across a week. This spatial instability emerged around 6 weeks after status epilepticus, well after the onset of chronic seizures and interneuron death. Finally, CA1 network modeling showed that desynchronized inputs can impair the precision and stability of CA1 place cells. Together, these results demonstrate that temporally precise intrahippocampal communication is critical for spatial processing.
Collapse
Affiliation(s)
- Tristan Shuman
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Daniel Aharoni
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Denise J Cai
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher R Lee
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Lucia Page-Harley
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren M Vetere
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yu Feng
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chen Yi Yang
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Irene Mollinedo-Gajate
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lingxuan Chen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zachary T Pennington
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jiannis Taxidis
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sergio E Flores
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kevin Cheng
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Milad Javaherian
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christina C Kaba
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Naina Rao
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mimi La-Vu
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ioanna Pandi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
- School of Medicine, University of Crete, Heraklion, Greece
| | - Matthew Shtrahman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Konstantin I Bakhurin
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sotiris C Masmanidis
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece.
| | - Alcino J Silva
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA.
- West LA Veterans Affairs Medical Center, Los Angeles, CA, USA.
- Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
121
|
Miller TD, Chong TTJ, Aimola Davies AM, Johnson MR, Irani SR, Husain M, Ng TWC, Jacob S, Maddison P, Kennard C, Gowland PA, Rosenthal CR. Human hippocampal CA3 damage disrupts both recent and remote episodic memories. eLife 2020; 9:e41836. [PMID: 31976861 PMCID: PMC6980860 DOI: 10.7554/elife.41836] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/05/2019] [Indexed: 12/31/2022] Open
Abstract
Neocortical-hippocampal interactions support new episodic (event) memories, but there is conflicting evidence about the dependence of remote episodic memories on the hippocampus. In line with systems consolidation and computational theories of episodic memory, evidence from model organisms suggests that the cornu ammonis 3 (CA3) hippocampal subfield supports recent, but not remote, episodic retrieval. In this study, we demonstrated that recent and remote memories were susceptible to a loss of episodic detail in human participants with focal bilateral damage to CA3. Graph theoretic analyses of 7.0-Tesla resting-state fMRI data revealed that CA3 damage disrupted functional integration across the medial temporal lobe (MTL) subsystem of the default network. The loss of functional integration in MTL subsystem regions was predictive of autobiographical episodic retrieval performance. We conclude that human CA3 is necessary for the retrieval of episodic memories long after their initial acquisition and functional integration of the default network is important for autobiographical episodic memory performance.
Collapse
Affiliation(s)
- Thomas D Miller
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Department of NeurologyRoyal Free HospitalLondonUnited Kingdom
| | - Trevor T-J Chong
- Monash Institute of Cognitive and Clinical NeurosciencesMonash UniversityClaytonAustralia
| | - Anne M Aimola Davies
- Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
- Research School of PsychologyAustralian National UniversityCanberraAustralia
| | - Michael R Johnson
- Division of Brain SciencesImperial College LondonLondonUnited Kingdom
| | - Sarosh R Irani
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Masud Husain
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
| | - Tammy WC Ng
- Department of AnaesthesticsRoyal Free HospitalLondonUnited Kingdom
| | - Saiju Jacob
- Neurology Department, Queen Elizabeth Neuroscience CentreUniversity Hospitals of BirminghamBirminghamUnited Kingdom
| | - Paul Maddison
- Neurology DepartmentQueen’s Medical CentreNottinghamUnited Kingdom
| | - Christopher Kennard
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Penny A Gowland
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUnited Kingdom
| | - Clive R Rosenthal
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
122
|
Alexander KS, Nalloor R, Bunting KM, Vazdarjanova A. Investigating Individual Pre-trauma Susceptibility to a PTSD-Like Phenotype in Animals. Front Syst Neurosci 2020; 13:85. [PMID: 31992972 PMCID: PMC6971052 DOI: 10.3389/fnsys.2019.00085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a complex condition that develops after experiencing a severe emotional trauma, with or without physical trauma. There is no known cure and evidence-based treatments, which are effective in reducing symptoms, have low retention rates. It is therefore important, in addition to seeking new therapeutics, to identify ways to reduce the likelihood of developing PTSD. The fact that some, but not all, individuals exposed to the same traumatic event develop PTSD suggests that there is individual susceptibility. Investigating susceptibility and underlying factors will be better guided if there is a coherent framework for such investigations. In this review, we propose that susceptibility is a dynamic state that is comprised of susceptibility factors (before trauma) and sequalae factors (during or after trauma, but before PTSD diagnosis). We define key features of susceptibility and sequalae factors as: (1) they are detectable before trauma (susceptibility factors) or during/shortly after trauma (sequalae factors), (2) they can be manipulated, and (3) manipulation of these factors alters the likelihood of developing PTSD, thus affecting resilience. In this review we stress the importance of investigating susceptibility to PTSD with appropriate animal models, because prospective human studies are expensive and manipulation of susceptibility and sequalae factors for study purposes may not always be feasible. This review also provides a brief overview of a subset of animal models that study PTSD-related behaviors and related alterations in endocrine and brain systems that focus on individual differences, peri- and post-trauma. Attention is drawn to the RISP model (Revealing Individual Susceptibility to a PTSD-like Phenotype) which assesses susceptibility before trauma. Using the RISP model and expression of plasticity-associated immediate early genes, Arc and Homer1a, we have identified impaired hippocampal function as a potential susceptibility factor. We further discuss other putative susceptibility factors and approaches to mitigate them. We assert that this knowledge will guide successful strategies for interventions before, during or shortly after trauma that can decrease the probability of developing PTSD.
Collapse
Affiliation(s)
- Khadijah S Alexander
- VA Research Service, Charlie Norwood VA Medical Center, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Rebecca Nalloor
- VA Research Service, Charlie Norwood VA Medical Center, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Kristopher M Bunting
- VA Research Service, Charlie Norwood VA Medical Center, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Almira Vazdarjanova
- VA Research Service, Charlie Norwood VA Medical Center, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| |
Collapse
|
123
|
Lecei A, van Winkel R. Hippocampal pattern separation of emotional information determining risk or resilience in individuals exposed to childhood trauma: Linking exposure to neurodevelopmental alterations and threat anticipation. Neurosci Biobehav Rev 2020; 108:160-170. [DOI: 10.1016/j.neubiorev.2019.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/29/2022]
|
124
|
Jin W, Qin H, Zhang K, Chen X. Spatial Navigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1284:63-90. [PMID: 32852741 DOI: 10.1007/978-981-15-7086-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampus is critical for spatial navigation. In this review, we focus on the role of the hippocampus in three basic strategies used for spatial navigation: path integration, stimulus-response association, and map-based navigation. First, the hippocampus is not required for path integration unless the path of path integration is too long and complex. The hippocampus provides mnemonic support when involved in the process of path integration. Second, the hippocampus's involvement in stimulus-response association is dependent on how the strategy is conducted. The hippocampus is not required for the habit form of stimulus-response association. Third, while the hippocampus is fully engaged in map-based navigation, the shared characteristics of place cells, grid cells, head direction cells, and other spatial encoding cells, which are detected in the hippocampus and associated areas, offer a possibility that there is a stand-alone allocentric space perception (or mental representation) of the environment outside and independent of the hippocampus, and the spatially specific firing patterns of these spatial encoding cells are the unfolding of the intermediate stages of the processing of this allocentric spatial information when conveyed into the hippocampus for information storage or retrieval. Furthermore, the presence of all the spatially specific firing patterns in the hippocampus and the related neural circuits during the path integration and map-based navigation support such a notion that in essence, path integration is the same allocentric space perception provided with only idiothetic inputs. Taken together, the hippocampus plays a general mnemonic role in spatial navigation.
Collapse
Affiliation(s)
- Wenjun Jin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China.
| | - Han Qin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
125
|
Abstract
People often recognize and remember faces of individuals within their own race more easily than those of other races. While behavioral research has long suggested that the Other-Race Effect (ORE) is due to extensive experience with one’s own race group, the neural mechanisms underlying the effect have remained elusive. Predominant theories of the ORE have argued that the effect is mainly caused by processing disparities between same and other-race faces during early stages of perceptual encoding. Our findings support an alternative view that the ORE is additionally shaped by mnemonic processing mechanisms beyond perception and attention. Using a “pattern separation” paradigm based on computational models of episodic memory, we report evidence that the ORE may be driven by differences in successful memory discrimination across races as a function of degree of interference or overlap between face stimuli. In contrast, there were no ORE-related differences on a comparable match-to-sample task with no long-term memory load, suggesting that the effect is not simply attributable to visual and attentional processes. These findings suggest that the ORE may emerge in part due to “tuned” memory mechanisms that may enhance same-race, at the expense of other-race face detection.
Collapse
|
126
|
Morgan PJ, Bourboulou R, Filippi C, Koenig-Gambini J, Epsztein J. Kv1.1 contributes to a rapid homeostatic plasticity of intrinsic excitability in CA1 pyramidal neurons in vivo. eLife 2019; 8:49915. [PMID: 31774395 PMCID: PMC6881145 DOI: 10.7554/elife.49915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
In area CA1 of the hippocampus, the selection of place cells to represent a new environment is biased towards neurons with higher excitability. However, different environments are represented by orthogonal cell ensembles, suggesting that regulatory mechanisms exist. Activity-dependent plasticity of intrinsic excitability, as observed in vitro, is an attractive candidate. Here, using whole-cell patch-clamp recordings of CA1 pyramidal neurons in anesthetized rats, we have examined how inducing theta-bursts of action potentials affects their intrinsic excitability over time. We observed a long-lasting, homeostatic depression of intrinsic excitability which commenced within minutes, and, in contrast to in vitro observations, was not mediated by dendritic Ih. Instead, it was attenuated by the Kv1.1 channel blocker dendrotoxin K, suggesting an axonal origin. Analysis of place cells’ out-of-field firing in mice navigating in virtual reality further revealed an experience-dependent reduction consistent with decreased excitability. We propose that this mechanism could reduce memory interference.
Collapse
Affiliation(s)
- Peter James Morgan
- Institute of Neurobiology of the Mediterranean Sea (INMED), Turing Center for Living Systems (CENTURI), Aix-Marseille University, INSERM, Marseille, France
| | - Romain Bourboulou
- Institute of Neurobiology of the Mediterranean Sea (INMED), Turing Center for Living Systems (CENTURI), Aix-Marseille University, INSERM, Marseille, France
| | - Caroline Filippi
- Institute of Neurobiology of the Mediterranean Sea (INMED), Turing Center for Living Systems (CENTURI), Aix-Marseille University, INSERM, Marseille, France
| | - Julie Koenig-Gambini
- Institute of Neurobiology of the Mediterranean Sea (INMED), Turing Center for Living Systems (CENTURI), Aix-Marseille University, INSERM, Marseille, France.,Institut Universitaire de France, Paris, France
| | - Jérôme Epsztein
- Institute of Neurobiology of the Mediterranean Sea (INMED), Turing Center for Living Systems (CENTURI), Aix-Marseille University, INSERM, Marseille, France
| |
Collapse
|
127
|
Memory retrieval modulates spatial tuning of single neurons in the human entorhinal cortex. Nat Neurosci 2019; 22:2078-2086. [PMID: 31712776 PMCID: PMC6897360 DOI: 10.1038/s41593-019-0523-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 09/23/2019] [Indexed: 01/18/2023]
Abstract
The medial temporal lobe is critical for both spatial navigation and memory. Although single neurons in the medial temporal lobe activate to represent locations in the environment during navigation, how this spatial tuning relates to memory for events involving those locations remains unclear. We examined memory-related changes in spatial tuning by recording single-neuron activity from neurosurgical patients performing a virtual-reality object-location memory task. We identified 'memory-trace cells' with activity that was spatially tuned to the retrieved location of the specific object that participants were cued to remember. Memory-trace cells in the entorhinal cortex, in particular, encoded discriminable representations of different memories through a memory-specific rate code. These findings indicate that single neurons in the human entorhinal cortex change their spatial tuning to target relevant memories for retrieval.
Collapse
|
128
|
Hippocampal Global Remapping Can Occur without Input from the Medial Entorhinal Cortex. Cell Rep 2019; 22:3152-3159. [PMID: 29562172 PMCID: PMC5929481 DOI: 10.1016/j.celrep.2018.02.082] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/26/2017] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
The high storage capacity of the episodic memory system relies on distinct representations for events that are separated in time and space. The spatial component of these computations includes the formation of independent maps by hippocampal place cells across environments, referred to as global re-mapping. Such remapping is thought to emerge by the switching of input patterns from specialized spatially selective cells in medial entorhinal cortex (mEC), such as grid and border cells. Although it has been shown that acute manipulations of mEC firing patterns are sufficient for inducing hippocampal remapping, it remains unknown whether specialized spatial mEC inputs are necessary for the reorganization of hippocampal spatial representations. Here, we examined remapping in rats without mEC input to the hippocampus and found that highly distinct spatial maps emerged rapidly in every individual rat. Our data suggest that hippocampal spatial computations do not depend on inputs from specialized cell types in mEC.
Collapse
|
129
|
Diamantaki M, Coletta S, Nasr K, Zeraati R, Laturnus S, Berens P, Preston-Ferrer P, Burgalossi A. Manipulating Hippocampal Place Cell Activity by Single-Cell Stimulation in Freely Moving Mice. Cell Rep 2019; 23:32-38. [PMID: 29617670 DOI: 10.1016/j.celrep.2018.03.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 11/26/2022] Open
Abstract
Learning critically depends on the ability to rapidly form and store non-overlapping representations of the external world. In line with their postulated role in episodic memory, hippocampal place cells can undergo a rapid reorganization of their firing fields upon contextual manipulations. To explore the mechanisms underlying such global remapping, we juxtacellularly stimulated 42 hippocampal neurons in freely moving mice during spatial exploration. We found that evoking spike trains in silent neurons was sufficient for creating place fields, while in place cells, juxtacellular stimulation induced a rapid remapping of their place fields to the stimulus location. The occurrence of complex spikes was most predictive of place field plasticity. Our data thus indicate that plasticity-inducing stimuli are able to rapidly bias place cell activity, simultaneously suppressing existing place fields. We propose that such competitive place field dynamics could support the orthogonalization of the hippocampal map during global remapping.
Collapse
Affiliation(s)
- Maria Diamantaki
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience-IMPRS, 72074 Tübingen, Germany
| | - Stefano Coletta
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience-IMPRS, 72074 Tübingen, Germany
| | - Khaled Nasr
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience-IMPRS, 72074 Tübingen, Germany
| | - Roxana Zeraati
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience-IMPRS, 72074 Tübingen, Germany
| | - Sophie Laturnus
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany; Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany; Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Patricia Preston-Ferrer
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany
| | - Andrea Burgalossi
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany.
| |
Collapse
|
130
|
Sugar J, Moser MB. Episodic memory: Neuronal codes for what, where, and when. Hippocampus 2019; 29:1190-1205. [PMID: 31334573 DOI: 10.1002/hipo.23132] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/07/2022]
Abstract
Episodic memory is defined as the ability to recall events in a spatiotemporal context. Formation of such memories is critically dependent on the hippocampal formation and its inputs from the entorhinal cortex. To be able to support the formation of episodic memories, entorhinal cortex and hippocampal formation should contain a neuronal code that follows several requirements. First, the code should include information about position of the agent ("where"), sequence of events ("when"), and the content of the experience itself ("what"). Second, the code should arise instantly thereby being able to support memory formation of one-shot experiences. For successful encoding and to avoid interference between memories during recall, variations in location, time, or in content of experience should result in unique ensemble activity. Finally, the code should capture several different resolutions of experience so that the necessary details relevant for future memory-based predictions will be stored. We review how neuronal codes in entorhinal cortex and hippocampus follow these requirements and argue that during formation of episodic memories entorhinal cortex provides hippocampus with instant information about ongoing experience. Such information originates from (a) spatially modulated neurons in medial entorhinal cortex, including grid cells, which provide a stable and universal positional metric of the environment; (b) a continuously varying signal in lateral entorhinal cortex providing a code for the temporal progression of events; and (c) entorhinal neurons coding the content of experiences exemplified by object-coding and odor-selective neurons. During formation of episodic memories, information from these systems are thought to be encoded as unique sequential ensemble activity in hippocampus, thereby encoding associations between the content of an event and its spatial and temporal contexts. Upon exposure to parts of the encoded stimuli, activity in these ensembles can be reinstated, leading to reactivation of the encoded activity pattern and memory recollection.
Collapse
Affiliation(s)
- Jørgen Sugar
- Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, Norwegian University for Science and Technology (NTNU), Trondheim, Norway
| | - May-Britt Moser
- Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, Norwegian University for Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
131
|
Ramm M, Möddel G, Sundermann B, Last A, Langenbruch L, Jungilligens J, Wellmer J, Young P, Axmacher N. Impaired processing of response conflicts in mesial temporal lobe epilepsy. J Neuropsychol 2019; 14:283-300. [PMID: 31207105 DOI: 10.1111/jnp.12186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/10/2019] [Indexed: 12/13/2022]
Abstract
Increasing evidence from neuroimaging studies points towards a hippocampal role in resolving approach-avoidance goal conflicts. Furthermore, previous neuroimaging findings suggest that the hippocampus (HC) contributes to successful conflict resolution as it is measured, for example, in a Stroop paradigm. However, it is still an open question whether the hippocampus is indeed causally relevant for resolving cognitive conflicts. Here, we investigated whether conflict resolution performance is affected by hippocampal pathology. N = 30 patients with mesial temporal lobe epilepsy (MTLE), almost exclusively showing MRI signs of hippocampal sclerosis, and an equal number of age-matched healthy controls performed an auditory Stroop paradigm. Participants listened to the words 'high' and 'low', spoken in either a high or a low pitch. Subjects' response time and accuracy to the phonetic information in the presence of incongruent (conflict trials) or congruent (non-conflict trials) semantic information were assessed. In addition, patients' regional grey matter (GM) brain volumes were analysed. We observed an increased effect of conflict on accuracy in patients with MTLE compared to healthy controls. This effect was negatively correlated with right HC volume. The results suggest that the impairment in the resolution of a response conflict is related to hippocampal structural integrity and thus add further support to the notion that the HC is not only involved but even causally relevant for successful cognitive conflict processing.
Collapse
Affiliation(s)
- Markus Ramm
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany.,Institute of Sleep Medicine and Neuromuscular Disorders, University Hospital Muenster, Germany
| | - Gabriel Möddel
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Germany
| | | | - Annegret Last
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Lisa Langenbruch
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Germany
| | - Johannes Jungilligens
- Ruhr-Epileptology, Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr University Bochum, Germany
| | - Jörg Wellmer
- Ruhr-Epileptology, Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr University Bochum, Germany
| | - Peter Young
- Institute of Sleep Medicine and Neuromuscular Disorders, University Hospital Muenster, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany
| |
Collapse
|
132
|
Drieu C, Zugaro M. Hippocampal Sequences During Exploration: Mechanisms and Functions. Front Cell Neurosci 2019; 13:232. [PMID: 31263399 PMCID: PMC6584963 DOI: 10.3389/fncel.2019.00232] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
Although the hippocampus plays a critical role in spatial and episodic memories, the mechanisms underlying memory formation, stabilization, and recall for adaptive behavior remain relatively unknown. During exploration, within single cycles of the ongoing theta rhythm that dominates hippocampal local field potentials, place cells form precisely ordered sequences of activity. These neural sequences result from the integration of both external inputs conveying sensory-motor information, and intrinsic network dynamics possibly related to memory processes. Their endogenous replay during subsequent sleep is critical for memory consolidation. The present review discusses possible mechanisms and functions of hippocampal theta sequences during exploration. We present several lines of evidence suggesting that these neural sequences play a key role in information processing and support the formation of initial memory traces, and discuss potential functional distinctions between neural sequences emerging during theta vs. awake sharp-wave ripples.
Collapse
Affiliation(s)
- Céline Drieu
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U 1050, PSL Research University, Paris, France
| | - Michaël Zugaro
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U 1050, PSL Research University, Paris, France
| |
Collapse
|
133
|
Matsumoto N, Kitanishi T, Mizuseki K. The subiculum: Unique hippocampal hub and more. Neurosci Res 2019; 143:1-12. [DOI: 10.1016/j.neures.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/10/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023]
|
134
|
Impaired cerebellar Purkinje cell potentiation generates unstable spatial map orientation and inaccurate navigation. Nat Commun 2019; 10:2251. [PMID: 31113954 PMCID: PMC6529420 DOI: 10.1038/s41467-019-09958-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 04/05/2019] [Indexed: 12/29/2022] Open
Abstract
Cerebellar activity supported by PKC-dependent long-term depression in Purkinje cells (PCs) is involved in the stabilization of self-motion based hippocampal representation, but the existence of cerebellar processes underlying integration of allocentric cues remains unclear. Using mutant-mice lacking PP2B in PCs (L7-PP2B mice) we here assess the role of PP2B-dependent PC potentiation in hippocampal representation and spatial navigation. L7-PP2B mice display higher susceptibility to spatial map instability relative to the allocentric cue and impaired allocentric as well as self-motion goal-directed navigation. These results indicate that PP2B-dependent potentiation in PCs contributes to maintain a stable hippocampal representation of a familiar environment in an allocentric reference frame as well as to support optimal trajectory toward a goal during navigation. It is known that Purkinje cell PKC-dependent depression is involved in the stabilization of self-motion based hippocampal representation. Here the authors describe decreased stability of hippocampal place cells based on allocentric cues in mice lacking Purkinje cell PP2B-dependent potentiation.
Collapse
|
135
|
Drieu C, Todorova R, Zugaro M. Nested sequences of hippocampal assemblies during behavior support subsequent sleep replay. Science 2019; 362:675-679. [PMID: 30409880 DOI: 10.1126/science.aat2952] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
Abstract
Consolidation of spatial and episodic memories is thought to rely on replay of neuronal activity sequences during sleep. However, the network dynamics underlying the initial storage of memories during wakefulness have never been tested. Although slow, behavioral time scale sequences have been claimed to sustain sequential memory formation, fast ("theta") time scale sequences, nested within slow sequences, could be instrumental. We found that in rats traveling passively on a model train, place cells formed behavioral time scale sequences but theta sequences were degraded, resulting in impaired subsequent sleep replay. In contrast, when the rats actively ran on a treadmill while being transported on the train, place cells generated clear theta sequences and accurate trajectory replay during sleep. Our results support the view that nested sequences underlie the initial formation of memory traces subsequently consolidated during sleep.
Collapse
Affiliation(s)
- Céline Drieu
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Ralitsa Todorova
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Michaël Zugaro
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
136
|
Bellmund JLS, Gärdenfors P, Moser EI, Doeller CF. Navigating cognition: Spatial codes for human thinking. Science 2019; 362:362/6415/eaat6766. [PMID: 30409861 DOI: 10.1126/science.aat6766] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampal formation has long been suggested to underlie both memory formation and spatial navigation. We discuss how neural mechanisms identified in spatial navigation research operate across information domains to support a wide spectrum of cognitive functions. In our framework, place and grid cell population codes provide a representational format to map variable dimensions of cognitive spaces. This highly dynamic mapping system enables rapid reorganization of codes through remapping between orthogonal representations across behavioral contexts, yielding a multitude of stable cognitive spaces at different resolutions and hierarchical levels. Action sequences result in trajectories through cognitive space, which can be simulated via sequential coding in the hippocampus. In this way, the spatial representational format of the hippocampal formation has the capacity to support flexible cognition and behavior.
Collapse
Affiliation(s)
- Jacob L S Bellmund
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Norwegian University of Science and Technology, Trondheim, Norway. .,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Peter Gärdenfors
- Department of Philosophy and Cognitive Science, Lund University, Lund, Sweden.,Centre for Artificial Intelligence, University of Technology Sydney, Sydney, Australia
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian F Doeller
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Norwegian University of Science and Technology, Trondheim, Norway. .,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
137
|
Sakon JJ, Suzuki WA. A neural signature of pattern separation in the monkey hippocampus. Proc Natl Acad Sci U S A 2019; 116:9634-9643. [PMID: 31010929 PMCID: PMC6511004 DOI: 10.1073/pnas.1900804116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The CA3 and dentate gyrus (DG) regions of the hippocampus are considered key for disambiguating sensory inputs from similar experiences in memory, a process termed pattern separation. The neural mechanisms underlying pattern separation, however, have been difficult to compare across species: rodents offer robust recording methods with less human-centric tasks, while humans provide complex behavior with less recording potential. To overcome these limitations, we trained monkeys to perform a visual pattern separation task similar to those used in humans while recording activity from single CA3/DG neurons. We find that, when animals discriminate recently seen novel images from similar (lure) images, behavior indicative of pattern separation, CA3/DG neurons respond to lure images more like novel than repeat images. Using a population of these neurons, we are able to classify novel, lure, and repeat images from each other using this pattern of firing rates. Notably, one subpopulation of these neurons is more responsible for distinguishing lures and repeats-the key discrimination indicative of pattern separation.
Collapse
Affiliation(s)
- John J Sakon
- Center for Neural Science, New York University, New York, NY 10003
| | - Wendy A Suzuki
- Center for Neural Science, New York University, New York, NY 10003
| |
Collapse
|
138
|
Vieweg P, Riemer M, Berron D, Wolbers T. Memory Image Completion: Establishing a task to behaviorally assess pattern completion in humans. Hippocampus 2019; 29:340-351. [PMID: 30246900 PMCID: PMC6519020 DOI: 10.1002/hipo.23030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/15/2018] [Accepted: 09/13/2018] [Indexed: 11/06/2022]
Abstract
For memory retrieval, pattern completion is a crucial process that restores memories from partial or degraded cues. Neurocognitive aging models suggest that the aged memory system is biased toward pattern completion, resulting in a behavioral preference for retrieval over encoding of memories. Here, we built on our previously developed behavioral recognition memory paradigm-the Memory Image Completion (MIC) task-a task to specifically target pattern completion. First, we used the original design with concurrent eye-tracking in order to rule out perceptual confounds that could interact with recognition performance. Second, we developed parallel versions of the task to accommodate test settings in clinical environments or longitudinal studies. The results show that older adults have a deficit in pattern completion ability with a concurrent bias toward pattern completion. Importantly, eye-tracking data during encoding could not account for age-related performance differences. At retrieval, spatial viewing patterns for both age groups were more driven by stimulus identity than by response choice, but compared to young adults, older adults' fixation patterns overlapped more between stimuli that they (wrongly) thought had the same identity. This supports the observation that older adults choose responses perceived as similar to a learned stimulus, indicating a bias toward pattern completion. Additionally, two shorter versions of the task yielded comparable results, and no general learning effects were observed for repeated testing. Together, we present evidence that the MIC is a reliable behavioral task that targets pattern completion, that is easily and repeatedly applicable, and that is made freely available online.
Collapse
Affiliation(s)
- Paula Vieweg
- Institute of Psychology, University of LeipzigLeipzigGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Martin Riemer
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Medical Faculty, University Hospital Magdeburg (FME)Otto von Guericke University MagdeburgMagdeburgGermany
- Center for Behavioral Brain SciencesMagdeburgGermany
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University MagdeburgMagdeburgGermany
- Clinical Memory Research Unit, Department of Clinical Sciences MalmöLund UniversityLundSweden
| | - Thomas Wolbers
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Medical Faculty, University Hospital Magdeburg (FME)Otto von Guericke University MagdeburgMagdeburgGermany
- Center for Behavioral Brain SciencesMagdeburgGermany
| |
Collapse
|
139
|
Chenani A, Sabariego M, Schlesiger MI, Leutgeb JK, Leutgeb S, Leibold C. Hippocampal CA1 replay becomes less prominent but more rigid without inputs from medial entorhinal cortex. Nat Commun 2019; 10:1341. [PMID: 30902981 PMCID: PMC6430812 DOI: 10.1038/s41467-019-09280-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/03/2019] [Indexed: 01/20/2023] Open
Abstract
The hippocampus is an essential brain area for learning and memory. However, the network mechanisms underlying memory storage, consolidation and retrieval remain incompletely understood. Place cell sequences during theta oscillations are thought to be replayed during non-theta states to support consolidation and route planning. In animals with medial entorhinal cortex (MEC) lesions, the temporal organization of theta-related hippocampal activity is disrupted, which allows us to test whether replay is also compromised. Two different analyses—comparison of co-activation patterns between running and rest epochs and analysis of the recurrence of place cell sequences—reveal that the enhancement of replay by behavior is reduced in MEC-lesioned versus control rats. In contrast, the degree of intrinsic network structure prior and subsequent to behavior remains unaffected by MEC lesions. The MEC-dependent temporal coordination during theta states therefore appears to facilitate behavior-related plasticity, but does not disrupt pre-existing functional connectivity. Medial entorhinal cortex (MEC) is involved in memory processes that entail the replay of sequential firing of hippocampal place cells during rest periods and during behaviour. Here, the authors show that MEC lesioned animals show intact replay after an epoch of rats running on a linear track, while replay during the behavioral epoch is reduced.
Collapse
Affiliation(s)
- Alireza Chenani
- Department Biology II, Ludwig-Maximilians-Universität München, Martinsried, 82152, Germany.,Max-Planck Institute for Psychiatry, 80804, Munich, Germany
| | - Marta Sabariego
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, 92093, CA, USA
| | - Magdalene I Schlesiger
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, 92093, CA, USA.,Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jill K Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, 92093, CA, USA
| | - Stefan Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, 92093, CA, USA.,Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, 92093, CA, USA
| | - Christian Leibold
- Department Biology II, Ludwig-Maximilians-Universität München, Martinsried, 82152, Germany. .,Bernstein Center for Computational Neuroscience Munich, Martinsried, 82152, Germany.
| |
Collapse
|
140
|
Jiang A, Tran TT, Madison FN, Bakker A. Acute stress-induced cortisol elevation during memory consolidation enhances pattern separation. ACTA ACUST UNITED AC 2019; 26:121-127. [PMID: 30898974 PMCID: PMC6432168 DOI: 10.1101/lm.048546.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/08/2019] [Indexed: 12/20/2022]
Abstract
Stress is a potent modulator of brain function and particularly mnemonic processes. While chronic stress is associated with long-term deficits in memory, the effects of acute stress on mnemonic functions are less clear as previous reports have been inconsistent. Some studies suggest that cortisol, a stress hormone that modulates biological changes in response to stress, may enhance memory consolidation and impair memory retrieval. However, other studies report no effect of cortisol on either memory consolidation or retrieval. These discrepancies could be due to differences in the timing and sequencing of the experimental procedures or individual differences in participants’ stress response. In the present study, we examined the effect of increased cortisol levels due to acute stress, induced by the Trier Social Stress Test (TSST), on a pattern separation memory task while differentiating the distinct stages of memory processing and controlling for the effects of diurnal variation. Sixty-nine young adults completed a 2-d study in which subjects either underwent the TSST immediately following the encoding part of the memory task, targeting memory consolidation, or immediately prior to the recognition part of the memory task on the second day, targeting memory retrieval. Control subjects completed the same study procedures but underwent a control version of the TSST that did not induce a stress response. Mnemonic discrimination of highly similar stimuli was enhanced by stress induced during consolidation with better discrimination showing a significant correlation with increased cortisol responses. Stress induced during memory retrieval showed no significant effect on memory performance. These findings suggest that stress induced changes in cortisol differentially affect the consolidation and retrieval stages of memory function.
Collapse
Affiliation(s)
- Alice Jiang
- Department of Psychological and Brain Sciences, Johns Hopkins University School of Arts and Sciences, Baltimore, Maryland 21218, USA
| | - Tammy T Tran
- Department of Psychological and Brain Sciences, Johns Hopkins University School of Arts and Sciences, Baltimore, Maryland 21218, USA
| | - Farrah N Madison
- Department of Psychology, University of Maryland, College Park, Maryland, 20742, USA
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
141
|
Hwaun E, Colgin LL. CA3 place cells that represent a novel waking experience are preferentially reactivated during sharp wave-ripples in subsequent sleep. Hippocampus 2019; 29:921-938. [PMID: 30891854 DOI: 10.1002/hipo.23090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/27/2019] [Accepted: 02/20/2019] [Indexed: 11/09/2022]
Abstract
A popular model of memory consolidation posits that recent memories stored in the hippocampus are reactivated during sleep and thereby transferred to neocortex for long-term storage. This process is thought to occur during sharp wave-ripples (SWRs) in nonrapid eye movement sleep (NREM). However, whether the hippocampus consolidates all recent memories in the same manner remains unclear. An efficient memory system may extract novel information from recent experiences for preferential consolidation. In the hippocampus, memories are thought to be stored initially in CA3. Therefore, CA3 place cells that encode novel experiences may be preferentially reactivated during SWRs in subsequent sleep. To test this hypothesis, we recorded CA3 place cells in rats during exposure to a familiar and a novel environment and during subsequent overnight sleep. We found that CA3 place cells that preferentially coded a novel environment showed larger firing rate increases during SWRs in NREM than place cells that preferentially coded a familiar environment. Moreover, CA3 place cell ensembles replayed trajectories from a novel environment during NREM with higher fidelity than trajectories from a familiar environment. Together, these results suggest that CA3 representations of novel experiences are preferentially processed during subsequent sleep.
Collapse
Affiliation(s)
- Ernie Hwaun
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas.,Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Laura Lee Colgin
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas.,Institute for Neuroscience, The University of Texas at Austin, Austin, Texas.,Department of Neuroscience, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
142
|
Interaction of Taste and Place Coding in the Hippocampus. J Neurosci 2019; 39:3057-3069. [PMID: 30777885 DOI: 10.1523/jneurosci.2478-18.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 01/20/2023] Open
Abstract
An animal's survival depends on finding food and the memory of food and contexts are often linked. Given that the hippocampus is required for spatial and contextual memory, it is reasonable to expect related coding of space and food stimuli in hippocampal neurons. However, relatively little is known about how the hippocampus responds to tastes, the most central sensory property of food. In this study, we examined the taste-evoked responses and spatial firing properties of single units in the dorsal CA1 hippocampal region as male rats received a battery of taste stimuli differing in both chemical composition and palatability within a specific spatial context. We identified a subset of hippocampal neurons that responded to tastes, some of which were place cells. These taste and place responses had a distinct interaction: taste-responsive cells tended to have less spatially specific firing fields and place cells only responded to tastes delivered inside their place field. Like neurons in the amygdala and lateral hypothalamus, hippocampal neurons discriminated between tastes predominantly on the basis of palatability, with taste selectivity emerging concurrently with palatability-relatedness; these responses did not reflect movement or arousal. However, hippocampal taste responses emerged several hundred milliseconds later than responses in other parts of the taste system, suggesting that the hippocampus does not influence real-time taste decisions, instead associating the hedonic value of tastes with a particular context. This incorporation of taste responses into existing hippocampal maps could be one way that animals use past experience to locate food sources.SIGNIFICANCE STATEMENT Finding food is essential for animals' survival and taste and context memory are often linked. Although hippocampal responses to space and contexts have been well characterized, little is known about how the hippocampus responds to tastes. Here, we identified a subset of hippocampal neurons that discriminated between tastes based on palatability. Cells with stronger taste responses typically had weaker spatial responses and taste responses were confined to place cells' firing fields. Hippocampal taste responses emerged later than in other parts of the taste system, suggesting that the hippocampus does not influence taste decisions, but rather associates the hedonic value of tastes consumed within a particular context. This could be one way that animals use past experience to locate food sources.
Collapse
|
143
|
Tampuu A, Matiisen T, Ólafsdóttir HF, Barry C, Vicente R. Efficient neural decoding of self-location with a deep recurrent network. PLoS Comput Biol 2019; 15:e1006822. [PMID: 30768590 PMCID: PMC6407788 DOI: 10.1371/journal.pcbi.1006822] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/08/2019] [Accepted: 01/28/2019] [Indexed: 11/24/2022] Open
Abstract
Place cells in the mammalian hippocampus signal self-location with sparse spatially stable firing fields. Based on observation of place cell activity it is possible to accurately decode an animal’s location. The precision of this decoding sets a lower bound for the amount of information that the hippocampal population conveys about the location of the animal. In this work we use a novel recurrent neural network (RNN) decoder to infer the location of freely moving rats from single unit hippocampal recordings. RNNs are biologically plausible models of neural circuits that learn to incorporate relevant temporal context without the need to make complicated assumptions about the use of prior information to predict the current state. When decoding animal position from spike counts in 1D and 2D-environments, we show that the RNN consistently outperforms a standard Bayesian approach with either flat priors or with memory. In addition, we also conducted a set of sensitivity analysis on the RNN decoder to determine which neurons and sections of firing fields were the most influential. We found that the application of RNNs to neural data allowed flexible integration of temporal context, yielding improved accuracy relative to the more commonly used Bayesian approaches and opens new avenues for exploration of the neural code. Being able to accurately self-localize is critical for most motile organisms. In mammals, place cells in the hippocampus appear to be a central component of the brain network responsible for this ability. In this work we recorded the activity of a population of hippocampal neurons from freely moving rodents and carried out neural decoding to determine the animals’ locations. We found that a machine learning approach using recurrent neural networks (RNNs) allowed us to predict the rodents’ true positions more accurately than a standard Bayesian method with flat priors (i.e. maximum likelihood estimator, MLE) as well as a Bayesian approach with memory (i.e. with priors informed by past activity). The RNNs are able to take into account past neural activity without making assumptions about the statistics of neuronal firing. Further, by analyzing the representations learned by the network we were able to determine which neurons, and which aspects of their activity, contributed most strongly to the accurate decoding.
Collapse
Affiliation(s)
- Ardi Tampuu
- Computational Neuroscience Lab, Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Tambet Matiisen
- Computational Neuroscience Lab, Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - H. Freyja Ólafsdóttir
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Caswell Barry
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- * E-mail: (RV); (CB)
| | - Raul Vicente
- Computational Neuroscience Lab, Institute of Computer Science, University of Tartu, Tartu, Estonia
- * E-mail: (RV); (CB)
| |
Collapse
|
144
|
Mankin EA, Thurley K, Chenani A, Haas OV, Debs L, Henke J, Galinato M, Leutgeb JK, Leutgeb S, Leibold C. The hippocampal code for space in Mongolian gerbils. Hippocampus 2019; 29:787-801. [PMID: 30746805 DOI: 10.1002/hipo.23075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/07/2018] [Accepted: 01/15/2019] [Indexed: 11/11/2022]
Abstract
Large parts of our knowledge about the physiology of the hippocampus in the intact brain are derived from studies in rats and mice. While many of those findings fit well to the limited data available from humans and primates, there are also marked differences, for example, in hippocampal oscillation frequencies and in the persistence of theta oscillations. To test whether the distinct sensory specializations of the visual and auditory system of primates play a key role in explaining these differences, we recorded basic hippocampal physiological properties in Mongolian gerbils, a rodent species with high visual acuity, and good low-frequency hearing, similar to humans. We found that gerbils show only minor differences to rats regarding hippocampal place field activity, theta properties (frequency, persistence, phase precession, theta compression), and sharp wave ripple events. The only major difference between rats and gerbils was a considerably higher degree of head direction selectivity of gerbil place fields, which may be explained by their visual system being able to better resolve distant cues. Thus, differences in sensory specializations between rodent species only affect hippocampal circuit dynamics to a minor extent, which implies that differences to other mammalian lineages, such as bats and primates, cannot be solely explained by specialization in the auditory or visual system.
Collapse
Affiliation(s)
- Emily A Mankin
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California.,Department of Neurosurgery, David Geffen School of Medicine and Semel Institute For Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Kay Thurley
- Department Biologie II, Ludwig-Maximilians-Universität München, Martinsried, Germany.,Bernstein Center for Computational Neuroscience Munich, Martinsried, Germany
| | - Alireza Chenani
- Department Biologie II, Ludwig-Maximilians-Universität München, Martinsried, Germany.,Bernstein Center for Computational Neuroscience Munich, Martinsried, Germany
| | - Olivia V Haas
- Department Biologie II, Ludwig-Maximilians-Universität München, Martinsried, Germany.,Bernstein Center for Computational Neuroscience Munich, Martinsried, Germany
| | - Luca Debs
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California
| | - Josephine Henke
- Department Biologie II, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Melissa Galinato
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California
| | - Jill K Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California
| | - Stefan Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California.,Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, California
| | - Christian Leibold
- Department Biologie II, Ludwig-Maximilians-Universität München, Martinsried, Germany.,Bernstein Center for Computational Neuroscience Munich, Martinsried, Germany
| |
Collapse
|
145
|
Influence of pharmacological and epigenetic factors to suppress neurotrophic factors and enhance neural plasticity in stress and mood disorders. Cogn Neurodyn 2019; 13:219-237. [PMID: 31168328 DOI: 10.1007/s11571-019-09522-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/17/2018] [Accepted: 01/16/2019] [Indexed: 02/08/2023] Open
Abstract
Stress-induced major depression and mood disorders are characterized by behavioural abnormalities and psychiatric illness, leading to disability and immature mortality worldwide. Neurobiological mechanisms of stress and mood disorders are discussed considering recent findings, and challenges to enhance pharmacological effects of antidepressant, and mood stabilizers. Pharmacological enhancement of ketamine and scopolamine regulates depression at the molecular level, increasing synaptic plasticity in prefrontal regions. Blood-derived neurotrophic factors facilitate mood-deficit symptoms. Epigenetic factors maintain stress-resilience in hippocampal region. Regulation of neurotrophic factors blockades stress, and enhances neuronal survival though it paralyzes limbic regions. Molecular agents and neurotrophic factors also control behavioral and synaptic plasticity in addiction and stress disorders. Future research on neuronal dynamics and cellular actions can be directed to obtain the etiology of synaptic dysregulation in mood disorder and stress. For the first time, the current review contributes to the literature of synaptic plasticity representing the role of epigenetic mechanisms and glucocorticoid receptors to predict depression and anxiety in clinical conditions.
Collapse
|
146
|
Parato J, Shen H, Smith SS. α4βδ GABA A Receptors Trigger Synaptic Pruning and Reduce Dendritic Length of Female Mouse CA3 Hippocampal Pyramidal Cells at Puberty. Neuroscience 2019; 398:23-36. [PMID: 30496825 PMCID: PMC6411036 DOI: 10.1016/j.neuroscience.2018.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 01/24/2023]
Abstract
Synaptic pruning during adolescence is critical for optimal cognition. The CA3 hippocampus contains unique spine types and plays a pivotal role in pattern separation and seizure generation, where sex differences exist, but adolescent pruning has only been studied in the male. Thus, for the present study we assessed pruning of specific spine types in the CA3 hippocampus during adolescence and investigated a possible mechanism in the female mouse. To this end, we used Golgi-impregnated brains from pubertal (∼PND 35, assessed by vaginal opening) and post-pubertal (PND 56) mice. Spine density was assessed from z-stack (0.1-μm steps) images taken using a Nikon DS-U3 camera through a Nikon Eclipse Ci-L microscope and analyzed with NIS Elements. Spine density decreased significantly (P < 0.05) during adolescence, with 50-60% decreases in mushroom and stubby spine-types (P < 0.05, ∼PND35 vs. PND56) in non-proestrous mice. This was associated with decreases in kalirin-7, a spine protein which stabilizes the cytoskeleton and is required for spine maintenance. Because our previous findings suggest that pubertal increases in α4βδ GABAA receptors (GABARs) trigger pruning in CA1, we investigated their role in CA3. α4 expression in CA3 hippocampus increased 4-fold at puberty (P < 0.05), assessed by immunostaining and verified electrophysiologically by an increased response to gaboxadol (100 nM), which is selective for α4βδ. Knock-out of α4 prevented the pubertal decrease in kalirin-7 and synaptic pruning and also increased the dendritic length, demonstrating a functional link. These data suggest that pubertal α4βδ GABARs alter dendritic morphology and trigger pruning in female CA3 hippocampus.
Collapse
Affiliation(s)
- Julie Parato
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Program in Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Hui Shen
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA; School of Biomedical Engineering, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA; The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| |
Collapse
|
147
|
Sheffield ME, Dombeck DA. Dendritic mechanisms of hippocampal place field formation. Curr Opin Neurobiol 2019; 54:1-11. [PMID: 30036841 DOI: 10.1016/j.conb.2018.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/18/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
Abstract
Place cells in the hippocampus are thought to form a cognitive map of space and a memory of places. How this map forms when animals are exposed to novel environments has been the subject of a great deal of research. Numerous technical advances over the past decade greatly increased our understanding of the precise mechanisms underlying place field formation. In particular, it is now possible to connect cellular and circuit mechanisms of integration, firing, and plasticity discovered in brain slices, to processes taking place in vivo as animals learn and encode novel environments. Here, we focus on recent results and describe the dendritic mechanisms most likely responsible for the formation of place fields. We also discuss key open questions that are likely to be answered in the coming years.
Collapse
Affiliation(s)
- Mark Ej Sheffield
- Department of Neurobiology, Grossman Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA.
| | - Daniel A Dombeck
- Department of Neurobiology, Northwestern University, Evanston, IL 60201, USA.
| |
Collapse
|
148
|
Hanert A, Pedersen A, Bartsch T. Transient hippocampal CA1 lesions in humans impair pattern separation performance. Hippocampus 2019; 29:736-747. [PMID: 30706576 DOI: 10.1002/hipo.23073] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/30/2018] [Accepted: 01/09/2019] [Indexed: 01/30/2023]
Abstract
Day-to-day life involves the perception of events that resemble one another. For the sufficient encoding and retrieval of similar information, the hippocampus provides two essential computational processes. Pattern separation refers to the differentiation of overlapping memory representations, whereas pattern completion reactivates memories based on noisy or degraded input. Evidence from human and rodent studies suggest that pattern separation specifically relies on neuronal ensemble activity in hippocampal subnetworks in the dentate gyrus and CA3. Although a role for CA1 in pattern separation has been shown in animal models, its contribution in the human hippocampus remains elusive. In order to elucidate the contribution of CA1 neurons to pattern separation, we examined 14 patients with an acute transient global amnesia (TGA), a rare self-limiting dysfunction of the hippocampal system showing specific lesions to CA1. Patients' pattern separation performance was tested during the acute amnestic phase and follow-up using an established mnemonic similarity test. Patients in the acute phase showed a profound deficit in pattern separation (p < .05) as well as recognition memory (p < .001) that recovered during follow-up. Specifically, patients tested in a later stage of the amnesia were less impaired in pattern separation than in recognition memory. Considering the time dependency of lesion-associated hippocampal deficits in early and late acute stages of the TGA, we showed that the pattern separation function recovered significantly earlier than recognition memory. Our results provide causal evidence that hippocampal CA1 neurons are critical to pattern separation performance in humans.
Collapse
Affiliation(s)
- Annika Hanert
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, University of Kiel, Kiel, Germany
| | - Anya Pedersen
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Kiel, Kiel, Germany
| | - Thorsten Bartsch
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, University of Kiel, Kiel, Germany
| |
Collapse
|
149
|
Dabaghian Y. Through synapses to spatial memory maps via a topological model. Sci Rep 2019; 9:572. [PMID: 30679520 PMCID: PMC6345962 DOI: 10.1038/s41598-018-36807-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
Various neurophysiological and cognitive functions are based on transferring information between spiking neurons via a complex system of synaptic connections. In particular, the capacity of presynaptic inputs to influence the postsynaptic outputs–the efficacy of the synapses–plays a principal role in all aspects of hippocampal neurophysiology. However, a direct link between the information processed at the level of individual synapses and the animal’s ability to form memories at the organismal level has not yet been fully understood. Here, we investigate the effect of synaptic transmission probabilities on the ability of the hippocampal place cell ensembles to produce a cognitive map of the environment. Using methods from algebraic topology, we find that weakening synaptic connections increase spatial learning times, produce topological defects in the large-scale representation of the ambient space and restrict the range of parameters for which place cell ensembles are capable of producing a map with correct topological structure. On the other hand, the results indicate a possibility of compensatory phenomena, namely that spatial learning deficiencies may be mitigated through enhancement of neuronal activity.
Collapse
Affiliation(s)
- Yuri Dabaghian
- Department of Neurology, The University of Texas McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
150
|
Using computational models to predict in vivo synaptic inputs to interneuron specific 3 (IS3) cells of CA1 hippocampus that also allow their recruitment during rhythmic states. PLoS One 2019; 14:e0209429. [PMID: 30620732 PMCID: PMC6324795 DOI: 10.1371/journal.pone.0209429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/05/2018] [Indexed: 12/05/2022] Open
Abstract
Brain coding strategies are enabled by the balance of synaptic inputs that individual neurons receive as determined by the networks in which they reside. Inhibitory cell types contribute to brain function in distinct ways but recording from specific, inhibitory cell types during behaviour to determine their contributions is highly challenging. In particular, the in vivo activities of vasoactive intestinal peptide-expressing interneuron specific 3 (IS3) cells in the hippocampus that only target other inhibitory cells are unknown at present. We perform a massive, computational exploration of possible synaptic inputs to IS3 cells using multi-compartment models and optimized synaptic parameters. We find that asynchronous, in vivo-like states that are sensitive to additional theta-timed inputs (8 Hz) exist when excitatory and inhibitory synaptic conductances are approximately equally balanced and with low numbers of activated synapses receiving correlated inputs. Specifically, under these balanced conditions, the input resistance is larger with higher mean spike firing rates relative to other activated synaptic conditions investigated. Incoming theta-timed inputs result in strongly increased spectral power relative to baseline. Thus, using a generally applicable computational approach we predict the existence and features of background, balanced states in hippocampal circuits.
Collapse
|